CN109680254B - 一种镁铝合金载氢薄膜材料及其制备方法 - Google Patents

一种镁铝合金载氢薄膜材料及其制备方法 Download PDF

Info

Publication number
CN109680254B
CN109680254B CN201910152281.5A CN201910152281A CN109680254B CN 109680254 B CN109680254 B CN 109680254B CN 201910152281 A CN201910152281 A CN 201910152281A CN 109680254 B CN109680254 B CN 109680254B
Authority
CN
China
Prior art keywords
magnesium
aluminum alloy
hydrogen
sputtering
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910152281.5A
Other languages
English (en)
Other versions
CN109680254A (zh
Inventor
王亮
唐舵
吉祥波
王窈
李勇
邢宗仁
覃文志
高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201910152281.5A priority Critical patent/CN109680254B/zh
Publication of CN109680254A publication Critical patent/CN109680254A/zh
Application granted granted Critical
Publication of CN109680254B publication Critical patent/CN109680254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种镁铝合金载氢薄膜材料,包括镁铝合金薄膜,所述镁铝合金薄膜中镁原子和铝原子的比例在9:1到1:9之间;氢原子所占比例小于等于20%。镁铝合金载氢薄膜材料的激光驱动效率提升原理是:金属储氢材料在强激光烧蚀作用下,迅速释放出氢气,氢参与并增强激光烧蚀反应,使得光致等离子体温度和电子密度增加,进而提升等离子体驱动效率。其制备方法包括如下步骤1:选取具有高激光透过率的基片,将其清洗干净并烘干备用;步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,安装固定后抽真空;步骤3:通过磁控溅射镁铝合金薄膜。

Description

一种镁铝合金载氢薄膜材料及其制备方法
技术领域
本发明涉及载氢薄膜技术领域,具体的说,是一种镁铝合金载氢薄膜材料及其制备方法。
背景技术
随着现代战争的网络化和信息化,未来战场及武器***内部电磁兼容环境必将更为复杂且严酷。火工品作为武器***的功能始发元件,决定着弹药的本质安全。为此,LosAlamos、Sandia等于上世纪80年代开始,将具有抗强电磁干扰能力的激光驱动飞片技术应用于起爆***。激光驱动飞片技术发展至今取得了众多显著成果,然而,仍有诸多关键问题有待深入研究,较为突出的是激光与飞片能量耦合效率较低的问题。一直以来,飞片作为解决能量耦合效率的关键得到了广泛研究。早期,飞片主要采用单层金属膜,能量耦合效率不足20%;近年来,飞片采用了复合式结构,该结构包含吸收层、烧蚀层、隔热层和飞片层。复合飞片中,吸收层的主要作用是增强激光吸收率,通常为C或Ti;烧蚀层是换能层,通常为Al、Ge、Cu等金属材料,其在激光激发下形成高压等离子体,从而剪切飞片层材料,使其获得较高的速度撞击起爆***;隔热层主要作用是减少烧蚀层能量损失,通常为Al2O3、CuO等。C/Al/Al2O3/Al是当前最为常用且高效的复合飞片结构,其驱动效能相比于纯铝飞片有大幅提升,能量耦合效率可达47.4%。尽管如此,激光驱动飞片的相关应用对提高换能效率和获得更高飞片速度的需求仍然迫切。
目前,储氢薄膜作为一类新型能源材料得到广泛关注。本发明公开了一种适用于作为烧蚀层的镁铝合金载氢薄膜材料,其在激光辐照作用下,由于引入了氢气的快速剧烈反应,增强了激光诱导等离子体效应,致使飞片速度和换能效率显著提高,对激光驱动飞片的应用具有重要意义。
发明内容
本发明的目的在于提供一种镁铝合金载氢薄膜材料及其制备方法,用于解决现有技术中激光与飞片能量耦合效率低下的问题。
本发明通过下述技术方案解决上述问题:
一种镁铝合金载氢薄膜材料,包括镁铝合金薄膜,所述镁铝合金薄膜中镁原子和铝原子的比例在9:1到1:9之间;氢原子所占比例小于等于20%。镁铝合金载氢薄膜材料的激光驱动效率提升原理是:金属储氢材料在强激光烧蚀作用下,迅速释放出氢气,氢参与并增强激光烧蚀反应,使得光致等离子体温度和电子密度增加,进而提升等离子体驱动效率。
优选地,其厚度为纳米量级到微米量级。
优选地,所述镁铝合金薄膜材料具有良好的氢吸附性能。
一种镁铝合金载氢薄膜材料的制备方法,所述方法包括如下步骤:
步骤1:选取具有高激光透过率的基片,将其清洗干净并烘干备用;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,安装固定后抽真空;
步骤3:通过磁控溅射镁铝合金薄膜。
优选地,所述步骤1中清洗包括如下步骤:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟。
优选地,所述步骤3中溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气体积比为3:1到1:1之间。
优选地,溅射是通入的氩气和氢气的比例为3:1、3:2或1:1。
优选地,所述步骤2中抽真空后的真空度优于4×10-4Pa。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明中镁铝合金载氢薄膜可大幅提高激光驱动飞片效率,可作为激光冲击片类火工品的烧蚀层材料。
(2)本发明制备方法制备工艺简单、成本低廉,重复性好,环境友好,实用性强,所得材料在火工品换能材料和储氢薄膜材料等领域具有广阔的应用前景。
附图说明
图1为扫描电子显微镜测得的本发明实施例中镁铝合金薄膜的表面形貌图谱;
图2为扫描电子显微镜测得的本发明实施例中镁铝合金薄膜的能谱图;
图3为中子反射谱仪测得的本发明实施例中镁铝合金薄膜的中子反射测量数据、拟合数据以及拟合结果图;
图4为中子反射谱仪测得的本发明实施例中镁铝合金薄膜的中子反射测量数据、拟合数据的拟合结果图。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1:
一种镁铝合金载氢薄膜材料,包括镁铝合金薄膜,所述镁铝合金薄膜中镁原子和铝原子的比例在9:1到1:9之间;氢原子所占比例小于等于20%;其厚度为纳米量级到微米量级,且材料具有良好的氢吸附性能。
上述材料可通过如下方法制备,一种镁铝合金载氢薄膜材料的制备方法,包括如下步骤:
步骤1:选取高激光透过率的基片,常用的有蓝宝石、石英、K9玻璃等材质的基片,本实施例采用石英基片,将其清洗干净并烘干备用,清洗过程如下:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,镁铝的原子比例为1:1,安装固定后抽真空,真空度优于4×10-4Pa;
步骤3:通过磁控溅射镁铝合金薄膜,溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气体积比在3:1到1:1之间。
根据上述步骤,制备一种镁铝合金储氢薄膜材料,生长在石英玻璃基底上的镁铝合金薄膜:
步骤1:选取石英基片,将其清洗干净并烘干备用,清洗过程如下:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,镁铝的原子比例为1:1,安装固定后抽真空,真空度优于4×10-4Pa;
步骤3:通过磁控溅射镁铝合金薄膜,溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气体积比为3:1。
实施例2:
在实施例1的基础上,制备一种镁铝合金储氢薄膜材料,生长在石英玻璃基底上的镁铝合金薄膜:
步骤1:选取石英基片,将其清洗干净并烘干备用,清洗过程如下:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,安装固定后抽真空,真空度优于4×10-4Pa;
步骤3:通过磁控溅射镁铝合金薄膜,溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气体积比为3:2。
实施例3:
在实施例1的基础上,制备一种镁铝合金储氢薄膜材料,生长在石英玻璃基底上的镁铝合金薄膜:
步骤1:选取石英基片,将其清洗干净并烘干备用,清洗过程如下:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,镁铝的原子比例为1:1,安装固定后抽真空,真空度优于4×10-4Pa;
步骤3:通过磁控溅射镁铝合金薄膜,溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气体积比在3:1到1:1之间,最后在薄膜表面溅射一层10nm厚度的钽,起到钝化作用,以防止薄膜氧化和在储氢条件下析氢。
结合附图1-4所示对实施例所得的薄膜进行检测,图1中可看出,在10万倍放大时也较均匀,微观呈现出细小裂纹;图2表明主要有镁铝元素以及附着于表面的保护材料钽;图3和图4表明镁铝合金薄膜中氢原子的比例达20%。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (6)

1.一种镁铝合金载氢薄膜材料,包括镁铝合金薄膜,其特征在于:所述镁铝合金薄膜中镁原子和铝原子的比例在9:1到1:9之间;氢原子所占比例小于等于20%,其厚度为纳米量级到微米量级;
所述镁铝合金载氢薄膜材料的制备方法,包括如下步骤:
步骤1:选取具有高激光透过率的基片,将其清洗干净并烘干备用;
步骤2:将步骤1所得基片与镁铝合金靶材放入溅射腔室,安装固定后抽真空;
步骤3:通过磁控溅射镁铝合金薄膜;
所述步骤3中溅射工艺为:背底真空小于4×10-4Pa;工作气压0.6Pa;溅射功率100W,溅射电流325mA,溅射电压310V;溅射时同时通入氩气和氢气,氩气与氢气的体积比在3:1到1:1之间。
2.根据权利要求1所述的镁铝合金载氢薄膜材料,其特征在于:所述镁铝合金薄膜材料具有良好的氢吸附性能。
3.根据权利要求1所述的镁铝合金载氢薄膜材料,其特征在于,所述步骤1中清洗包括如下步骤:
步骤1.1:将基片在丙酮中超声清洗15分钟;
步骤1.2:将步骤1.1所得基片在无水乙醇中超声清洗15分钟;
步骤1.3:将步骤1.2所得基片在去离子水中超声清洗15分钟;
步骤1.4:将步骤1.3所得基片在等离子清洗机中清洗15分钟。
4.根据权利要求1所述的镁铝合金载氢薄膜材料,其特征在于,溅射是通入的氩气和氢气的比例为3:1、3:2或1:1。
5.根据权利要求1所述的镁铝合金载氢薄膜材料,其特征在于,所述步骤2中抽真空后的真空度优于4×10-4Pa。
6.根据权利要求1所述的镁铝合金载氢薄膜材料,其特征在于,所述步骤3镁铝合金薄膜溅射完成之后在其上方溅射一层10nm厚的钽。
CN201910152281.5A 2019-02-28 2019-02-28 一种镁铝合金载氢薄膜材料及其制备方法 Active CN109680254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910152281.5A CN109680254B (zh) 2019-02-28 2019-02-28 一种镁铝合金载氢薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910152281.5A CN109680254B (zh) 2019-02-28 2019-02-28 一种镁铝合金载氢薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109680254A CN109680254A (zh) 2019-04-26
CN109680254B true CN109680254B (zh) 2020-11-03

Family

ID=66196118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910152281.5A Active CN109680254B (zh) 2019-02-28 2019-02-28 一种镁铝合金载氢薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109680254B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930018B (zh) * 2021-01-26 2022-12-06 中科超睿(青岛)技术有限公司 一种基于多主元设计的含镁中子靶及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129960A (ja) * 1987-11-16 1989-05-23 Sanyo Electric Co Ltd 水素吸蔵合金薄膜の製造方法
JP5302043B2 (ja) * 2009-02-23 2013-10-02 日本碍子株式会社 水素貯蔵複合材料
CN104342617A (zh) * 2013-07-25 2015-02-11 北京大学 一种高容量储氢薄膜及其制备方法
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN108994448B (zh) * 2018-09-14 2020-10-16 中国工程物理研究院化工材料研究所 一种激光驱动飞片靶结构及其制备方法

Also Published As

Publication number Publication date
CN109680254A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6884495B2 (ja) イオン源強化のSi含有量及び結晶寸法が勾配変化するAlCrSiNコーティング
CN103409722B (zh) 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法
CN108165925B (zh) 一种低负偏压高能Ar+刻蚀清洗改善AlTiSiN涂层性能的方法
CN103162452B (zh) 抗氧化性太阳光谱选择性吸收涂层及其制备方法
CN109680254B (zh) 一种镁铝合金载氢薄膜材料及其制备方法
CN111893453B (zh) 一种在尖锥形陶瓷腔体内壁制备微细金属涂层图案的方法
CN107299316A (zh) 一种在锆合金表面制备非晶纳米晶涂层的方法
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN109440074A (zh) 一种高能量输出的氢爆膜桥及其制备方法
CN108994448B (zh) 一种激光驱动飞片靶结构及其制备方法
CN107012424B (zh) 一种TiZrB2硬质涂层及其制备方法和应用
CN103215556B (zh) 一种组合式光谱选择性吸收膜层快速沉积工艺
CN105200390A (zh) 一种直接沉积纳米石墨烯抑制二次电子发射的方法
CN113293366A (zh) 一种Ni3Al涂层的制备方法
CN106544628B (zh) 一种含氘金属薄膜靶的制备方法
CN107186373A (zh) 一种钛基多层膜钎料及其制备方法
Umar et al. Mechanical properties of Al/aC nanocomposite thin films synthesized using a plasma focus device
CN113652635A (zh) 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法
US20120241353A1 (en) Device housing and method for making same
CN107267927A (zh) 一种碳镍纳米棒薄膜的制备方法
CN109487209B (zh) 一种高硬度max相陶瓷涂层及其制备方法
Swaroop et al. Ion-Plated Copper—Steel Graded Interface
Peng et al. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films
CN109097725A (zh) 一种金属铀表面渗硅改性层及其制备方法、制备装置
CN109136839A (zh) 一种具有铝掺杂二硼化钛涂层的工件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant