CN109603831B - 一种钴和石墨烯复合纳米材料催化剂及其制备方法 - Google Patents

一种钴和石墨烯复合纳米材料催化剂及其制备方法 Download PDF

Info

Publication number
CN109603831B
CN109603831B CN201811603520.6A CN201811603520A CN109603831B CN 109603831 B CN109603831 B CN 109603831B CN 201811603520 A CN201811603520 A CN 201811603520A CN 109603831 B CN109603831 B CN 109603831B
Authority
CN
China
Prior art keywords
cobalt
catalyst
graphene
impregnation
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811603520.6A
Other languages
English (en)
Other versions
CN109603831A (zh
Inventor
周锦霞
杨帆
毛璟博
李慎敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201811603520.6A priority Critical patent/CN109603831B/zh
Publication of CN109603831A publication Critical patent/CN109603831A/zh
Application granted granted Critical
Publication of CN109603831B publication Critical patent/CN109603831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt

Abstract

本发明涉及一种钴和石墨烯复合纳米材料催化剂及其制备方法。催化剂的主要成分为钴和石墨烯;催化剂的制备步骤为:采用浸渍法将钴盐负载到自合成或商业购买的还原氧化石墨烯上,浸渍后经过干燥,得到含有钴盐/石墨烯的催化剂前驱体,然后将前驱体在氮气氛围下焙烧,使钴盐分解,同时使钴物种与石墨烯产生强相互作用,得到钴与石墨烯复合纳米材料,该催化剂同时含有与石墨烯基底紧密结合单原子钴、钴原子簇以及钴氧化物纳米粒子。

Description

一种钴和石墨烯复合纳米材料催化剂及其制备方法
技术领域
本发明涉及一种钴和石墨烯复合纳米材料催化剂、该催化剂的主要成分以及该催化剂的制备方法。
背景技术
优良催化剂是提高催化反应性能的关键。催化剂的性能主要由两方面决定:一个是成分,另一个是制备方法。同样的成分,采用不同的制备方法,其性能会差异很大,同理,同样的制备方法采用不同的成分,也会产生效果不同的催化剂。近年来,含有单原子、原子簇以及粒度分布均匀的纳米粒子的催化剂越来越受到重视,通过在纳米层次对催化剂的组成、结构和形貌以及电子态的调控,能够实现高效催化作用。含有单原子的催化剂制备技术主要包括逐步还原法(Zhang H.,Kawashima K.,Okumura M.,et al.Colloidal Ausingle-atom catalysts embedded on Pd nanoclusters[J].Journal ofMaterialsChemistry A,2014,2(33):13498.)、浸渍法(Mosesdebusk M.,Yoon M.,Allard L.F.,etal.CO oxidation on supported single Pt atoms:experimental and ab initiodensity functional studies ofCO interaction with Pt atom onθ-Al2O3(010)surface.[J].Journal ofthe American Chemical Society,2013,135(34):12634-12645.)、原子层沉积法(Xing J.,Chen J.F.,Li Y.H.,et al.Stable Isolated MetalAtoms as Active Sites for Photocatalytic Hydrogen Evolution[J].Chemistry-AEuropean Journal,2014,20(8):2138-2144.)、反Ostward熟化法(Hu,P.,Huang,Z.,Amghouz,Z.,Makkee,M.,Xu,F.,Kapteijn,F.,Dikhtiarenko,A.,Chen,Y.,Gu,X.and Tang,X.(2014),Electronic Metal–Support Interactions in Single-AtomCatalysts.Angew.Chem.Int.Ed.,53:3418-3421.)等。一些方法虽然能取得较好的金属负载效果,但是制备工艺负载,成本高,难以工业化推广。
从催化剂成分的角度考虑,石墨烯(graphene)作为新兴材料,由于其独特的物质结构和理化性质在催化领域大放异彩。由石墨粉利用hummers法(William S.Hummers Jr,Richard E.Offeman.Preparation ofGraphitic Oxide[J].Journal ofthe AmericanChemical Society,1958,80(6):1339.)制成氧化石墨烯(GO),然后再通过还原得到得到还原的氧化石墨烯(rGO),具有大批量生产的可能,这使得石墨烯能够作为大宗的催化剂制备材料。一些研究发现,金属以纳米颗粒(nanoparticles,NPs)、原子簇(clusters)或者单原子(single atoms)的形式存在于石墨烯表面,在金属与石墨烯协同作用下,会产生优异的催化效果。但是,含有单原子的催化剂的合成有一定难度,再加上石墨烯材料的疏水性,使金属负载变得更加困难。目前,在石墨烯上负载金属粒子的方法主要有以下几种:第一种方法,预制的NPs和石墨烯分散在溶剂中,利用静电相互作用或范德华力以及π–π键相互作用驱动附着。该方法可以更好地控制NPs的特性,但催化剂并不稳定;第二种方法,让目标NPs在石墨烯基材料上原位形成,使石墨烯的官能团或芳香环结构来稳定NPs。在这种情况下,可以实现NPs与载体之间的更好的相互作用,但是可能会失去对NPs结构和形态的控制;第三种方法,金属/金属化合物NPs的形成和GO到rGO的转化同时原位进行,这样可以强化催化剂与金属组分之间的相互作用;第四种方法,NPs和石墨烯均由小分子通过自下而上的一步法原位形成,从而合成出稳定性较高的催化剂(Das VK,ShifrinaZ B,BronsteinLM.Graphene and graphene-like materials in biomass conversion:paving the wayto the future[J].Journal ofMaterials ChemistryA,2017,5(48).),该方法成本高,条件苛刻,难以工业化大规模合成。此外,以上这些方法合成出的贵金属和过渡金属催化剂,其金属以及金属氧化物在载体上一般以NPs的形式存在,而很少出现单原子,而且金属多是采用贵金属,而非过渡金属。目前关于单原子过渡金属负载在石墨烯上的报道很少。(DengD,Chen X,LiangY,et al.A single iron site confined in a graphene matrix forthe catalytic oxidation of benzene at room temperature[J].Science Advances,2015,1(11):e1500462-e1500462.以石墨烯作为载体,以酞菁铁引入FeN成分,使Fe在载体上以单原子的形式与四个N原子结合,再嫁接到石墨烯碳骨架上。(Fei,H.,Dong,J.,Feng,Y.,Allen,C.S.,Wan,C.,Volosskiy,B.,et al.(2018).General synthesis anddefinitive structural identification of MN4C4single-atom catalysts withtunable electrocatalytic activities.Nature Catalysis,1(1),63–72)将Fe,Co,Ni氯盐与氧化石墨烯、双氧水混合经水热处理后干燥得到催化剂前驱体,再将催化剂前驱体在900℃的Ar气流中与氨气反应,得到单原子催化剂,M-NHGFs(M=Fe,Co,Ni),该类催化剂中过渡金属通过N原子与石墨烯相连,即以MN4C4(M=Fe,Co,Ni)形式存在,该催化剂在析氧电催化反应中有很好的应用效果。到目前为止,尚无以浸渍-焙烧法在石墨烯上同步负载了单原子钴、钴原子簇和氧化钴纳米粒子成分的催化剂的报道。
发明内容
为了克服现有技术的缺点和不足,本发明将采用一种简单的方法,即浸渍-焙烧法,合成出一种在石墨烯上含有多种形态钴的新型催化剂,命名为Co/rGO。该催化剂以过渡金属Co作为活性组分,以还原氧化石墨烯(rGO)为载体,Co在载体上以多种氧化物(CoO、Co2O3、Co3O4)纳米粒子、Co原子簇和单原子Co形式存在。
本发明采用以下技术方案:一种钴-石墨烯复合纳米材料催化剂,其主要成分为钴和石墨烯,钴的载量为:钴占催化剂质量的1~50wt%;优选的,所述钴占催化剂质量的5~10wt%。本发明同时请求保护钴-石墨烯复合纳米材料催化剂的制备方法,具体包括以下步骤:
(1)浸渍
采用浸渍法将钴盐负载到石墨烯上,浸渍后经过干燥,得到含有钴盐/石
墨烯的催化剂前驱体;
(2)焙烧
将含有钴盐/石墨烯的催化剂前驱体在氮气氛围下于400-700℃焙烧,使钴盐分解,同时使钴与石墨烯相互作用,得到钴-石墨烯复合纳米材料催化剂。
所述钴盐为硝酸钴、醋酸钴其中的一种或两种。
所述步骤(1)中先使用乙醇水溶液配置钴盐溶液,其中乙醇的含量为10-80%,优选采用20%。
所述步骤(1)采用的浸渍法可以是等体积浸渍、过量浸渍,优先采用等体积浸渍。
所述步骤(2)中,焙烧保护气体为纯度达到99.95%及以上的高纯氮气。
所述步骤(2)中,焙烧温度优选为500-600℃。
本发明相对于现有技术具有如下优点和效果:
本发明采用了廉价过渡态金属钴作为催化剂活性组分,用简单的等体积浸渍与焙烧法制备出了同时含有与石墨烯基底紧密结合单原子钴、钴原子簇和钴氧化物纳米粒子的催化剂。
附图说明
图1HAADF-STEM表征及单原子Co模拟。
具体实施方式
下面结合表征以及测试反应的实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
所采用的石墨烯可以采用自合成或商业购买的还原氧化石墨烯(reducedgraphene oxide,rGO,简称石墨烯);本实施例中用于合成催化剂的还原氧化石墨烯(rGO),简称石墨烯,可以采用商业化的石墨烯,也可以根据Hummers方法自合成。本实例中用的rGO是自合成的,详细步骤为:取干燥的2.0L烧杯,加入230mL浓硫酸和5.0g硝酸钠(NaNO3),置于冰浴下搅拌,当温度T≤5℃时,加入10.0g天然鳞片石墨粉,继续搅拌2.5小时;混合均匀后,缓慢加入30.0g高锰酸钾(KMnO4),期间控制体系温度不高于20℃(即温度升高过快时减慢填料速率,降低搅拌速度并加入冰块降温);然后将烧杯转移至35℃恒温水浴中,继续搅拌反应2.0小时后,加入460mL去离子水;取出烧杯置于98℃油浴中,待溶液温度到达98℃是开始计时,搅拌15分钟;最后加入1.4L去离子水终止反应,同时加入25mL双氧水(30%H2O2),发现溶液有棕黑色变为鲜亮黄色并有金属光泽;取出烧杯降至室温,离心,用去离子水洗涤8-10次后(pH≈7)转移至棕色试剂瓶密封保存备用即氧化石墨烯(GO)膏体。取1g干基的GO(取一定量的GO膏体,通过干燥脱水后得到GO粉末,从而计算得到GO膏体的浓度)分散在1000mL去离子水中,超声处理30min,静置陈化一晚,然后转移至圆底烧瓶中(只取上部棕色溶液,底部黑色溶液为未分散的氧化石墨,舍弃),加入25mL 30%氨水和6mL 80%水合肼,2000rpm磁力搅拌下95℃水域回流3h后,再加入4mL 80%水合肼继续反应30min,取出烧瓶,逐滴加入4%盐酸至黑色溶液产生黑色絮状沉淀漂浮于液面,且溶液变澄清透明,趁热抽滤,用热水洗涤至没有氨水味,冻干,得到松散的rGO粉末。取100mg rGO于50mL烧杯中,用100uL移液枪向烧杯中依次加入去离子水,并持续搅拌,至rGO呈糊状渗出水,测得其吸水量为7mL/g。
1.催化剂制备
采用等体积浸渍-焙烧两步法制备Co/rGO催化剂,具体步骤为:
(1)浸渍:
盐溶液的制备:取Co(NO3)2·6H2O 0.3mmol用去离子水溶解制成2.1mL盐溶液;将2.1mL配置好的盐溶液于50mL烧杯中,再加入0.6mL无水乙醇,摇匀;称取300mg rGO,快速加入到烧杯中,完全盖住溶液,同时用玻璃棒按顺时针方向持续搅拌30min至粉末呈糊状;将烧杯用锡纸封好,并扎眼,置于室温4h,然后置于真空干燥箱中50℃干燥12h;
(5)焙烧:
将烧杯中的催化剂取出,用玛瑙研钵研磨,使其变成粉末,制备的粉末状样品放入石英管内,置于管式炉中在氮气氛围下经10℃/min程序升温由室温到500℃,在500℃下恒温焙烧2h,当温度降至室温时取出样品密封储存。
2.表征结果
采用高角环形暗场-扫描透射电镜(HAADF-STEM)表征催化剂:取极少量的Co/rGO经过超声分散在乙醇溶液中,用铜网栅制备好样品后放入仪器中测试。表征结果见图1,由图1可以看出,在rGO上均匀负载很多Co氧化物纳米颗粒,及大量的Co原子簇和单原子Co。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (5)

1.一种钴-石墨烯复合纳米材料催化剂,其特征在于,其主要成分为钴和石墨烯,其制备方法包括以下步骤:
(1)浸渍
先使用乙醇水溶液配置钴盐溶液,其中乙醇的含量为10-80%,采用等体积浸渍或过量浸渍法将钴盐负载到还原氧化石墨烯上,浸渍后经过干燥,得到含有钴盐/石墨烯的催化剂前驱体;所述钴占催化剂质量的5~10wt%;所述钴盐为硝酸钴、醋酸钴其中的一种或两种;
(2)焙烧
将含有钴盐/石墨烯的催化剂前驱体在氮气氛围下于400-700℃焙烧,使钴盐分解,同时使钴与石墨烯相互作用,得到钴-石墨烯复合纳米材料催化剂;
其结构特点是催化剂上同时含有与石墨烯基底紧密结合单原子钴、钴原子簇以及钴氧化物纳米粒子。
2.根据权利要求1所述的催化剂,其特征在于,乙醇的含量为20%。
3.根据权利要求1所述的催化剂,其特征在于,采用等体积浸渍法。
4.根据权利要求1所述的催化剂,其特征在于,所述步骤(2)中,焙烧保护气体为纯度达到99.95%及以上的高纯氮气。
5.根据权利要求1所述的催化剂,其特征在于,所述步骤(2)中,焙烧温度为500-600℃。
CN201811603520.6A 2018-12-26 2018-12-26 一种钴和石墨烯复合纳米材料催化剂及其制备方法 Active CN109603831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811603520.6A CN109603831B (zh) 2018-12-26 2018-12-26 一种钴和石墨烯复合纳米材料催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811603520.6A CN109603831B (zh) 2018-12-26 2018-12-26 一种钴和石墨烯复合纳米材料催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109603831A CN109603831A (zh) 2019-04-12
CN109603831B true CN109603831B (zh) 2021-11-23

Family

ID=66011523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811603520.6A Active CN109603831B (zh) 2018-12-26 2018-12-26 一种钴和石墨烯复合纳米材料催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109603831B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774690B (zh) * 2019-11-04 2023-09-05 北京氦舶科技有限责任公司 一种负载型单原子贵金属催化剂及其制备方法和应用
CN111020625A (zh) * 2019-11-17 2020-04-17 塞文科技(上海)有限公司 一种磷掺杂石墨烯纳米带负载钴单原子催化剂及制备方法
CN110835123B (zh) * 2019-12-09 2022-03-25 哈尔滨工业大学(威海) 钴金属颗粒及钴氧化物复合石墨纳米片粉体的制备方法
CN113198463A (zh) * 2021-04-14 2021-08-03 云南大学 一种碳材料表面负载金属单原子的方法
CN113122878B (zh) * 2021-04-16 2022-04-12 陕西科技大学 一种氮掺杂碳复合石墨烯包覆金属钴催化剂、制备方法及应用
CN113828317A (zh) * 2021-09-26 2021-12-24 大连大学 一种制备金属单原子-石墨烯复合材料的方法
CN113996325B (zh) * 2021-10-21 2022-07-01 常州大学 一种氮掺杂石墨烯铜基双金属单原子催化剂及其制备方法和应用
CN116037190B (zh) * 2023-01-31 2024-01-30 温州大学 一种过渡金属钴负载石墨烯三维宏观体催化剂及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470509B2 (ja) * 2008-11-27 2014-04-16 独立行政法人産業技術総合研究所 電極用白金クラスター及びその製造方法
CN106475573A (zh) * 2016-11-01 2017-03-08 河北大学 一种以石墨烯为衬底的金属单原子二维材料的制备及应用
CN106914237A (zh) * 2017-02-28 2017-07-04 清华大学 一种金属单原子的制备方法
CN106944057A (zh) * 2017-03-31 2017-07-14 深圳市国创新能源研究院 一种用于电催化反应的单原子金属‑碳复合催化剂的制备方法
CN107262095A (zh) * 2017-07-20 2017-10-20 太原理工大学 铜掺杂石墨烯催化剂的制备方法
CN107597120A (zh) * 2017-09-22 2018-01-19 中石化炼化工程(集团)股份有限公司 石墨烯负载钴系催化剂及其制备方法和用途
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN109056306A (zh) * 2018-09-12 2018-12-21 山东理工大学 一种NiO/Ni复合石墨烯包覆棉碳纤维材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470509B2 (ja) * 2008-11-27 2014-04-16 独立行政法人産業技術総合研究所 電極用白金クラスター及びその製造方法
CN106475573A (zh) * 2016-11-01 2017-03-08 河北大学 一种以石墨烯为衬底的金属单原子二维材料的制备及应用
CN106914237A (zh) * 2017-02-28 2017-07-04 清华大学 一种金属单原子的制备方法
CN106944057A (zh) * 2017-03-31 2017-07-14 深圳市国创新能源研究院 一种用于电催化反应的单原子金属‑碳复合催化剂的制备方法
CN107262095A (zh) * 2017-07-20 2017-10-20 太原理工大学 铜掺杂石墨烯催化剂的制备方法
CN107597120A (zh) * 2017-09-22 2018-01-19 中石化炼化工程(集团)股份有限公司 石墨烯负载钴系催化剂及其制备方法和用途
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN109056306A (zh) * 2018-09-12 2018-12-21 山东理工大学 一种NiO/Ni复合石墨烯包覆棉碳纤维材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"焙烧温度对碳纳米管钴基费托合成催化剂性能的影响";李鹤等;《精细化工》;20180530;第776-777页1.2节、第779页2.3节 *

Also Published As

Publication number Publication date
CN109603831A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109603831B (zh) 一种钴和石墨烯复合纳米材料催化剂及其制备方法
CN109437338B (zh) 一种类锯齿型镍钴铁类普鲁士蓝烧结氧化物纳米材料的制备方法
CN104841924B (zh) 一种碳完全封装金属纳米颗粒的制备方法
CN110085879B (zh) 一种Co9S8/硫氮共掺碳复合材料及其制备方法
CN109201102B (zh) 一种Z型异质结M-C3N4/CdS复合光催化剂的制备方法
CN103030143B (zh) 碳化铁颗粒、其制备方法及用途
CN103381369A (zh) 一种氮掺杂碳材料负载的催化剂
JPWO2016158806A1 (ja) 新規な鉄化合物とグラフェンオキサイドとの複合体
CN104307512A (zh) 一种负载型钯催化剂及其制备方法和应用
CN107670694B (zh) 一种金属负载型催化剂及其制备方法和应用
CN111013635B (zh) 一种基底负载氮掺杂碳纳米管环绕碳化钼颗粒复合材料及其制备方法与应用
CN109759117A (zh) 一种利用碳纤维制备氮掺杂碳包覆金属纳米颗粒复合材料的方法
CN109821540A (zh) Mof衍生碳载非贵金属合金催化剂的制备方法及催化产氢应用
CN113101955A (zh) 一种磷化铁纳米材料的制备方法及其作为电催化剂的应用
CN110817881B (zh) 硅-过渡金属硅化物纳米复合材料及其制备方法与应用
CN111821976B (zh) 一种限阈型铁基费托合成催化剂及其制备方法
CN110760813B (zh) 一种层数可控的碳封装金属纳米颗粒的制备方法
CN111686734B (zh) 一种磁性多孔镍纳米片的制备方法及其应用
US20170009356A1 (en) Electrode material for electrolytic hydrogen generation
CN114130396A (zh) 一种具有超高诺氟沙星降解性能的单原子催化剂的制备方法
CN112007611A (zh) 一种吸附染料的铁镍/石墨烯纳米复合材料及其制备方法
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN114917932B (zh) 一种用于co2光还原合成co和h2的催化剂、制备方法及应用
CN107746057B (zh) 一种超细碳化钼的制备方法
Liu et al. New perspective of a nano-metal preparation pathway based on the hexahydro-closo-hexaborate anion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant