CN109698303A - 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用 - Google Patents

一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用 Download PDF

Info

Publication number
CN109698303A
CN109698303A CN201811464942.XA CN201811464942A CN109698303A CN 109698303 A CN109698303 A CN 109698303A CN 201811464942 A CN201811464942 A CN 201811464942A CN 109698303 A CN109698303 A CN 109698303A
Authority
CN
China
Prior art keywords
conductive material
lithium
electronic conductive
sulfur cell
coated separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811464942.XA
Other languages
English (en)
Inventor
张开龙
王莉
潘红琳
江钰
王迪
蒋政言
王磊
王良彪
周全法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201811464942.XA priority Critical patent/CN109698303A/zh
Publication of CN109698303A publication Critical patent/CN109698303A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用,属于储能技术领域。该涂层隔膜是在普通锂硫电池陶瓷隔膜的一侧涂覆电子导电材料涂层,测试结果表明:和普通陶瓷隔膜组装而成的锂硫电池相比,采用本发明涂层隔膜组装而成的锂硫电池改善了电池的整体电化学性能,涂层隔膜的使用有效抑制了锂硫电池的“穿梭效应”,使电池具有更高的实际比容量,提高了电池的库伦效率和循环性能。

Description

一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用
技术领域
本发明属于储能技术领域,特别涉及一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用。制备的涂层隔膜可广泛应用于硫基储能技术领域,尤其是锂硫电池。
背景技术
随着全球经济的繁荣发展,工业化进程的逐步加快,二十一世纪面临的能源问题也越来越严重,新型可再生能源的开发已经刻不容缓,同时环境问题已经成为全人类面临的挑战,寻求新型绿色储能手段早已成为全人类的共识。在目前众多的新型二次电池体系中,锂硫电池凭借高达1675mAh/g的理论比容量,以及2600Wh/Kg的理论能量密度,成功吸引了全世界研究者们的关注。除此之外,锂硫电池的正极材料硫还具有成本低廉,资源丰富,绿色环保三大优良特性。纵观锂硫电池的产业化前景,由于锂硫电池的组成结构和传统的锂离子电池基本类似,因而可以较大程度借鉴并运用传统锂离子电池研发和生产过程中的经验,有望在短时间内实现商业化应用。
传统的锂硫电池由正极,隔膜,电解液以及负极构成。硫元素的化合物具有多种价态,在电解液中通常以多价态的多硫化物存在,锂硫电池的充放电过程是典型的电化学氧化还原过程。虽然锂硫电池目前具备着极为良好的市场前景,但是过于复杂的电化学反应机理以及锂硫电池自身存在的某些问题,都在不同程度上限制了锂硫电池大规模的商业化应用。在锂硫电池充放电的过程中,正极材料硫会出现接近80%的体积膨胀现象。固态单质硫的密度为2.07g/cm3,最终产物Li2S的密度为1.66g/cm3,在单质硫完全转化为Li2S的条件下,锂硫电池会出现明显的体积膨胀现象,这种体积膨胀现象不仅会破坏电极结构致使电池损坏,还会导致锂硫电池容量的衰减。单质硫和最终产物Li2S的电子和离子导电性较差。在锂硫电池的放电过程中,最终放电产物Li2S通常会在电极表面集聚,因此会对Li+和e-的迁移效应产生干扰,放电过程电压快速下降的同时,会导致单质硫不能全数转化为Li2S,进而导致放电过程的容量降低。部分Li2S因此会在充电过程不能被氧化,这也就导致在锂硫电池的充放电循环过程中,Li2S在正极表面不断沉积,最终会让锂硫电池的活性物质不断损耗,同时电池容量也会持续进行衰减。锂硫电池的中间放电产物Li2Sx(4≤x≤8)易溶于电解液。活性物质因此损耗的同时,还要考虑到锂硫电池的自放电问题。在锂硫电池的充放电循环中,中间放电产物Li2Sx经由电解液,由正极扩散迁移至负极,并与负极的金属锂发生化学反应,生成的Li2Sx和Li2S还会在负极表面沉积一部分,最终导致活性物质的不可逆损失,库伦效率也因此显得较为低下。这种多硫离子在锂硫电池正负极间来回扩散穿梭的现象被称为“穿梭效应”。
在锂硫电池的充放电循环过程中,由于多硫化物的穿梭效应的存在,导致锂硫电池活性物质的利用率很低,尽管研究者们在正极材料方面提出了各式各样的解决方案,但是始终不能从根本上解决多硫化物的穿梭效应带来的问题,因此许多研究者开始考虑隔膜改性的可能性。普通的隔膜在锂硫电池中主要起分隔作用,同时又是离子的传输通道,如果能对现有的隔膜进行适当改性,在保证离子传输不受影响的同时,又能有效抑制多硫化物的扩散迁移,那样倒是能极大程度提高锂硫电池的电化学性能。普通的聚丙烯隔膜孔径在几百纳米之间,在隔膜表面进行材料修饰时,如果能够覆盖隔膜上的孔径,阻断多硫化物扩散迁移的同时,改由隔膜表面修饰的材料进行离子传输,同样可以大幅度提升锂硫电池的电化学性能。德克萨斯大学奥斯汀分校的Mathiram教授课题组提出正极和隔膜之间引入导电插层,实验研究表明,这种改性手段对多硫化物的吸附回收能起到不错的效果,并且能够提高锂硫电池的循环寿命以及倍率性能(Chem.Commun.2012,48,8817-8819)。
发明内容
本发明的目的在于提供一种锂硫电池涂层隔膜的制备方法及应用,以缓解现有锂硫电池中存在的问题,具有涂层隔膜的锂硫电池具有更高的放电比容量,且能够抑制锂硫电池的穿梭效应,提高电池的库伦效率,提高电池的循环性能。
本发明的技术方案是:
一种电子导电材料,所述材料为CNx,x范围为0.03~0.05。
一种所述的电子导电材料的制备方法,其中,所述电子导电材料由电子导电材料前驱体经过镁热还原反应制得,所述电子导电材料前驱体与镁的质量比为2:1~4:1,镁热反应温度为700℃~850℃,反应时间为2h~6h。
所述的电子导电材料前驱体是由尿素或三聚硫氰酸一种或两种经过高温煅烧而成,所述的高温煅烧反应温度为400℃~550℃,反应时间为6h~12h。
一种锂硫电池涂层隔膜,其中,所述锂硫电池涂层隔膜由下至上分别为基体层,陶瓷层和电子导电材料涂层,所述电子导电材料涂层包含上述的电子导电材料。
基体层为聚合物隔膜,聚合物隔膜为聚丙烯隔膜、聚乙烯隔膜、聚丙烯/聚乙烯/聚丙烯三层涂层或无纺布隔膜中的一种或两种以上,聚合物隔膜厚度为16μm~20μm;
所述陶瓷层为二氧化硅、氧化镁、氧化钙或二氧化锆中的一种或多种陶瓷粉体相粘结形成,陶瓷层厚度为3μm~6μm;
所述电子导电材料涂层厚度为0.2μm~10μm,密度为0.02mg/cm2~2mg/cm2
一种所述的锂硫电池隔膜的制备方法,其中,首先将电子导电材料制备成电子导电材料浆料,将电子导电材料浆料涂覆于基体层与陶瓷层组成的陶瓷隔膜的陶瓷层一侧并干燥,在陶瓷隔膜表面均匀形成电子导电功能涂层。
所述电子导电材料浆料按照如下方法制备:将电子导电材料,导电剂Super P,以及粘结剂按质量比7~8:1~2:1混合均匀,再加入溶剂;
所述溶剂是水、乙醇、乙二醇或N甲基吡咯烷酮溶剂中的一种或多种;所述粘结剂为聚偏氟乙烯、竣甲基纤维素钠或丁苯乳胶中的一种或几种;
所述涂覆的方法为浸渍涂膜、旋转涂膜、刮刀涂膜、流延涂膜、单向拉伸或双向拉伸方法中的任意一种,所述干燥是在温度为40℃~60℃环境中真空干燥6h~24h。
所述涂层隔膜用于电化学储能领域。
本发明所述涂层隔膜应用于电化学储能领域。组装电池时,所述电子导电涂层应靠近电池正极材料。电子导电材料均匀涂覆再有陶瓷涂层的一侧,附在陶瓷涂层的表面。
本发明采用涂层隔膜组装的电池展现出优异的电化学性能。
本发明的有益效果如下:
1.本发明所用的原材料来源广泛,成本低廉,工艺条件稳定可靠,整个工艺流程简单易行,适合大规模工业化生产。
2.本发明选用碳氮化合物作为主要前驱体。碳质材料具有二维结构,对于涂层隔膜涂层,是一个很好的选择。电子导电涂层均匀负载在陶瓷隔膜上,形成具有多重片状结构的碳阻隔层,可吸附电池在放电的还原产物多硫化锂并二次利用,减弱锂硫电池的“穿梭效应”,使电池的活性物质得到最大化利用。
3.该锂硫电池使用涂层隔膜装配电池,能显著改善电池的实际容量,以及循环稳定性,使电池的整体电化学性能有了较大的提升。
附图说明
图1为本发明锂硫电池涂层隔膜结构示意图;
图2为本发明锂硫电池涂层隔膜实物图,A为涂覆有电子导电材料涂层后的隔膜正面,C为电子导电材料涂层后的隔膜反面,B为普通隔膜正面,D为普通隔膜反面;
图3为本发明实例1制得的电子导电材料前驱体电镜图;
图4为本发明实例1涂层隔膜锂硫电池比容量循环曲线图;
图5为本发明实例2涂层隔膜锂硫电池比容量循环曲线图;
图6为本发明实例3涂层隔膜锂硫电池比容量循环曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施例进一步说明本发明的技术方案,这些描述只是示例性的,这些实施例不能理解为是对技术方案的限制。
-实施例1
称取2g尿素(Urea),在马弗炉中加热至550℃并保温6h,将得到的前驱体黄色粉末(图3为前驱体电镜图)和镁粉充分研磨后,按照质量比2:1的比例加入高温釜中,在坩埚炉中加热至750℃并保温2h,降至室温后开釜并将得到的黑色粉末置于1mol/L盐酸中除去未反应的镁粉以及氮化镁,搅拌24h静置,用水和乙醇分别清洗三次并离心烘干,即得到黑色粉末状的电子导电材料CNx,XPS数据显示x为0.04。将得到的CNx与粘合剂聚偏氟乙烯(PVDF),导电剂Super P按照质量比8:1:1继续研磨直至充分混合,将混合粉末置于球磨罐中,滴加2mL的N甲基吡咯烷酮(NMP),将球磨罐放置在行星式球磨机上球磨2h,再将球磨均匀的电子导电材料浆料用拉膜器单向涂覆在陶瓷隔膜有陶瓷隔膜的一侧40℃真空烘干12h,形成厚度为2μm的导电涂层,普通锂硫电池陶瓷隔膜基体层为16μm的聚丙烯聚合物层,陶瓷层为4μm的Al2O3陶瓷层,冲切成直径为18mm的圆片从而制得涂层隔膜(涂层隔膜结构图和实物图如图1和图2)。
将按照上文方法制备的电子导电材料CNx和硫粉按质量比4:6研磨混合后,在密闭容器155℃的条件下热处理24h,将得到的混合物与粘合剂PVDF,导电剂Super P按照质量比7:2:1混合均匀,滴加2mL NMP研磨至粘稠状均匀涂覆在铝箔上干燥得到电池极片,随后将电池极片冲切成直径为12mm的圆片,硫的负载量为0.7mg/cm2
采用上述极片和隔膜,将涂层隔膜中导电涂层一侧靠近正极材料,在惰性手套箱内装配成2016型扣式电池,金属锂片为对电极,采用的电解液是由LiTFSI溶解于DOL和DME的混合溶液制成,电解液中LiTFSI的浓度为1mol/L(电解液中,DOL和DME的体积比为1:1,LiTFSI为双三氟甲基磺酸酰亚胺锂,DOL为1,3-二氧戊环,DME为乙二醇二甲醚),组装成的电池用武汉蓝电测试***CT2001A进行相关性能测试。图4可以看出,100圈循环后其比容量可以达到920mAh/g。
实施例2
称取2g尿素(Urea),在马弗炉中加热至550℃并保温7h,将得到的前驱体黄色粉末和镁粉充分研磨后,按照质量比3:1的比例加入高温釜中,在坩埚炉中加热至750℃并保温4h,降至室温后开高温釜并将得到的黑色粉末置于1mol/L盐酸中,静置过夜后,用水和乙醇分别清洗三次并离心烘干,得到黑色粉末状的电子导电材料CNx,XPS数据显示x为0.04。将得到的CNx,与粘合剂聚偏氟乙烯(PVDF),导电剂Super P按照质量比8:1:1继续研磨直至彻底充分混合,将混合粉末置于球磨罐中,滴加2mL N甲基吡咯烷酮(NMP)至液体呈粘稠状,将球磨罐放置在行星式球磨机上球磨4h,再将球磨均匀的电子导电材料浆料用拉膜器涂抹在有陶瓷隔膜的一侧40℃真空烘干,形成厚度为2μm的导电涂层,普通锂硫电池陶瓷隔膜基体层为16μm的聚丙烯聚合物层,陶瓷层为4μm的Al2O3陶瓷层,冲切成直径为18mm的圆片从而制得涂层隔膜。
将上文中制得的电子导电材料CNx和硫粉按质量比4:6研磨混合后,在密闭容器155℃的条件下热处理24h,将得到的混合物与粘合剂PVDF,导电剂Super P按照质量比7:2:1混合均匀,滴加2mL NMP研磨至粘稠状均匀涂覆在铝箔上干燥得到电池极片,随后将电池极片冲切成直径为12mm的圆片硫的负载量为0.7mg/cm2
采用上述极片和隔膜,将涂层隔膜中导电涂层一侧靠近正极材料,在惰性手套箱内装配成2016型扣式电池,金属锂片为对电极,采用的电解液是由LiTFSI溶解于1,3-二氧戊环DOL和乙二醇二甲醚DME的混合溶液制成,电解液中LiTFSI的浓度为1mol/L(电解液中,DOL和DME的体积比为1:1,LiTFSI为双三氟甲基磺酸酰亚胺锂,DOL为1,3-二氧戊环,DME为乙二醇二甲醚),组装成的电池用武汉蓝电测试***CT2001A进行相关性能测试。图5可以看出,100圈循环后其比容量可以达到650mAh/g。
实施例3
称取2g尿素(Urea),在马弗炉中加热至550℃并保温8h,将得到的前驱体黄色粉末和镁粉充分研磨后,按照质量比4:1的比例加入高温釜中,在坩埚炉中加热至850℃并保温4h,降至室温后开高温釜并将得到的黑色粉末置于1mol/L盐酸中,静置过夜后,用水和乙醇分别清洗三次并离心烘干,得到黑色粉末状的电子导电材料CNx,XPS数据显示x为0.03。将得到的CNx,与粘合剂聚偏氟乙烯(PVDF),导电剂Super P按照质量比8:1:1继续研磨直至彻底充分混合,将混合粉末置于球磨罐中,滴加2mL N甲基吡咯烷酮(NMP)至液体呈粘稠状,将球磨罐放置在行星式球磨机上球磨2h,再将球磨均匀的电子导电材料浆料用拉膜器涂抹在有陶瓷隔膜的一侧40℃真空烘干,形成厚度为2μm的导电涂层,普通锂硫电池陶瓷隔膜基体层为16μm的聚丙烯聚合物层,陶瓷层为4μm的Al2O3陶瓷层,冲切成直径为18mm的圆片从而制得涂层隔膜。
将上文中制得的电子导电材料CNx和硫粉按质量比4:6研磨混合后,在密闭容器155℃的条件下热处理24h,将得到的涂层材料,与粘合剂PVDF,导电剂Super P按照质量比7:2:1混合均匀,滴加NMP研磨至粘稠状均匀涂覆在铝箔上干燥得到电池极片,随后将电池极片冲切成直径为12mm的圆片,硫的负载量为0.7mg/cm2
采用上述极片和隔膜,将涂层隔膜中导电涂层一侧靠近电池正极材料,在惰性手套箱内装配成2016型扣式电池,金属锂片为对电极,采用的电解液是由LiTFSI溶解于DOL和DME的混合溶液制成,电解液中LiTFSI的浓度为1mol/L(电解液中,DOL和DME的体积比为1:1,LiTFSI为双三氟甲基磺酸酰亚胺锂,DOL为1,3-二氧戊环,DME为乙二醇二甲醚),组装成的电池用武汉蓝电测试***CT2001A进行相关性能测试。图6可以看出,100圈循环后其比容量仍可以达到676mAh/g。
本发明的技术方案不限于上述实例,根据本发明的技术方案得到的其它实施例均应落入本发明的权利要求中。

Claims (9)

1.一种电子导电材料,所述材料为氮掺杂碳CNx,x范围为0.03~0.05。
2.一种权利要求1所述的电子导电材料的制备方法,其中,所述电子导电材料由电子导电材料前驱体经过镁热还原反应制得,所述电子导电材料前驱体与镁的质量比为2:1~4:1,镁热反应温度为700℃~850℃,反应时间为2h~6h。
3.根据权利要求2所述的电子导电材料的制备方法,其中,所述的电子导电材料前驱体是由尿素或三聚硫氰酸一种或两种经过高温煅烧而成,所述的高温煅烧反应温度为400℃~550℃,反应时间为6h~12h。
4.一种锂硫电池涂层隔膜,其中,所述锂硫电池涂层隔膜由下至上分别为基体层,陶瓷层和电子导电材料涂层,所述电子导电材料涂层包含权利要求1所述的电子导电材料。
5.根据权利要求4所述的锂硫电池涂层隔膜,其中,基体层为聚合物隔膜,聚合物隔膜为聚丙烯隔膜、聚乙烯隔膜、聚丙烯/聚乙烯/聚丙烯三层涂层或无纺布隔膜中的一种或两种以上,聚合物隔膜厚度为16μm~20μm;
所述陶瓷层为二氧化硅、氧化镁、氧化钙或二氧化锆中的一种或多种陶瓷粉体相粘结形成,陶瓷层厚度为3μm~6μm;
所述电子导电材料涂层厚度为0.2μm~10μm,密度为0.02mg/cm2~2mg/cm2
6.一种权利要求4或5所述的锂硫电池隔膜的制备方法,其中,首先将电子导电材料制备成电子导电材料浆料,将电子导电材料浆料涂覆于基体层与陶瓷层组成的陶瓷隔膜的陶瓷层一侧并干燥,在陶瓷隔膜表面均匀形成电子导电功能涂层。
7.根据权利要求6所述的锂硫电池隔膜的制备方法,其中,所述电子导电材料浆料按照如下方法制备:将电子导电材料,导电剂Super P,以及粘结剂按质量比7~8:1~2:1混合均匀,再加入溶剂;
所述溶剂是水、乙醇、乙二醇或N甲基吡咯烷酮溶剂中的一种或多种;所述粘结剂为聚偏氟乙烯、竣甲基纤维素钠或丁苯乳胶中的一种或几种;
所述涂覆的方法为浸渍涂膜、旋转涂膜、刮刀涂膜、流延涂膜、单向拉伸或双向拉伸方法中的任意一种,所述干燥是在温度为40℃~60℃环境中真空干燥6h~24h。
8.一种权利要求4或5所述锂硫电池涂层隔膜的应用,其特征在于:所述涂层隔膜用于电化学储能领域。
9.根据权利要求8所述锂硫电池涂层隔膜的应用,其特征在于:组装电池时,涂层隔膜中的电子导电涂层靠近电池正极材料。
CN201811464942.XA 2018-12-03 2018-12-03 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用 Pending CN109698303A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811464942.XA CN109698303A (zh) 2018-12-03 2018-12-03 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811464942.XA CN109698303A (zh) 2018-12-03 2018-12-03 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用

Publications (1)

Publication Number Publication Date
CN109698303A true CN109698303A (zh) 2019-04-30

Family

ID=66230355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811464942.XA Pending CN109698303A (zh) 2018-12-03 2018-12-03 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用

Country Status (1)

Country Link
CN (1) CN109698303A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416089A (zh) * 2020-04-10 2020-07-14 吉林师范大学 一种诱导和抑制锂枝晶生长的复合隔膜及制备方法和使用该隔膜的锂离子电池
CN112490585A (zh) * 2020-11-27 2021-03-12 南京林业大学 一种用于锂金属电池的陶瓷隔膜及其制备方法
CN115360478A (zh) * 2022-07-13 2022-11-18 南昌大学 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池
CN115536034A (zh) * 2022-12-01 2022-12-30 四川大学 碳包覆的玄武岩材料及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569787A (zh) * 2010-12-21 2012-07-11 上海杉杉科技有限公司 一种磷酸亚铁锂复合材料及其制备方法和用途
CN105280867A (zh) * 2015-09-18 2016-01-27 长沙矿冶研究院有限责任公司 一种锂硫电池专用改性隔膜及其制备方法和锂硫电池
CN106356488A (zh) * 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用
US20180062142A1 (en) * 2016-08-31 2018-03-01 Tsinghua University Lithium-sulfur battery separator and lithium-sulfur batteries using the same
CN108862244A (zh) * 2017-05-11 2018-11-23 天津理工大学 氮掺杂石墨烯的宏量制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569787A (zh) * 2010-12-21 2012-07-11 上海杉杉科技有限公司 一种磷酸亚铁锂复合材料及其制备方法和用途
CN106356488A (zh) * 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用
CN105280867A (zh) * 2015-09-18 2016-01-27 长沙矿冶研究院有限责任公司 一种锂硫电池专用改性隔膜及其制备方法和锂硫电池
US20180062142A1 (en) * 2016-08-31 2018-03-01 Tsinghua University Lithium-sulfur battery separator and lithium-sulfur batteries using the same
CN108862244A (zh) * 2017-05-11 2018-11-23 天津理工大学 氮掺杂石墨烯的宏量制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416089A (zh) * 2020-04-10 2020-07-14 吉林师范大学 一种诱导和抑制锂枝晶生长的复合隔膜及制备方法和使用该隔膜的锂离子电池
CN112490585A (zh) * 2020-11-27 2021-03-12 南京林业大学 一种用于锂金属电池的陶瓷隔膜及其制备方法
CN115360478A (zh) * 2022-07-13 2022-11-18 南昌大学 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池
CN115360478B (zh) * 2022-07-13 2024-03-29 南昌大学 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池
CN115536034A (zh) * 2022-12-01 2022-12-30 四川大学 碳包覆的玄武岩材料及制备方法和应用

Similar Documents

Publication Publication Date Title
CN105355880B (zh) 一种LiFePO4/C改性三元正极材料的制备方法
CN109698303A (zh) 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用
CN104993125B (zh) 一种锂离子电池负极材料Fe3O4/Ni/C的制备方法
CN106654267A (zh) 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法
CN108390033A (zh) 一种制备钠离子电池负极材料碳包覆锑纳米管材料的制备方法及其应用
CN102324513A (zh) 一种锂镍锰氧复合正极材料及其制备方法
CN103474723A (zh) 一种锂空气电池及其制备方法
CN102332567B (zh) 石墨烯/氮化铬纳米复合材料的制备方法
CN105098158B (zh) 一种锆掺杂的锂离子电池富锂正极材料及其制备方法
CN106340633A (zh) 一种高性能锂离子电池用复合纳米材料及其制备方法
CN108110324A (zh) 一种固态锂离子电池的制备方法
CN108975288A (zh) 一种NbSe2电极材料的制备方法及其产品和应用
CN111883725A (zh) 一种锂离子电池补锂陶瓷隔膜及其制备方法
CN111313111A (zh) 一种基于金属有机框架衍生的杂原子掺杂碳/CoS2功能材料及其应用
CN107732177A (zh) 硫/剑麻炭锂离子电池复合负极材料的制备方法
CN109873156A (zh) 一种高容量镁二次电池硫化钴正极材料的制备方法及其电池组装
CN109286013A (zh) 一种包覆聚酰胺有机物层的锂离子电池高压富锂锰基正极材料及其包覆改性方法和应用
CN108807912A (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN112421051A (zh) 一种室温下氧化亚铜修饰铜箔的制备方法
CN104241628B (zh) 一种二氧化钛修饰的三氧化二铁微球的制法及其制得的产品和用途
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN106450235B (zh) 一种自组装纳米片状多孔结构四氧化三钴-氧化锌复合材料的制备方法及其应用
CN106684376A (zh) 一种利用水热和煅烧法制备铁酸锌纳米片组装中空微米球的方法和应用
CN114388780A (zh) 一种改性的镍钴锰三元正极材料及其制备方法和应用
CN109935813A (zh) 一种新型锂离子电池负极材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190430

RJ01 Rejection of invention patent application after publication