CN110093659A - 一种晶种层诱导生长法的纳米薄膜制作工艺 - Google Patents

一种晶种层诱导生长法的纳米薄膜制作工艺 Download PDF

Info

Publication number
CN110093659A
CN110093659A CN201810080141.7A CN201810080141A CN110093659A CN 110093659 A CN110093659 A CN 110093659A CN 201810080141 A CN201810080141 A CN 201810080141A CN 110093659 A CN110093659 A CN 110093659A
Authority
CN
China
Prior art keywords
solution
seed
growth method
seed layer
manufacture craft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810080141.7A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SIBEIFU PHOTOVOLTAIC TECHNOLOGY Co Ltd
Original Assignee
SUZHOU SIBEIFU PHOTOVOLTAIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU SIBEIFU PHOTOVOLTAIC TECHNOLOGY Co Ltd filed Critical SUZHOU SIBEIFU PHOTOVOLTAIC TECHNOLOGY Co Ltd
Priority to CN201810080141.7A priority Critical patent/CN110093659A/zh
Publication of CN110093659A publication Critical patent/CN110093659A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及了一种晶种层诱导生长法的纳米薄膜制作工艺。以C12H28AlLiO3还原AgNO3为<10nm银簇,并作为种子,Zn(NO3)26H2O和NaOH用碱溶解,合成的AgZnO络合溶解物作为种子溶液;再以AgNO3和Zn(NO3)2·6H2O与PVP、活性剂配制成特定摩尔比溶液在18Ω水中溶解为前驱溶液,调整种子和前驱体的摩尔比例,调节温度,利用阳离子表面活性剂十六烷基三甲基溴化胺在水溶液中形成的胶团为软模板,使种子在胶团内长大成15‑35nm颗粒;可转移至不同基底上沉积薄膜。不仅简化了生成过程降低了成本,还使Ag和ZnO基组合晶粒还使Ag迁移性得到解决,可大批量工业化生产,良率高。

Description

一种晶种层诱导生长法的纳米薄膜制作工艺
技术领域
本发明涉及纳米晶种种植长大成大颗粒制备技术领域,特别是涉及一种晶种层诱导生长法的纳米薄膜制作工艺的方法,属于溶液晶核培植技术。
背景技术
随着科技的发展,金属纳米粒子尺寸、形貌可控,改善粒子分散性和稳定性,提高产率及纯度已成为具有发展的方向,纳米颗粒高活性表面修饰成为基质金属的沉积晶粒生长强化性能的一种手段;
与现有技术相比,本发明的有益效果是:溶液法生长单晶主要包括低温溶液、热液、和高温热液等生长方法;
低温溶液培育单晶优点:i) 温度低,易于选择仪器装置;ii) 易生长均匀性良好的大块单晶iii) 晶体外形完整可用肉眼观察生长过程。缺点:i) 组分多,杂质不可避免;ii)生长速度慢,周期长;iii) 晶体易于潮解,应用的温度范围窄。
本方法是通过基底片化学溶液晶核培植法加还原法在(PEN)PET\PVA\PDMS\MCE基片表面沉积大小均匀金属纳米颗粒,可先行去除杂质,分布还原,没有任何有毒物质排放,制作工艺简单,成本低,常温下可生成无需任何高温烧结的基片纳米薄膜,更延伸的优化基片功能改进质量,溶液法生长晶体是指首先将晶体的组成元素(溶质)溶解在另一溶液(溶剂)中,然后通过改变温度、蒸汽压等状态参数,获得过饱和溶液,最后使溶质从溶液中析出,形成晶体的方法。
利用X射线衍射仪(XRD-RIigakaku D/max2500)表征晶体结构形貌,扫描电镜(SEN-JSM6700F)和透射镜(TEM-JEOL-2015)观察薄膜的形貌和断面结构、载流子浓度、迁移率、电阻率Vian der paauw)法进行霍尔测量(accent hl5500),还有UV-Vis-NIR紫外分光度计测量薄膜透过率(backman-Du8B Spectrophotometer),波长范围300-900nm,测试在室温中,本工艺所得产品都具有长期的稳定性。
因此可以说本发明在稳定性、电性能和熔湿性方面都得到有效的验证,采用西安交通大学的JDSGC-9CMS电导率测试台可以测量产品的V OCI SCV MI MP M等主要参数和伏安特性曲线;测试仪可用计算机设定多个分档定电压电流I D和最大功率P M,并用数码管显示测试分档结果。
发明内容
有鉴于此,本发明提供了一种晶种层诱导生长法的纳米薄膜制作工艺。
为了实现上述目的,本发明的一种晶种层诱导生长法的纳米薄膜制作工艺,其包括如下步骤:
S1、首先容器可用5-10%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥使用;
S2、以三叔丁氧基氢化铝锂C12H28AlLiO3还原AgNO3为<10nm的形貌各异的银簇,在保护剂的作用下分散到分散剂中去形成溶液;
S3、Zn(NO3)26H2O和NaOH按照1;1的质量分数溶解后抽滤洗涤,再次加入去离子水溶解均匀;
S4、步骤S2产物和步骤S3产物按照一定的摩尔加入2.5-10%氨水和5-10%络合剂结合成AgZnO络合溶解物,作为种子溶液;
S5、AgNO3和Zn(NO3)2·6H2O 与PVP、活性剂配制成特定摩尔比溶液在18Ω水中溶解,加入碱调节pH稳定在8-9,使AgNO3和Zn(NO3)2·6H2O 获得过饱和溶液;
S6、移入高压釜内,计算机智能控制温度控制器调节至60-200℃加热30-60min,再加入有S4步骤中产物种子溶液反应,2-6小时后,利用阳离子表面活性剂十六烷基三甲基溴化胺在水溶液中形成的胶团为软模板,使种子在胶团内长大成纳米形貌各异的AgZnO颗粒;
S7、用块大些的冰放到塑料泡沫箱里加一定的盐2-4小时淬灭反应、颗粒经过超声超声波清洗离心,最后用超声波分散AgZnO粒子,经纯化再用分级出装入步骤S1干燥容器溶于乙醇再用18兆欧水稀释,最后超声分散;
S8、转移至不同基底上成膜;
S9、结构、形貌、透过率、紫外线可见光表征:SEM、四探针、超微量分光光度计;
S10、耐弯曲500次测试方阻、基底附着力测试。
作为本发明的进一步改进,在搅拌的条件下,分5-20次将三叔丁氧基氢化铝锂C12H28AlLiO3逐滴加入AgNO3中,配置成溶液质量比为1:0.5~2.6,然后在室温~80℃下反应2~9h,即得到纳米银溶胶。
作为本发明的进一步改进,在SEM下,形貌各异的银簇其中包括1-20nm的方块形、球形、多晶型、立方八面体、立方体单晶、三角形、六边形、双三菱锥形、十面体、棒状、线状,树杈形等。
作为本发明的进一步改进,产物再加溶液加热混合溶解均匀作为前驱溶液装入高压釜底部溶解区;籽晶高悬在顶部生长区,釜内转满溶剂介质矿化剂和水。
作为本发明的进一步改进,反渗透膜分级机,分出1-5nm、6-15nm、16-20nm的纳米粒子系列悬浮液(溶胶)分开装入容器静置5-10分钟。
作为本发明的进一步改进:取不同形貌的颗粒溶液,用MCE(0.1um-50mm)滤膜真空抽滤,固定好MCE膜后干燥。
作为本发明的进一步改进,将MCE膜背面贴上TFT-LCD偏光片剥离撕膜胶带,再用40-60℃丙酮蒸汽熏2-5min至肉眼透明为止,取出搁置2-3min,待MCE膜干燥固化后,然后放入丙酮溶液中浸泡10-20min,将MCE膜片完全溶解。
作为本发明的进一步改进,用热压机加热80-120℃,压力0.5MPa加压25min,在加压时通过在基板上和ECM之间加一层聚四氟乙烯薄膜。
作为本发明的进一步改进,PET\PVA\PDMS\MCE,根据需要选择不同的材质薄膜的胶带固定、加热加压、以及掌握固化程度,通用于基底材料的固态、液态固化固态选择。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种晶种层诱导生长法的纳米薄膜制作工艺的方法具体实施方式的方法流程示意图。

Claims (9)

1.一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,所述制备方法包括如下步骤:
S1、首先容器可用5-10%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥使用;
S2、以三叔丁氧基氢化铝锂C12H28AlLiO3还原AgNO3为<10nm的形貌各异的银簇,在保护剂的作用下分散到分散剂中去形成溶液;
S3、 Zn(NO3)26H2O和NaOH按照1;1的质量分数溶解后抽滤洗涤,再次加入去离子水溶解均匀;
S4、步骤S2产物和步骤S3产物按照一定的摩尔加入2.5-10%氨水和5-10%络合剂结合成AgZnO络合溶解物,作为种子溶液;
S5、AgNO3和Zn(NO3)2·6H2O 与PVP、活性剂配制成特定摩尔比溶液在18Ω水中溶解,加入碱调节pH稳定在8-9,使AgNO3和Zn(NO3)2·6H2O 获得过饱和溶液;
S6、移入高压釜内,计算机智能控制温度控制器调节至60-200℃加热30-60min,再加入有S4步骤中产物种子溶液反应,2-6小时后,利用阳离子表面活性剂十六烷基三甲基溴化胺在水溶液中形成的胶团为软模板,使种子在胶团内长大成纳米形貌各异的AgZnO颗粒;
S7、用块大些的冰放到塑料泡沫箱里加一定的盐2-4小时淬灭反应、颗粒经过超声超声波清洗离心,最后用超声波分散AgZnO粒子,经纯化再用分级出装入步骤S1干燥容器溶于乙醇再用18兆欧水稀释,最后超声分散;
S8、转移至不同基底上成膜;
S9、结构、形貌、透过率、紫外线可见光表征:SEM、四探针、超微量分光光度计;
S10、耐弯曲500次测试方阻、基底附着力测试。
2.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于步骤S2中在搅拌的条件下,分5-20次将三叔丁氧基氢化铝锂C12H28AlLiO3逐滴加入AgNO3中,配置成溶液质量比为1:0.5~2.6,然后在室温~80℃下反应2~9h,即得到纳米银溶胶。
3.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,其特征在于步骤S2中,在SEM下,形貌各异的银簇其中包括1-20nm的方块形、球形、多晶型、立方八面体、立方体单晶、三角形、六边形、双三菱锥形、十面体、棒状、线状,树杈形等。
4.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,所述步骤S4中产物再加溶液加热混合溶解均匀作为前驱溶液装入高压釜底部溶解区;籽晶高悬在顶部生长区,釜内转满溶剂介质矿化剂和水。
5.根据权利要求1中所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,所述步骤S7中所述:反渗透膜分级机,分出1-5nm、6-15nm、16-20nm的纳米粒子系列悬浮液(溶胶)分开装入容器静置5-10分钟。
6.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,所述步骤S7中所述:取不同形貌的颗粒溶液,用MCE(0.1um-50mm)滤膜真空抽滤,固定好MCE膜后干燥。
7.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于所述步骤S8中:将MCE膜背面贴上TFT-LCD偏光片剥离撕膜胶带,再用40-60℃丙酮蒸汽熏2-5min至肉眼透明为止,取出搁置2-3min,待MCE膜干燥固化后,然后放入丙酮溶液中浸泡10-20min,将MCE膜片完全溶解。
8.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,步骤8中,用热压机加热80-120℃,压力0.5MPa加压25min,在加压时通过在基板上和ECM之间加一层聚四氟乙烯薄膜。
9.根据权利要求1所述一种晶种层诱导生长法的纳米薄膜制作工艺,其特征在于,所述步骤S8中,转移至不同基材底衬包括:PET\PVA\PDMS\MCE,根据需要选择不同的材质薄膜的胶带固定、加热加压、以及掌握固化程度,通用于基底材料的固态、液态固化固态选择。
CN201810080141.7A 2018-01-27 2018-01-27 一种晶种层诱导生长法的纳米薄膜制作工艺 Pending CN110093659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810080141.7A CN110093659A (zh) 2018-01-27 2018-01-27 一种晶种层诱导生长法的纳米薄膜制作工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810080141.7A CN110093659A (zh) 2018-01-27 2018-01-27 一种晶种层诱导生长法的纳米薄膜制作工艺

Publications (1)

Publication Number Publication Date
CN110093659A true CN110093659A (zh) 2019-08-06

Family

ID=67441809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810080141.7A Pending CN110093659A (zh) 2018-01-27 2018-01-27 一种晶种层诱导生长法的纳米薄膜制作工艺

Country Status (1)

Country Link
CN (1) CN110093659A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181927A (zh) * 2011-03-30 2011-09-14 北京科技大学 一种低温条件下在柔性基底上制备氧化锌纳米阵列的方法
CN106564929A (zh) * 2016-10-21 2017-04-19 上海纳米技术及应用国家工程研究中心有限公司 一种Ag掺杂ZnO纳米气敏材料的制备方法
CN107469843A (zh) * 2017-09-20 2017-12-15 深圳大学 一种可响应可见光和近红外光的光催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181927A (zh) * 2011-03-30 2011-09-14 北京科技大学 一种低温条件下在柔性基底上制备氧化锌纳米阵列的方法
CN106564929A (zh) * 2016-10-21 2017-04-19 上海纳米技术及应用国家工程研究中心有限公司 一种Ag掺杂ZnO纳米气敏材料的制备方法
CN107469843A (zh) * 2017-09-20 2017-12-15 深圳大学 一种可响应可见光和近红外光的光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L. MUÑOZ-FERNANDEZ等: "Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications", 《ADVANCED POWDER TECHNOLOGY》 *
MONA HOSSEINI-SARVARI等: "Preparation, characterization, and catalytic application of nano Ag/ZnO in the oxidation of benzylic C–H bonds in sustainable media", 《RSC ADVANCES》 *
Y.F. WANG等: "Optical Prosperities of Ag–ZnO Composition Nanofilm Synthesized by Chemical Bath Deposition", 《ACTA PHYSICA POLONICA A》 *

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism
Guo et al. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions
CN108502918B (zh) 一种无机钙钛矿纳米线的合成方法
CN108971510A (zh) 银纳米线及其制备方法、银纳米线薄膜及复合薄膜
Guo et al. Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays
Han et al. Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process
CN103878387A (zh) 微波加热快速规模化制备五边形截面银纳米线的方法
Zhang et al. Effects of seed layers on controlling of the morphology of ZnO nanostructures and superhydrophobicity of ZnO nanostructure/stearic acid composite films
CN105478747B (zh) 对近红外光具有显著可调吸收性能的梭形金纳米粒子及其制备方法
CN106986373A (zh) 一种ZnO纳米棒的制备方法
CN101759374B (zh) 一种基于三维纳米银树枝状结构的可见光频段左手超材料的制备方法
CN107956000B (zh) 一种NiO多级中空纤维的合成方法及所得产品
CN108161024B (zh) 一种线状微纳米金属铜的制备方法
Rai et al. Recent advances in ZnO nanostructures and their future perspective
CN107103945A (zh) 一种铜纳米线透明导电薄膜及制备方法
CN107739047B (zh) 一种单分散高纯碘化铅的制备方法
CN110093659A (zh) 一种晶种层诱导生长法的纳米薄膜制作工艺
Song et al. Controllable growth of unique three-dimensional layered basic zinc salt/ZnO binary structure
CN113463179B (zh) 大尺寸β型四钼酸铵单晶颗粒的制备方法
CN117259772B (zh) 一种葛根纳米银复合水溶胶及其制备方法与应用
CN109304477A (zh) 一种高长径比银纳米线粉体的制备方法
Xiong et al. Synthesis of ZnO by chemical bath deposition in the presence of bacterial cellulose
CN101838013A (zh) 一种合成纺锤状ZnO纳米结构的方法
CN114808034B (zh) 一种片层花状纳米银及其制备方法和应用
CN108619917B (zh) 一种硫化氢传感用金属-有机框架基混合基质膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190806