CN109265825B - 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法 - Google Patents

一种聚丙烯或聚丙烯复合物发泡制品及其制备方法 Download PDF

Info

Publication number
CN109265825B
CN109265825B CN201811040415.6A CN201811040415A CN109265825B CN 109265825 B CN109265825 B CN 109265825B CN 201811040415 A CN201811040415 A CN 201811040415A CN 109265825 B CN109265825 B CN 109265825B
Authority
CN
China
Prior art keywords
polypropylene
foaming
injection
particles
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811040415.6A
Other languages
English (en)
Other versions
CN109265825A (zh
Inventor
周应国
谭啸天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201811040415.6A priority Critical patent/CN109265825B/zh
Publication of CN109265825A publication Critical patent/CN109265825A/zh
Application granted granted Critical
Publication of CN109265825B publication Critical patent/CN109265825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种聚丙烯或聚丙烯复合物发泡制品,还公开了上述聚丙烯或聚丙烯复合物发泡制品的制备方法,将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用水发泡注射、化学发泡注射、超临界流体发泡注射或化学发泡/超临界流体发泡复合注射中的任意一种方式来制得具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品。本发明方法适用范围广,既可以在普通注射机中生产,也可以在超临界流体注射机中生产;采用该方法制得的发泡制品相比于同类发泡注射制品在产品拉伸强度和断裂伸长率方面均有显著提高。

Description

一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
技术领域
本发明涉及一种聚丙烯或聚丙烯复合物的发泡制品,本发明还涉及上述聚丙烯或聚丙烯复合物发泡制品的制备方法,属于聚合物材料技术领域。
背景技术
近年来,因隔音、减震、隔热、节约原料等优点,聚合物发泡制品在包装、建筑、汽车工业、航天航空以及运动器材等行业中被广泛应用。其中聚合物发泡注射制品因生产适应性强、效率高、易于自动化操作、制品收缩翘曲量少等特点越来越受到重视。通常,发泡制品内部的泡孔是由塑料原料在成型过程中产生或外加某些气体而形成的。按照泡孔形成及发泡剂类型的不同,可包括化学发泡、物理发泡及机械混合发泡等,按发泡制品的加工方法来看,也主要有间歇式、连续挤出法和注射成型法,这几类方法各具优缺点,因而均有不同程度的应用。
不过,发泡制品的力学性能通常存在较大差异,这种差异很大程度上是受泡孔尺寸、密度、分布及形态等结构参量的影响,这其中泡孔形态及分布的控制最为困难及复杂,这以广泛使用的聚丙烯发泡材料来看,聚丙烯属结晶型聚合物,在结晶熔点以下几乎不流动,形成的气核很难长大,同时,在结晶熔点之上则熔体粘度急剧变小,熔体强度很低,发泡气体又易逃逸。提高熔体强度、减少发泡气体的逃逸、提高材料的成核速率一直是聚丙烯发泡制品需要解决的问题。同时,和同类实心制品相比,聚丙烯发泡制品往往出现拉伸强度降低和断裂伸长率大幅减少的情况,目前广泛认为聚合物微孔制品的泡孔均为球形或接近球形的形态,很少考虑将泡孔形态调控到更有利于制品性能提高的形式。
因此一种可大幅提高聚丙烯及其共混物发泡制品性能的发泡方法的开发很有必要。文献(Ying-Guo Zhou,Bei Su,Hai-Hong Wu.Effect of Cold-drawn Fibers on theSelf-reinforcement of the PP/LDPE Composites[J].Journal of MaterialsEngineering and Performance,2017,26(8),4072-4082.)研究了聚丙烯或其复合物在其热变形温度以下经过拉伸可以形成冷拉纤维,这种冷拉纤维会比原来的聚丙烯或其复合物具有更为稳定的热力学结构。本发明设想这种冷拉纤维的加入可能会给材料的发泡带来以下效果:在后续的加热熔融中使其处于一种“半熔融”状态,也就是说其一部分微丝不完全熔融,这样带来的最终后果是,一部分微丝在发泡过程中可以充当异相成核剂使用,也可以提升熔体强度,另外,它在材料冷却过程中可以加速聚丙烯或其复合物的结晶过程,导致泡孔的提前锁定,使气体不易逃逸,同时,在注射充填过程中,它会沿流动方向发生取向,继而在后续发泡时可诱导微孔形态结构的变化。上述种种均可以提高聚丙烯或其复合物的可发泡性,不过,以上设想仅为理论上的分析,在实际中是否切实有效,有待进一步验证。
发明内容
发明目的:本发明所要解决的技术问题是提供一种聚丙烯或聚丙烯复合物的发泡制品,由于该发泡制品内部具有和受力方向(流动方向)一致的微孔,因此其具有良好的拉伸强度和断裂伸长率。
本发明还要解决的技术问题是提供上述聚丙烯或聚丙烯复合物发泡制品剂的制备方法,本发明方法适用范围广,既可以在普通注射机中生产,也可以在超临界流体注射机中生产,在普通注射成型机中生产时工艺简单,操作方便,无需任何设备装置的改动;且采用该方法制得的发泡制品相比于同类微发泡注射制品在产品拉伸强度和断裂伸长率方面均有显著提高。
发明内容:为解决上述技术问题,本发明所采用的技术方案为:
一种聚丙烯或聚丙烯复合物发泡制品,所述发泡制品内微孔呈特定取向性排布,所述特定取向性为微孔与流动方向相互平行。
上述聚丙烯或聚丙烯复合物发泡制品的制备方法,将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用水发泡注射、化学发泡注射、超临界流体发泡注射或化学发泡/超临界流体发泡复合注射中的一种方式来制得具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品。
其中,所述聚丙烯冷拉纤维采用如下方法制备而成:将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm。
进一步优选,上述聚丙烯或聚丙烯复合物发泡制品的制备方法,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;聚丙烯为均聚或共聚产品,其熔体流动速率为1~20g/10min(230℃,21.6N),其熔融温度为160~166℃,其断裂伸长率超过500%;
步骤2,将颗粒按混合物料总质量的5~50%加入到聚丙烯或其共混物料中,混合均匀后制备成混合物料;步骤2中的聚丙烯与制备冷拉纤维的聚丙烯(步骤1中)同种或异种,但为了保证在普通注射机中能够发泡注射,步骤2中的聚丙烯熔体流动速率不宜过高,为1~50g/10min(230℃,21.6N);共混物料中其它的共混材料可以为高密度聚乙烯、低密度聚乙烯或线性低密度聚乙烯中的一种或几种,即将高密度聚乙烯、低密度聚乙烯或线性低密度聚乙烯中的一种或几种作为共混材料加入到聚丙烯之中,共混材料的加入量占全部混合物料总质量的0%~50%,本发明使用的低密度聚乙烯熔体流动速率为1~20g/10min(190℃,21.6kg),高密度聚乙烯熔体流动速率为7.6g/10min(190℃,21.6kg);
步骤3,将混合物料放入到注射成型机中,通过适量气体的作用生产具有特定取向性微孔的发泡制品;其中,注射成型机中熔体的温度为166~172℃;其中,步骤3中的气体为化学发泡母粒分解或超临界流体降压转变中的一种或两种形式复合得到的气体,或为水受热分解得到的气体。
进一步优选,利用聚丙烯冷拉纤维结合化学发泡注射制备发泡制品的方法,具体包括如下步骤:
步骤1,将干燥后的发泡剂、发泡助剂、成核剂、分散剂和载体树脂按一定比例混合后通过挤出机制得发泡母料;
步骤2,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤3,将颗粒按混合物料总质量的5~50%比例加入到聚丙烯或其共混物料中,并将步骤1制得的发泡母料按一定比例加入,发泡母料中发泡剂有效成分的质量占比为0.4%~1.0%,混合均匀后得到混合物料;
步骤4,将混合物料放入注射机中,其中,注射机中熔体的温度为166~172℃。
其中,步骤1中,所述发泡母料由如下质量份数的组分组成:10~30份发泡剂、4~8份分散剂、5~10份成核剂以及50~80份载体树脂;其中,发泡助剂的加入量为发泡剂质量的10.5~11.3%;发泡剂为偶氮二甲酰胺;发泡助剂为氧化锌或氧化钡的一种或两种的混合;分散剂为PE蜡;成核剂为纳米二氧化钛或纳米二氧化硅;载体树脂为聚乙烯;该化学发泡母料的分解温度为130~160℃,在挤出过程中挤出机的温度设置为120~125℃之间,温度过高,发泡剂可能会提前分解,温度过低则不利于塑化。
进一步优选,利用聚丙烯冷拉纤维结合水发泡注射制备发泡制品的方法,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤2,将所需量的活性炭和聚丙烯及其共混物混合后通过塑料挤出机制得载体物料;活性炭占整个载体物料质量的0.5~1.0%;
步骤3,将适量的水均匀分散在步骤2制得的载体物料中,形成含水混合物料;使用的水为蒸镏水,加入水的质量为整个含水混合物料质量的0.8~1.5%,水中添加有氯化钠、氯化钙或氯化锰等无机物中的一种或几种溶于水中而成为成核剂,成核剂的使用量为水用量的0.5%~2%;
步骤4,将步骤1制得的颗粒按质量百分比5~50%加入到步骤3的含水混合物料中,混合均匀后得到混合物料;
步骤5,将混合物料放入注射机中,其中,注射机内熔体的温度为166~172℃。
进一步优选,利用聚丙烯冷拉纤维结合超临界流体发泡注射制备发泡制品的方法,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤2,将步骤1制得的颗粒按混合物料总质量的5~50%加入到聚丙烯或其共混物料中,混合均匀后得到混合物料;
步骤3,将混合物料放入到具有超临界流体注入装置的注射成型机中,在特定的工艺条件下(特定的熔体温度)制得具有特定取向性微孔的发泡制品;其中,注射成型机中熔体温度为166~172℃;超临界流体是超临界氮气或二氧化碳的一种或两种的复合,其注入量为发泡制品质量的0.3~1.0%。
若是采用聚丙烯冷拉纤维结合化学发泡/超临界流体发泡的复合注射方式制备发泡制品,即在上述步骤2中加入发泡母料,则步骤3中超临界流体的用量可根据发泡母料的加入量2~4%进行调节,从而使发泡母料有效成分和超临界流体两者的用量分别控制在0.4~1.0%和0.3~1.0%之间。
本发明制备方法的原理为:聚丙烯冷拉纤维比原来的聚丙烯具有更为稳定的热力学结构,在后续的加热熔融中,因为限制了加热温度,在172度以内,聚丙烯冷拉纤维基本处于一种“半熔融”状态,也就是说其一部分微丝并未完全熔融,这一部分微丝在发泡过程中可以充当异相成核剂使用,也少量提升熔体强度,另外,它在材料冷却过程中可以加速聚丙烯或其复合物的结晶过程,导致泡孔的提前锁定,使气体不易逃逸,同时,在注射充填过程中,泡孔会沿流动方向(熔体注射充填过程中的流动方向)发生取向,继而在后续发泡时可诱导微孔结构的变化。因为泡孔沿流动方向发生的取向(泡孔与流动方向一致),并且可以将这种取向固定起来。制件的拉伸方向和泡孔的取向方向平行,因而造成其力学性能大幅提高,制件的微孔沿流动方向取向可以使其在拉伸过程中各孔更容易相互联通,从而表现出很快出现一束束纤维在拉伸,因而其拉伸时的细颈更容易扩展,表现出断裂伸长率很高。
相比于现有技术,本发明技术方案具有的有益效果为:
本发明方法能够制备出沿流动方向具有取向性泡孔的聚丙烯或聚丙烯复合物微孔制品,该类制品在沿微孔取向方向拉伸时各泡孔更容易相互连通,从而使得发泡制品表现出极高的断裂伸长率,本发明制得的发泡制品的断裂伸长率均在500%以上,相比于普通发泡注射制品而言,本发明发泡制品力学性能大大提高,其拉伸强度有效提高了15%以上,延展性均在普通发泡注射制品的3倍及以上;本发明方法适用范围广,既可以在普通注射机中生产,也可以在超临界流体注射机中生产,在普通注射成型机中生产时工艺简单,操作方便,无需任何设备装置的改动;方法中使用的几种发泡注射方法均无任何会影响到最终发泡制品性能的残留物;方法采用的冷拉纤维也来自聚丙烯材料,它和用于加工的聚丙烯材料无兼容性差异的问题,因而显得简单容易实施。
附图说明
图1为本发明发泡制品的工艺流程图;
图2为本发明制备方法的实施过程图;
图3为实施例1制得的垂直于长度方向(图2中标准拉伸样条的纵向即为长度方向)的发泡制品的泡孔形态扫描电镜图;
图4为实施例1制得的平行于长度方向的发泡制品的泡孔形态扫描电镜图;
图5为对比实施例1制得的垂直于长度方向的发泡制品的泡孔形态扫描电镜图;
图6为对比实施例1制得的平行于长度方向的发泡制品的泡孔形态扫描电镜图。
具体实施方式
下面结合具体实施例来对本发明技术方案做进一步说明。
本发明制备方法的工艺流程如图1所示。原料方面,使用的聚丙烯(PP)为国产T30S,其熔体流动指数为3.2g/10min(230℃,21.6N)低密度聚乙烯(LDPE)为国产951-000,其熔体流动指数为2.18g/10min,高密度聚乙烯(HDPE)为台塑8008,其熔体流动指数为7.6g/10min(190℃,2.16kg),其使用的高温AC发泡剂为市售Dn8型,其平均粒径为6~8μm,完全分解产生的气量超过220ml/g,通过差示扫描量热法在10℃/min的升温速率的测试条件下,其分解起始温度为192.2℃,分解峰值为217.2℃。使用的其它助剂均为市售,其中,发泡助剂采用ZnO,纳米二氧化钛和纳米二氧化硅等的粒径均在100纳米以内,使用高熔点PE蜡作为分散剂,其熔点约为105℃。图2中,e为制品的外形,沿纵向方向为制品的长度方向。
实施例1
本实施例为利用化学发泡母料来产生气体并继而调控聚丙烯及其共混物发泡注射制品的泡孔形态。其具体的实现路径如图2所示,设备方面,需要一台普通的注射机和挤出机,注射机可以是液压传动、全电动或电液联合,该注射机无需加装自锁式喷嘴,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
利用聚丙烯冷拉纤维结合化学发泡注射制备发泡制品的方法,具体包括如下步骤:
步骤1,制造发泡母料:按照下面的质量称取原料:LDPE:0.7995kg,AC:0.1kg,ZnO:0.0105kg,高熔点PE蜡:0.04kg,纳米二氧化钛:0.05kg;将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得发泡母料,在挤出过程中熔体温度为120℃(该化学发泡母料的分解温度为130~160℃,熔体温度120度比分解温度低可以避免化学发泡母料分解);
步骤2,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中,在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在3mm、宽度约1mm、厚度约0.5mm的聚丙烯冷拉颗粒;
步骤3,称取原料聚丙烯:5.4KG,聚丙烯冷拉颗粒:4KG,发泡母料:0.6KG,混合均匀后制备成混合物料;
步骤4,将混合物料放入普通注射机中加工生产制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,列举了对比实施例1,其原料的准备过程和实施例1类似,对比实施例1的制备方法与实施例1相比没有步骤2同时步骤3中未加入聚丙烯冷拉颗粒,将对比实施例1所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。另外,分别对实施例1和对比实施例1的样品在中间同等位置选取垂直和流动方向做扫描电镜(SEM)表征,其结果分别如图3、4、5、6所示。其中,图3和图5为垂直于图2所示的标准拉伸样条长度方向取样后所得的截面泡孔形貌SEM结果,图4和图6则为平行于长度方向取样后所得的截面泡孔形貌SEM结果,而图3和图4均取自实施例1所得制品,图5和图6同来自于对比实施例1所得制品。从图3和图5的对比很明显可知,图3显示的制品内部微孔数量多且微孔尺寸小,微孔的分布也较为均匀,而图5为对比实施例1的泡孔结构,其数量少、尺寸大、泡孔分布差异也大,因为取样方向的原因,图3和图5中显示的孔均为圆形,但实际制品中的孔并不全是球状的,这可以从图4和图6的结果中得到补充,从图4和图6的对比可以看出,图4中的孔具有更明显的方向性(取向性),而且这种方向性是和熔体在模具型腔内的流动方向相一致的,这些孔更多的呈现椭球状,而且和图6中的结果相比,它们更细长,而图6中的椭球更圆一些,图6的微孔也没有明显的取向性。
通过图3、4与图5、6的对比以及表1的数据可以看出,本发明方法制得的微孔发泡制品可以很方便的在普通注射机中制得,同时,该类制品的泡孔结构均匀,泡孔沿流动方向具有极强的取向性(与熔体在模具型腔内的流动方向一致),其制品的拉伸强度提升17%以上,延展性更是达到常规PP发泡制品的5倍,和对比例11显示的常规PP实心制品相比,其拉伸强度和断裂伸长率均超过常规PP实心制品,从而显示出明显的应用前景。
实施例2
本实施例为利用化学发泡母料来产生气体并继而调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台普通的注射机和挤出机,注射机可以是液压传动、全电动或电液联合,该注射机无需加装自锁式喷嘴,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
利用聚丙烯冷拉纤维结合化学发泡注射制备发泡制品的方法,具体包括如下步骤:
首先,制造发泡母料:按照下面的质量称取原料:LDPE:0.4861kg,AC:0.3kg,ZnO:0.0339kg,高熔点PE蜡:0.08kg,纳米二氧化硅:0.1kg;将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得发泡母料,在挤出过程中熔体温度为125℃;
其次,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中,在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在15mm、宽度约4mm、厚度约1.5mm的聚丙烯冷拉颗粒;
接着,称取原料聚丙烯:27.5KG,聚丙烯冷拉颗粒:1.5KG,发泡母料:1KG,混合均匀后制备成混合物料;
之后,将混合物料放入普通注射机中加工生产制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例2,其原料的准备过程和实施例2类似,但未加入聚丙烯冷拉颗粒,将对比实施例2所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,尽管实施例2的制备方法往混合物料中加入的聚丙烯冷拉颗粒并不多,但也对微孔制品的性能有明显的提升。
实施例3
本实施例为利用水作为发泡剂受热分解来产生气体并继而调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台普通的注射机和挤出机,注射机可以是液压传动、全电动或电液联合,该注射机无需加装自锁式喷嘴,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
利用聚丙烯冷拉纤维结合水发泡注射制备发泡制品的方法,具体包括如下步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中,在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造载体物料:将活性炭和聚丙烯及其共混物混合后通过普通塑料挤出机制得载体物料;活性炭占整个载体物料总质量的0.5%;
之后,形成混合物料:将添加了质量百分含量0.5%氯化钠的蒸镏水均匀分散在步骤1所制得的载体母粒中,形成含水混合物料,其中水的质量含量为整个含水混合物料的0.8~1.5%,将聚丙烯冷拉颗粒按混合物料质量20%的比例加入到含水混合物料中,混合均匀后制备成混合物料;
再后,加工制品:将混合物料放入普通注射机中加工生产制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例3,其原料的准备过程和实施例3类似,但未加入聚丙烯冷拉颗粒,将对比实施例3所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例4
本实施例为利用水作为发泡剂受热分解来产生气体并继而调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台普通的注射机和挤出机,注射机可以是液压传动、全电动或电液联合,该注射机无需加装自锁式喷嘴,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
利用聚丙烯冷拉纤维结合水发泡注射制备发泡制品的方法,具体包括如下步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中,在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造载体物料:将活性炭和聚丙烯及其共混物混合后通过普通塑料挤出机制得载体物料;活性炭占整个载体物料总质量的1.0%;
之后,形成混合物料:将添加了质量百分含量2.0%氯化钠的蒸镏水均匀分散在步骤1所制得的载体母粒中,形成含水混合物料,其中水的质量含量为整个含水混合物料的1.5%,将聚丙烯冷拉颗粒按混合物料质量30%的比例加入到含水混合物料中,混合均匀后制备成混合物料;
再后,加工制品。将混合物料放入普通注射机中加工生产制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例4,其原料的准备过程和实施例4类似,但未加入聚丙烯冷拉颗粒,将对比实施例4所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了30%聚丙烯冷拉颗粒后所得的发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例5
本实施例为利用超临界流体作为发泡剂来调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台具有超临界流体注入功能的注射机(比如,商业化的MUCELL微发泡注射成型机)和普通的挤出机,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
利用聚丙烯冷拉纤维结合超临界流体发泡注射制备发泡制品的方法,具体包括如下步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中,在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造混合物料:称量:聚丙烯8KG,聚丙烯冷拉颗粒2KG,混合均匀后制备成混合物料;
之后,加工制品:将混合物料放入到该超临界流体微发泡注射成型机中通入注射总质量1.0%的超临界氮气生产出具有特定微孔形态的发泡制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例5,其原料的准备过程和实施例5类似,但未加入聚丙烯冷拉颗粒,将对比实施例5所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例6
本实施例为利用超临界流体和化学发泡母料共同作用作为发泡剂来调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台具有超临界流体注入功能的注射机(比如,商业化的MUCELL微发泡注射成型机)和普通的挤出机,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
实施例6的具体实现步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中制备所得的样条在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造发泡母料:按照下面的质量称取原料:LDPE:0.638kg,AC:0.2kg,ZnO:0.022kg,高熔点PE蜡:0.06kg,纳米二氧化硅:0.08kg;将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得发泡母料,在挤出过程中熔体温度为125℃;
再次,制造混合物料:称量:聚丙烯7.8KG,发泡母料0.2KG,聚丙烯冷拉颗粒2KG,混合均匀后制备成混合物料;
之后,加工制品:将混合物料放入到该超临界流体微发泡注射成型机中通入按注射总质量0.4%的超临界二氧化碳生产出具有特定微孔形态的发泡制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例6,其原料的准备过程和实施例6类似,但未加入聚丙烯冷拉颗粒,将对比实施例6所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例7
本实施例为利用化学发泡母料来产生气体并继而调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台普通的注射机和挤出机,注射机可以是液压传动、全电动或电液联合,该注射机无需加装自锁式喷嘴,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
实施例7的具体实现步骤:
首先,制造发泡母料:按照下面的质量称取原料:LDPE:0.7995kg,AC:0.1kg,ZnO:0.0105kg,高熔点PE蜡:0.04kg,纳米二氧化钛:0.05kg;将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得发泡母料,在挤出过程中熔体温度为120℃;
其次,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中制备所得的样条在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在3mm、宽度约1mm、厚度约0.5mm的聚丙烯冷拉颗粒;
