CN108807586B - A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide - Google Patents

A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide Download PDF

Info

Publication number
CN108807586B
CN108807586B CN201810399948.7A CN201810399948A CN108807586B CN 108807586 B CN108807586 B CN 108807586B CN 201810399948 A CN201810399948 A CN 201810399948A CN 108807586 B CN108807586 B CN 108807586B
Authority
CN
China
Prior art keywords
gallium oxide
substrate
electrode
single crystal
passivation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810399948.7A
Other languages
Chinese (zh)
Other versions
CN108807586A (en
Inventor
叶建东
陈选虎
徐阳
马同川
张彦芳
任芳芳
朱顺明
顾书林
张�荣
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810399948.7A priority Critical patent/CN108807586B/en
Publication of CN108807586A publication Critical patent/CN108807586A/en
Application granted granted Critical
Publication of CN108807586B publication Critical patent/CN108807586B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

The band logical solar blind ultraviolet detector of selection characteristic is polarized based on gallium oxide, the β phase oxidation algan single crystal optical filter of gallium oxide substrate, metal (Au) interdigited electrode, dielectric passivation layer and another allomeric orientation including β phase, deposited metal obtains interdigited electrode array in the single crystalline substrate of (100), (001) or (010) β phase, then dielectric passivation layer is covered, the dielectric passivation layer leaks out metal (Au) interdigited electrode;Gallium oxide single crystal optical filter is placed at the top 2-5mm of Au interdigited electrode device, and the crystal orientation of gallium oxide single crystal optical filter is identical as substrate, and area is slightly larger than substrate, and gallium oxide single crystal filters unilateral interior crystal orientation perpendicular to gallium oxide substrate.Above-mentioned device has encapsulating structure, and the output of array signal may be implemented.This detector is able to achieve effective filtering clutter, enhances the inhibiting effect to shortwave, realizes the solar blind ultraviolet detector of narrowband;Panel detector structure is simple, and cost is relatively low, inhibits higher, is conducive to promote the use of.

Description

A kind of band logical solar blind ultraviolet detector and its system polarizing selection characteristic based on gallium oxide Preparation Method
Technical field
The invention belongs to semiconductor photoelectronic device technical fields, are related to a kind of solar-blind UV detector, specially one Kind polarizes the band logical solar blind ultraviolet detector and preparation method thereof of selection characteristic based on gallium oxide.
Technical background
Sunlight pass through atmosphere when, due to Ozone in Atmosphere layer and other gases absorption and dissipate effect, sunlight Ultraviolet radioactive of the medium wavelength less than 280nm can not almost reach ground, therefore wavelength is in the ultraviolet light of 200nm to 280nm wave band Referred to as day blind ultraviolet light, also known as UVC wave band.Day, blind UV signal was with background interference is small, does not allow to be also easy to produce false alarm A little.Therefore, detect the solar blind ultraviolet detector of this band signal have in fields such as military, civilian and scientific researches it is wide Application prospect.
Common solar blind ultraviolet detector is mainly equipped with the Si base photodiode and vacuum of optical filter currently on the market Electron multiplier.The detector for generally using AlGaN to prepare as photosensitive layer in military affairs, in this detector, due to needing The forbidden bandwidth adjusting of AlGaN, to higher position, therefore in AlGaN, aluminium component is higher, this is easy for causing AlGaN film Crystal quality decline, influence the performance of device.And the band gap of emerging oxide semiconductor β phase oxidation gallium just falls in 4.5- 4.7eV belongs to the energy range of day blind ultraviolet light, therefore can be directly as the photosensitive layer of solar blind ultraviolet detector, this just keeps away The problem of having exempted from the decline of the film crystal quality due to caused by high Al contents.In addition, although these detectors inhibit with long wave Ability, but cannot achieve the inhibition to shortwave, it is expensive short there is still a need for installing additional in needing to realize band logical detection application field Wave inhibits filtering system to be just able to achieve the detection of narrow bandpass, considerably increases application cost.And the gallium oxide of β phase its with monocline The lattice constant of structure, three directions is different, therefore electronics follows certain tranansition matrix in transition process;Specific table Reveal come for when the direction of an electric field of light is parallel to different crystallographic axis, with the different feature of optical energy gap.It therefore, can be with Shortwave may be implemented and inhibit function, realize band logical using another β phase oxidation gallium film as filter plate by this feature Day blind ultraviolet detection.
Summary of the invention
The object of the present invention is to provide it is a kind of based on gallium oxide polarize selection characteristic band logical solar blind ultraviolet detector and Preparation method.On the gallium oxide single crystal of β phase, by electron beam deposition, the method for magnetron sputtering or thermal evaporation is in photoetching shape At interdigitated figure on prepare interdigited electrode, recycle the β phase oxidation algan single crystal of another allomeric orientation as optical filter, Form band logical solar blind ultraviolet detector.
Technical scheme is as follows: a kind of band logical solar blind ultraviolet detector polarizing selection characteristic based on gallium oxide, The β phase oxygen of gallium oxide substrate, metal (Au) interdigited electrode, dielectric passivation layer and another allomeric orientation including β phase Change algan single crystal optical filter, deposited metal obtains interdigited electrode battle array in the single crystalline substrate 11 of (100), (001) or (010) β phase Column 12, then cover dielectric passivation layer 13, and the dielectric passivation layer 13 leaks out metal (Au) interdigited electrode;Oxidation 14 optical filter of algan single crystal is placed at the top 2-5mm of Au interdigited electrode device, the crystal of gallium oxide single crystal optical filter Orientation is identical as substrate, and area is slightly larger than substrate, but gallium oxide single crystal filters unilateral interior crystal orientation perpendicular to gallium oxide substrate.
The gallium oxide substrate thickness of the β phase is 100-500 μm, and metal (Au) interdigited electrode is located at the oxidation of β phase On gallium substrate, electrode with a thickness of 50-200nm, the length of interdigital figure is 480 μm, and width is 5 μm, and spacing is 5 μm.Photoetching Dimension of picture, fixed size.
Passivation layer is the SiO of PECVD growth2Or the aluminum oxide film of ALD growth, SiO2Thickness range be 200- 300nm, aluminum oxide film with a thickness of 20-40nm.
Further, a kind of preparation method for the band logical solar blind ultraviolet detector polarizing selection characteristic based on gallium oxide, including Following steps:
(1) using β phase (100) orientation gallium oxide as substrate, cleaning process is as follows: monocrystalline is successively dipped into ethyl alcohol, Acetone, ethyl alcohol, each ultrasonic 5 minutes in deionized water, after taking-up with ratio be 1:1:4 deionized water, 30% hydrogen peroxide, 96% concentrated sulfuric acid solution carries out processing 5 minutes to monocrystalline, is rinsed well again with deionized water after taking-up, rear dry nitrogen Drying, for use;
(2) sample cleaned up in step (1) is formed into interdigitated figure in single-crystal surface using photoetching process, each The length of interdigital figure is 480 μm, and width is 5 μm, and spacing is 5 μm.Using electron beam deposition (EBE), magnetron sputtering or heat are steamed The methods of hair is deposited gold electrode on interdigitated figure, electrode with a thickness of 50-200nm.By stripping technology, interdigitated is obtained Electrode.The direction of interdigited electrode does not have particular/special requirement, preferably, interdigited electrode is along (010) or (001) direction.
(3) device surface prepared in step (2) is grown into dielectric passivation layer, preferably, passivation layer is optional Select the SiO of PECVD growth2Or the aluminum oxide film of ALD growth, the growth temperature of dielectric passivation layer is at 350 DEG C or less.And Expose a part of electrode by constituency etching technics, to extraction electrode.
(4) it is placed in one side at 2-5mm above the device that step (3) obtains and is oriented perpendicularly to bottom gallium oxide substrate β phase oxidation algan single crystal prepares band logical solar blind ultraviolet detector using the polarization selection characteristic of gallium oxide single crystal.
This method is equally applicable to the β phase oxidation algan single crystal that crystal lattice orientation is (010) or (001), utilizes crystal lattice orientation Band logical solar blind ultraviolet detector similar in the equally available wave band of β phase oxidation algan single crystal for (010) or (001).
The invention has the advantages that: preparation process of the present invention is simple, it is only necessary to which, by two step photoetching processes, a single metal deposits work Skill and a step etching technics can be completed;Using the polarization characteristic of β phase oxidation algan single crystal as filter, principle is simple, filter Wave effect is good.Using commercialized preparation method, process controllability is strong, easy to operate, can large area preparation, it is reproducible.It is above-mentioned Device has encapsulating structure, and the output of array signal may be implemented.This detector can by β phase oxidation gallium in (010) and (001) polarization in [and (100)] direction selects characteristic, realizes effective filtering clutter, enhances the inhibiting effect to shortwave, realizes The solar blind ultraviolet detector of narrowband;Panel detector structure is simple, and cost is relatively low, inhibits higher, is conducive to promote the use of.
Detailed description of the invention
Fig. 1 is the knot with the method for the present invention band logical solar blind ultraviolet detector obtained for polarizing selection characteristic based on gallium oxide Structure schematic diagram;
Fig. 2 is the transmitted light that the gallium oxide of the orientation of different crystalline lattice used in the present invention obtains under the conditions of different polarization Spectrum when the light of different polarization passes through different crystal orientations, has the difference of apparent band gap;
Fig. 3 is that the solar blind light electric explorer based on gallium oxide single crystal made from the method for the present invention (does not include serving as optical filtering The gallium oxide single crystal of effect) I-V curve under dark, 365nm and 254nm (power 8W) illumination;
Fig. 4 is that the solar blind light electric explorer based on gallium oxide single crystal made from the method for the present invention (does not include serving as optical filtering The gallium oxide single crystal of effect) responsiveness-photon energy curve under different polarization light;
Fig. 5 is the sound with the method for the present invention band logical solar blind ultraviolet detector obtained for polarizing selection characteristic based on gallium oxide Response-photon energy curve has apparent band logical performance.
Specific embodiment
The present invention is further illustrated below in conjunction with example.The band logical day blind ultraviolet detection of selection characteristic is polarized based on gallium oxide Device, the β phase oxidation gallium list being orientated by the gallium oxide substrate of β phase, Au interdigited electrode, dielectric passivation layer and another allomeric Crystalline substance composition, the gallium oxide substrate thickness of the β phase is 100-500 μm, by (100) [or (010), (001)] single crystalline substrate 11 And the interdigited electrode 12 that deposited metal obtains, bottom gallium oxide is oriented perpendicularly in dielectric passivation layer 13 and face (100) optical filter based on polarised light that [or (010), (001)] gallium oxide single crystal 14 is formed.
Au interdigited electrode is located on the gallium oxide substrate of β phase, electrode with a thickness of 50-200nm, the length of interdigital figure It is 480 μm, width is 5 μm, and spacing is 5 μm, and passivation layer is the SiO of PECVD growth2Or the aluminum oxide film of ALD growth, device Top 2-5mm at place another gallium oxide single crystal, the crystal orientation of the gallium oxide single crystal is identical with substrate, and area is slightly larger than serving as a contrast Bottom, it is important that gallium oxide substrate is oriented perpendicularly in its face.
The transmitted spectrum that cleaned gallium oxide single crystal substrate carries out polarization independent is measured first, determines gallium oxide single crystal Band gap and polarised light dependence, confirmation gallium oxide single crystal can be used for realizing based on its polarize selection characteristic band logical day blind purple External detector;The transmissivity of gallium oxide single crystal and the relationship of wavelength are as shown in Figure 2.For (100) crystal orientation gallium oxide single crystal and Speech, direction of an electric field is respectively 4.52eV and 4.79eV along the optical energy gap of (001) and (010) crystal orientation.It will clean up (100) crystal orientation gallium oxide single crystal substrate using photoetching process surface formed interdigited electrode figure, the length of interdigital figure Degree is 480 μm, and width is 5 μm, and spacing is 5 μm.It is grown on the basis of interdigitated figure using the method for electron beam deposition The Au of 200nm thickness;The base vacuum of electron beam deposition is lower than 5 × 10-7The purity of Torr, Au particle is 99.999%, Au electrode Growth rate beThe removing that residual photoresist is realized with acetone, obtains interdigited electrode, preferably, interdigitated Electrode is oriented parallel to (001) direction.Obtained device is subjected to surface passivation, preferably, with ALD growth 30nm's Aluminum oxide film is as dielectric passivation layer;Wherein silicon source and oxygen source are respectively trimethyl aluminium and water, growth temperature 150 ℃.Using photoetching process and etching technics, the aluminium oxide on the pad of interdigited electrode is removed, exposes pad metal, for surveying Examination.Obtained device is subjected to polarization independent photoresponse test;Light source used is the xenon lamp of ultraviolet enhancing, utilizes spectrometer pair Xenon lamp is divided to obtain monochromatic light, carries out photoresponse to device using chopper, polarizing film, current amplifier and locking phase equipment Test.The responsiveness of the device-photon energy curve is as shown in figure 4, it can be seen from the figure that when direction of an electric field is parallel to (010) and when (001) direction, the photoresponse of device has apparent difference, this is because the polarization characteristic of gallium oxide substrate is determined Fixed.The β phase oxidation algan single crystal that bottom gallium oxide substrate is oriented perpendicularly in one side is placed above the above-mentioned device at 2-5mm, Band logical solar blind ultraviolet detector is formed, device junction composition is as shown in Figure 1.It is inclined in removal using the method for above-mentioned test responsiveness It shakes under conditions of piece, the responsiveness of measurement device, responsiveness-photon energy curve is as shown in figure 5, therefrom can see that device With apparent band logical performance, when chopping frequency is 17Hz, highest responsiveness is worth at 4.73eV for 0.234A/W device, The halfwidth of response curve is 0.19eV, inhibits ratio more than 300.By changing chopping frequency, available device is in lasting light Response time according under is about 10ms.

Claims (5)

1. a kind of band logical solar blind ultraviolet detector for polarizing selection characteristic based on gallium oxide, characterized in that the gallium oxide including β phase The β phase oxidation algan single crystal optical filter that substrate, metal interdigited electrode, dielectric passivation layer and another allomeric are orientated, In (100), deposited metal obtains interdigited electrode array in the single crystalline substrate of (001) or (010) β phase, and then covering insulation is situated between Matter passivation layer, the dielectric passivation layer leak out metal interdigited electrode;Gallium oxide single crystal optical filter is to be located at Au interdigitated It is placed at the top 2-5 mm of electrode device, the crystal orientation of gallium oxide single crystal optical filter is identical as substrate, and area is greater than substrate, Gallium oxide single crystal filters unilateral interior crystal orientation perpendicular to gallium oxide substrate;Passivation layer is the SiO of PECVD growth2Or ALD growth Aluminum oxide film, SiO2Thickness range be 200-300 nm, aluminum oxide film with a thickness of 20-40 nm;
The gallium oxide substrate thickness of the β phase is 100-500 μm, and metal interdigited electrode is Au electrode, positioned at the oxidation of β phase On gallium substrate;The direction of interdigited electrode is along (010) or (001) direction.
2. the band logical solar blind ultraviolet detector according to claim 1 for polarizing selection characteristic based on gallium oxide, characterized in that Electrode with a thickness of 50-200 nm, the length of interdigital figure is 480 μm, and width is 5 μm, and spacing is 5 μm.
3. -2 described in any item band logical solar blind ultraviolet detectors for polarizing selection characteristic based on gallium oxide according to claim 1 Preparation method, characterized in that include the following steps:
(1) using the gallium oxide of β phase (100) orientation as substrate, cleaning;
(2) sample cleaned up in step (1) is formed into interdigitated figure in single-crystal surface using photoetching process;Utilize electricity Beamlet deposits (EBE), and magnetron sputtering or thermal evaporation method are deposited gold electrode on interdigitated figure, electrode with a thickness of 50-200 nm;By stripping technology, interdigited electrode is obtained;
(3) device surface prepared in step (2) is grown into dielectric passivation layer, passivation layer selects the SiO of PECVD growth2 Or the aluminum oxide film of ALD growth, the growth temperature of dielectric passivation layer is 350oC or less;And pass through constituency etching technics Expose a part of electrode, to extraction electrode;
(4) the β phase that bottom gallium oxide substrate is oriented perpendicularly in one side is placed above the device that step (3) obtains at 2-5 mm Gallium oxide single crystal prepares band logical solar blind ultraviolet detector using the polarization selection characteristic of gallium oxide single crystal.
4. preparation method according to claim 3, characterized in that cleaning process is as follows: monocrystalline is successively dipped into ethyl alcohol, Acetone, ethyl alcohol, each ultrasonic 5 minutes in deionized water, after taking-up with ratio be 1:1:4 deionized water, 30% hydrogen peroxide, 96% concentrated sulfuric acid solution carries out processing 5 minutes to monocrystalline, is rinsed well again with deionized water after taking-up, rear dry nitrogen Drying, for use.
5. preparation method according to claim 3, characterized in that the gallium oxide single crystal of application (010) or (001) orientation, Obtain band logical solar blind ultraviolet detector.
CN201810399948.7A 2018-04-28 2018-04-28 A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide Active CN108807586B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810399948.7A CN108807586B (en) 2018-04-28 2018-04-28 A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810399948.7A CN108807586B (en) 2018-04-28 2018-04-28 A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide

Publications (2)

Publication Number Publication Date
CN108807586A CN108807586A (en) 2018-11-13
CN108807586B true CN108807586B (en) 2019-11-05

Family

ID=64093095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810399948.7A Active CN108807586B (en) 2018-04-28 2018-04-28 A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide

Country Status (1)

Country Link
CN (1) CN108807586B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551646B (en) * 2022-02-22 2023-03-24 山东大学 Method for preparing high-performance solar blind detector by utilizing in-plane anisotropy of beta-phase gallium oxide crystal (100)
CN114725234B (en) * 2022-03-23 2024-03-22 电子科技大学 Based on amorphous Ga 2 O 3 Solar blind ultraviolet detector of film and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260829C (en) * 2004-08-17 2006-06-21 浙江大学 Photoconductive type ultraviolet detector
CN101967680B (en) * 2010-11-04 2012-02-01 山东大学 Method for preparing monoclinic gallium oxide single-crystal film on magnesium oxide substrate
CN105552160A (en) * 2016-03-13 2016-05-04 浙江理工大学 Ultraviolet detection device based on gold nanoparticle enhanced gallium oxide thin film and preparation method thereof
CN105655434B (en) * 2016-03-13 2020-06-23 金旺康 Ultraviolet detection device based on gallium oxide nanowire array and preparation method thereof
CN107507876B (en) * 2017-08-28 2020-11-27 北京邮电大学 beta-Ga2O3Solar-based blind ultraviolet photoelectric detector array and preparation method thereof

Also Published As

Publication number Publication date
CN108807586A (en) 2018-11-13

Similar Documents

Publication Publication Date Title
CN107507876B (en) beta-Ga2O3Solar-based blind ultraviolet photoelectric detector array and preparation method thereof
CN108807586B (en) A kind of band logical solar blind ultraviolet detector and preparation method thereof polarizing selection characteristic based on gallium oxide
Watson et al. Germanium blocked‐impurity‐band far‐infrared detectors
CN109713058A (en) The gallium oxide ultraviolet detector and its preparation method and application of surface phasmon enhancing
CN112652722B (en) Self-powered dual-function photoelectric detector and preparation method thereof
CN108400183A (en) AlGaN Base Metals-semiconductor-metal type ultraviolet detector and preparation method thereof on a kind of Si substrates
CN103227230A (en) Lateral growth ZnMgO nanowire solar-blind region ultraviolet detector and fabrication method thereof
CN108962732B (en) ZnMgO film and preparation method thereof
Li et al. A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors
CN110808296B (en) Photoconductive deep ultraviolet monochromatic photoelectric detector with double-layer semiconductor structure
CN109698250B (en) Grid-regulated AlGaN-based metal-semiconductor-metal ultraviolet detector and preparation method thereof
CN111564504A (en) Solar blind ultraviolet detector and preparation method thereof
Yan et al. Anisotropic performances and bending stress effects of the flexible solar-blind photodetectors based on β-Ga2O3 (1 0 0) surface
CN113675297A (en) Gallium oxide/gallium nitride heterojunction photoelectric detector and preparation method thereof
EP0852022B1 (en) Infrared radiation modulating device
Liu et al. Facile integration of an Al-rich Al1–x In x N photodetector on free-standing GaN by radio-frequency magnetron sputtering
CN104934501B (en) Preparation method for ultraviolet photoelectric device based on Sm2O3/n-Si heterostructure
US20210202782A1 (en) Method for preparing aluminum nitride-zinc oxide ultraviolet detecting electrode
JPS61182272A (en) Semiconductor light-receiving element
TWI750549B (en) Method for preparing aluminum nitride-zinc oxide ultraviolet light detection electrode
CN116154030B (en) Silicon carbide avalanche photodetector with extreme ultraviolet to ultraviolet band and preparation method thereof
Marinelli et al. Methane-induced texturing of chemical vapor deposition diamond films and correlation with UV photoresponse
CN115719770A (en) Gallium oxide solar blind photoelectric detector structure with light absorption enhancement effect and preparation method thereof
Sun et al. Research on the preparation technology of GaN ultraviolet photoelectric detector
CN116525693A (en) Narrow-band EUV photoelectric detector without filter for 13.5nm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant