CN109989101B - 一种锑化铟纳米线制备方法 - Google Patents

一种锑化铟纳米线制备方法 Download PDF

Info

Publication number
CN109989101B
CN109989101B CN201910269168.5A CN201910269168A CN109989101B CN 109989101 B CN109989101 B CN 109989101B CN 201910269168 A CN201910269168 A CN 201910269168A CN 109989101 B CN109989101 B CN 109989101B
Authority
CN
China
Prior art keywords
indium antimonide
nanowire
nanowires
aluminum oxide
anodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910269168.5A
Other languages
English (en)
Other versions
CN109989101A (zh
Inventor
林东
张小菊
王涛
林子琦
刘守法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xijing University
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN201910269168.5A priority Critical patent/CN109989101B/zh
Publication of CN109989101A publication Critical patent/CN109989101A/zh
Application granted granted Critical
Publication of CN109989101B publication Critical patent/CN109989101B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • C25F3/20Polishing of light metals of aluminium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Abstract

本发明公开了一种锑化铟纳米线制备方法,通过制备InSb块状金属,将InSb块状金属熔融,利用阳极氧化铝模板制备含有锑化铟纳米线的阳极氧化铝模板,将含有锑化铟纳米线的阳极氧化铝模板浸泡在铬酸与磷酸的混合溶液中中24小时,除去阳极氧化铝模板,再用乙醇过滤即可获得锑化铟纳米线。同时还提供利用制备得到锑化铟纳米线制备有机场效应晶体管型内存的方法。本发明制备得到的锑化铟纳米线应用于有机场效晶体管电荷储存层,可降低晶体管功率。

Description

一种锑化铟纳米线制备方法
技术领域
本发明属于纳米材料自备技术领域,具体涉及一种锑化铟纳米线制备方法。
背景技术
近几年信息技术蓬勃发展,电子产品已经成为人们生活中不可或缺的部份。目前数据存储元件分为挥发性以及非挥发性内存二大类。挥发性存储元件是需要靠电流维持的内存,当供应电流中断后,所储存的数据便完全消失,大多制作成随机存储器,主要作为计算机应用程序临时数据的储存介质。而非挥发性内存不需要靠电流维持,储存在内存数据可以藉由通入电流进行改写,通常应用在只读存储器以及闪存。挥发性存储器因漏电而造成大量能量损失,而非挥发性存储器可改善漏电问题,使得非挥发性内存逐渐受到重视。
因有机非挥发性存储器成本低、可用于穿戴式电子产品,引起科研人员极大的研究兴趣。有机非挥发性存储器的构造与记忆效应与浮栅组件相似,区别在于他是以半导体层、电荷储存层和介电层为主要组成结构。其记忆效应是利用外加偏压在电荷储存层产生对应电滞行为,以达到记忆效应。电荷储存层主要以纳米浮栅电介质或高分子聚合物作为电荷存储层材料,此层材料会受到内部纳米颗粒形貌、均匀性以及穿隧层中负载电场强度的影响。
典型的纳米线被定义为长径比在1000以上的一维结构材料,纳米线可分为纯金属纳米线、半导体纳米线以及绝缘体纳米线三大类。在纳米材料研究领域中,半导体纳米线具有半导体特性好、电子迁移率高及内部结构缺陷少等优点,是众多学者的研究对象。
化学气相沉积和有机金属化学气相沉积方式制作纳米线缺点在于线径大小及纳米线成分比列均一性无法控制,在应用上受到许多限制。以阳极氧化铝模板辅助利用真空压铸方式制作纳米线,不同于化学气相沉积和有机金属化学气相沉积方式。通过控制母材料成分比例以确保纳米线成分比例均一,通过控制阳极氧化铝模板上纳米孔洞尺寸可控制纳米线直径。
在全球范围内,以往的研究还未利用共聚物/纳米线作为电荷储存层制备数据储存元件,本发明利用共聚物/纳米线作为电荷储存层制备数据储存元件,有利于提高数据储存元件的存储能力。
发明内容
本发明的目的在于提供一种锑化铟纳米线制备方法,以氧化铝模板辅助真空压铸方式制备锑化铟纳米线,再以锑化铟纳米线/PMAA混合物作为电荷储存层制备非挥发性数据储存元件。
本发明具体通过以下技术方案实现:
一种锑化铟纳米线制备方法,包括以下步骤:
1)将铟颗粒及锑粉末混合置于真空环境中加热,熔融后持续加热至混合均匀,冷却形成InSb块状金属;
2)将InSb块状金属置于真空环境中进行加热至400℃保温24小时,冷却;
3)利用纯铝片作为阳极氧化铝基板制备阳极氧化铝模板,所述的阳极氧化铝上有大小均一的纳米孔洞;
4)把步骤(1)制备的InSb块状金属放在模具挤压内的阳极氧化铝模板上加热至InSb块状金属成熔融态,加压使熔融态锑化铟进入阳极氧化铝模板纳米孔内,冷却获得含有锑化铟纳米线的阳极氧化铝模板;
5)对含有锑化铟纳米线的阳极氧化铝模板进行热处理,浸泡在铬酸与磷酸的混合溶液中,用乙醇过滤即可获得锑化铟纳米线。
进一步的,步骤(1)和步骤(2)中所述的真空环境为气压小于10-3mm Hg。
进一步的,步骤(2)中所述的冷却具体为以50℃/H的速度冷却至室温。
进一步的,步骤(4)中加热具体为加热至530℃保温10分钟。
进一步的,步骤(4)中加压具体为液压机压力50kg/cm2,持续时间1分钟。
进一步的,步骤(5)中热处理具体为:温度为400℃保温时间1小时,再以每50℃/小时的速度冷却到室温。
进一步的,步骤(5)中铬酸与磷酸的混合溶液为:1.8wt%CrO3+6vol.%H3PO4+92vol.%H2O。
在本发明的另一方面,还提供了利用锑化铟纳米线制备有机场效应晶体管型内存的方法,包括以下步骤:
将锑化铟纳米线与聚甲基丙烯酸(PMAA)混合,置于甲醇(CH3OH)中,经超声振动制备成纳米线悬浮液,利用旋转涂布机将纳米线悬浮液涂在1.5cm×1.5cm×300nm的SiO2基板上;
将并五苯(C22H14)镀在锑化铟纳米线层上,再镀上黄金电极,电极长宽分别为1000μm和50μm,沉积厚度为80nm,即得有机场效应晶体管型内存。
本发明的有益效果为:
(1)以阳极氧化铝模板辅助利用真空压铸方式制作纳米线,可通过调整原材料成分比例来控制纳米线成分,且能形成元素成分比例均一的纳米线;
(2)纳米线长径比较大,比值达1000,作为电荷储存层制备数据储存元件,有利于提高数据储存元件临界电压偏移量和开关电流比。
(3)锑化铟与III-V族半导体材料相比在室温中具有较高的电子迁移率约为7.7×104cm2/(Vs),能带隙较小,约为0.18eV,空穴迁移率为850cm2/(Vs),高速低功率场效材料的理想选择,故将锑化铟应用于有机场效晶体管电荷储存层,因此可降低晶体管功率。
附图说明
图1是有机场效应晶体管型储存元件结构;
图2是孔径为86.12±5.44nm的阳极氧化铝模板;
图3是平均直径约83nm的纳米线SEM形貌;
图4是平均直径约102nm的纳米线SEM形貌;
图5是平均直径约382nm的纳米线SEM形貌;
图6是本发明纳米线成分分析。
具体实施方式
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤1:真空熔炼锑化铟(InSb)块状金属。
利用电子天平分别秤取5g纯度99.99%铟(In)颗粒及纯度99.99%锑(Sb)粉末,混合后放入内径1英寸的石英试管中。抽真空使石英试管中气压小于10-3mm Hg,防止金属粉末在加热时与空气中氧气反应生成氧化物。然后利用瓦斯火炬加热石英试管,使石英管内金属颗粒达到熔融态,然后持续加热时间10分钟,以防止两种金属混合不均匀。然后使混合的熔融金属在室温下自然冷却至室温后形成锑化铟(InSb)块状金属,冷却过程保持真空状态。
将InSb块状金属放入4英寸的石英试管中,再抽真空至气压小于10-3mm Hg,防止在热处理过程生成金属氧化物,利用双曲管式炉进行加热,热处理温度设定为400℃保温24小时,再以50℃/H的速度冷却到室温。
步骤2:阳极氧化铝模板制备。
选用纯度99.99%的纯铝片作为阳极氧化铝基板,切割成直径2.6cm厚度0.1cm的圆片,接着进行如下步骤的处理。
(a)将切割后的高纯度铝片经物理研磨抛光后放在电解液中进行电解抛光,电解液为15vol.%HClO4+15vol.%CH3(CH2)3OCH2CH2OH)+70vol.%C2H6O,再通入40V的电压持续时间15分钟,可获得铝片光洁表面。
(b)将电解抛光的铝片放进6vol.%H3PO4溶液中,通入125V电压进行第一次阳极处理,持续2小时。在阳极处理过程中需要利用冷却***进行冷却,防止阳极处理过程中铝片因过热而烧穿。
(c)将一次阳极处理后的铝片放进铬酸与磷酸的混合溶液中(1.8wt%CrO3+6vol.%H3PO4+92vol.%H2O)并加热至70℃,浸泡时间40分钟,除去第一次阳极处理后的氧化铝。在铝基板表面会呈现凹陷不平的表面,表面上的凹陷处在二次阳极处理时优先成核,成为纳米孔洞生长的起点,形成排列有序的纳米孔洞。
(d)铝片放进6vol.%H3PO4溶液中,通入125V电压进行第二次阳极处理,阳极处理时间延长至48小时,有利于增大阳极氧化模厚度。在阳极处理过程中需要利用冷却***进行冷却,防止阳极处理过程中铝片因过热而烧穿。
(e)将二次阳极处理后的铝片放置在氯化铜与盐酸溶液(8wt%CuCl2+5vol.%HCl+85vol.%H2O)中,浸泡10分钟后除去残留的铝,再浸泡在6vol.%磷酸(H3PO4)溶液中除去阻障层即可获得半透明阳极氧化铝。
(f)将制备的半透明阳极氧化铝浸泡在10vol.%的H2SO4溶液,外加18V电压持续40分钟,可得86.12±5.44nm孔径的阳极氧化铝模板,如图2所示。
步骤3:真空压力铸造。
以步骤2获得的阳极氧化铝为模板,通过真空压力铸造方式制备纳米线。
把步骤1制备的锑化铟块状金属放在模具挤压内的阳极氧化铝模板上。将模具放入密闭空间内并抽真空并加热至530℃保温10分钟,使模具内的锑化铟变成熔融态。利用液压机加压,使熔融态锑化铟进入阳极氧化铝模板纳米孔内,液压机压力约50kg/cm2,持续时间1分钟,然后在室温下使氧化铝模板和锑化铟一起自然冷却至室温,获得含有锑化铟纳米线的阳极氧化铝模板,然后放进双曲管式炉中进行热处理,热处理温度为400℃保温时间1小时,再以每50℃/小时的速度冷却到室温。最后,将含有锑化铟纳米线的阳极氧化铝模板浸泡在铬酸与磷酸的混合溶液中(1.8wt%CrO3+6vol.%H3PO4+92vol.%H2O)中24小时,除去阳极氧化铝模板,再用乙醇过滤即可获得锑化铟纳米线,纳米线平均直径约83nm,如图3所示。
步骤4:有机场效应晶体管型内存制备。
将步骤3所得的2mg纳米线与5mg聚甲基丙烯酸(PMAA)混合,放入1毫升的甲醇(CH3OH)中,经超声振动制备成不同浓度纳米线悬浮液。利用旋转涂布机将纳米线悬浮液涂在1.5cm×1.5cm×300nm的SiO2基板上,旋转涂布机转速设定为2000r/min,持续时间60秒。
利用真空蒸镀法将并五苯(C22H14)镀在纳米线层上,真空度为10-7mm Hg,沉积厚度为30nm。再利用真空蒸镀法镀上黄金电极,电极长宽分别为1000μm和50μm,真空度为10-7mmHg,沉积厚度为80nm,可得有机场效应晶体管型内存,结构如图1所示。
实施例2
实施例2对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤4中将步骤3中制备的5mg纳米线与5mg聚甲基丙烯酸(PMAA)混合。
实施例3
实施例3对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤4中将步骤3中制备的9mg纳米线与5mg聚甲基丙烯酸(PMAA)混合。
实施例4
实施例4对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在5wt.%的C2H2O4溶液,外加40V电压持续40分钟,可得96.23±7.32nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约102nm,如图4所示。
实施例5
实施例5对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在5wt.%的C2H2O4溶液,外加40V电压持续40分钟,可得96.23±7.32nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约102nm。步骤4中将5mg纳米线与5mg聚甲基丙烯酸(PMAA)混合。
实施例6
实施例6对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在5wt.%的C2H2O4溶液,外加40V电压持续40分钟,可得96.23±7.32nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约102nm。步骤4中将5mg纳米线与9mg聚甲基丙烯酸(PMAA)混合。
实施例7
实施例7对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在6vol%的H3PO4溶液,外加195V电压持续40分钟,可得420±40nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约382nm,如图5所示。
实施例8
实施例8对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在6vol%的H3PO4溶液,外加195V电压持续40分钟,可得420±40nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约382nm。步骤4中将5mg纳米线与5mg聚甲基丙烯酸(PMAA)混合。
实施例9
实施例9对应用于非挥发性数据存储元件的锑化铟纳米线制造工艺与实施例1基本相同,区别在于步骤2中将制备的半透明阳极氧化铝浸泡在6vol%的H3PO4溶液,外加195V电压持续40分钟,可得420±40nm孔径的阳极氧化铝模板。步骤3中最后制备的纳米线平均直径约382nm。步骤4中将5mg纳米线与9mg聚甲基丙烯酸(PMAA)混合。
实施例1~9中制备的锑化铟纳米线成分分析结果
使用XRD分析纳米线成分,分析结果与JCPDS cardNo.06-0208(InSb)和No.05-0562(Sb)比对,如图6所示。对比结果显示三种纳米线均以InSb结晶平面为主要绕射峰,而在实施例4及实施例7中发现在28.76°处出现一个Sb绕射峰,确认有Sb/InSb两相共存。
实施例1~3中制备的非挥发性存储元件性能分析
使用半导体参数分析仪(4200A-SCS)分析储存元件的性能。其中临界电压偏移量(ΔVth)为写入与擦除曲线电压差,用来判断储存电荷的能力,ΔVth越大代表电荷越不容易被擦去,电荷储存能力越强。相反的,ΔVth越小电荷容易被擦去电荷储存能力越弱。开关电流比值用来判断电性表现,开关电流比越大在电子特性显示上越明显。故定义组件具有最大ΔVth以及高的开关电流比为良好的存储元件。
表1非挥发性存储元件性能分析
Figure BDA0002017815290000101
Figure BDA0002017815290000111
由表1显示,添加2mg纳米线的存储元件,具有最大的ΔVth(约25V)以及开关电流比为105;无添加纳米线存储元件的ΔVth仅为8V而电流开关比为106。通过测量结果比较,证实添加纳米线存储元件,可以有效提升电荷储存特性。添加纳米线组件具有良好记忆特性,若增加纳米线添加量,记忆效应可能有所提升。添加5mg及9mg纳米线存储元件ΔVth分别为15V及6V,可以发现随纳米线添加量上升,存储元件捕获电荷能力先提高后下降。纳米线添加量提高容易使其分散性不好而产生聚集,导致电荷通过纳米线传递,而无法被纳米线捕获。添加2mg纳米线的存储大气污染,具有良好电荷捕捉能力。而当添加量超过2mg,捕获电荷能力会下降,其因纳米线分散性差造成团聚现象,使电荷易流失无法捕获,导致记忆特性下降
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种锑化铟纳米线制备方法,其特征在于,包括以下步骤:
1)将铟颗粒及锑粉末混合置于真空环境中加热,真空环境为气压小于10-3mm Hg,熔融后持续加热至混合均匀,冷却形成InSb块状金属;
2)将InSb块状金属置于气压小于10-3mm Hg的真空环境中进行加热至400℃保温24小时,以50℃/H的速度冷却至室温;
3)利用纯铝片作为阳极氧化铝基板制备阳极氧化铝模板,所述的阳极氧化铝上有大小均一的纳米孔洞;
4)把步骤1)制备的InSb块状金属放在模具挤压内的阳极氧化铝模板上加热至530℃保温10分钟,InSb块状金属成熔融态,加压使熔融态锑化铟进入阳极氧化铝模板纳米孔内,冷却获得含有锑化铟纳米线的阳极氧化铝模板;
5)对含有锑化铟纳米线的阳极氧化铝模板进行热处理,浸泡在铬酸与磷酸的混合溶液中,用乙醇过滤即可获得锑化铟纳米线;热处理具体为:温度为400℃保温时间1小时,再以每50℃/小时的速度冷却到室温。
2.根据权利要求1所述的一种锑化铟纳米线制备方法,其特征在于,步骤4)中加压具体为液压机压力50kg/cm2,持续时间1分钟。
3.根据权利要求1所述的一种锑化铟纳米线制备方法,其特征在于,步骤5)中铬酸与磷酸的混合溶液为:1.8wt%CrO3+6vol.%H3PO4+92vol.%H2O。
4.一种利用锑化铟纳米线制备有机场效应晶体管型内存的方法,其特征在于,包括以下步骤:
将权利要求1制备得到的锑化铟纳米线与聚甲基丙烯酸混合,置于甲醇中,经超声振动制备成纳米线悬浮液,利用旋转涂布机将纳米线悬浮液涂在1.5cm×1.5cm×300nm的SiO2基板上;
将并五苯镀在锑化铟纳米线层上,再镀上黄金电极,电极长宽分别为1000μm和50μm,沉积厚度为80nm,即得有机场效应晶体管型内存。
CN201910269168.5A 2019-04-04 2019-04-04 一种锑化铟纳米线制备方法 Expired - Fee Related CN109989101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910269168.5A CN109989101B (zh) 2019-04-04 2019-04-04 一种锑化铟纳米线制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910269168.5A CN109989101B (zh) 2019-04-04 2019-04-04 一种锑化铟纳米线制备方法

Publications (2)

Publication Number Publication Date
CN109989101A CN109989101A (zh) 2019-07-09
CN109989101B true CN109989101B (zh) 2020-11-24

Family

ID=67132372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910269168.5A Expired - Fee Related CN109989101B (zh) 2019-04-04 2019-04-04 一种锑化铟纳米线制备方法

Country Status (1)

Country Link
CN (1) CN109989101B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112516931B (zh) * 2020-11-17 2022-03-15 山东大学 一种海胆结构氧化镓微结构及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
KR100736515B1 (ko) * 2005-12-01 2007-07-06 삼성전자주식회사 다공성 템플릿을 이용한 나노 와이어의 제조방법 및나노와이어 구조체
CN101712453B (zh) * 2009-10-28 2013-02-13 合肥工业大学 InSb超晶格纳米线的制备方法
CN102969360A (zh) * 2012-12-14 2013-03-13 中国科学院微电子研究所 一种iii-v族半导体纳米线阵列场效应晶体管
CN103280454B (zh) * 2013-06-04 2016-08-31 东北师范大学 基于导电纳米带电极的微纳单晶场效应晶体管及制备方法
CN107470427B (zh) * 2017-08-01 2019-03-01 清华大学 一种金属及其合金微纳米结构或纳米线阵列的制备方法

Also Published As

Publication number Publication date
CN109989101A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
JP5951014B2 (ja) 高性能リチウムイオン電池における多孔質フィルムシリコン負極材料及びその製造方法
US10727004B2 (en) Two-dimensional transition metal dichalcogenide micro-supercapacitors
Laik et al. Silicon nanowires as negative electrode for lithium-ion microbatteries
WO2018177175A1 (zh) 一种电池电极及其制备方法和电池
US20170117538A1 (en) Nanocomposite anode structure and methods of manufacture thereof
CN108892111B (zh) 多孔结构的双金属硒化物Fe2CoSe4材料及其制备方法和应用
TW200808990A (en) Deposition of LiCoO2
CN108630911B (zh) 含氧空位缺陷的SnO2-石墨烯纳米复合材料及其应用
Hu et al. Unipolar resistive switching effect and mechanism of solution-processed spinel Co3O4 thin films
JP7291140B2 (ja) 溶射コバルト酸リチウムターゲット
KR20100022726A (ko) 질소 원자가 선택적으로 도핑된 TiO2-xNx 나노튜브 및 그의 제조방법
US20070054502A1 (en) Nanodot memory and fabrication method thereof
Chen et al. Characterization of Cu3N/CuO thin films derived from annealed Cu3N for electrode application in Li-ion batteries
Kim et al. Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries
CN109989101B (zh) 一种锑化铟纳米线制备方法
CN108615862B (zh) 含金属离子液体作为媒介合成复合材料的方法及用途
Hong et al. Ultra-stable ZnO nanobelts in electrochemical environments
TWI551545B (zh) 氧化矽-碳複合材料及其製法
Xu et al. Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires
Zhang et al. Zinc/ZnO core–shell hexagonal nanodisk dendrites and their photoluminescence
KR101317812B1 (ko) 코어 쉘 구조를 갖는 나노 구조체, 이의 제조 방법 및 리튬 이온 전지
Wu et al. Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries
US6787231B1 (en) Tin (IV) oxide nanopowder and methods for preparation and use thereof
Kim et al. Synthesis of passively prelithiated SiOx nanoparticles for Li‐ion battery anode
Jiang et al. Effect of heat treatment temperature on the electrochemical properties of SnSb-based Cu electrodes for lithium batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201124

CF01 Termination of patent right due to non-payment of annual fee