接着,称取原料聚丙烯:4.75KG,低密度聚乙烯2.25KG,聚丙烯冷拉颗粒:2KG,发泡母料:1KG,混合均匀后制备成混合物料;
之后,将混合物料放入普通注射机中加工生产制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例7,其原料的准备过程和实施例7类似,但未加入聚丙烯冷拉颗粒,将对比实施例7所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的PP/LDPE共混物发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例8
本实施例为利用超临界流体作为发泡剂来调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台具有超临界流体注入功能的注射机(比如,商业化的MUCELL微发泡注射成型机)和普通的挤出机,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
实施例8的具体实现步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中制备所得的样条在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造混合物料:称量:聚丙烯5.5KG,高密度聚乙烯2.5KG,聚丙烯冷拉颗粒2KG,混合均匀后制备成混合物料;
之后,加工制品。将混合物料放入到该超临界流体微发泡注射成型机中通入注射总质量0.3%的超临界氮气生产出具有特定微孔形态的发泡制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例8,其原料的准备过程和实施例8类似,但未加入聚丙烯冷拉颗粒,将对比实施例8所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的PP/HDPE共混物发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例9
本实施例为利用超临界流体作为发泡剂来调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台具有超临界流体注入功能的注射机(比如,商业化的MUCELL微发泡注射成型机)和普通的挤出机,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
实施例9的具体实现步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中制备所得的样条在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造混合物料:称量:聚丙烯3KG,低密度聚乙烯5KG,聚丙烯冷拉颗粒2KG,混合均匀后制备成混合物料;
之后,加工制品:将混合物料放入到该超临界流体微发泡注射成型机中通入注射总质量1.0%的超临界二氧化碳生产出具有特定微孔形态的发泡制品;其中注射机的熔体温度设置在166~172摄氏度之间。
最后,对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例9,其原料的准备过程和实施例9类似,但未加入聚丙烯冷拉颗粒,将对比实施例9所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的PP/LDPE共混物发泡制品的拉伸强度和断裂伸长率均有较大的提高。
实施例10
本实施例为利用超临界流体和化学发泡母料共同作用作为发泡剂来调控聚丙烯及其共混物发泡注射制品的泡孔形态。设备方面,需要一台具有超临界流体注入功能的注射机(比如,商业化的MUCELL微发泡注射成型机)和普通的挤出机,使用的模具为标准拉伸样条,用于原料混合的挤出机可以是单螺杆或双螺杆式的。
实施例10的具体实现步骤:
首先,制备聚丙烯冷拉纤维:将聚丙烯放入注射机中制备所得的样条在室温环境下拉伸700%~800%,将拉伸后的材料段分切为长度在10mm、宽度约2mm、厚度约1mm的聚丙烯冷拉颗粒;
其次,制造发泡母料:按照下面的质量称取原料:LDPE:0.638kg,AC:0.2kg,ZnO:0.022kg,高熔点PE蜡:0.06kg,纳米二氧化硅:0.08kg;将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得发泡母料,在挤出过程中熔体温度为125℃;
再次,制造混合物料:称量:聚丙烯2.9KG,高密度聚乙烯4.9KG,发泡母料0.2KG,聚丙烯冷拉颗粒2KG,混合均匀后制备成混合物料;
之后,加工制品:将混合物料放入到该超临界流体微发泡注射成型机中通入按注射总质量0.5%的超临界氮气生产出具有特定微孔形态的发泡制品;其中注射机的熔体温度设置在166~172摄氏度之间。
对所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果见表1。
为了对本发明的效果进行说明,另外列举了对比实施例10,其原料的准备过程和实施例10类似,但未加入聚丙烯冷拉颗粒,将对比实施例10所制得的聚丙烯微孔制品进行拉伸性能测试,测试结果也列于表1之中。通过表1的数据可以看出,加入了20%聚丙烯冷拉颗粒后所得的PP/HDPE共混物发泡制品的拉伸强度和断裂伸长率均有较大的提高。
表1几种材料的拉伸性能比较
Figure BDA0001790703360000141
Figure BDA0001790703360000151
通过表1可以看出,本发明的聚丙烯及其共混物的发泡制品具有特定形态的微孔结构,表现出密度低(因制品内部大量微孔的存在,导致制品密度降低,重量减轻)、力学性能优异的特点,具有优异的应用前景。本发明制得的发泡制品的拉伸强度和断裂伸长率同时提高,其中,拉伸强度提高了至少15%,解决了现有制品增韧方法在制品断裂伸长率增加的同时会导致拉伸强度降低的问题。

Claims (7)

1.一种聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于,具体为:将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用水发泡注射、化学发泡注射、超临界流体发泡注射或化学发泡/超临界流体发泡复合注射中的一种方式来制得具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品;制得的发泡制品内微孔呈特定取向性排布,所述特定取向性为微孔与流动方向相互平行;所述聚丙烯冷拉纤维采用如下方法制备而成:将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
其中,上述聚丙烯或聚丙烯复合物发泡制品的制备方法,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤2,将颗粒按一定比例加入到聚丙烯或其共混物料中,混合均匀后制备成混合物料;
步骤3,将混合物料放入到注射成型机中,通过适量气体的作用生产具有特定取向性微孔的发泡制品;其中,注射成型机中熔体的温度为166~172℃。
2.根据权利要求1所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于:步骤3中,所述气体为化学发泡母粒分解或超临界流体降压转变中的一种或两种形式复合得到的气体。
3.根据权利要求1所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于,将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用化学发泡注射方式制备具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品,具体包括如下步骤:
步骤1,将干燥后的发泡剂、发泡助剂、成核剂、分散剂和载体树脂按一定比例混合后通过挤出机制得发泡母料;
步骤2,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤3,将步骤2制得的颗粒按混合物料总质量的5~50%加入到聚丙烯或其共混物料中,并将步骤1制得的发泡母料按一定比例加入,发泡母料中发泡剂有效成分的质量占比为0.4%~1.0%,混合均匀后得到混合物料;
步骤4,将混合物料放入注射机中,其中,注射机中熔体的温度为166~172℃。
4.根据权利要求3所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于:步骤1中,所述发泡母料由如下质量份数的组分组成:10~30份发泡剂、4~8份分散剂、5~10份成核剂以及50~80份载体树脂;其中,发泡助剂的加入量为发泡剂质量的10.5~11.3%;发泡剂为偶氮二甲酰胺;发泡助剂为氧化锌或氧化钡的一种或两种的混合;分散剂为PE蜡;成核剂为纳米二氧化钛或纳米二氧化硅;载体树脂为聚乙烯。
5.根据权利要求1所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于,将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用水发泡注射方式制备具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤2,将所需量的活性炭和聚丙烯及其共混物混合后通过塑料挤出机制得载体物料;
步骤3,将适量的水均匀分散在步骤2制得的载体物料中,形成含水混合物料;
步骤4,将步骤1制得的颗粒按混合物料总质量的5~50%加入到步骤3的含水混合物料中,混合均匀后得到混合物料;
步骤5,将混合物料放入注射机中,其中,注射机内熔体的温度为166~172℃。
6.根据权利要求1所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于,将聚丙烯冷拉纤维按一定比例加入到聚丙烯或其共混物料中,采用超临界流体发泡注射方式制备具有特定取向性微孔的聚丙烯或聚丙烯复合物发泡制品,具体包括如下步骤:
步骤1,将聚丙烯在其结晶温度以下拉伸500%~800%,将拉伸后的材料段分切为颗粒;其中,颗粒的长度为3~15mm、宽度为1~4mm、厚度为0.5~1.5mm;
步骤2,将步骤1制得的颗粒按混合物料总质量的5~50%加入到聚丙烯或其共混物料中,混合均匀后得到混合物料;
步骤3,将混合物料放入到具有超临界流体注入装置的注射成型机中,在特定的工艺条件下制得具有特定取向性微孔的发泡制品;其中,注射成型机中熔体温度为166~172℃。
7.根据权利要求6所述的聚丙烯或聚丙烯复合物发泡制品的制备方法,其特征在于:步骤3中,超临界流体是超临界氮气或二氧化碳的一种或两种的复合,其注入量为发泡制品质量的0.3~1.0%。
CN201811040415.6A 2018-09-06 2018-09-06 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法 Active CN109265825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811040415.6A CN109265825B (zh) 2018-09-06 2018-09-06 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811040415.6A CN109265825B (zh) 2018-09-06 2018-09-06 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法

Publications (2)

Publication Number Publication Date
CN109265825A CN109265825A (zh) 2019-01-25
CN109265825B true CN109265825B (zh) 2021-01-05

Family

ID=65188593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811040415.6A Active CN109265825B (zh) 2018-09-06 2018-09-06 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法

Country Status (1)

Country Link
CN (1) CN109265825B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621054B (zh) * 2019-02-27 2022-09-06 中国科学院宁波材料技术与工程研究所 微发泡材料及其制备方法
CN115403815B (zh) * 2022-10-08 2023-05-12 郑州大学 一种具有取向泡孔的微孔泡沫材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565938A1 (en) * 1992-03-30 1993-10-20 Nitto Denko Corporation Porous film, process for producing the same, and use
CN1437527A (zh) * 2000-06-23 2003-08-20 3M创新有限公司 泡沫及其制备方法
EP1676874A1 (en) * 2004-12-30 2006-07-05 Total Petrochemicals Research Feluy Foamed polypropylene with improved cell structure.
CN101090933A (zh) * 2004-11-19 2007-12-19 普瑞曼聚合物有限公司 丙烯系树脂挤出发泡体以及丙烯系树脂挤出发泡体的制造方法
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN105382991A (zh) * 2015-10-23 2016-03-09 江苏科技大学 一种pp/ldpe超延展制品的水发泡注射成型方法
CN105623098A (zh) * 2016-03-15 2016-06-01 广州市香港科大***研究院 一种长纤维增强聚丙烯微孔发泡材料的制备方法
CN105694206A (zh) * 2016-01-28 2016-06-22 江苏科技大学 一种以水作发泡剂生产长玻纤增强聚丙烯发泡注射制品的方法
CN108276663A (zh) * 2017-12-27 2018-07-13 上海普利特复合材料股份有限公司 一种高熔体强度的化学微孔发泡长玻璃纤维增强聚丙烯复合材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565938A1 (en) * 1992-03-30 1993-10-20 Nitto Denko Corporation Porous film, process for producing the same, and use
CN1437527A (zh) * 2000-06-23 2003-08-20 3M创新有限公司 泡沫及其制备方法
CN101090933A (zh) * 2004-11-19 2007-12-19 普瑞曼聚合物有限公司 丙烯系树脂挤出发泡体以及丙烯系树脂挤出发泡体的制造方法
EP1676874A1 (en) * 2004-12-30 2006-07-05 Total Petrochemicals Research Feluy Foamed polypropylene with improved cell structure.
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN105382991A (zh) * 2015-10-23 2016-03-09 江苏科技大学 一种pp/ldpe超延展制品的水发泡注射成型方法
CN105694206A (zh) * 2016-01-28 2016-06-22 江苏科技大学 一种以水作发泡剂生产长玻纤增强聚丙烯发泡注射制品的方法
CN105623098A (zh) * 2016-03-15 2016-06-01 广州市香港科大***研究院 一种长纤维增强聚丙烯微孔发泡材料的制备方法
CN108276663A (zh) * 2017-12-27 2018-07-13 上海普利特复合材料股份有限公司 一种高熔体强度的化学微孔发泡长玻璃纤维增强聚丙烯复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Effect of Cold-Drawn Fibers on the Self-Reinforcement of PP/LDPE Composites";Ying-Guo Zhou et al.;《Journal of Materials Engineering and Performance》;20170717;第4072-4082页 *
"Mechanical Properties, Fiber Orientation, and Length Distribution of Glass Fiber-Reinforced Polypropylene Parts: Influence of Water-Foaming Technology";Ying-Guo Zhou et al.;《POLYMER COMPOSITES》;20170731;第39卷(第12期);第4386-4399页 *
"Microcellular injection molding of polypropylene and glass fiber composites with supercritical nitrogen";Zhenhao Xi et al.;《Journal of Cellular Plastics》;20140831;第50卷(第5期);第489–505页 *
"聚丙烯/玻璃纤维复合材料微孔注塑成型的研究";沙鑫佚;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20120715;第17-20页、第32-33页第4.4节及第46-48页第5.2节 *

Also Published As

Publication number Publication date
CN109265825A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Huang et al. Improving polypropylene microcellular foaming through blending and the addition of nano‐calcium carbonate
CN101962455B (zh) 注塑型微发泡木塑复合材料及制备方法
CN112341662B (zh) 一种皮芯结构的灰色抗静电聚丙烯复合发泡珠粒及其模塑制品
CN111087701B (zh) 抗菌聚丙烯组合物和微孔抗菌聚丙烯发泡板材及其制备方法和发泡片材
CN112029173B (zh) 一种聚乙烯透气膜及其制备方法
JP2022516967A (ja) ポリ乳酸重合溶融体からポリ乳酸発泡製品を直接製造する方法および装置
CA2833949C (en) Method for producing microcellular foam polypropylene thick board
CN108530752B (zh) 一种微发泡连续长玻纤增强聚丙烯复合材料及其制备方法和应用
CN104861195B (zh) 纤维/聚丙烯系树脂复合发泡颗粒及其应用
CN111040397A (zh) 一种组合发泡聚乳酸耐热阻燃改性材料和产品的制备方法
CN109501107A (zh) 一种低密度、高发泡倍率的聚合物泡沫材料及其制备方法
CN103059411A (zh) 一种低收缩率改性聚丙烯复合材料及其制备方法
CN109265825B (zh) 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
CN113652029B (zh) 一种微发泡聚丙烯组合物及其制备方法和应用
Huang et al. Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends
CN111087705B (zh) 发泡组合物、发泡材料及其制备方法、用途
CN108047581B (zh) 一种高强度的石墨聚苯板及其制备方法
CN106432887B (zh) 一种聚烯烃发泡母粒的组成及制备方法和用途
CN112029190A (zh) 一种微发泡聚丙烯材料及其制备方法
CN105694206B (zh) 一种以水作发泡剂生产长玻纤增强聚丙烯发泡注射制品的方法
CN109485993B (zh) 一种真实微孔注塑成型聚丙烯泡沫材料及其制备方法
CN101309954B (zh) 半结晶型聚合物微孔膜及其制备方法
CN113308053A (zh) 一种自发泡植物纤维改性聚丙烯材料及其制备方法
CN109054183A (zh) 一种高孔隙率聚丙烯微发泡复合材料及其制备方法
CN110128741B (zh) 聚烯烃发泡材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190125

Assignee: ZHENJIANG JINGYU PIPELINE EQUIPMENT Co.,Ltd.

Assignor: JIANGSU University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2022320000034

Denomination of invention: The invention relates to a polypropylene or polypropylene composite foaming product and a preparation method thereof

Granted publication date: 20210105

License type: Common License

Record date: 20220309