CN109694096B - 一种γ-AlOOH片状单晶及其制备方法 - Google Patents

一种γ-AlOOH片状单晶及其制备方法 Download PDF

Info

Publication number
CN109694096B
CN109694096B CN201910035870.5A CN201910035870A CN109694096B CN 109694096 B CN109694096 B CN 109694096B CN 201910035870 A CN201910035870 A CN 201910035870A CN 109694096 B CN109694096 B CN 109694096B
Authority
CN
China
Prior art keywords
alooh
gamma
flaky
monocrystal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910035870.5A
Other languages
English (en)
Other versions
CN109694096A (zh
Inventor
张剑
何东雪
赵悦
王美玲
罗亚肖
魏子钦
崔航
崔啟良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910035870.5A priority Critical patent/CN109694096B/zh
Publication of CN109694096A publication Critical patent/CN109694096A/zh
Application granted granted Critical
Publication of CN109694096B publication Critical patent/CN109694096B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Abstract

本发明的一种γ‑AlOOH片状单晶及其制备方法,是属于ⅢA族羟基氧化物材料的制备领域。本发明方法制备的γ‑AlOOH片状单晶,结晶度高、透明,具有类似云母薄片的形貌,在X射线衍射谱上表现出属于勃姆石结构的强而锐的衍射峰,表面的线度在毫米到厘米量级,并且在可见光波段具有良好透明性;其制备方法是以无水氯化铝、无水乙醇为原料,在反应釜中密封加热,反应结束后,将胶状产物用超声处理后,移入蒸发皿中缓慢烘干脱水,即得到大面积γ‑AlOOH片状单晶。本发明制备方法产物纯度高、重复性好、成本低。本发明合成的γ‑AlOOH片状单晶对今后新型二维材料的形成提供有利依据。

Description

一种γ-AlOOH片状单晶及其制备方法
技术领域
本发明属于ⅢA族羟基氧化物材料的制备领域,特别提供了新颖、简单、高效的制备γ-AlOOH片状单晶的方法。
背景技术
自碳纳米管被发现后,纳米材料的研究受到人们的重视。其中一维纳米材料由于其特殊的结构特点,具有优异的力学、化学、机械性能,因而具有广泛的应用前景。近年来,二维材料备受科研人员的青睐和追捧,二维材料的广泛研究是继石墨烯(graphene)的发现并证实它能够在室温下稳定存在之后。人们相继发现其他多种二维材料,例如氮化硼(BN)、过渡金属硫族化合物(TMDs)、黑磷(b-P)及黑磷合金等,这些新型二维材料的发现引起了人们极大的关注。二维材料的量子限域效应,高的比表面积和极好的柔韧性展现出其它维度材料难以具备的奇异功能,在电子学和光电学设备方面有广泛应用。
独特的晶体结构,国内外的科研人员已经通过不同方法制备出了纳米线、纳米管、纳米棒、纳米纤维、纳米片以及花瓣形和空心球形等不同形貌的勃姆石材料。Wang等以石英板为基片,将基片和NaAlO2、尿素形成的混合溶液进行水热反应,石英板表面勃姆石的形貌经历了一系列变化,从单纯的纳米片到纳米片组件,再变化到花状纳米结构,这种纳米AlOOH因具有低成本、制备简单、形貌结构易调控表面具有丰富的OH基团、环境友好等特点被广泛研究。一维勃姆石纳米材料是一种重要的化工材料,具有独特的晶体结构,因此具有很好的化学稳定性、热稳定性、机械稳定性和高比表面积,被广泛应用于吸附剂、催化剂、催化剂载体、传感器、复合物的增强材料等方面。
目前,制备勃姆石的方法主要有沉淀法、水热法、溶胶凝胶法和微乳液法等。在制备不同形貌的羟基氧化铝纳米晶体的研究中,Liu等先配制甲基丙烯酸羟乙酯和二甲基甲酰胺混合液以及Al2(SO4)3·18H2O溶于HAc和NaAc缓冲液而形成的混合液,然后进行水热反应,最后也成功制得了花状及棒状勃姆石。Zhang等在不使用任何模板剂的情况下,对AlCl3、乙醇和水三者形成的无色透明溶液进行溶剂(溶剂为乙醇和水)热反应,最终形成了一系列花状勃姆石纳米结构材料。Xiang等利用乙二胺与Al(NO3)3·9H2O反应制备了AlOOH纳米棒,Xiao et al.以AlCl3·6H2O和NaOH为原料利用水热法制备了AlOOH纳米棒。
发明内容
本发明要解决的技术问题是,设计了一种新的制备γ-AlOOH片状单晶的方法,其方法简单易行、重复性好;制备出的γ-AlOOH片状单晶的纯度高。
一种γ-AlOOH片状单晶制备方法,操作简单、易于控制。一系列制备羟基氧化铝的方法已经被研究,例如沉淀法,水热法,溶胶凝胶法和微乳液法。然而,利用此方法制备出γ-AlOOH片状单晶的研究从来没有看到,这种γ-AlOOH片状单晶,高结晶度、透明、面积大。其特征具有类似云母薄片的形貌,在X射线衍射谱上表现出属于勃姆石结构的强而锐的衍射峰,表面的线度在毫米到厘米量级,并且在可见光波段具有良好透明性。
本发明γ-AlOOH片状单晶的具体技术方案如下。
一种γ-AlOOH片状单晶,其特征在于,具有类似云母薄片的形貌;在X射线衍射谱上表现出属于勃姆石结构的衍射峰;表面的线度在毫米到厘米量级;并且在可见光波段具有良好透明性。
本发明的γ-AlOOH片状单晶结晶度高、纯度高、透明、片状面积大的特点。
本发明γ-AlOOH片状单晶的制备方法具体技术方案如下。
一种γ-AlOOH片状单晶的制备方法,以无水氯化铝(AlCl3)、无水乙醇为原料,首先按每克氯化铝加75mL无水乙醇的比例将氯化铝与乙醇混合均匀,形成透明的混合溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为100~180℃,保温时间为4~24h;反应结束后,将反应釜内的胶状产物超声处理10分钟,移入底面光滑的容器自然平铺,烘干脱水得到γ-AlOOH片状单晶。
所述的氯化铝与乙醇混合均匀,可以将氯化铝置于乙醇中超声处理10分钟,使反应物之间充分接触。
所述的烘干脱水,应缓慢进行,可以在温度为室温~60℃下烘干,即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
所述的反应釜密封加热过程,是在加入反应物充分搅拌后,取出烧杯内的液体放入聚四氟乙烯反应釜密封加热数小时,发生反应。
本发明有益效果在于,首次设计出一种前所未有的γ-AlOOH片状单晶的制备方法。这种γ-AlOOH片状单晶,高结晶度、透明、面积大,具有类似云母薄片的形貌,在X射线衍射谱上表现出属于勃姆石结构的强而锐的衍射峰,表面的线度在毫米到厘米量级,并且在可见光波段具有良好透明性;产物纯度高;制备方法重复性好、成本低。通过本发明合成的γ-AlOOH片状单晶对今后新型二维材料的形成提供有利依据。
附图说明
图1是实施例1制得的γ-AlOOH片状单晶照片。
图2是实施例1制得的γ-AlOOH片状单晶XRD谱图。
图3是实施例2制得的γ-AlOOH片状单晶照片。
图4是实施例3制得的γ-AlOOH片状单晶照片。
图5是实施例4制得的γ-AlOOH片状单晶照片。
图6是实施例5制得的γ-AlOOH片状单晶照片。
图7是实施例6制得的γ-AlOOH片状单晶照片。
图8是实施例8制得的γ-AlOOH块状多晶图。
具体实施方式
实施例1制备最佳的γ-AlOOH片状单晶全过程。
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为180℃,保温时间为12h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图1给出了上述条件制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有良好透明性;图2给出了XRD谱图,在X射线衍射谱上表现出属于勃姆石结构的强而锐的衍射峰,证明每个γ-AlOOH为单晶,晶体结晶性好,产物纯度高;
实施例2制备γ-AlOOH片状单晶全过程。
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为100℃,保温时间为4h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图3给出了上述条件制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有较好透明性。
实施例3制备γ-AlOOH片状单晶全过程。
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为150℃,保温时间为4h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图4给出了上述条件所制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有较好透明性。
实施例4制备γ-AlOOH片状单晶全过程。
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为100℃,保温时间为12h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图5给出上述条件所制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有较好透明性。
实施例5制备γ-AlOOH片状单晶全过程
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为150℃,保温时间为12h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图6给出上述条件所制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有较好透明性。
实施例6制备γ-AlOOH片状单晶全过程
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为180℃,保温时间为24h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到高结晶度、透明、大面积γ-AlOOH片状单晶。
图7给出上述条件所制备的γ-AlOOH片状单晶图,可以看出这种产品具有类似云母薄片的形貌,表面的线度在毫米到厘米量级(长度可达到8~10mm),并且在可见光波段具有较好透明性。
实施例7作为比较例制备出的是γ-AlOOH胶体
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为90℃,保温时间为3h;反应结束后,将反应釜内的胶状产物用超声处理10分钟后,移入蒸发皿中缓慢烘干脱水,烘干温度为室温~60℃。烘干后即得到胶状AlOOH。
上述条件制备的γ-AlOOH是胶体,因此反应温度为90℃,保温时间为3h不能形成γ-AlOOH片状单晶。
实施例8作为比较例制备出的是γ-AlOOH块状多晶
以0.2克无水氯化铝(AlCl3)、15毫升无水乙醇为原料,首先将氯化铝与乙醇在烧杯中混合均匀,超声处理10分钟,形成透明溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为200℃,保温时间为28h;反应结束后,得到的产物在反应釜内直接烘干脱水,烘干温度为室温~60℃。烘干后即得到γ-AlOOH块状多晶。
图8给出所制备的上述条件所制备的γ-AlOOH块状多晶的实物图,因此反应温度为200℃,保温时间为28h不能形成γ-AlOOH片状单晶。

Claims (3)

1.一种γ-AlOOH片状单晶的制备方法,所述的γ-AlOOH片状单晶,具有类似云母薄片的形貌,在X射线衍射谱上表现出属于勃姆石结构的衍射峰,表面的线度在毫米到厘米量级;制备方法是以无水氯化铝、无水乙醇为原料,首先按每克氯化铝加75mL无水乙醇的比例将氯化铝与乙醇混合均匀,形成透明的混合溶液;然后将混合溶液倒入聚四氟乙烯反应釜中密封加热,反应温度为100~180℃,保温时间为4~24h;反应结束后,将反应釜内的胶状产物超声处理10分钟,移入底面光滑的容器自然平铺,烘干脱水得到γ-AlOOH片状单晶。
2.按照权利要求1所述的γ-AlOOH片状单晶的制备方法,其特征在于,所述的氯化铝与乙醇混合均匀,是将氯化铝置于乙醇中超声处理10分钟。
3.按照权利要求1或2所述的γ-AlOOH片状单晶的制备方法,其特征在于,所述的烘干脱水,是在温度为室温~60℃下烘干。
CN201910035870.5A 2019-01-15 2019-01-15 一种γ-AlOOH片状单晶及其制备方法 Expired - Fee Related CN109694096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910035870.5A CN109694096B (zh) 2019-01-15 2019-01-15 一种γ-AlOOH片状单晶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910035870.5A CN109694096B (zh) 2019-01-15 2019-01-15 一种γ-AlOOH片状单晶及其制备方法

Publications (2)

Publication Number Publication Date
CN109694096A CN109694096A (zh) 2019-04-30
CN109694096B true CN109694096B (zh) 2021-06-01

Family

ID=66234026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910035870.5A Expired - Fee Related CN109694096B (zh) 2019-01-15 2019-01-15 一种γ-AlOOH片状单晶及其制备方法

Country Status (1)

Country Link
CN (1) CN109694096B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645373B (zh) * 2020-12-17 2023-05-02 安徽理工大学 γ-AlOOH/RGO复合吸波材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177291A (zh) * 2007-10-26 2008-05-14 上海大学 特殊形貌AlOOH纳米材料的制备方法
CN101279754A (zh) * 2008-05-20 2008-10-08 上海大学 多种形貌纳米勃姆石的制备方法
CN108557850A (zh) * 2018-04-23 2018-09-21 上海大学 一种γ-AlOOH纳米片的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177291A (zh) * 2007-10-26 2008-05-14 上海大学 特殊形貌AlOOH纳米材料的制备方法
CN101279754A (zh) * 2008-05-20 2008-10-08 上海大学 多种形貌纳米勃姆石的制备方法
CN108557850A (zh) * 2018-04-23 2018-09-21 上海大学 一种γ-AlOOH纳米片的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Fabrication of Nanosheet-assembled Hierarchical AlOOH and γ-Al2O3 Microspheres and Its Application in Water Purification;Xuanmeng He et al.;《Materials Science Forum》;20120614;第724卷;第37-40页 *
Self-Assembly of Flowerlike AlOOH (Boehmite) 3D Nanoarchitectures;Jun Zhang et al.;《J. Phys. Chem. B》;20060407;第110卷;第14249-14252页 *
Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant;Guangci Li et al.;《Materials Research Bulletin》;20100616;第45卷;第1487-1491页 *
The solvothermal synthesis of g-AlOOH nanoflakes and their compression behaviors under high pressures;Xudong Zhou et al.;《RSC Advances》;20170117;第7卷;第4904–4911页 *
几种一维无机纳米材料的液相合成及机理研究;贾志勇;《中国博士学位论文全文数据库 工程科技I辑》;20100415;第84页 *
无模板合成海胆状薄水铝石超结构及其形成机理;徐冰等;《无机材料学报》;20101130;第25卷(第11期);第1175-1179页 *

Also Published As

Publication number Publication date
CN109694096A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
Liu et al. Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina
CN109399584B (zh) 一种六棱管状氮化碳及其制备方法和应用
CN104401948A (zh) 一种单层石墨型氮化碳纳米片溶液的制备方法
CN102826593A (zh) 一种氧化铟纳米材料的制备方法
CN113087016A (zh) 一种棒状硫化铋/还原氧化石墨烯复合材料的制备方法
CN109694096B (zh) 一种γ-AlOOH片状单晶及其制备方法
CN101428857B (zh) 一种钼酸锌纳米材料的诱导控制合成方法
Shao et al. Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature
CN104925849A (zh) 一种花状微球CuS晶体粉末的合成方法
CN103011215A (zh) 一种勃姆石微纳结构球及其制备方法
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
CN101525134A (zh) 一种用废塑料低温制备立方碳化硅超细粉的方法
Gusatti et al. Synthesis of ZnO nanostructures in low reaction temperature
Agafonov et al. Controlling micro-and nanostructure and activity of the NaAlO 2 biodiesel transesterification catalyst by its dissolution in a mesoporous γ-Al 2 O 3-matrix
CN103466688B (zh) 一种制备ZnS纳米片的方法
CN109574051B (zh) 一种γ-AlOOH纳米管的制备方法
Lee et al. Synthesis of ZnO nanoparticles via simple wet-chemical routes
CN102162126A (zh) 一种制备氯氧化铋单晶纳米片的方法
Roy et al. Microwave-assisted synthesis and characterization of CaS nanoparticles
CN112357951B (zh) 一种SnS纳米片的固相制备方法
CN115893487B (zh) 形貌可控的硫化铋纳米材料及其制备方法与应用
CN113666402B (zh) 一种羟基氧化铝纳米材料及其制备方法
CN103771535B (zh) 一种多面体纳米四氧化三铁及其制备方法
CN1600427A (zh) 一种mcm-41/氧化铝复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210601

Termination date: 20220115