CN108291268A - 方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN108291268A
CN108291268A CN201680070123.XA CN201680070123A CN108291268A CN 108291268 A CN108291268 A CN 108291268A CN 201680070123 A CN201680070123 A CN 201680070123A CN 108291268 A CN108291268 A CN 108291268A
Authority
CN
China
Prior art keywords
steel sheet
annealing
grain
manufacturing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680070123.XA
Other languages
English (en)
Inventor
竹中雅纪
早川康之
今村猛
江桥有衣子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN108291268A publication Critical patent/CN108291268A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

与以往相比进一步提高方向性电磁钢板的磁特性。提供一种方向性电磁钢板的制造方法,该方法包括如下步骤:将具有如下成分组成的钢坯在1300℃以下加热,对该钢坯实施热轧而制成热轧钢板,对该热轧钢板实施1次或者隔着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,对该冷轧钢板实施一次再结晶退火,在该一次再结晶退火后的上述冷轧钢板的表面涂布退火分离剂之后实施二次再结晶退火,上述成分组成以质量%计,含有C:0.002%~0.080%、Si:2.00%~8.00%、Mn:0.02%~0.50%、酸可溶性Al:0.003%以上且小于0.010%、S和/或Se合计0.005%~0.010%、以及Sn和/或Sb合计0.005%~1.000%,抑制N小于0.006%,剩余部分由Fe和不可避免的杂质构成。

Description

方向性电磁钢板的制造方法
技术领域
本发明涉及一种制造钢的晶粒以密勒指数计{110}面在板面集聚、以及<001>方位在轧制方向集聚的所谓的方向性电磁钢板的方法。
背景技术
方向性电磁钢板是一种主要作为变压器、发电机等电气设备的铁芯材料使用的软磁特性材料,具有属于铁的易磁化轴的<001>方位在钢板的轧制方向高度整合的晶体组织。这样的集合组织通过在方向性电磁钢板的制造工序中的二次再结晶退火时,使被称为所谓的高斯(Goss)方位的(110)
方位的晶粒优先地巨大生长的二次再结晶而形成。
以往,这样的方向性电磁钢板可以通过以下方式制造:将含有3质量%左右的Si和MnS、MnSe、AlN等抑制剂成分的板坯在超过1300℃的温度下加热,使抑制剂成分暂时固溶后,进行热轧,根据需要实施热轧板退火,通过1次或隔着中间退火的2次以上的冷轧制成最终板厚,接着在湿(润)氢气氛中实施一次再结晶退火而进行一次再结晶和脱碳后,涂布以氧化镁(MgO)为主剂的退火分离剂,之后为了二次再结晶和抑制剂成分的纯化,在1200℃进行5h左右的最终成品退火(例如,专利文献1、专利文献2、专利文献3)。
如上所述,以往制造方向性电磁钢板时,可以采用以下方法:在板坯阶段含有MnS、MnSe、AlN等析出物(抑制剂成分),通过超过1300℃的高温下的板坯加热使这些抑制剂成分暂时固溶,在后续工序中使其微细析出,从而体现二次再结晶。
即,在以往的方向性电磁钢板的制造工序中,需要在超过1300℃的高温下加热板坯,因此其制造成本不可避免地变得极高,无法应对近年的降低制造成本的要求,在这方面存在问题。
为了解决上述课题,例如,在专利文献4中提出了如下方法:通过含有0.010~0.060%的酸可溶性Al(sol.Al),将板坯加热抑制为低温,脱碳退火工序中在适当的氮化气氛下进行氮化,从而在二次再结晶时使(Al、Si)N析出而作为抑制剂使用。
这里,(Al、Si)N微细分散在钢中作为有效的抑制剂发挥功能,在上述制造方法的氮化处理后的钢板中,以氮化硅为主体的析出物(Si3N4或(Si、Mn)N)仅形成在表层。而且,在接着进行的二次再结晶退火中,以氮化硅为主体的析出物转变为热力学更稳定的含Al氮化物((Al、Si)N,或AlN)。此时,根据非专利文献1,存在于表层附近的Si3N4在二次再结晶退火的升温中固溶,另一方面,氮向钢中扩散,当达到超过900℃的温度时在板厚方向以几乎均匀的含Al氮化物的形式析出,能够在整个板厚得到晶粒生长抑制力(抑制效果)。应予说明,根据该方法,与使用高温下的板坯加热的析出物的分散控制相比,能够比较容易地在板厚方向得到相同的析出物量和析出物粒径。
另一方面,也对板坯中从最初就不含有抑制剂成分而体现二次再结晶的技术进行了研究。例如,在专利文献5中公开了不含有抑制剂成分也能够进行二次再结晶的技术(无抑制剂法)。
现有技术文献
专利文献
专利文献1:美国专利第1965559号公报
专利文献2:日本特公昭40-15644号公报
专利文献3:日本特公昭51-13469号公报
专利文献4:日本专利第2782086号公报
专利文献5:日本特开2000-129356号公报
非专利文献
非专利文献1:Y.Ushigami et al."Precipitation Behaviors of Injected NitrideInhibitors during Secondary Recrystallization Annealing in Grain OrientedSilicon Steel"Materials Science Forum Vols.204-206(1996)pp.593-598
发明内容
上述无抑制剂法中,不需要在高温下加热板坯,能够以低成本制造方向性电磁钢板,但由于不具有抑制剂成分,因而正常晶粒生长(一次再结晶晶粒生长)的抑制力不足,在二次再结晶时生长的高斯晶粒的方位差,与高温板坯加热材料相比产品的磁特性差。
本发明鉴于上述课题,目的在于提供一种不需要高温板坯加热的低成本且具有高生产率的方向性电磁钢板的制造方法,该方法通过增强正常晶粒生长的抑制力,使在二次再结晶时生长的高斯晶粒的方位尖锐化,从而提高磁特性。
发明人等为了解决上述课题,反复进行深入研究。
其结果重新发现通过对于sol.Al、S、Se、Sn和Sb的成分元素,在未达到以往认知的作为抑制剂发挥功能所需的含量的微量区域,对这些各成分的含量相互进行限制,从而即便是1300℃以下的低温区域的板坯加热也得到正常晶粒生长的抑制力。
此外,本发明还发现通过在后续工序中应用氮化处理,从而不析出AlN而析出氮化硅(Si3N4),作为正常晶粒生长的抑制力发挥功能,以及通过在二次再结晶退火前在涂布于钢板的退火分离剂中添加选自硫化物、硫酸盐、硒化物和硒酸盐中的一种或二种以上而发挥作为二次再结晶之前的正常晶粒生长的抑制力的作用,由此进一步增强正常晶粒生长的抑制力,有助于磁特性的进一步提高。综上,本发明是一种无需高温板坯加热的、低成本且具有高生产率的方向性电磁钢板的制造方法,能够在工业上实现具有与高温板坯加热材料等同的磁特性的方向性电磁钢板的制造。
解决上述课题的本发明的要旨构成如下。
1.一种方向性电磁钢板的制造方法,具有如下步骤:
将具有如下成分组成的钢坯在1300℃以下加热,
对该钢坯实施热轧而制成热轧钢板,
对该热轧钢板实施1次或隔着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火,
在该一次再结晶退火后的上述冷轧钢板的表面涂布退火分离剂后,实施二次再结晶退火,
上述成分组成以质量%计,含有C:0.002%~0.080%、Si:2.00%~8.00%、Mn:0.02%~0.50%、酸可溶性Al:0.003%以上且小于0.010%、S和/或Se合计0.005%~0.010%、以及Sn和/或Sb合计0.005%~1.0%,抑制N小于0.006%,剩余部分由Fe和不可避免的杂质构成。
2.根据上述1所述的方向性电磁钢板的制造方法,其中,以质量%计,含有Sn和/或Sb合计0.020%~0.300%。
3.根据上述1或2所述的方向性电磁钢板的制造方法,其中,上述成分组成以质量%计,进一步含有选自Ni:0.005%~1.5%、Cu:0.005%~1.5%、Cr:0.005%~0.1%、P:0.005%~0.5%、Mo:0.005%~0.5%、Ti:0.0005%~0.1%、Nb:0.0005%~0.1%、V:0.0005%~0.1%、B:0.0002%~0.0025%、Bi:0.005%~0.1%、Te:0.0005%~0.01%和Ta:0.0005%~0.01%中的1种或2种以上。
4.根据上述1~3中任一项所述的方向性电磁钢板的制造方法,其中,对上述冷轧钢板实施氮化处理。
5.根据上述1~4中任一项所述的方向性电磁钢板的制造方法,其中,在上述退火分离剂中添加有硫化物、硫酸盐、硒化物和硒酸盐中的1种或2种以上。
6.根据上述1~5中任一项所述的方向性电磁钢板的制造方法,其中,对上述冷轧钢板实施磁区细分化处理。
7.根据上述6所述的方向性电磁钢板的制造方法,其中,上述磁区细分化处理是通过对上述二次再结晶退火后的上述冷轧钢板进行电子束照射而实施的。
8.根据上述6所述的方向性电磁钢板的制造方法,其中,上述磁区细分化处理是通过对上述二次再结晶退火后的上述冷轧钢板进行激光照射而实施的。
根据本发明,通过控制N量、sol.Al量、Sn+Sb量和S+Se量来增强正常晶粒生长的抑制力,使二次再结晶时生长的高斯晶粒的方位尖锐化,能够使成为低温板坯加热法的课题的产品的磁特性大幅提高。特别是,即便难以高磁通密度化的板厚:0.23mm这样的薄钢板,也能够在卷材全长稳定地得到二次再结晶退火后的磁通密度B8为1.92T以上这样优异的磁特性。
另外,进一步以追加的方式实施氮化处理或者向退火分离剂中添加规定成分时,能够得到磁通密度B8为1.94T以上这样极其优异的磁特性。
而且,实施上述的氮化处理或者向退火分离剂中添加规定成分时,能够以低成本、高生产率工艺的该制造方法得到磁区细分化处理后的铁损W17/50为0.70W/kg以下这样与高温板坯加热材料相当的水平的优异的铁损特性。
附图说明
图1是表示坯材中的Sn+Sb量对成品板的磁通密度B8的影响的图。
具体实施方式
[成分组成]
以下,对本发明的一个实施方式的方向性电磁钢板的制造方法进行说明。首先,对钢的成分组成的限定理由进行阐述。应予说明,在本说明书中,表示各成分元素的含量的“%”只要没有特别说明就表示“质量%”。
C:0.002%~0.080%
C不足0.002%时,失去基于C的晶界增强效果,会产生板坯出现裂纹等妨碍制造的缺陷。另一方面,如果超过0.080%,则难以在脱碳退火中降低到不发生磁时效的0.005%以下。因此,C优选为0.002%~0.080%的范围。
Si:2.00%~8.00%
Si是对增大钢的电阻、减少构成铁损的一部分的涡流损耗极其有效的元素。在钢板中添加有Si时,虽然含量为11%以下的电阻时单调增加,但含量超过8.00%时,加工性明显降低。另一方面,含量小于2.00%时,电阻变小而无法得到良好的铁损特性。因此,Si量为2.00%~8.00%。更优选为2.50%~4.50%。
