JPS61182272A - Semiconductor light-receiving element - Google Patents

Semiconductor light-receiving element

Info

Publication number
JPS61182272A
JPS61182272A JP60021879A JP2187985A JPS61182272A JP S61182272 A JPS61182272 A JP S61182272A JP 60021879 A JP60021879 A JP 60021879A JP 2187985 A JP2187985 A JP 2187985A JP S61182272 A JPS61182272 A JP S61182272A
Authority
JP
Japan
Prior art keywords
layer
ingaas
inp
light
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60021879A
Other languages
Japanese (ja)
Inventor
Fumihiko Kuroda
黒田 文彦
Nobuo Suzuki
信夫 鈴木
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60021879A priority Critical patent/JPS61182272A/en
Publication of JPS61182272A publication Critical patent/JPS61182272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a device simultaneously having the long-wave length sensitivity of isolation structure and the low noise properties of an Si avalanche photodiode by multiplying photocurrents in an Si crystal. CONSTITUTION:P<+>-InGaAs 2, P<->-InGaAs 3, P-InGaAs 4 and P-InP 5 are superposed on P<+>-InP 1 while P<->-Si is stacked on N<+> 6. Both surfaces are mirror- polished, pre-treatment such as degreasing is conducted, the surfaces are washed by water and dried, and the polished surfaces are bonded mutually and treated at 1,000-1,200 deg.C and bonded. A light-receiving window 8 is formed and an ohmic electrode 9 is attached. When a reverse bias close by breakdown voltage is applied to the element and beams are projected from the window 8, electron- hole pairs are generated in the layer 3, and electrons are accelerated, injected to an Si layer 7 and multiplied by an avalanche effect. The ionization rate of electrons extends over approximately fifty times as fast as that of holes at that time, thus acquiring output currents having noises remarkably smaller than currents multiplied by a conventional InP layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体受光素子、特にアバラン4フオトダイオ
ード(APD)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor photodetector, particularly an avalan 4 photodiode (APD).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年光ファイバの改良により、波長1.3〜1.5μm
の長波長帯に於で光の分散、損失が最低となることが見
出され、この波長帯に於いて高感度●高速剋答となる受
光素子が要求されている。この様な受光素子として、P
N接合の降伏によるなだれ(アバランシ)効果を利用し
たAPDがある。
In recent years, due to improvements in optical fibers, the wavelength has decreased from 1.3 to 1.5 μm.
It has been discovered that the dispersion and loss of light are the lowest in the long wavelength band, and a photodetector with high sensitivity and high speed response is required in this wavelength band. As such a light receiving element, P
There is an APD that utilizes the avalanche effect caused by N junction breakdown.

人PD材料としては、StやGeが古くから用いられて
いる。Slは電子と正孔のイオン化率比が50倍以上と
高く、低雑音で高性能の人PDが優られているが、Si
はバンドギャップが広いため波長1μm以上の光に対し
ては受光感度を持たない。Geは波長1、5μm程度の
光まで感度を持つが、イオン化率比が1.3倍と低いた
め、低雑音のAPDは優られていない。近年では、長波
長の光に対しても受光感度を持つ三元や四元の化合物半
導体が用いられているが、これらの半導体中に高電界を
印加すると、バンドギャップが狭いためにトンネル電流
が流れ、充分な増倍が得られない。そのため、長波長A
PDでは、光の吸収と光電流の増倍とを別の材料中で行
なわせる分離構造が一般的となっている。
St and Ge have long been used as human PD materials. Sl has a high ionization rate ratio of electrons and holes of more than 50 times, and is superior to low-noise, high-performance PDs, but Si
has a wide bandgap, so it has no light-receiving sensitivity for light with a wavelength of 1 μm or more. Although Ge is sensitive to light with a wavelength of about 1.5 μm, its ionization rate ratio is as low as 1.3 times, so it is not superior in low-noise APD. In recent years, ternary and quaternary compound semiconductors that are sensitive to long-wavelength light have been used, but when a high electric field is applied to these semiconductors, tunneling current occurs due to the narrow band gap. flow, and sufficient multiplication cannot be obtained. Therefore, long wavelength A
In PDs, a separate structure in which light absorption and photocurrent multiplication are performed in different materials is common.

この分離構造を形成する方法としては、従来エピタキシ
ャル成長法以外は困難であり、結晶性良く成長させるた
めには各層間の格子を整合させる必要があった。この格
子整合性や、光吸収係数、イオン化率比、結晶成長の容
易さ等から、光吸収層としてInGaAsやエロGaA
sP、光電流増倍層としてInPが一般に選ばれている
As a method for forming this separated structure, it is difficult to use any method other than the conventional epitaxial growth method, and it is necessary to match the lattice between each layer in order to grow with good crystallinity. Due to this lattice matching, light absorption coefficient, ionization rate ratio, ease of crystal growth, etc., InGaAs and erotic GaA are suitable for the light absorption layer.
sP, InP is generally chosen as the photocurrent multiplication layer.

ところがエロPはイオン化率比が2倍曲後とSlに比べ
て小さく、5i−APD程の低雑音化は望めない。
However, the ionization rate ratio of Elo-P after double bending is smaller than that of Sl, and noise reduction as low as that of 5i-APD cannot be expected.

〔発明の目的〕゛ 本発明は上記従来例の欠点を改善するために、分離構造
の人PDにおいて光電流の増倍をSt結晶中で行なわせ
ることにより、分離構造の長波長感度と、5iAPDの
低雑音性を併せ持つ人PDを提供するものである。
[Object of the Invention] In order to improve the above-mentioned drawbacks of the conventional example, the present invention has achieved the long-wavelength sensitivity of the separated structure and the 5iAPD by multiplying the photocurrent in the St crystal in the separated structure human PD. This provides a human PD that also has low noise characteristics.

〔発明の概要〕 本発明は、受光領域が形成された第1の半導体基体と光
電流増倍領域が形成された第2の半導体基体のそれぞれ
の研磨面が接合された事を特徴とする半導体受光素子を
提供する。
[Summary of the Invention] The present invention provides a semiconductor characterized in that polished surfaces of a first semiconductor substrate in which a light receiving region is formed and a second semiconductor substrate in which a photocurrent multiplication region is formed are bonded. A light receiving element is provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば例えば化合物半導体と8if:用いた半
導体受光素子に適用して長波長感度と低雑音性を併せ持
った浸れ九半導体受光素子を提供することができる。
According to the present invention, for example, by applying the present invention to a semiconductor light receiving element using a compound semiconductor and 8if, it is possible to provide a semiconductor light receiving element having both long wavelength sensitivity and low noise.

〔発明の実施例〕[Embodiments of the invention]

以下実施例に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on Examples.

第2図はP”−InP基板(1)上にP+−InGaA
sP ji@(2)、P−InGaAs層(3)、P 
−I nGaAsP層(4)、P−InP層(5)t−
順次エピタキシャル成長で形成したものであシ、第3図
はN+−S i基板(6)上にP−8i層(7)tl−
エピタキシャル成長によシ形成したものである。第4図
は、第2図及び第3図に示された結晶の表面同志を接合
した状態を示す。
Figure 2 shows P+-InGaA on P''-InP substrate (1).
sP ji@(2), P-InGaAs layer (3), P
-InGaAsP layer (4), P-InP layer (5)t-
It is formed by sequential epitaxial growth. Figure 3 shows a P-8i layer (7) tl- on an N+-Si substrate (6).
It is formed by epitaxial growth. FIG. 4 shows a state in which the surfaces of the crystals shown in FIGS. 2 and 3 are joined together.

直接接着法による素子ウェーハの形成1糧は次の通如で
ある。まず二枚の半導体基板の被接着面を鏡面研磨して
表面粗さ5oo1以下に形成する。
One way to form a device wafer using the direct bonding method is as follows. First, the surfaces of two semiconductor substrates to be bonded are mirror-polished to a surface roughness of 5001 or less.

そして半導体基板の表面状態によっては脱脂およびステ
ィンフィルム除去の前処理を行なう。この前処理は例え
ばH2O2+H2SO4→王水ボイル→HFノような工
程とする。この後基板を清浄な水で数分潤度水洗し、室
温でのスピンナ乾燥による脱水処理をする。この脱水処
理は鏡面研磨面に過剰に吸着している水分を除去するた
めのもので、吸着水分の殆どが揮散するような100℃
以上の加熱乾燥は避けることが重要である。その後面基
板を、クラス1以下の清浄な雰囲気下で実質的に異物が
介在しない状態で研磨面同士を接着させ、200℃以上
で熱処理する。好ましい熱処理温度は1000℃〜12
00℃である・。
Depending on the surface condition of the semiconductor substrate, pretreatments such as degreasing and stain film removal are performed. This pretreatment is performed, for example, by a process such as H2O2+H2SO4→regia boiling→HF. Thereafter, the substrate is washed with clean water for several minutes and dehydrated by drying with a spinner at room temperature. This dehydration process is to remove excess moisture adsorbed on the mirror-polished surface.
It is important to avoid excessive heat drying. The polished surfaces of the rear substrates are adhered to each other in a clean atmosphere of class 1 or lower in a state substantially free of foreign matter, and heat treated at 200° C. or higher. The preferred heat treatment temperature is 1000℃~12
It is 00℃.

第1図は、上記の様にして得られたウェハを加工して素
子化した一例であり、(8)は受光窓、(9)はオーミ
ック電極である。この様な構造の素子に降伏電圧近傍の
逆バイアスを印加し、受光窓(8)より光を入射すると
、その光がInGaAs層(3)で吸収されて電子−正
孔対を発生し、その電子が電界で加速されてSi層(7
)に注入され、アバランシ効果によって増倍される。こ
のとき、電子のイオン化率は正孔のそれよりも50倍程
度大きいため、従来のInP層で増倍するよυも、格段
に雑音の少ない出力電流が得られる。
FIG. 1 shows an example in which the wafer obtained as described above is processed to form a device, in which (8) is a light-receiving window and (9) is an ohmic electrode. When a reverse bias near the breakdown voltage is applied to an element with such a structure and light is incident through the light receiving window (8), the light is absorbed by the InGaAs layer (3) and generates electron-hole pairs. Electrons are accelerated by the electric field and are deposited in the Si layer (7
) and multiplied by avalanche effects. At this time, since the ionization rate of electrons is about 50 times greater than that of holes, an output current with significantly less noise can be obtained compared to multiplication using a conventional InP layer.

図はP”−InP層上に受光領域を形成した断面図、第
3図はN”−8i基板上に増倍領域をそれぞれエピタキ
シャル成長させ友状態を示す断面図である。
The figure is a cross-sectional view of a light receiving region formed on a P''-InP layer, and FIG. 3 is a cross-sectional view showing a state in which multiplication regions are epitaxially grown on an N''-8i substrate.

図において、 1・・・P+−InP基板、 2−= P”−InGaAsP x 、チストップ層、
3− P −InGaAs 。
In the figure, 1...P+-InP substrate, 2-=P''-InGaAsPx, Tistop layer,
3-P-InGaAs.

4−=−P −InGaAsP 。4-=-P-InGaAsP.

5−−− P −InP 。5---P-InP.

6・・・N” −8i基板、 7・・・P −8t。6...N"-8i board, 7...P -8t.

8・・・受光窓、 9・・・オーミック電極。8...light receiving window, 9...Ohmic electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)内部に検知すべき波長の光を吸収して電子−正孔
対を発生する受光領域が形成された第1の半導体基体と
、内部にPN接合が形成され、かつこのPN接合の降伏
に伴うなだれ効果により光電流を増倍する増倍領域が形
成された第2の半導体基体とのそれぞれの研磨面が接合
されたことを特徴とする半導体受光素子。
(1) A first semiconductor substrate in which a light-receiving region that absorbs light of a wavelength to be detected and generates electron-hole pairs is formed, and a PN junction is formed in the interior, and breakdown of this PN junction 1. A semiconductor light-receiving element characterized in that each polished surface is bonded to a second semiconductor substrate in which a multiplication region is formed that multiplies photocurrent by an avalanche effect accompanying the avalanche effect.
(2)前記第1の半導体基体が化合物半導体よりなり、
前記第2の半導体基体がシリコン単結晶よりなることを
特徴とする前記特許請求の範囲第1項記載の半導体受光
素子。
(2) the first semiconductor substrate is made of a compound semiconductor;
2. The semiconductor light-receiving device according to claim 1, wherein the second semiconductor substrate is made of silicon single crystal.
JP60021879A 1985-02-08 1985-02-08 Semiconductor light-receiving element Pending JPS61182272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021879A JPS61182272A (en) 1985-02-08 1985-02-08 Semiconductor light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021879A JPS61182272A (en) 1985-02-08 1985-02-08 Semiconductor light-receiving element

Publications (1)

Publication Number Publication Date
JPS61182272A true JPS61182272A (en) 1986-08-14

Family

ID=12067408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021879A Pending JPS61182272A (en) 1985-02-08 1985-02-08 Semiconductor light-receiving element

Country Status (1)

Country Link
JP (1) JPS61182272A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814847A (en) * 1986-11-21 1989-03-21 Bell Communications Research, Inc. Ingaas semiconductor structures
US6074892A (en) * 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US6147391A (en) * 1996-05-07 2000-11-14 The Regents Of The University Of California Semiconductor hetero-interface photodetector
WO2010098222A1 (en) * 2009-02-25 2010-09-02 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiodes
JP2014032994A (en) * 2012-08-01 2014-02-20 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and method for manufacturing the same
JP2014099527A (en) * 2012-11-15 2014-05-29 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814847A (en) * 1986-11-21 1989-03-21 Bell Communications Research, Inc. Ingaas semiconductor structures
US6074892A (en) * 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US6130441A (en) * 1996-05-07 2000-10-10 The Regents Of The University Of California Semiconductor hetero-interface photodetector
US6147391A (en) * 1996-05-07 2000-11-14 The Regents Of The University Of California Semiconductor hetero-interface photodetector
US6465803B1 (en) 1996-05-07 2002-10-15 The Regents Of The University Of California Semiconductor hetero-interface photodetector
WO2010098222A1 (en) * 2009-02-25 2010-09-02 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiodes
JP2010199289A (en) * 2009-02-25 2010-09-09 Hamamatsu Photonics Kk Method of manufacturing photodiode, and photodiode
US8564087B2 (en) 2009-02-25 2013-10-22 Hamamatsu Photonics K.K. Photodiode manufacturing method and photodiodes
JP2014032994A (en) * 2012-08-01 2014-02-20 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and method for manufacturing the same
JP2014099527A (en) * 2012-11-15 2014-05-29 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US3508126A (en) Semiconductor photodiode with p-n junction spaced from heterojunction
CN108352393A (en) High-efficiency wide-spectrum sensor
Wang et al. Highly sensitive narrowband Si photodetector with peak response at around 1060 nm
CA2070708C (en) Visible and infrared indium antimonide (insb) photodetector with non-flashing light receiving surface
JPS61182272A (en) Semiconductor light-receiving element
JP2005032843A (en) Avalanche photodiode
Becla et al. Epitaxial CdxHg1− xTe photovoltaic detectors
US6294414B1 (en) Method of fabricating heterointerface devices having diffused junctions
JPS62254473A (en) Iii-v multi-element compound semiconductor pin photo diode
JPS6423580A (en) Semiconductor photodetector device
Joshi et al. Reduction of 1/f noise in multiplexed linear In/sub 0.53/Ga/sub 0.47/As detector arrays via epitaxial doping
JPS61182271A (en) Semiconductor light-receiving element
JPS6032812B2 (en) photodetector
JPS5996777A (en) Photovoltaic element
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS59149070A (en) Photodetector
JPS6180875A (en) Semiconductor device
JPS6157716B2 (en)
Laih et al. Characteristics of Si-based MSM photodetectors with an amorphous-crystalline heterojunction
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPS63239870A (en) Photodiode
JPS63161680A (en) Semiconductor photodetector
JPS62169376A (en) Photodiode
JPS61292973A (en) Semiconductor light-receiving element
JPS58162077A (en) Semiconductor photodetector