Mn:0.02%~0.50%
Mn与S或Se结合而形成MnS或MnSe,即便该MnS或MnSe为微量也由于与晶界偏析元素并用而以在二次再结晶退火的升温过程中抑制正常晶粒生长的方式发挥作用。然而,如果Mn量小于0.02%,则该作用会使正常晶粒生长的抑制力不足。另一方面,如果Mn量超过0.50%,则在热轧前的板坯加热过程中,为了使Mn完全固溶而需要高温下的板坯加热,而且MnS或MnSe会粗大析出,因而正常晶粒生长的抑制力降低。因此,Mn量为0.02%~0.50%。
S和/或Se:合计0.005%~0.010%
S和Se为本发明的特征之一。如上所述,S和Se与Mn结合而体现正常晶粒生长的抑制作用,但S和/或Se的合计含量小于0.005%时,会使正常晶粒生长的抑制力不足,因此优选S和/或Se以合计含量计含有0.005%以上。另一方面,如果合计含量超过0.010%,则在属于本发明的特征的1300℃以下的低温板坯加热过程中MnS或MnSe无法完全固溶,导致正常晶粒生长的抑制力不足。因此,S和/或Se以合计含量计为0.005%~0.010%。
sol.Al:0.003%以上且小于0.010%
Al在表面形成致密的氧化膜,使得在氮化时难以控制其氮化量,或者还有时阻碍脱碳,因此Al抑制为以sol.Al量计小于0.010%。通过在炼钢中微量添加氧亲和力高的Al而减少钢中的溶解氧量,可以期待伴随着特性劣化的氧化物系夹杂物的减少等。从该观点考虑,可以通过含有0.003%以上的sol.Al来抑制磁特性的劣化。
N:小于0.006%
N也与S或Se同样,如果过量存在,则使二次再结晶变得困难。特别是如果N量为0.006%以上,则难以发生二次再结晶,磁特性劣化,因此抑制N小于0.006%。
Sn和Sb中的至少1种:Sn和/或Sb的合计含量为0.005%~1.000%
Sn和Sb为本发明的特征之一。Sn和Sb为晶界偏析元素,通过含有这些元素,能够使正常晶粒生长的抑制力增加,二次再结晶的驱动力提高,使二次再结晶稳定化。Sn和/或Sb的合计含量小于0.005%时,正常晶粒生长的抑制力效果不充分,另外,如果合计含量超过1.000%,则因正常晶粒生长的抑制力过度所致的二次再结晶变得不稳定,导致磁特性劣化。此外,基于晶界脆化或轧制负荷增加的制造性也变得困难。因此,Sn和/或Sb以合计含量计为0.005%~1.000%。另外,考虑磁特性偏差减少或制造性,更优选为0.020%~0.300%。
在此,以下对得到Sn和Sb的含量在上述范围的实验进行说明。
表1是表示成品板的磁通密度B8随着Sn+Sb量而变化的表。将剩余部分由Fe和不可避免的杂质构成的表1中示出的各钢的220mm厚的板坯加热到1200℃后,热轧至2.5mm厚。接着,在1000℃下60s的热轧板退火后,冷轧至0.27mm厚,然后以820℃实施100s的一次再结晶退火。该一次再结晶退火时的500~700℃间的升温速度为200℃/s。接着,在钢板表面涂布以MgO为主成分的退火分离剂,然后以1200℃进行10小时的兼作纯化退火的二次再结晶退火,接着实施磷酸盐系的绝缘张力涂层的涂布、烧结和以钢带的平坦化为目的的平坦化退火而制成产品,得到各个条件下的试验片。
[表1]
在图1中示出调查坯材中的Sn+Sb量(Sn和Sb的合计量)对成品板的磁通密度B8的影响的结果。如图1所示,通过在使S和/或Se合计为0.005%~0.010%的基础上,将坯材中的Sn+Sb量控制到适当的值,从而使磁通密度提高。特别是,通过控制Sn和/或Sb合计为0.005%~1.000%,从而磁通密度B8达到1.88T以上。另外,通过控制Sn和/或Sb合计为0.020%~0.300%,从而磁通密度B8达到1.900T以上。
通过在使S和/或Se合计为0.005%~0.010%的基础上,将坯材中的Sn+Sb量控制为适当值而使成品板的磁通密度提高的理由尚不明确,但发明人等考虑以下。S和Se借助MnS、MnSe或Cu2S、Cu2Se之类的析出物与固溶S、Se的晶界偏析效果的并用,能够增强正常晶粒生长的抑制效果,使二次再结晶时生长的高斯晶粒的方位尖锐化,使作为低温板坯加热法的课题的产品的磁特性大幅提高。此外,认为Sn和Sb作为晶界偏析元素而已知,发挥正常晶粒生长的抑制力的作用。另外,认为像本发明那样含有大量S和/或Se时,不但硫化物、硒化物的析出量增加,S和/或Se的固溶量也增加。认为由于S和/或Se的固溶量增加,所以S和/或Se的晶界偏析量也增加,成为Sn和Sb容易进行晶界偏析的状况(所谓的共偏析(co-segregation)),晶界偏析的效果增大。
以上,对本发明的基本成分进行了说明。上述成分以外的剩余部分为Fe和不可避免的杂质,但本发明中,另外也可以根据需要适当地含有以下示出的元素。
Ni:0.005%~1.5%
Ni是奥氏体生成元素,因此是在利用奥氏体相变来改善热轧板组织、提高磁特性方面有用的元素。然而,含量小于0.005%时,磁特性的提高效果小,另一方面,含量超过1.5%时,因加工性降低而通板性变差,另外二次再结晶也变得不稳定而使磁特性劣化,因此使Ni为0.005~1.5%的范围。
Cu:0.005~1.5%、Cr:0.005~0.1%、P:0.005~0.5%、Mo:0.005~0.5%、Ti:0.0005~0.1%、Nb:0.0005~0.1%、V:0.0005~0.1%、B:0.0002~0.0025%、Bi:0.005~0.1%、Te:0.0005~0.01%、Ta:0.0005~0.01%
Cu、Cr、P、Mo、Ti、Nb、V、B、Bi、Te和Ta都是对磁特性提高有用的元素,但如果各自的含量小于上述范围的下限值,则缺乏磁特性的改善效果,另一方面,如果各自的含量超过上述范围的上限值,则二次再结晶变得不稳定而导致磁特性劣化。因此,可以分别在Cu为0.005%~1.5%、Cr为0.005%~0.1%、P为0.005%~0.5%、Mo为0.005~0.5%、Ti为0.0005~0.1%、Nb为0.0005~0.1%、V为0.0005~0.1%、B为0.0002~0.0025%、Bi为0.005~0.1%、Te为0.0005~0.01%、Ta为0.0005~0.01%以下的范围含有。
本发明是并用了微量析出物和晶界偏析元素的也可称为精细(Subtle)抑制力(Inhibition)控制(Control)(SIC法)的方法。SIC法具有能够同时实现低温板坯加热和正常晶粒生长的抑制效果的优于使用以往的抑制剂的技术或无抑制剂技术的优点。
认为S和Se在板坯加热工序中再固溶的情况下,在热轧时以MnS和MnSe的形式微细析出,有助于正常晶粒生长的抑制力增强。另一方面,S和/或Se合计小于0.005%的情况下其效果并不充分,因此得不到磁特性提高效果,S和/或Se合计超过0.010%的情况下在1300℃以下的低温板坯加热工序中再固溶变得不充分,正常晶粒生长的抑制力急剧降低,引起二次再结晶不良。
接下来,对本发明的制造方法进行说明。
[加热]
对具有上述的成分组成的钢坯进行板坯加热。板坯加热温度为1300℃以下。在超过1300℃进行加热时,并非通常的气体加热,需要使用感应加热等特别的加热炉,因此从成本、生产率和成品率等观点考虑不利。
[热轧]
然后,进行热轧。对于热轧的条件而言,例如,压下率为95%以上,热轧后的板厚为1.5~3.5mm。轧制结束温度优选800℃以上。热轧后的卷取温度优选500~700℃左右。
[热轧板退火]
热轧后,根据需要,进行热轧板退火来进行热轧板组织的改善。此时的热轧板退火优选以均热温度:800℃~1200℃、均热时间:2s~300s的条件进行。
热轧板退火的均热温度小于800℃时,热轧板组织的改善不完全,残留未再结晶部分,因此有可能无法得到所希望的组织。另一方面,均热温度超过1200℃时,进行AlN、MnSe和MnS的溶解,二次再结晶过程中抑制剂的抑制力不足,不进行二次再结晶,结果引起磁特性的劣化。因此,热轧板退火的均热温度优选为800℃~1200℃。
另外,如果均热时间小于2s,则高温保持时间短,因此残留未再结晶部分,有可能无法得到所希望的组织。另一方面,如果均热时间超过300s,则进行AlN、MnSe和MnS的溶解,微量添加的N、sol.Al、Sn+Sb和S+Se的上述效果减弱,冷轧组织的不均质化进行,结果二次再结晶退火板的磁特性劣化。因此,热轧板退火的均热时间优选为2s~300s。
[冷轧]
接下来,在热轧后或热轧板退火后,通过隔着中间退火的2次以上的冷轧将钢板轧制成最终板厚。该情况下,中间退火在与热轧板退火相同的思想下,优选为均热温度:800℃~1200℃、均热时间:2s~300s。
对于冷轧而言,通过使最终冷轧的压下率为80%~95%,能够得到更良好的一次再结晶退火板集合组织。另外,使轧制温度上升到100~250℃而进行轧制、或者在冷轧的中途进行1次或多次的100~250℃范围的时效处理在使高斯组织发达方面是有效的。
[一次再结晶退火]
上述冷轧后,优选以均热温度:700℃~1000℃实施一次再结晶退火。另外,该一次再结晶退火例如如果在湿氢气氛中进行,也能兼作钢板的脱碳。这里,一次再结晶退火中的均热温度小于700℃时,残留未再结晶部分,有可能无法得到所希望的组织。另一方面,均热温度超过1000℃时,存在会发生高斯方位晶粒的二次再结晶的可能性。因此,一次再结晶退火中的均热温度优选为700℃~1000℃。另外,在一次再结晶退火时,使500~700℃的温度区域的平均升温速度优选为50℃/s以上。
[氮化处理]
此外,本发明中,可以在从一次再结晶退火到二次再结晶退火中的任一阶段应用氮化处理。该氮化处理可以在一次再结晶退火后应用如下公知技术,即在氨气氛中进行热处理的气体氮化、在盐浴中进行热处理的盐浴氮化、以及等离子体氮化、使退火分离剂中含有氮化物、或者使二次再结晶退火气氛为氮化气氛等。
[二次再结晶退火]
然后,根据需要在钢板表面涂布以MgO为主成分的退火分离剂后,进行二次再结晶退火。此时,可以在退火分离剂中添加选自硫化物、硫酸盐、硒化物和硒酸盐中的一种或二种以上。该添加物在二次再结晶退火中分解后,在钢中进行浸硫、浸硒,带来抑制效果。二次再结晶退火的退火条件也没有特别限制,只要按照以往公知的退火条件进行即可。应予说明,如果使此时的退火气氛为氢气氛,则还能够兼作纯化退火。其后,经过绝缘被膜涂布工序和平坦化退火工序,得到所希望的方向性电磁钢板。此时的绝缘被膜涂布工序和平坦化退火工序的制造条件也没有格外规定,只要遵照常规方法即可。
满足上述条件制造的方向性电磁钢板在二次再结晶后具有极高的磁通密度,同时具有低铁损特性。这里,具有高磁通密度表示在二次再结晶过程中仅在高斯方位及其附近方位优先生长。越在高斯方位及其附近,二次再结晶晶粒的生长速度越增大,因此高磁通密度化潜在地表示二次再结晶粒径粗大化,从减少磁滞损耗的观点考虑是有利的,但从减少涡流损耗的观点是不利的。
[磁区细分化处理]
因此,为了解决与这样的降低铁损的最终目标相反的现象,优选实施磁区细分化处理。通过实施适当的磁区细分化处理,能够使因二次再结晶粒径粗大化而变得不利的涡流损耗减少,在磁滞损耗减少的同时得到极低的铁损特性。
作为磁区细分化处理,可以应用公知的所有的耐热型或非耐热型的磁区细分化处理,但如果使用对二次再结晶退火后的钢板表面照射电子束或激光的方法,则能够使磁区细分化效果渗透到钢板的板厚方向内部,因此与蚀刻法等其它磁区细分化处理相比能够得到极低的铁损特性。
其它制造条件可以按照方向性电磁钢板的一般的制造方法。
实施例
(实施例1)
将由表2中示出的各种成分组成构成的220mm厚的钢坯加热到1250℃后,热轧至2.7mm厚。接着,在1020℃下进行60s的热轧板退火后,冷轧至0.27mm厚,然后以840℃实施120s的一次再结晶退火。该一次再结晶退火时的500~700℃间的升温速度为100℃/s。
接下来,在钢板表面涂布以MgO为主成分的退火分离剂,然后以1200℃进行10小时的兼作纯化退火的二次再结晶退火,接着实施磷酸盐系的绝缘张力涂层的涂布、烧结和以钢带的平坦化为目的的平坦化退火,制成产品。
对如此得到的产品的磁特性进行调查,将结果一并记载于表2。
[表2]
如表2所示,通过在使S和/或Se合计为0.005%~0.010%的基础上,将坯材中的Sn+Sb量控制为适当的值,从而磁通密度提高。特别是,通过控制Sn和/或Sb合计为0.005%~1.000%,从而磁通密度B8达到1.900T以上。另外,通过控制Sn和/或Sb合计为0.020%~0.300%,从而磁通密度B8达到1.920T以上。
(实施例2)
表2中,将No.13和No.18的钢坯加热到1230℃后,热轧至2.7mm厚。接着,在1000℃下进行60s的热轧板退火后,通过第1次冷轧而轧制成2.0mm的中间厚度。接下来,在1040℃下进行60s的中间退火后,通过第2次冷轧而轧制到0.23mm厚,然后在820℃实施120s的一次再结晶退火。该一次再结晶退火时的500~700℃间的升温速度为150℃/s。接着,按表3中示出的条件进行氮化处理和向退火分离剂中添加硫酸盐的研究。氮化处理是对一次再结晶退火板在含有氨的气体气氛中实施750℃、30s和950℃、30s的气体氮化处理。将氮化处理后的钢板的氮量示于表3。对于向退火分离剂中添加硫酸盐,在钢板表面涂布添加有MgO和相对于MgO:100质量份为10质量份的MgSO4的退火分离剂。其后,对各钢板在1180℃下进行50小时的兼作纯化退火的二次再结晶退火,接着实施磷酸盐系的绝缘张力涂层的涂布、烧结和以钢带的平坦化为目的的平坦化退火,制成成品板。
对如此得到的成品板的磁特性进行调查,将结果一并记载于表3。
[表3]
[表3]
如表3所示,通过控制S和/或Se合计为0.005%~0.010%以及控制Sn和/或Sb合计为0.020%~0.300%,从而磁通密度B8达到1.920T以上。此外,通过对一次再结晶退火板的氮化处理、向退火分离剂中添加硫酸盐,从而磁通密度B8达到1.940T以上。
(实施例3)
对表3中示出的No.13-b、13-c、18-b和18-c的样品进行确认表4中示出的磁区细分化处理的效果的实验。蚀刻对冷轧钢板的单面在轧制直角方向形成宽度:80μm、深度:15μm、轧制方向间隔:5mm的槽。电子束对平坦化退火后的钢板的单面以加速电压:80kV、照射间隔:5mm、电子束电流:3mA的条件在轧制直角方向连续照射。连续激光对平坦化退火后的钢板的单面以光束直径:0.3mm、输出:200W、扫描速度:100m/s、照射间隔:5mm的条件在轧制直角方向连续照射。
对如此得到的产品的磁特性进行调查,将结果一并记载于表4。
[表4]
[表4]
如表4所示,可知通过实施磁区细分化处理而得到更良好的铁损特性。具体而言,能够以低成本、高生产率工艺的该制造方法得到基于电子束或连续激光的磁区细分化处理后的铁损W17/50为0.70W/kg以下这样与高温板坯加热材料相当的水平的优异的铁损特性。
产业上的可利用性
根据本发明的方向性电磁钢板,通过控制微量抑制剂,能够增强正常晶粒生长的抑制力,使二次再结晶时生长的高斯晶粒的方位尖锐化,使成为低温板坯加热法的课题的产品的磁特性大幅提高。特别是,即便难以高磁通密度化的板厚:0.23mm这样的薄钢板,也能够在卷材全长稳定地得到二次再结晶退火后的磁通密度B8为1.92T以上的优异的磁特性。

Claims (8)

1.一种方向性电磁钢板的制造方法,其特征在于,
将具有如下成分组成的钢坯在1300℃以下加热,
对该钢坯实施热轧而制成热轧钢板,
对该热轧钢板实施1次或隔着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火,
在该一次再结晶退火后的所述冷轧钢板的表面涂布退火分离剂后,实施二次再结晶退火,
所述成分组成以质量%计,含有C:0.002%~0.080%、Si:2.00%~8.00%、Mn:0.02%~0.50%、酸可溶性Al:0.003%以上且小于0.010%、S和/或Se合计0.005%~0.010%、以及Sn和/或Sb合计0.005%~1.000%,
抑制N小于0.006%,剩余部分由Fe和不可避免的杂质构成。
2.根据权利要求1所述的方向性电磁钢板的制造方法,其特征在于,以质量%计,含有Sn和/或Sb合计0.020%~0.300%。
3.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,所述成分组成以质量%计,进一步含有选自Ni:0.005%~1.5%、Cu:0.005%~1.5%、Cr:0.005%~0.1%、P:0.005%~0.5%、Mo:0.005%~0.5%、Ti:0.0005%~0.1%、Nb:0.0005%~0.1%、V:0.0005%~0.1%、B:0.0002%~0.0025%、Bi:0.005%~0.1%、Te:0.0005%~0.01%和Ta:0.0005%~0.01%中的1种或2种以上。
4.根据权利要求1~3中任一项所述的方向性电磁钢板的制造方法,其中,对所述冷轧钢板实施氮化处理。
5.根据权利要求1~4中任一项所述的方向性电磁钢板的制造方法,其中,在所述退火分离剂中添加有硫化物、硫酸盐、硒化物和硒酸盐中的1种或2种以上。
6.根据权利要求1~5中任一项所述的方向性电磁钢板的制造方法,其中,对所述冷轧钢板实施磁区细分化处理。
7.根据权利要求6所述的方向性电磁钢板的制造方法,其中,所述磁区细分化处理是通过对所述二次再结晶退火后的所述冷轧钢板进行电子束照射而实施的。
8.根据权利要求6所述的方向性电磁钢板的制造方法,其中,所述磁区细分化处理是通过对所述二次再结晶退火后的所述冷轧钢板进行激光照射而实施的。
CN201680070123.XA 2015-12-04 2016-11-30 方向性电磁钢板的制造方法 Pending CN108291268A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015237995 2015-12-04
JP2015-237995 2015-12-04
PCT/JP2016/085616 WO2017094797A1 (ja) 2015-12-04 2016-11-30 方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
CN108291268A true CN108291268A (zh) 2018-07-17

Family

ID=58797380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680070123.XA Pending CN108291268A (zh) 2015-12-04 2016-11-30 方向性电磁钢板的制造方法

Country Status (10)

Country Link
US (1) US20190112685A1 (zh)
EP (1) EP3385397B1 (zh)
JP (1) JP6481772B2 (zh)
KR (2) KR20180087378A (zh)
CN (1) CN108291268A (zh)
BR (1) BR112018011105B1 (zh)
CA (1) CA3004286C (zh)
MX (1) MX2018006621A (zh)
RU (1) RU2698042C1 (zh)
WO (1) WO2017094797A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166874A (zh) * 2018-09-27 2021-07-23 Posco公司 取向电工钢板及其制造方法
CN113195753A (zh) * 2019-01-08 2021-07-30 日本制铁株式会社 方向性电磁钢板的制造方法及方向性电磁钢板
CN113260719A (zh) * 2019-01-08 2021-08-13 日本制铁株式会社 方向性电磁钢板、退火分离剂及方向性电磁钢板的制造方法
CN113272456A (zh) * 2019-01-16 2021-08-17 日本制铁株式会社 方向性电磁钢板的制造方法
CN114364821A (zh) * 2019-09-06 2022-04-15 杰富意钢铁株式会社 方向性电磁钢板及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099866B1 (ko) * 2017-12-26 2020-04-10 주식회사 포스코 방향성 전기강판 및 그의 제조방법
JP7110642B2 (ja) * 2018-03-20 2022-08-02 日本製鉄株式会社 一方向性電磁鋼板の製造方法
KR102119095B1 (ko) * 2018-09-27 2020-06-04 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR102405173B1 (ko) * 2019-12-20 2022-06-02 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR102438480B1 (ko) * 2020-12-21 2022-09-01 주식회사 포스코 방향성 전기강판의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220704A (zh) * 1997-03-21 1999-06-23 于西纳公司 特别是用于制造变压器磁路的晶粒取向电工钢板的制备方法
JP2003193135A (ja) * 2001-12-26 2003-07-09 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2003193131A (ja) * 2001-12-26 2003-07-09 Jfe Steel Kk 磁気特性の優れた方向性電磁鋼板の製造方法
JP2003253335A (ja) * 2002-03-04 2003-09-10 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2005232560A (ja) * 2004-02-23 2005-09-02 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2006213953A (ja) * 2005-02-02 2006-08-17 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
CN104160044A (zh) * 2012-07-26 2014-11-19 杰富意钢铁株式会社 取向性电磁钢板的制造方法
CN104870665A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
WO2015174361A1 (ja) * 2014-05-12 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
JPS5113469B2 (zh) 1972-10-13 1976-04-28
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS58153128A (ja) 1982-03-09 1983-09-12 Nippon Sheet Glass Co Ltd 光量測定器
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH05320769A (ja) * 1992-05-15 1993-12-03 Nippon Steel Corp 磁性および被膜特性の優れた珪素鋼板の製造方法
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
KR100953755B1 (ko) * 2005-06-10 2010-04-19 신닛뽄세이테쯔 카부시키카이샤 자기 특성이 극히 우수한 방향성 전자강판의 제조 방법
KR101203286B1 (ko) * 2007-12-12 2012-11-20 신닛테츠스미킨 카부시키카이샤 레이저광의 조사에 의해 자구가 제어된 방향성 전자기 강판의 제조 방법
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
RU2539274C2 (ru) * 2010-06-18 2015-01-20 ДжФЕ СТИЛ КОРПОРЕЙШН Способ изготовления листа из текстурированной электротехнической стали
EP2602343B1 (en) * 2010-08-06 2020-02-26 JFE Steel Corporation Manufacturing method for producing a grain oriented electrical steel sheet
JP5810506B2 (ja) * 2010-11-05 2015-11-11 Jfeスチール株式会社 方向性電磁鋼板
KR101223112B1 (ko) * 2010-12-23 2013-01-17 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
JP5994981B2 (ja) * 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5594437B2 (ja) * 2011-09-28 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US9805851B2 (en) * 2011-10-20 2017-10-31 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
CN103695619B (zh) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
JP5907202B2 (ja) * 2013-03-27 2016-04-26 Jfeスチール株式会社 方向性電磁鋼板の製造方法
RU2625350C1 (ru) * 2013-09-26 2017-07-13 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства текстурированного листа из электротехнической стали
CN103725995B (zh) * 2013-12-27 2016-01-20 东北大学 一种取向高硅电工钢的制备方法
JP6225759B2 (ja) * 2014-03-10 2017-11-08 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6292146B2 (ja) * 2015-02-25 2018-03-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220704A (zh) * 1997-03-21 1999-06-23 于西纳公司 特别是用于制造变压器磁路的晶粒取向电工钢板的制备方法
JP2003193135A (ja) * 2001-12-26 2003-07-09 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2003193131A (ja) * 2001-12-26 2003-07-09 Jfe Steel Kk 磁気特性の優れた方向性電磁鋼板の製造方法
JP2003253335A (ja) * 2002-03-04 2003-09-10 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2005232560A (ja) * 2004-02-23 2005-09-02 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2006213953A (ja) * 2005-02-02 2006-08-17 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
CN104160044A (zh) * 2012-07-26 2014-11-19 杰富意钢铁株式会社 取向性电磁钢板的制造方法
CN104870665A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
WO2015174361A1 (ja) * 2014-05-12 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166874A (zh) * 2018-09-27 2021-07-23 Posco公司 取向电工钢板及其制造方法
CN113166874B (zh) * 2018-09-27 2022-12-13 Posco公司 取向电工钢板及其制造方法
CN113195753A (zh) * 2019-01-08 2021-07-30 日本制铁株式会社 方向性电磁钢板的制造方法及方向性电磁钢板
CN113260719A (zh) * 2019-01-08 2021-08-13 日本制铁株式会社 方向性电磁钢板、退火分离剂及方向性电磁钢板的制造方法
CN113260719B (zh) * 2019-01-08 2023-01-20 日本制铁株式会社 方向性电磁钢板、退火分离剂及方向性电磁钢板的制造方法
CN113195753B (zh) * 2019-01-08 2024-04-30 日本制铁株式会社 方向性电磁钢板的制造方法及方向性电磁钢板
CN113272456A (zh) * 2019-01-16 2021-08-17 日本制铁株式会社 方向性电磁钢板的制造方法
CN113272456B (zh) * 2019-01-16 2023-03-14 日本制铁株式会社 方向性电磁钢板的制造方法
CN114364821A (zh) * 2019-09-06 2022-04-15 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
CN114364821B (zh) * 2019-09-06 2023-10-20 杰富意钢铁株式会社 方向性电磁钢板及其制造方法

Also Published As

Publication number Publication date
EP3385397B1 (en) 2024-04-10
BR112018011105B1 (pt) 2021-10-26
RU2698042C1 (ru) 2019-08-21
CA3004286A1 (en) 2017-06-08
JP6481772B2 (ja) 2019-03-13
KR20200113009A (ko) 2020-10-05
BR112018011105A2 (pt) 2018-11-21
JPWO2017094797A1 (ja) 2018-04-05
US20190112685A1 (en) 2019-04-18
EP3385397A4 (en) 2018-11-07
KR20180087378A (ko) 2018-08-01
EP3385397A1 (en) 2018-10-10
CA3004286C (en) 2021-05-04
WO2017094797A1 (ja) 2017-06-08
MX2018006621A (es) 2018-08-01

Similar Documents

Publication Publication Date Title
CN108291268A (zh) 方向性电磁钢板的制造方法
CN105579596B (zh) 取向性电磁钢板的制造方法
CN102947471B (zh) 方向性电磁钢板的制造方法
CN106414780B (zh) 取向性电磁钢板的制造方法
KR102535436B1 (ko) 주석 함유하는 비방향성 실리콘 강 시트의 제조 방법, 이로부터 수득된 강 시트 및 상기 강 시트의 용도
CN104903473B (zh) 取向性电磁钢板的制造方法
CN104160044B (zh) 取向性电磁钢板的制造方法
JP5439866B2 (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
CN102906283B (zh) 单向性电磁钢板的制造方法
JP6801740B2 (ja) 方向性電磁鋼板用熱延鋼板およびその製造方法
CN104220607B (zh) 取向性电磁钢板的制造方法
CN107849656A (zh) 取向性电磁钢板及其制造方法
CN106460085B (zh) 取向性电磁钢板的制造方法
CN108699620A (zh) 取向性电磁钢板的制造方法
CN109715840A (zh) 取向性电磁钢板及其制造方法
CN104937123B (zh) 铁损优异的取向电工钢板及其制造方法
CN104662180A (zh) 晶粒取向电磁钢板的制造方法
KR20080107423A (ko) 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
WO2018207873A1 (ja) 方向性電磁鋼板とその製造方法
CN108699621A (zh) 取向性电磁钢板的制造方法
JP6868030B2 (ja) 方向性電磁鋼板およびその製造方法
CN107250403A (zh) 方向性电磁钢板及其制造方法
JP5332134B2 (ja) 高磁束密度方向性電磁鋼板の製造方法
JP2010280970A (ja) 磁束密度の良好な方向性電磁鋼板の製造方法
JP6777025B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination