CN108226965B - 自移动设备的定位故障处理方法、装置和电子设备 - Google Patents

自移动设备的定位故障处理方法、装置和电子设备 Download PDF

Info

Publication number
CN108226965B
CN108226965B CN201711351308.0A CN201711351308A CN108226965B CN 108226965 B CN108226965 B CN 108226965B CN 201711351308 A CN201711351308 A CN 201711351308A CN 108226965 B CN108226965 B CN 108226965B
Authority
CN
China
Prior art keywords
self
positioning
moving
fault
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711351308.0A
Other languages
English (en)
Other versions
CN108226965A (zh
Inventor
周昶
谭一云
刘芳世
邵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Positec Power Tools Suzhou Co Ltd
Original Assignee
Positec Power Tools Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Positec Power Tools Suzhou Co Ltd filed Critical Positec Power Tools Suzhou Co Ltd
Publication of CN108226965A publication Critical patent/CN108226965A/zh
Application granted granted Critical
Publication of CN108226965B publication Critical patent/CN108226965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Electromagnetism (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Optics & Photonics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Signal Processing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种自移动设备的定位故障处理方法,所述自移动设备配置为,基于对自移动设备的定位自主地在地图限定的工作区域内移动,包括:接收来自卫星定位***的定位数据,以对自移动设备进行定位;检测所述自移动设备是否发生定位故障;响应于检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;获取所述时间点的精确定位数据;以及,基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。

Description

自移动设备的定位故障处理方法、装置和电子设备
技术领域
本发明涉及自移动设备,尤其的,涉及一种自移动设备的定位故障处理方法、定位故障处理装置和电子设备。
背景技术
自动工作***,例如自动割草机***,能够自动完成维护草坪等任务,日渐受到消费者的欢迎。自动工作***中,自移动设备,例如自动割草机,被限制在一定的工作区域内活动,自动割草机驶离工作区域可能造成安全性问题。另外,工作区域中可能存在障碍,障碍包括凹坑、花丛等,自动割草机工作过程中应避开工作区域的障碍,以免发生跌落、受困等事故。为了保证自动工作***的安全性,提高自动割草机的工作效率,自动割草机需要能够识别工作区域,包括识别工作区域的边界以及工作区域内的障碍。
传统的自动割草机识别工作区域的方法为,沿工作区域的边界布边界线,也可以沿障碍的***布边界线,边界线传输电信号,产生电磁场,自动割草机上的传感器检测电磁场信号,判断自身位于边界线限定的区域内或外。
这种方法的缺点为,布边界线麻烦,且影响草坪美观。
为了使自动割草机能够识别工作区域,又能够免去布边界线的麻烦,可以采用建立工作区域地图的方法,其中一种建立工作区域地图的方法为,记录工作区域的边界和障碍等位置坐标,建立坐标系,生成工作区域地图。自动工作***工作时,通过比较自动割草机的位置与地图,来判断自动割草机是否在安全的工作区域内。
采用这种方法的自动工作***,需要具备导航功能,以使自动割草机在工作过程中能够准确获取自身位置。一种实现高精度导航的方法为使用导航模块实现导航,导航模块包括基站和移动站。因此,采用这种方法的另一个技术问题为,在导航模块存在定位故障的情况下,如何能够保证自动工作***准确地定位自身所在位置。
发明内容
为克服现有技术的缺陷,本发明所要解决的一个问题是,保证自动工作***准确地定位自身所在位置。
本发明解决现有技术问题所采用的技术方案是:
一种自移动设备的定位故障处理方法,所述自移动设备配置为,基于对自移动设备的定位自主地在地图限定的工作区域内移动,包括:接收来自卫星定位***的定位数据,以对自移动设备进行定位;检测所述自移动设备是否发生定位故障;响应于检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;获取所述时间点的精确定位数据;以及,基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
在上述自移动设备的定位故障处理方法中,检测所述自移动设备是否发生定位故障包括:检测所述自移动设备的定位故障类型;以及,基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位包括:基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
在上述自移动设备的定位故障处理方法中,进一步包括:接收来自卫星定位***的基站的定位修正数据,以对自移动设备进行定位;所述获取所述时间点的精确定位数据包括:获取所述时间点的精确定位修正数据;以及,所述基于所述定位故障类型,选择预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
在上述自移动设备的定位故障处理方法中,基于预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
在上述自移动设备的定位故障处理方法中,所述辅助定位***包括惯性导航***;以所述精确定位数据校正所述惯性导航***,以对所述自移动设备进行定位包括:所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
在上述自移动设备的定位故障处理方法中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;以及,响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于所述定位故障未消失,控制所述自移动设备停机。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及,响应于d’≥d,控制所述自移动设备改变移动方式。
在上述自移动设备的定位故障处理方法中,控制所述自移动设备改变移动方式包括:控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于d’<d,控制所述自移动设备继续移动。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
在上述自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
一种自移动设备,包括:移动站,用于接收卫星定位***的定位数据和与基站通信;定位故障处理装置,包括:定位故障检测单元,用于检测所述自移动设备是否发生定位故障;时间点确定单元,用于响应于检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;数据获取单元,用于获取所述时间点的精确定位数据;以及,定位故障处理单元,用于基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
在上述自移动设备中,所述定位故障检测单元用于检测所述自移动设备的定位故障类型;以及,所述定位故障处理单元用于基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
在上述自移动设备中,所述移动站用于接收来自卫星定位***的基站的定位修正数据,以对自移动设备进行定位;所述时间点确定单元用于获取所述时间点的精确定位修正数据;以及,所述定位故障处理单元用于基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
在上述自移动设备中,所述定位故障处理单元用于:提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
在上述自移动设备中,所述辅助定位***包括惯性导航***;所述定位故障处理单元用于:控制所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
在上述自移动设备中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
在上述自移动设备中,所述定位故障检测单元用于响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;以及,所述定位故障处理单元用于响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
在上述自移动设备中,所述定位故障处理单元用于响应于所述定位故障未消失,控制所述自移动设备停机。
在上述自移动设备中,进一步包括容错控制单元,用于:响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及,响应于d’≥d,控制所述自移动设备改变移动方式。
在上述自移动设备中,所述容错控制单元用于:控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
在上述自移动设备中,所述容错控制单元进一步用于:响应于d’<d,控制所述自移动设备继续移动。
在上述自移动设备中,所述定位故障处理单元进一步用于:响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
在上述自移动设备中,进一步包括:确认接收单元,用于响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
一种自动工作***,包括如上所述的自移动设备。
在上述自动工作***中,所述自移动设备是自动割草机。
在上述自动工作***中,所述自动工作***是自动割草机。
一种电子设备,包括:存储器,用于存储计算机可执行指令;和,处理器,用于执行所述存储器存储的计算机可执行指令,以执行如上所述的自移动设备的定位故障处理方法。
一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行如上所述的自移动设备的定位故障处理方法。
与现有技术相比,本发明的有益效果是:通过基于预定定位故障处理策略使用就在发生定位故障前的时间点的精确定位数据对所述自移动设备进行定位,可以保证自动工作***准确地定位自身所在位置。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1为本发明的第一实施例的自动工作***示意图。
图2为本发明的第一实施例的自动割草机结构示意图。
图3(a)、(b)为本发明的第一实施例的导航模块的组成示意图。
图4为本发明的第一实施例的导航模块的工作原理图。
图5(a)、(b)、(c)为本发明的第一实施例的基站位置修正原理图。
图6为本发明的第一实施例的基站位置修正流程图。
图7-图10为本发明的第一实施例的自动割草机的移动路径示意图。
图11-图13为本发明的第一实施例的自动割草机的回归路径示意图。
图14为本发明一实施例的自移动设备的定位故障处理方法的示意性流程图。
图15为本发明一实施例的自移动设备的示意性框图。
图16为本发明一实施例的电子设备的示意性框图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
自动工作***概述
图1为本发明的第一实施例的自动工作***100示意图。自动工作***包括自移动设备。本实施例中,自移动设备为自动割草机1,在其他实施例中,自移动设备也可以为自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。自动工作***100还包括充电站2,用于为自动割草机1补给电能。本实施例中,自动工作***100包括导航模块,用于输出自动割草机的当前位置。具体的,导航模块包括基站17和移动站15。
如图1所示,自动工作***用于在预定的工作区域内工作,本实施例中,工作区域包括至少两个相互分离的子工作区域,子工作区域由通道400连通。工作区域与非工作区域之间形成边界200,工作区域内包括障碍9、11,障碍包括树木、凹坑等。
本实施例中的自动割草机1的结构如图2所示。自动割草机1包括壳体3,移动模块,任务执行模块,能源模块,控制模块等。其中,移动模块包括履带5,由驱动马达驱动以带动自动割草机1移动。任务执行模块包括切割组件7,执行割草工作。能源模块包括电池包(图未示),为自动割草机1的移动和工作提供电能。控制模块与移动模块、任务执行模块和能源模块电连接,控制移动模块带动自动割草机1移动,并控制任务执行模块执行工作任务。
本实施例中的导航模块的组成如图3(a)、(b)所示。导航模块包括基站17和移动站15。基站17和移动站15均接收卫星信号,基站17向移动站15发送定位修正信号,实现差分卫星定位。本实施例中,基站17和移动站15接收GPS定位信号,实现差分GPS定位。当然,在其他实施例中,基站17和移动站15也可以接收伽利略卫星导航***、或北斗卫星导航***、或GLONASS等定位信号。
如图3(a)所示,本实施例中,基站17包括GPS天线19,接收GPS定位信号;GPS板卡21,处理接收到的GPS定位信号,并生成定位修正信号;通讯模块23,将定位修正信号发送给移动站15,本实施例中,通讯模块23包括电台及电台天线25;基站还包括指示器(图未示),指示器能够输出当前位置的卫星信号是否良好的指示。本实施例中,基站17设置于充电站2,与充电站2一体。在其他实施例中,基站17也可以与充电站2分离设置,例如,可以设置在屋顶等能够更好的接收卫星信号的位置。
本实施例中,移动站15包括壳体27;GPS天线29,接收GPS定位信号;GPS板卡31,处理接收到的GPS定位信号;通讯模块33,接收基站17发送的定位修正信号,通讯模块33包括电台及电台天线35。本实施例中,移动站15集成了惯性导航***图未示)惯性导航***输出惯性导航数据。移动站15工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。移动站15还包括指示器(图未示),输出当前位置的差分GPS信号是否良好的指示。本实施例中,移动站15与自动割草机1的壳体3可拆卸的连接。移动站15包括与自动割草机1的壳体连接的第一接口(图未示)。自动割草机1工作时移动站15安装于自动割草机1的壳体3。移动站15与自动割草机1的壳体3连接时,可实现与自动割草机1的控制模块的电连接,移动站15输出自动割草机1的当前位置坐标,控制模块根据自动割草机1的当前位置控制自动割草机1的移动和工作。本实施例中,移动站15包括独立的电源模块37,移动站15与自动割草机1的壳体3分离时,可以独立工作。
本实施例中,在自动割草机进入工作之前,需建立工作区域的地图。具体的,本实施例中,利用自动工作***的导航模块建立工作区域的地图。建立工作区域的地图包括记录地图的步骤。
用户安装好基站后,开始记录地图的步骤。本发明的第一实施例中,记录地图时,将移动站与自动割草机的壳体分离,移动站独立工作,用户手持移动站行走来记录地图。记录地图包括步骤:从起点,本实施例中为充电站位置,开始沿工作区域的边界行走,记录边界位置坐标;沿工作区域内的障碍行走,记录障碍位置坐标;沿工作区域内的隔离岛行走,记录隔离岛位置坐标;沿连接子工作区域的通道行走,记录通道位置坐标。本实施例中,用户手持移动站记录地图时,惯性导航***处于关闭状态。原因为,用户手持移动站移动时,由于手的抖动,移动站会发生前后左右偏摆的情况,这将对惯性导航***产生严重干扰。
本发明的第二实施例中,记录地图时,移动站安装于自动割草机的壳体,用户用手机、平板等智能终端设备遥控自动割草机移动。同样的,记录地图的步骤包括记录工作区域的边界、工作区域内的障碍、连通子区域的通道等。本实施例中,记录地图的过程中可以启用惯导装置,原因为移动站安装于自动割草机的壳体,移动站的运动较为稳定。本实施例中,记录地图的过程中自动割草机的任务执行模块保持关闭状态。
本发明的第三实施例中,自动割草机包括推杆,可拆卸的安装于自动割草机的壳体。记录地图时,移动站安装于自动割草机的壳体,推杆安装于自动割草机的壳体,用户操作推杆来推动自动割草机移动,从而记录工作区域的边界、障碍、通道等。同样的,自动割草机的任务执行模块保持关闭状态。
本发明的第四实施例中,自动割草机包括超声波装置,使得自动割草机可以跟随用户一定距离行走。记录地图时,移动站安装于自动割草机的壳体,用户沿工作区域的边界、或障碍、或通道等行走,自动割草机跟随用户移动,从而记录地图。同样的,自动割草机的任务执行模块保持关闭状态。这样做的好处是,在记录地图时自动割草机跟随用户移动,能够判断地图记录的位置是否准确,起到检查地图的作用。
本发明的第五实施例中,记录地图时,移动站与自动割草机分离,将移动站放置在可推行的小车上,例如,可以将移动站安装在某一手推设备上,用户推着小车行走,记录工作区域的边界、障碍、通道等。这样做的好处是移动站的运动平稳,可以启用惯导装置。
本发明的第一实施例中,移动站包括与用户的智能终端连接的第二接口。手机、平板等智能终端可以通过第二接口安装在移动站上。第二接口可以包括电性接口,使得智能终端安装在移动站上时实现与移动站的电连接。本实施例中,移动站通过通讯模块与智能终端无线通讯,无线通讯方式可以为wifi、蜂窝网络、蓝牙等。记录地图时,智能终端安装在移动站上,实时显示移动站记录的信息。本实施例中,移动站包括若干按钮,用于输入″记录地图″、″完成记录″等指令。在其他实施例中,移动站包括显示屏,代替智能终端显示实时信息。
本实施例中以充电站为地图的起点,自动割草机在充电站开始工作。记录充电站位置时,移动站安装于自动割草机,使自动割草机处于充电状态,或模拟自动割草机的充电状态,即完成了对接的状态,手动确认记录或通过充电信号确认记录充电站位置信息,充电站位置信息包括位置坐标,还包括自动割草机的姿态信息。自动割草机包括加速度传感器、电子罗盘等,记录充电站位置时,通过加速度传感器、电子罗盘等记录此时的自动割草机的方向、倾斜角等信息,以方便自动割草机回归时能准确对接。
本发明的第一实施例中,移动站包括地图生成模块,根据记录的位置坐标生成工作区域地图并保存地图。本实施例中,用户行走每形成一个封闭区域,就通过按钮输入生成地图指令,生成该封闭区域的地图信息。例如,用户记录工作区域的边界时,沿子工作区域的边界行走,沿子工作区域的边界行走一周后,生成该子工作区域的边界,然后开始记录下一个子工作区域的边界。同样的,用户记录障碍和通道时,沿障碍或通道行走形成一个封闭区域,生成对应封闭区域的地图信息,然后记录下一个封闭区域。在所生成的地图中,赋予所记录的封闭区域以特征属性。例如,若赋予所记录的封闭区域以边界属性,则自动割草机能够在该区域内工作,不能离开该区域。若赋予所记录的封闭区域以障碍属性,则自动割草机不能进入该区域。同时,障碍必须位于边界内,因此,其在边界外的部分将被舍弃。若赋予所记录的封闭区域以通道属性,则自动割草机能够进入该区域,但不能在该区域内进行割草工作。通道可以在边界内或边界外,若在边界外,则其用于连接两个相互分离的子工作区域,因此其必须和两个子工作区域都有交界,若在边界内,则其通常为非草坪的路面,因此也禁止自动割草机执行割草工作。
本实施例中,建立直角坐标系来生成地图。具体的,以开始记录时的第一个点作为坐标轴的(0,0)点,其对应的移动站输出的位置坐标为(x0,y0)。本实施例中,坐标轴的(0,0)点对应充电站的位置坐标。用户记录地图的过程中,移动站输出位置坐标(x1,y1),生成地图时将位置坐标(x1,y1)转换为(x1-x0,y1-y0),从而将卫星定位坐标系转换为直角坐标系。本实施例中,在直角坐标系的基础上生成栅格图。定义栅格精度,比如1mm,在直角坐标系中,X、Y轴分别以1mm为间隔打直线,从而形成栅格图。将记录的位置坐标转换为直角坐标系内的栅格。这样,记录地图的过程,就相当于在栅格图上打点的过程。在打点的同时,每个点还会记录一些其他信息,比如该点的差分GPS信号情况,该点的海拔,该点的定位误差等。边界、障碍、通道的生成均采用上述方法。
生成栅格图后,为栅格赋予格属性,格属性包括坐标,自动割草机能否覆盖该栅格,自动割草机是否经过该栅格,经过次数,差分GPS信号情况,定位误差,海拔,坡度,温度,湿度,阳光强度等。若栅格的格属性指示自动割草机不能覆盖该栅格,则自动割草机接近该栅格对应的位置时,控制模块控制自动割草机改变移动方式以远离该栅格对应的位置。若栅格的格属性指示自动割草机能够覆盖该栅格,则自动割草机每经过该栅格,该栅格的经过次数格属性就加一。
本实施例中,对地图进行偏移操作来消除定位误差。自动割草机工作时,移动站安装于自动割草机的壳体,输出自动割草机的当前位置坐标,自动割草机的定位中心与记录地图时移动站的定位中心有偏差,若不对该偏差进行校正,可能导致安全性问题。例如,当自动割草机移动至边界位置时,自动割草机的定位中心还在边界以内,则自动割草机将继续移动,导致自动割草机移动至边界以外。为了消除自动割草机的定位中心与记录地图时移动站的定位中心的偏差导致的定位误差,对地图进行偏移操作。判断自动割草机的定位中心与记录地图时移动站的定位中心的偏差距离D,将边界、障碍、通道等在地图上向工作区域内偏移距离D,即相当于边界、通道向内缩进距离D,障碍向外扩张距离D。边界、通道向内缩进的操作也称为地图腐蚀,障碍向外扩张的操作也称为地图膨胀。
记录地图时也存在定位误差,定位误差的大小与差分GPS信号情况相关,也就是与坐标点的精度等级相关。差分GPS信号良好时定位误差较小,差分GPS信号差时定位误差较大。对地图进行偏移操来消除定位误差时,首先根据不同位置的差分GPS信号情况评估该位置的定位误差,也称为误差评价,然后根据不同位置的误差评价调整地图的偏移量。偏移操作同样包括腐蚀和膨胀。
本实施例中,某一个工作区域的地图偏移后,该区域地图可以与其他区域的地图进行拼接。
完成偏移操作后,就完成了生成工作区域地图的步骤。
本实施例中,移动站还包括辅助定位装置,辅助定位装置包括计步器、激光雷达、摄像头、里程计、超声波等,惯性导航***也可以被认为是辅助定位装置。辅助定位装置用于在差分GPS信号差时配合差分GPS定位,使用辅助定位装置输出的修正值修正定位误差,使生成的地图精度更高。
本发明的第六实施例中,工作区域具有形状规则的边界,例如矩形边界,记录地图时,用户只需记录工作区域的顶点位置,生成地图时,通过将顶点连线得到边界。该方法同样适用于形状规则的通道和障碍等。该方法能够提高地图生成效率,并且避免了中间可能的差分GPS信号差的区域。
本发明的第一实施例中,差分GPS定位通过基站与移动站的通信来实现,为了使基站和移动站可靠、高效的为自动工作***提供导航数据,基站的设置包括几种方式。本实施例中,基站设置于充电站,由充电站供电。当然,在其他实施例中,基站也可以与充电站分离设置,基站可以由独立的能源供电,例如,可以利用太阳能、风能等供电形式。本实施例中,为保证基站位置卫星信号良好,安装充电站之前,用户先把自动割草机放到希望安装的位置,或将移动站从自动割草机上拆下后移动到希望安装的位置,开启定位,判断定位精度,确认定位精度高再固定充电站。基站上有声光电等装置用来反馈卫星信号状况,用来提示基站安装位置或接收质量是否合理。基站能够通过历史坐标对比判断是否有被遮挡等异常,若定位精度降低,说明基站可能被遮挡,基站发现异常后通过通讯模块向用户或自动割草机发送提示信息,或切换状态,等待恢复正常。
为了使基站和移动站可靠、高效的为自动工作***提供导航数据,还需保证基站与移动站之间的通讯可靠、高效。
如图4所示,本实施例中,基站通过GPS天线接收卫星信号,将采集的载波相位信息通过通讯模块发送给移动站,通讯模块包括电台和电台天线,也可以包括Sub-1G、wifi、2G/3G/4G/5G模块,移动站也通过GPS天线接收卫星信号,同时通过与基站对应的通讯模块接收基站采集的载波相位信号,从而解算出移动站相对基站的相对位置坐标,相对位置坐标包括经度、纬度,还可以包括海拔,精度可达厘米级。
本实施例中,移动站可选择与多个不同基站的其中一个通讯,例如,移动站可选择与第一基站或第二基站通讯。具体的,自动工作***包括多个基站,或者,位于一定区域范围内的不同自动工作***的基站可以实现通用。多个基站相互切换,当移动站与第一基站的通讯出现异常时,可以自动切换到与第二基站通讯。
本实施例中,还可以用星际增强***,来实现差分GPS导航。
本实施例中,基站与移动站的通讯还可以使用lora技术。
本实施例中,差分GPS定位基于基站固定在某一位置不动来实现,当基站移动时,移动站输出的位置坐标将发生偏差。为避免基站移动后,重新记录地图的麻烦,本实施例中,利用移动站来获得基站的移动位置,利用所获得的移动位置修正已生成的地图。参考图5和图6,修正地图的过程如下:1)基站17固定在A点,移动站15记录并生成地图;2)如图5(a),用户由于某种原因,如要在A点建一花坛,欲将基站17移动到另一位置B;3)如图5(b),将移动站15移动到B点,移动站15将B点位置坐标发送给基站17;4)如图5(c),基站17移动到位置B,基站17对自身位置进行修正,同时移动站15获知基站17位置的偏移量,根据偏移量修正地图。修正后的地图与修正前的地图重合,因此无需再记录地图。
本发明的第一实施例中,移动站包括路径生成模块,根据工作区域地图生成路径规划。首先,根据工作区域的边界、障碍、通道等,对工作区域进行分区,工作区域的划分使得自动割草机的覆盖更有效率。例如,划分由通道连接的两个子工作区域,自动割草机执行割草工作时,先在其中一个子工作区域中完成覆盖,再经由通道进入另一个子工作区域工作。这样,避免自动割草机往返通道两端造成的低效工作。又例如,将工作区域中被障碍隔开的两个部分划分为两个子区域,避免自动割草机频繁遇障碍。还可以根据边界形状,将边界形状规则的部分和不规则的部分划分为不同子区域,这样,可以令自动割草机在规则的子区域以规则路径覆盖,在不规则的子区域以随机路径覆盖。本实施例中,令相邻子区域具有重叠部分,避免相邻子区域之间的部分不能被覆盖到。本实施例中,根据电池包电量估算一次工作的区域面积来确定分区大小。本实施例中,还可以根据植物生长状况来分区,使得自动割草机在植物茂盛的区域的切割功率大、切割时间长,在植物稀疏的区域的切割功率小、切割时间短。本实施例中,还可以根据区域重要度来分区,例如将用户的前院和后院划分为不同子区域,使自动割草机以不同工作策略在前院和后院工作。当然,还可以根据障碍物多少等综合因素来分区。
完成区域划分后,对自动割草机在每个子区域内的路径进行规划。自动割草机在每个子区域内的预设路径可以为规则路径,例如平行路径、螺旋路径等,也可以为随机路径。
本实施例中,可以在同一子工作区域内规划不同的路径。如图7所示的子工作区域D,包括建筑物51,可以预知的是,在建筑物51附近的区域,由于受建筑物的遮挡,卫星信号差,导航模块的定位精度低,若令自动割草机以平行于建筑物51边缘的路径移动,则自动割草机在建筑物51附近移动时,导航模块将持续输出低精度信号,自动割草机可能无法按规划好的路径移动,或移动效率低。为了避免上述情况,可以将建筑物51边缘区域的路径规划为垂直于建筑物51的路径,这样,只有在自动割草机靠近建筑物51边缘时导航模块才输出低精度信号,当自动割草机远离建筑物51边缘时,导航模块输出高精度信号。自动割草机靠近建筑物51边缘时,卫星信号差,惯导装置的定位误差累积,定位精度逐渐降低,当自动割草机远离建筑物51边缘时,卫星信号恢复良好,可用于校正惯导误差,因此,采用这种路径移动能够保证导航模块在大部分情况下输出良好的定位信号。本实施例中,路径规划由路径生成模块自动生成,当然,也可以由用户根据工作区域的情况进行手动调整,也可以令自动割草机在移动过程中根据定位信号的精度实时调整,以图7所示的情况为例,自动割草机在移动过程中可以实时调整往复行走的方向。
如图8(a)、(b)所示,本实施例中,自动割草机遇障碍时的路径可以是绕障碍移动,也可以为折返。若遇障碍时绕障碍移动,则可以利用导航模块生成绕障碍的矢量图。
本实施例中,自动割草机在移动过程中,能够区分动态障碍与固定障碍。固定障碍为在工作区域中具有固定位置的障碍,通常为地图中已记录的障碍,若自动割草机移动过程中多次在同一位置遇到障碍,而地图中未记录该障碍,也可以判断其为新发现的固定障碍。动态障碍为出现在工作区域中的不固定位置的障碍,通常为自动割草机移动过程中临时遇到的障碍,在同一位置出现的频率低。动态障碍可能为出现在工作区域中的人、动物等。自动割草机根据障碍是否记录在地图中,或者根据在同一位置遇到障碍的频率,区分动态障碍与固定障碍,并采取不同的避障策略,避障策略包括绕障碍移动、折返等。
本实施例中,自动割草机移动过程中根据定位信号的情况调整移动范围。当自动割草机移动至定位信号差的位置时,缩小移动范围,在小范围内继续移动,或停止移动。
本实施例中,导航模块还包括陀螺仪,用于控制自动割草机沿直线移动。自动割草机沿预设路径移动时,组合使用陀螺仪和差分GPS定位信号进行导航。如图9所示,将预设路径分成多段,自动割草机开始移动时,确定移动方向,自动割草机在每一段上移动时,使用陀螺仪导航,陀螺仪用于控制自动割草机沿直线移动,防止自动割草机的移动方向发生偏移。自动割草机完成一段路径的移动后,使用差分GPS定位信号来校正移动方向。具体的,控制模块判断自动割草机的当前位置是否位于预设路径上,若自动割草机的当前位置偏离预设路径,则调整自动割草机的移动方向,使之回到预设路径上。自动割草机沿下一段路径移动时,再利用陀螺仪沿校正的方向直线移动。自动割草机移动过程中,若控制模块判断自动割草机的当前位置偏离预设路径的距离大于预设值,可以实时校正自动割草机的移动方向,还可以重新划线段。
如图10(b)所示,本实施例中,自动割草机沿平行路径移动,当自动割草机移动至边界时,转向向相反方向移动,转向时令自动割草机覆盖相邻平行路径之间的多个点F、G,以保证覆盖的完整性,避免直角转弯导致的边界附近的区域未覆盖到的问题(参考图10(a))。
本实施例中,自动割草机移动过程中,若基站与移动站的通讯发生异常,如通讯中断,或差分GPS信号差,导航模块持续输出低精度定位信号时,控制自动割草机调整移动方式。自动割草机调整移动方式包括,自动割草机切换工作状态,例如自动割草机切换为随机行走模式,或者回归充电站,或者进入搜索模式,搜索良好的卫星信号。自动割草机调整移动方式还包括令任务执行模块停止工作,或后退,或转向,或停机等。
本实施例中,路径生成模块还用于生成回归路径。以图11所示的工作区域为例,当前充电站2位于工作区域内。自动割草机1需要回归充电站2时,路径生成模块根据自动割草机1的当前位置信息和地图信息,计算自动割草机1到充电站2的最短路径,生成回归路径53,控制模块控制自动割草机1沿回归路径53移动,回归充电站2。最短路径的计算与充电站2的位置相关,还与工作区域中障碍分布、以及自动割草机1与充电站2之间是否存在通道相关。自动割草机1沿最短路径移动时,经过最少的栅格。本实施例中,控制模块记录自动割草机1的回归路径,当自动割草机1再次启动回归时,控制模块比较新生成的回归路径与前一次、或前若干次的回归路径,判断新生成的回归路径与前一次、或前若干次的回归路径是否存在重叠部分,若存在重叠部分,则修改回归路径,以避免回归路径重叠,例如,使回归路径的部分偏移一定距离等。采用上述方法,在自动割草机1回归充电站2时需要经过通道的情况下,可以有效避免从通道到充电站2的部分路径的重叠,从而避免自动割草机1多次沿同一段路径回归导致的对草坪的碾压损伤。
本发明的第七实施例中,路径生成模块生成回归路径的方法与第一实施例中的方法不同,如图12所示,地图生成模块生成地图后,路径生成模块根据生成的地图设定若干条回归路径53,当自动割草机1需要回归充电站2时,移动至其中一条回归路径53。具体的,控制模块判断自动割草机1到若干条回归路径53的最短距离,选择最近的一条回归路径53,控制自动割草机1沿最短距离路径移动至最近的回归路径53,并沿该回归路径53回归充电站2。当然,自动割草机1也可以随机移动至最近的回归路径53。或者,自动割草机1需要回归充电站2时,随机移动,当控制模块判断自动割草机1位于其中一条回归路径53上时,控制自动割草机1沿该回归路径53回归充电站2。采用上述方法,能够避免自动割草机1沿同一路径回归导致的对草坪的碾压损伤。可以理解的是,回归路径也可以在记录地图时由用户记录,具体的,用户手持移动站,从工作区域的不同位置向充电站移动,记录移动经过的位置,形成回归路径。
本发明的第八实施例中,路径生成模块生成回归路径的方法与第一实施例中的方法不同,如图13所示,自动割草机1需要回归充电站2时,先移动至边界200,沿边界200向充电站2所在位置移动,再移动至充电站2。具体的,路径生成模块根据自动割草机1的当前位置和边界200位置,判断边界200上与自动割草机1的距离最短的点,连接自动割草机1的当前位置与该点,形成第一段路径,根据该点位置和充电站2的位置,计算自动割草机1从该点沿边界200移动,再从边界200移动至充电站2正前方的最短路径,根据计算得到的最短路径生成第二段路径,拼接第一段路径与第二段路径生成回归路径53。本实施例中,当充电站2位于边界200上时,自动割草机1沿边界200移动能够直接移动至充电站2正前方,当充电站2不位于边界200上时,自动割草机1沿边界200移动至充电站2附近后,再移动至充电站2正前方。本实施例中,自动割草机1每次沿边界200移动的路径不同,具体的,使自动割草机1相对边界200以可变距离沿边界200移动,即自动割草机1每次回归,沿边界200移动时相对边界200的距离不同,这样可以避免自动割草机1以固定距离沿边界200回归导致的对草坪的碾压损伤。
本发明的第一实施例中,自动割草机1移动至充电站2正前方后,例如1m左右,开始对接过程,由于记录地图时记录了对接角度、倾斜角等,因此可以依靠这些信息,使自动割草机1以恒定的方向对接,减小对接误差。
本发明的第一实施例中,自动割草机还可以根据地图的面积和形状等特性自动确定工作时间计划,包括每个子区域的工作时间,各个子区域之间的工作顺序、每个子区域的覆盖次数等等。
本实施例中,可以利用差分GPS时钟替代时钟芯片。
本实施例中,利用导航模块与环境检测传感器组合解决安全问题,环境检测传感器包括台阶传感器、草地传感器、光学传感器、摄像头、雷达、超声波传感器、碰撞检测传感器等等。当环境检测传感器检测到异常环境时,利用导航模块记录当前位置以及对应的异常情况,记录在地图中,自动割草机移动至该位置时调整自动割草机的移动方式,避免发生安全事故。
本实施例中,地图和路径分别由移动站的地图生成模块和路径生成模块生成,可以理解的是,在其他实施例中,自动割草机的控制模块获取移动站记录的位置坐标,可以由控制模块生成地图和路径。
本发明的第九实施例中,充电站为无线充电站,自动割草机能够从任意方向接近充电站,进行对接。因此,依据自动割草机的当前位置和充电站的位置,能够方便的通过差分GPS导航引导自动割草机回归充电站,并与充电站对接。
示意性定位故障处理方法
如上所述,为了使自动割草机能够识别工作区域,又能够免去布边界线的麻烦,可以采用生成工作区域地图的方法,存储工作区域的边界坐标(称为地图),机器实时获取自身坐标,判断是否位于工作区域内。
其中,机器获取自身坐标的过程是:机器上安装有移动站,能够接收卫星定位信号,为了提高定位精度,安装一个固定的基站来提供定位修正信号。基站固定在工作区域内或外,接收卫星定位信号,生成定位修正信号,发送给移动站。
但是,自移动设备在工作过程中,由于各种原因,可能不能准确地定位自身所在位置。
这些异常原因可以分类为以下几类:
第一,移动站异常。移动站异常包括移动站损坏或移动站接收到的卫星信号弱,表现为两个方面:
首先,数据输出异常:如上所述,移动站中有一个GPS模块,用于接收卫星信号并输出坐标,GPS模块自带校验功能,能够判断数据输出是否发生异常。
其次,没有数据输出,这可以通过程序获知,因为没有接收到数据。
第二,基站异常。基站异常的原因包括基站的偏移、损坏,或基站被遮挡等。其中,基站的偏移指的是基站本来应该是固定不动的,但是工作过程中可能由于受到外来冲击(或者其它原因)导致移动。这里,基站也能够识别到自身的偏移、损坏或被遮挡,并用信号通知自移动设备。
第三,移动站和基站的通信异常。如上所述,移动站和基站之间的通信方式最常见的是电台(或者无线电)通信,当然也可以采用蜂窝网络/Wifi/蓝牙等通信方式。通信异常可能是由通讯模块损坏,或者信号被遮挡引起的。
图14为本发明的一实施例自移动设备的定位故障处理方法的示意性流程图。
如图14所示,在根据本实施例的自移动设备的定位故障处理方法中,所述自移动设备配置为基于对自移动设备的定位自主地在地图限定的工作区域内移动,所述定位故障处理方法包括:S510,接收来自卫星定位***的定位数据,以对自移动设备进行定位;S520,检测所述自移动设备是否发生定位故障;S530,响应于检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;S540,获取所述时间点的精确定位数据;以及S550,基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
如上所述,自移动设备可以通过上面提到的一些方式能够获知定位故障的发生。以差分GPS方法中的GPS接收站和GPS基站定位故障为例。对于GPS接收站定位故障,由于GPS接收站带有自检***,能够检测到天线接收的GPS数据、并检测电源***、计算***是否正常。如果不正常,会向外部控制***发送相应的定位故障信息。对于GPS基站定位故障,由于GPS基站带有自检***,能够检测天线接收的GPS数据、并检测电源***、计算***是否正常。如果不正常,会通过无线电***发出相应的定位故障信息。
此外,对于GPS基站和GPS接收站之间的通信定位故障,GPS基站和GPS接收站之间会采用无线网络通讯,比如868M、434M的无线电通讯。在通讯时,一般会采用心跳包技术,即GPS基站和GPS接收站会以固定频率,例如一秒一次发送固定信号,表示通讯正常。因此,当接收站收不到心跳包时,就认为通讯可能发生定位故障或者基站定位故障。
在检测到自移动设备发生定位故障之后,由于自移动设备就在发生定位故障前的时间点的定位数据仍然是精确的定位数据,通过获取该时间点的精确定位数据,就可以使用该精确定位数据对该自移动设备进行定位。这样,即使在自移动设备发生定位故障的情况下,仍然能够保证自移动设备准确地定位自身所在位置。
进一步地,如上所述,由于自移动设备的定位故障可能分为几个不同类型。因此,在本实施例的自移动设备的定位故障处理方法中,进一步基于定位故障类型,选择不同的预定定位故障处理策略来对自移动设备进行定位。
即,在本实施例的自移动设备的定位故障处理方法中,检测所述自移动设备是否发生定位故障包括:检测所述自移动设备的定位故障类型;以及,基于预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位包括:基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
下面,将具体描述如何根据不同类型的定位故障,选择预定定位故障处理策略以使用就在发生定位故障前的时间点的精确定位数据对自移动设备进行定位。
首先,针对基站定位故障或者基站与移动站之间的通讯定位故障,可以采用基于就在发生故障前的时间点接收到的定位修正数据的方案。
如上所述,基站的作用是为差分GPS***提供一个参考点,由于移动站/基站接收到的卫星定位信号会出现漂移,且基站本身是固定的,因此可以生成定位修正信号。
当基站出现异常或者移动站接收不到基站数据时,可以以异常出现前最后接收到的精确的定位修正数据来修正移动站的卫星定位数据,即,将异常出现前最后接收到的精确数据作为来自基站的定位修正数据。
下面,将对本实施例中的虚拟基站技术进行进一步说明。
如上所述,本实施例中移动站15通过移动站GPS天线接收卫星信号,卫星信号包括卫星角度、时钟等。
移动站15进一步包括数据存储单元和数据修正处理单元,所述数据存储单元用以存储虚拟基站数据和实时接收到的卫星数据,所述数据修正处理单元用以基于虚拟基站数据对实时接收到的卫星数据进行计算并修正,得到一个高精度定位数据。卫星信号接收器为全球定位***(GPS)接收器,接收全球导航卫星***(GNSS)的信号。GPS接收器可以与卫星群进行通信,从卫星接收指示GPS接收器实际位置的信号。数据修正处理单元将接收到的卫星信号进行处理,生成一个指示自动割草机1当前位置的信号,即第一位置信号,该处理过程是基于已知精确坐标的差分GPS基准对自动割草机的坐标进行修正的过程,得到的第一位置信号为差分GPS(D-GPS)信号。
现有技术中通过设置基站并利用基站实时获得的卫星信号对移动站接收的卫星信号进行修正处理。基站的目的是实时提供一些卫星的观测值,移动站通过自己的观测值,采用RTK技术计算定位数据。考虑到在短时间内,由于电离层、环境等的状态变化相对缓慢,认为在一个相对较短的时间内(估计一个小时内)的误差比较小,所以可以让机器在一个信号比较好的点采集卫星数据,同时把该点作为虚拟基站,把该点数据作为短时间基站数据来进行RTK计算,得到移动站的高精度定位。通过这种方式减少了传统RTK技术中的基站建设及通讯链路,成本大大降低。
在本实施例中,自移动设备就在发生定位故障前的时间点所在的位置是一个不会变的物理位置,因此将其作为一个虚拟基站点。
这样,自动割草机1在发生定位故障的情况下,将就在发生定位故障前的时间点接收到的卫星数据作为虚拟基站数据保存在移动站15中。自动割草机1在继续行进的过程中,将移动站15实时接收到的卫星数据和虚拟基站数据进行RTK计算,得到一个高精度定位数据。
另外,为了获得更加准确的定位数据,还可以在工作区域中设有至少一个固定标记点,这些标记可以采用RFID、霍尔传感器等方式,通过对该些固定标记点进行手动或自动标记,使其获得一个固定参考坐标(比如自移动设备就在发生定位故障前的时间点所在位置为(x0,y0)点的话,物理标记点就是(x,y1)点)。当自动割草机1走到该些物理标记点时,通过数据修正处理单元对这些坐标数据和当前的坐标数据进行修正,得到更高精度定位数据。
此外,移动站15还包括误差评估单元,因为由于电离层、环境等还是会缓慢变化,自动割草机1工作时间长后,定位精度会慢慢下降。所以,需要对定位精度有一个误差评估,该误差评估可以根据地理位置、定位工作时间、当时的实际时间等信息来评判。所述误差评估单元设有预定阀值,当误差评估超过预定阀值时,认为定位精度比较差。
因此,在本实施例的自移动设备的定位故障处理方法中,进一步包括:接收来自卫星定位***的基站的定位修正数据,以对自移动设备进行定位;所述获取所述时间点的精确定位数据包括:获取所述时间点的精确定位修正数据;以及,所述基于所述定位故障类型,选择预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
除了基于定位修正数据的定位故障处理策略以外,如上所述,自移动设备还包括除了卫星定位***,例如GPS***之外的导航定位***,例如惯性导航***。这里,惯性导航***用于利用已知的起始位置,结合自移动设备的运动参数(加速度、角度等),通过运算得到自移动设备走过的路径和转动的角度,从而得出自移动设备的当前位置。其通常包括里程计、或者加速度计、罗盘、陀螺仪等。
因此,在本实施例的自移动设备的定位故障处理方法中,可以利用惯性导航***,使用自移动设备就在发生定位故障前的时间点接收到的精确定位数据来对自移动设备进行定位。
具体来说,当自移动设备无法通过卫星定位***,例如差分GPS***获得精确定位的情况下,以自移动设备就在发生定位故障前的时间点所在的最后精确的位置坐标为起始点,结合惯性导航***的数据输出,计算自移动设备的当前位置坐标。
由于在本实施例的自移动设备中,惯性导航***实时融合卫星定位***进行定位,因此,在检测到自移动设备发生定位故障的情况下,增加惯性导航***的权重。当然,本领域技术人员可以理解,也可以增加惯性导航***的权重到1,即只使用惯性导航***而不使用卫星定位***进行定位。
此外,在本实施例的自移动设备中,除了惯性导航***,还可以采用其它定位***作为辅助定位***,例如,UWB(超宽带)定位***、电容检测***和图像识别***等。其中,UWB定位***通过架设若干个发射机,在自移动设备上放置一个接收机,实现精确定位。电容检测***根据接触面的湿度情况判断工作地面的情况,例如是否是草地。通过电容检测***,当GPS信号差的时候,可以保证自移动设备仍然在工作区域中,例如,保证割草机还能工作在草地中而不出边界。图像识别***是通过在自移动设备上装有若干个摄像头,来识别工作对象的情况,例如,工作对象是否是草地。当GPS信号差的时候,保证自移动设备仍然在工作区域中,例如,保证割草机还能工作在草地中而不出边界。
另外,在本实施例的自移动设备的定位故障处理方法中,卫星定位***以外的辅助定位***适用于任何自移动设备无法通过卫星定位***获得精确定位的情况。因此,既可以作为采用虚拟基站数据的预定定位故障处理策略的补充,也可以单独用作预定定位故障处理策略。
也就是说,在根据本实施例的自移动设备的定位故障处理方法中,基于预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
另外,在根据本实施例的自移动设备的定位故障处理方法中,所述辅助定位***包括惯性导航***;以所述精确定位数据校正所述惯性导航***,以对所述自移动设备进行定位包括:所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
并且,在根据本实施例的自移动设备的定位故障处理方法中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
如上所述,在本实施例的自移动设备中,基于定位故障的具体情况,其可能在一段时间之后自行修复,例如,自移动设备的移动站和基站之间的通讯因为信号干扰等在一段时间内存在故障,而在信号干扰消失之后通讯故障也就自行消失。因此,可以进一步设置定位故障消失的判定机制,以使得本实施例的自移动设备的定位故障处理方法可以适于处理定位故障的不同持续时间的情况。
因此,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;以及,响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
并且,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于所述定位故障未消失,控制所述自移动设备停机。
在以上方案中,对于使用定位修正数据的方案,自移动设备就在发生定位故障前的时间点所获得的定位数据的精度仅能够维持一段时间,也就是说,定位数据的精度会随着时间下降。并且,对于使用辅助定位***的方案来说,无论是惯性导航***还是其它辅助定位***,其输出的定位结果的误差也会随着时间累积,因此该方案也仅能够维持一段时间的高精度。
因此,在根据本实施例的定位故障处理方法中,优选地进一步设置自移动设备的容错机制,以对自移动设备的行为进行适应性的改变。
具体来说,当出现异常时,自移动设备对误差进行评估,主要评估两个因素。首先,估计自移动设备与工作区域的边界之间的距离,例如,根据自移动设备的当前位置与存储的边界,估计出距离为d。然后,估计误差范围,即计算根据当前定位结果的精度等级估计所得到的坐标位置与实际(精确)位置之间的距离d’。如果d’<d,那么自移动设备可以进行行走,而如果d’≥d,则自移动设备需要停机或者掉头,或者在小范围内继续行走(优选地,自移动设备在行走的同时尝试搜索信号)。
也就是说,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及,响应于d’≥d,控制所述自移动设备改变移动方式。
并且,在根据本实施例的自移动设备的定位故障处理方法中,控制所述自移动设备改变移动方式包括:控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
此外,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于d’<d,控制所述自移动设备继续移动。
另外,不管是哪种异常情况,用户都可以通过手机等终端设备接收到异常信号,从而及时对异常情况进行确认,并排除异常。例如,用户可以确认基站是否被移动,以及对损坏的部件进行维修等。
即,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
并且,为了方便用户处理定位故障,自移动设备可在检测到定位故障的情况下停机。
即,在根据本实施例的自移动设备的定位故障处理方法中,进一步包括:响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
示意性自移动设备和自动工作***
图15为一实施例的自移动设备的示意性框图。
如图15所示,根据本实施例的自移动设备600包括:移动站610,用于接收卫星定位***的定位数据和与基站通信;定位故障处理装置620,包括:定位故障检测单元621,用于检测所述自移动设备是否发生定位故障;时间点确定单元622,用于响应于所示定位故障检测单元621检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;数据获取单元623,用于获取所述时间点确定单元622所确定的时间点的精确定位数据;以及,定位故障处理单元624,用于基于预定定位故障处理策略使用所述数据获取单元623所获取的精确定位数据对所述自移动设备进行定位。
在一个示例中,在上述自移动设备600中,所述定位故障检测单元621用于检测所述自移动设备的定位故障类型;以及,所述定位故障处理单元624用于基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
在一个示例中,在上述自移动设备600中,所述移动站610用于接收来自卫星定位***的基站的定位修正数据,以对自移动设备进行定位;所述时间点确定单元622用于获取所述时间点的精确定位修正数据;以及,所述定位故障处理单元624用于基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
在一个示例中,在上述自移动设备600中,所述定位故障处理单元624用于:提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
在一个示例中,在上述自移动设备600中,所述辅助定位***包括惯性导航***;所述定位故障处理单元624用于:控制所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
在一个示例中,在上述自移动设备600中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
在一个示例中,在上述自移动设备600中,所述定位故障检测单元621用于响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;以及,所述定位故障处理单元624用于响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
在一个示例中,在上述自移动设备600中,所述定位故障处理单元624用于响应于所述定位故障未消失,控制所述自移动设备停机。
在一个示例中,在上述自移动设备600中,进一步包括容错控制单元,用于:响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及,响应于d’≥d,控制所述自移动设备改变移动方式。
在一个示例中,在上述自移动设备600中,所述容错控制单元用于:控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
在一个示例中,在上述自移动设备600中,所述容错控制单元进一步用于:响应于d’<d,控制所述自移动设备继续移动。
在一个示例中,在上述自移动设备600中,所述定位故障处理单元进一步用于:响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
在一个示例中,在上述自移动设备600中,进一步包括:确认接收单元,用于响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
这里,本领域技术人员可以理解,本实施例的自移动设备中的定位故障处理装置的其它细节与之前描述的实施例的自移动设备的定位故障处理方法中的相应细节完全相同,这里为了避免冗余便不再赘述。
本发明一实施例进一步涉及一种自动工作***,包括如上所述的自移动设备。
在上述自动工作***中,所述自移动设备是自动割草机。
在上述自动工作***中,所述自动工作***是自动割草机。
本发明一实施例进一步涉及一种电子设备,包括:存储器,用于存储计算机可执行指令;和,处理器,用于执行所述存储器存储的计算机可执行指令,以执行如上所述的自移动设备的定位故障处理方法。
本发明一实施例进一步涉及一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行如上所述的自移动设备的定位故障处理方法。
与现有技术相比,上述实施例有益效果是:通过基于预定定位故障处理策略使用就在发生定位故障前的时间点的精确定位数据对所述自移动设备进行定位,可以保证自动工作***准确地定位自身所在位置。
示例性电子设备
下面,参考图16来描述根据本发明一实施例的电子设备。该电子设备可以是在自移动设备的移动站中集成的电子设备,或者与该移动站独立的单机设备,该单机设备可以与移动站进行通信,以实现根据上述实施例的自移动设备的定位故障处理方法。
图16为本实施例的电子设备的示意性框图。
如图16所示,电子设备700包括一个或多个处理器710和存储器720。
处理器710可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备700中的其他组件以执行期望的功能。
存储器720可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器710可以运行所述程序指令,以实现上文所述的本发明的各个实施例的自移动设备的定位故障处理方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如故障类型、预定故障处理策略等各种内容。
在一个示例中,电子设备700还可以包括输入装置730和输出装置740,这些组件通过总线***和/或其他形式的连接机构(未示出)互连。
例如,该输入装置730可以是用于接收用户输入。
该输出装置740可以直接向外部输出各种信息,或者控制移动站发送信号。
当然,为了简化,图16中仅示出了该电子设备700中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备700还可以包括任何其他适当的组件。
示例性计算机程序产品和计算机可读存储介质
除了上述方法和设备以外,本申请的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性定位故障处理方法”部分中描述的根据本发明各种实施例的自移动设备的定位故障处理方法中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本发明各种实施例的自移动设备的定位故障处理方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、***的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、***。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (29)

1.一种自移动设备的定位故障处理方法,所述自移动设备配置为,基于对自移动设备的定位自主地在地图限定的工作区域内移动,包括:
接收来自卫星定位***的定位数据,以对自移动设备进行定位;
检测所述自移动设备是否发生定位故障,以及,响应于检测到所述自移动设备发生定位故障,检测所述自移动设备的定位故障类型;
响应于检测到所述自移动设备发生定位故障,确定所述自移动设备在发生定位故障前的时间点;
获取所述时间点的精确定位数据;以及
基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
2.如权利要求1所述的自移动设备的定位故障处理方法,进一步包括:
接收来自基站的定位修正数据,以对自移动设备进行定位;
所述获取所述时间点的精确定位数据包括:
获取所述时间点的精确定位修正数据;以及
所述基于所述定位故障类型,选择预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:
基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
3.如权利要求1所述的自移动设备的定位故障处理方法,其中,基于预定定位故障处理策略以使用所述精确定位数据对所述自移动设备进行定位包括:
提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
4.如权利要求3所述的自移动设备的定位故障处理方法,其中,所述辅助定位***包括惯性导航***;
以所述精确定位数据校正所述惯性导航***,以对所述自移动设备进行定位包括:
所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
5.如权利要求3所述的自移动设备的定位故障处理方法,其中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
6.如权利要求1所述的自移动设备的定位故障处理方法,进一步包括:
响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;
响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
7.如权利要求6所述的自移动设备的定位故障处理方法,进一步包括:
响应于所述定位故障未消失,控制所述自移动设备停机。
8.如权利要求1所述的自移动设备的定位故障处理方法,进一步包括:
响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;
基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及
响应于d’≥d,控制所述自移动设备改变移动方式。
9.如权利要求8,其中,控制所述自移动设备改变移动方式包括:
控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
10.如权利要求8所述的自移动设备的定位故障处理方法,进一步包括:
响应于d’<d,控制所述自移动设备继续移动。
11.如权利要求1到10中任意一项所述的自移动设备的定位故障处理方法,进一步包括:
响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
12.如权利要求1到10中任意一项所述的自移动设备的定位故障处理方法,进一步包括:
响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
13.一种自移动设备,包括:
移动站,用于接收卫星定位***的定位数据和与基站通信;
定位故障处理装置,包括:
定位故障检测单元,用于检测所述自移动设备是否发生定位故障,以及,响应于检测到所述自移动设备发生定位故障,检测所述自移动设备的定位故障类型;
时间点确定单元,用于响应于检测到所述自移动设备发生定位故障,确定所述自移动设备就在发生定位故障前的时间点;
数据获取单元,用于获取所述时间点的精确定位数据;以及
定位故障处理单元,用于基于所述定位故障类型,选择预定定位故障处理策略使用所述精确定位数据对所述自移动设备进行定位。
14.如权利要求13所述的自移动设备,其中,
所述移动站用于接收来自基站的定位修正数据,以对自移动设备进行定位;
所述时间点确定单元用于获取所述时间点的精确定位修正数据;以及
所述定位故障处理单元用于基于所述定位故障类型是所述自移动设备无法从所述基站接收到信号的定位故障,使用所述精确定位修正数据作为定位修正数据,以对所述自移动设备进行定位。
15.如权利要求13所述的自移动设备,其中,所述定位故障处理单元用于:
提供卫星定位***以外的辅助定位***,以所述精确定位数据校正所述辅助定位***,以对所述自移动设备进行定位。
16.如权利要求15所述的自移动设备,其中,所述辅助定位***包括惯性导航***;
所述定位故障处理单元用于:
控制所述惯性导航***使用所述精确定位数据作为起始位置坐标,计算所述自移动设备的当前位置坐标,以对所述自移动设备进行定位。
17.如权利要求15所述的自移动设备,其中,所述辅助定位***是超宽带定位***、电容检测***和图像识别***中的至少一个。
18.如权利要求13所述的自移动设备,其中,
所述定位故障检测单元用于响应于检测到所述自移动设备发生定位故障,在预定时间之后检测所述定位故障是否消失;以及
所述定位故障处理单元用于响应于所述定位故障消失,控制所述自移动设备恢复正常操作。
19.如权利要求18所述的自移动设备,其中,
所述定位故障处理单元用于响应于所述定位故障未消失,控制所述自移动设备停机。
20.如权利要求13所述的自移动设备,进一步包括容错控制单元,用于:
响应于检测到所述自移动设备发生定位故障,估计所述自移动设备的当前位置与所述自移动设备的工作区域的边界之间的距离d;
基于当前定位结果的质量估计所述自移动设备的当前位置与实际位置之间的距离d’;以及
响应于d’≥d,控制所述自移动设备改变移动方式。
21.如权利要求20所述的自移动设备,其中,所述容错控制单元用于:
控制所述自移动设备停止移动或者反转移动方向或者在小范围内移动。
22.如权利要求20所述的自移动设备,其中,所述容错控制单元进一步用于:
响应于d’<d,控制所述自移动设备继续移动。
23.如权利要求13到22中任意一项所述的自移动设备,其中,所述定位故障处理单元进一步用于:
响应于检测到所述自移动设备发生定位故障,控制所述自移动设备停止移动。
24.如权利要求13到22中任意一项所述的自移动设备,进一步包括:
确认接收单元,用于响应于检测到所述自移动设备发生定位故障,接收来自用户的定位故障确认信息。
25.一种自动工作***,包括如权利要求13到24中任意一项所述的自移动设备。
26.如权利要求25所述的自动工作***,其中,所述自移动设备是自动割草机。
27.如权利要求25所述的自动工作***,其中,所述自动工作***是自动割草机。
28.一种电子设备,包括:
存储器,用于存储计算机可执行指令;和
处理器,用于执行所述存储器存储的计算机可执行指令,以执行如权利要求1到12中任意一项所述的自移动设备的定位故障处理方法。
29.一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行如权利要求1到12中任意一项所述的自移动设备的定位故障处理方法。
CN201711351308.0A 2016-12-15 2017-12-15 自移动设备的定位故障处理方法、装置和电子设备 Active CN108226965B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016111574259 2016-12-15
CN201611157425 2016-12-15

Publications (2)

Publication Number Publication Date
CN108226965A CN108226965A (zh) 2018-06-29
CN108226965B true CN108226965B (zh) 2022-01-18

Family

ID=62557996

Family Applications (12)

Application Number Title Priority Date Filing Date
CN201711352740.1A Pending CN108228741A (zh) 2016-12-15 2017-12-15 自动工作***的地图生成方法、装置和自动工作***
CN201711354214.9A Pending CN108226859A (zh) 2016-12-15 2017-12-15 自动工作***状态检测方法、移动站及基站
CN201711350541.7A Pending CN108228739A (zh) 2016-12-15 2017-12-15 自动工作***的地图生成方法、装置和自动工作***
CN201711350543.6A Active CN108226972B (zh) 2016-12-15 2017-12-15 基于差分定位技术的位置信息处理方法和移动站
CN201711354782.9A Active CN108267752B (zh) 2016-12-15 2017-12-15 自移动设备的工作区域的分区方法、装置和电子设备
CN201711351308.0A Active CN108226965B (zh) 2016-12-15 2017-12-15 自移动设备的定位故障处理方法、装置和电子设备
CN201711351307.6A Active CN108226964B (zh) 2016-12-15 2017-12-15 自移动设备及其定位故障报警方法和自动工作***
CN201721763342.4U Active CN207799086U (zh) 2016-12-15 2017-12-15 基于差分定位技术的基站和自动工作***
CN201711354772.5A Active CN108398944B (zh) 2016-12-15 2017-12-15 自移动设备的作业方法、自移动设备、存储器和服务器
CN201711351232.1A Pending CN108227704A (zh) 2016-12-15 2017-12-15 自移动设备及其移动方法、存储介质和服务器
CN201711354787.1A Active CN108227705B (zh) 2016-12-15 2017-12-15 自移动设备的回归方法、自移动设备、存储介质和服务器
CN202110290640.0A Active CN113110416B (zh) 2016-12-15 2017-12-15 自移动设备的作业方法、自移动设备、存储器和服务器

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN201711352740.1A Pending CN108228741A (zh) 2016-12-15 2017-12-15 自动工作***的地图生成方法、装置和自动工作***
CN201711354214.9A Pending CN108226859A (zh) 2016-12-15 2017-12-15 自动工作***状态检测方法、移动站及基站
CN201711350541.7A Pending CN108228739A (zh) 2016-12-15 2017-12-15 自动工作***的地图生成方法、装置和自动工作***
CN201711350543.6A Active CN108226972B (zh) 2016-12-15 2017-12-15 基于差分定位技术的位置信息处理方法和移动站
CN201711354782.9A Active CN108267752B (zh) 2016-12-15 2017-12-15 自移动设备的工作区域的分区方法、装置和电子设备

Family Applications After (6)

Application Number Title Priority Date Filing Date
CN201711351307.6A Active CN108226964B (zh) 2016-12-15 2017-12-15 自移动设备及其定位故障报警方法和自动工作***
CN201721763342.4U Active CN207799086U (zh) 2016-12-15 2017-12-15 基于差分定位技术的基站和自动工作***
CN201711354772.5A Active CN108398944B (zh) 2016-12-15 2017-12-15 自移动设备的作业方法、自移动设备、存储器和服务器
CN201711351232.1A Pending CN108227704A (zh) 2016-12-15 2017-12-15 自移动设备及其移动方法、存储介质和服务器
CN201711354787.1A Active CN108227705B (zh) 2016-12-15 2017-12-15 自移动设备的回归方法、自移动设备、存储介质和服务器
CN202110290640.0A Active CN113110416B (zh) 2016-12-15 2017-12-15 自移动设备的作业方法、自移动设备、存储器和服务器

Country Status (4)

Country Link
US (2) US20190346848A1 (zh)
EP (3) EP4276645A3 (zh)
CN (12) CN108228741A (zh)
WO (2) WO2018108180A1 (zh)

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687511B2 (ja) * 2016-12-28 2020-04-22 本田技研工業株式会社 制御装置、監視装置及び制御用プログラム
SE540576C2 (en) * 2017-04-25 2018-10-02 Husqvarna Ab Compensating for stray capacitances for a robotic lawnmower
EP3633410A4 (en) 2017-05-26 2021-01-20 Positec Power Tools (Suzhou) Co., Ltd POSITIONING DEVICE AND METHOD AS WELL AS AUTOMATIC MOVING DEVICE
DE102017220023A1 (de) * 2017-11-10 2019-05-16 Continental Teves Ag & Co. Ohg Fahrzeug-zu-X-Kommunikationssystem
GB201802074D0 (en) * 2017-11-13 2018-03-28 Living Map Ltd Positioning correction
CN110312418B (zh) * 2017-11-16 2022-05-10 南京泉峰科技有限公司 智能割草***
CA3079525A1 (en) * 2017-11-20 2019-05-23 The Toro Company System and method for operating an autonomous robotic working machine within a travelling containment zone
JP6877330B2 (ja) 2017-12-27 2021-05-26 株式会社クボタ 自律走行型作業機のための作業領域決定システム、自律走行型作業機、および、作業領域決定プログラム
JP6634100B2 (ja) * 2018-01-12 2020-01-22 本田技研工業株式会社 走行軌道決定装置及び自動運転装置
WO2019194631A1 (ko) * 2018-04-06 2019-10-10 엘지전자 주식회사 이동로봇과 이동로봇의 제어방법
CN109116398A (zh) * 2018-07-10 2019-01-01 北京木业邦科技有限公司 作业数据获取方法、装置、电子设备及存储介质
CN110850858B (zh) * 2018-07-27 2024-04-26 宝时得科技(中国)有限公司 自移动设备和自移动设备的工作方法
KR102242714B1 (ko) 2018-08-03 2021-04-22 엘지전자 주식회사 이동 로봇 및 그 제어방법, 이동 로봇 시스템
KR102292263B1 (ko) 2018-08-03 2021-08-24 엘지전자 주식회사 이동 로봇, 이동 로봇 시스템 및 이동 로봇의 충전대 이동 방법
KR102242713B1 (ko) 2018-08-03 2021-04-22 엘지전자 주식회사 이동 로봇 및 그 제어방법, 및 단말기
KR102266713B1 (ko) 2018-08-03 2021-06-21 엘지전자 주식회사 이동 로봇, 이동 로봇 시스템 및 이동 로봇 시스템의 제어 방법
US11960278B2 (en) 2018-08-05 2024-04-16 Lg Electronics Inc. Moving robot and controlling method thereof
KR102238352B1 (ko) 2018-08-05 2021-04-09 엘지전자 주식회사 스테이션 장치 및 이동 로봇 시스템
CN110160541B (zh) 2018-08-06 2022-02-22 腾讯大地通途(北京)科技有限公司 运动轨迹的重构方法和装置、存储介质、电子装置
CN109240284B (zh) * 2018-08-10 2021-06-22 江苏大学 一种无人驾驶农机的自主路径规划方法及装置
CN110888420A (zh) * 2018-08-17 2020-03-17 苏州宝时得电动工具有限公司 行走校正方法、智能移动设备、电子设备和存储介质
CN109085835A (zh) * 2018-08-28 2018-12-25 扬州方棱机械有限公司 一种生成割草工作区域虚拟边界的方法
CN109211239B (zh) * 2018-08-30 2022-09-16 中体彩科技发展有限公司 一种关联产品定位***
CN109062225A (zh) * 2018-09-10 2018-12-21 扬州方棱机械有限公司 基于数字地图的割草机器人及其生成虚拟边界的方法
CN109032147A (zh) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 基于卫星定位信号生成割草机器人虚拟边界的方法
CN108983792A (zh) * 2018-09-10 2018-12-11 扬州方棱机械有限公司 基于测距传感器生成割草机器人虚拟边界的方法
CN109389656A (zh) * 2018-10-23 2019-02-26 泰华智慧产业集团股份有限公司 在移动端地图上绘制区域的方法及***
CN111158356B (zh) * 2018-11-08 2021-08-10 苏州宝时得电动工具有限公司 自动割草机及其控制方法
CN111240309A (zh) * 2018-11-12 2020-06-05 北京奇虎科技有限公司 扫地机器人执行清扫工作的方法、装置及电子设备
CN109459777B (zh) * 2018-11-21 2021-08-17 北京木业邦科技有限公司 一种机器人、机器人定位方法及其存储介质
CN111308994B (zh) * 2018-11-23 2023-07-25 苏州科瓴精密机械科技有限公司 机器人控制方法以及机器人***
CN111338332B (zh) * 2018-11-30 2022-03-18 宝时得科技(中国)有限公司 自动行走设备、其避障方法及装置
WO2020120601A1 (en) * 2018-12-12 2020-06-18 Nordluft Automation Ab Controlling movement of an autonomous device
CN111321695B (zh) * 2018-12-13 2021-10-15 苏州宝时得电动工具有限公司 智能扫雪机抛雪筒自动转向的控制方法及智能扫雪机
CN109597099B (zh) * 2018-12-26 2022-04-01 上海司南卫星导航技术股份有限公司 判断基准站接收机是否移动的方法、oem板卡及接收机
CN111435247A (zh) * 2018-12-26 2020-07-21 沈阳新松机器人自动化股份有限公司 一种机器人的控制方法、控制***及清洁机器人
CN109491397B (zh) * 2019-01-14 2021-07-30 傲基科技股份有限公司 割草机器人及其割草区域划定方法
CN109634285B (zh) * 2019-01-14 2022-03-11 傲基科技股份有限公司 割草机器人及其控制方法
CN110794821B (zh) * 2019-01-25 2022-05-27 长城汽车股份有限公司 车载控制装置、场端定位装置、车辆控制***及车辆
CN109752745B (zh) * 2019-01-28 2021-10-26 Oppo广东移动通信有限公司 分体式设备定位方法、装置、分体式设备及存储介质
JP7116432B2 (ja) * 2019-01-29 2022-08-10 ヤンマーパワーテクノロジー株式会社 自律走行システム
CN109828565B (zh) * 2019-01-30 2022-04-05 宁波大叶园林设备股份有限公司 一种自移动设备回归路径的控制方法
WO2020155862A1 (zh) * 2019-02-02 2020-08-06 苏州宝时得电动工具有限公司 自移动设备的工作方法及装置、自移动设备
CN109782770B (zh) * 2019-02-02 2022-06-21 南京航空航天大学 一种割草机自主充电的方法
CN111580096B (zh) * 2019-02-18 2022-09-30 杭州海康威视数字技术股份有限公司 一种防区绘制方法及装置
CN111645727A (zh) * 2019-03-04 2020-09-11 比亚迪股份有限公司 列车及其定位方法和装置
CN109798900A (zh) * 2019-03-08 2019-05-24 珠海格力电器股份有限公司 空气传感器的室内定位方法、装置和空气传感器
CN109870714B (zh) * 2019-03-12 2023-05-16 腾讯科技(深圳)有限公司 传输信息的方法、传输装置、定位服务器及移动终端
US11558846B2 (en) * 2019-03-28 2023-01-17 Qualcomm Incorporated System and methods for support of secure base station almanac data in a wireless network
CN111756124B (zh) * 2019-03-29 2022-04-15 苏州宝时得电动工具有限公司 自动行走设备及其控制方法、无线充电装置及其控制方法
CN109933073B (zh) * 2019-04-01 2020-12-01 珠海市一微半导体有限公司 一种机器人回座代码的自动生成方法
CN110058590A (zh) * 2019-04-08 2019-07-26 浙江亚特电器有限公司 用于智能割草机的碰撞处理方法
IL266185B (en) * 2019-04-23 2022-07-01 Oriient New Media Ltd Route mapping tool in an indoor location
NL2023068B1 (en) * 2019-05-03 2020-11-30 Prodrive Tech Bv System and method for positioning a mobile assembly
US11212954B2 (en) 2019-05-08 2022-01-04 Deere & Company Apparatus and methods for field operations based on historical field operation data
CN110347153A (zh) * 2019-06-26 2019-10-18 深圳拓邦股份有限公司 一种边界识别方法、***及移动机器人
CN112148813A (zh) * 2019-06-27 2020-12-29 深圳拓邦股份有限公司 一种随机式割草机分区方法及随机式割草机
CN112147886A (zh) * 2019-06-27 2020-12-29 深圳拓邦股份有限公司 一种割草机***边界信号的自适应方法及割草机***
IT201900010641A1 (it) * 2019-07-02 2021-01-02 Stiga S P A In Breve Anche St S P A Metodo di mappatura di un’area di lavoro per un dispositivo mobile e metodo di funzionamento di tale dispositivo mobile in tale area di lavoro
CN111123325A (zh) * 2019-07-10 2020-05-08 广东星舆科技有限公司 导航方法及导航设备
WO2021008721A1 (de) * 2019-07-15 2021-01-21 Sew-Eurodrive Gmbh & Co. Kg Verfahren zum betreiben eines mobilen systems und eines alarm-gateways als teilnehmer in einem drahtlosen netzwerk
CN110389364B (zh) * 2019-07-31 2022-05-10 广州市中海达测绘仪器有限公司 定位方法、装置、计算机设备和存储介质
WO2021023227A1 (zh) * 2019-08-05 2021-02-11 苏州宝时得电动工具有限公司 一种自动工作***
AU2020335938A1 (en) 2019-08-29 2022-04-21 Piper Networks, Inc. Enhanced transit location systems and methods
CN112445221B (zh) * 2019-09-04 2023-11-03 宝时得科技(中国)有限公司 自动工作***及回归方法
EP4028304A4 (en) 2019-09-09 2024-04-10 Piper Networks, Inc. IMPROVED TRANSLOCATION SYSTEMS AND METHODS
IT201900016934A1 (it) 2019-09-23 2021-03-23 Fabrizio Bernini Robot tagliaerba
CN110764499A (zh) * 2019-09-27 2020-02-07 南京航空航天大学 一种确保割草机直线行走的装置及其方法
CN112578779A (zh) * 2019-09-29 2021-03-30 苏州宝时得电动工具有限公司 地图建立方法、自移动设备、自动工作***
CN112578780A (zh) * 2019-09-29 2021-03-30 苏州宝时得电动工具有限公司 自移动设备及其控制方法、自动工作***
CN112650206A (zh) * 2019-10-10 2021-04-13 苏州宝时得电动工具有限公司 智能割草机行走的控制方法及智能割草机
TWI752366B (zh) * 2019-10-29 2022-01-11 優式機器人股份有限公司 位移處理方法及模組與除草裝置
CN112857368B (zh) * 2019-11-12 2024-04-09 苏州宝时得电动工具有限公司 一种割草机导航方法、装置和割草机
CN112824937B (zh) * 2019-11-20 2024-05-28 苏州宝时得电动工具有限公司 一种路线生成方法、装置和割草机
EP3828658B1 (de) 2019-11-27 2022-07-13 Andreas Stihl AG & Co. KG Verfahren zum bestimmen einer roboter-position eines autonomen mobilen grünflächenbearbeitungsroboters auf einer zu bearbeitenden fläche, verfahren zum betreiben eines autonomen mobilen grünflächenbearbeitungsroboters auf einer zu bearbeitenden fläche und grünflächenbearbeitungssystem
WO2021114984A1 (zh) * 2019-12-09 2021-06-17 苏州宝时得电动工具有限公司 一种地图数据发送、显示方法、装置、设备及存储介质
CN113064417B (zh) * 2019-12-13 2022-11-15 苏州宝时得电动工具有限公司 自移动设备及其工作方法
US20230115421A1 (en) * 2019-12-13 2023-04-13 Postiec Power Tools (Suzhou) Co.,Ltd. Self-moving device and working method therefor
CN113064413B (zh) * 2019-12-31 2023-04-07 速感科技(北京)有限公司 封闭空间的地图处理方法、装置和可移动设备
CN111152219B (zh) * 2019-12-31 2021-12-17 深圳优地科技有限公司 一种机器人状态的监控方法及机器人状态的监控设备
CN111103886B (zh) * 2020-01-02 2024-05-03 深圳拓邦股份有限公司 通行窄道的识别方法、装置、设备及计算机可读存储介质
CN113068501A (zh) * 2020-01-06 2021-07-06 苏州宝时得电动工具有限公司 一种智能割草机
SE543944C2 (en) * 2020-03-03 2021-09-28 Husqvarna Ab Robotic work tool system and method for defining a stay-out area within a work area
CN113359695A (zh) * 2020-03-06 2021-09-07 苏州宝时得电动工具有限公司 自移动设备的工作方法和自动工作***
CN113391337A (zh) * 2020-03-12 2021-09-14 广东博智林机器人有限公司 搬运设备定位***和方法
SE543954C2 (en) * 2020-03-18 2021-10-05 Husqvarna Ab Robotic work tool system and method comprising a base rtk unit, a mobile rtk unit and an auxiliary rtk unit
CN113495552A (zh) * 2020-03-19 2021-10-12 苏州科瓴精密机械科技有限公司 自动工作***、自动行走设备及其控制方法及计算机可读存储介质
JP6951494B2 (ja) * 2020-03-26 2021-10-20 日立建機株式会社 作業車両
CN113448327B (zh) * 2020-03-27 2023-08-15 南京苏美达智能技术有限公司 一种自动行走设备的运行控制方法及自动行走设备
JP7288416B2 (ja) * 2020-03-27 2023-06-07 本田技研工業株式会社 自律作業システム、自律作業設定方法、およびプログラム
CN113515113B (zh) * 2020-03-27 2023-08-08 南京苏美达智能技术有限公司 一种自动行走设备的运行控制方法及自动行走设备
SE2050386A1 (en) * 2020-04-06 2021-10-05 Husqvarna Ab Navigation for a robotic work tool based on a classifier associated with an area
CN113534826B (zh) * 2020-04-15 2024-02-23 苏州宝时得电动工具有限公司 自移动设备的姿态控制方法、装置及存储介质
CN113556679A (zh) * 2020-04-24 2021-10-26 苏州科瓴精密机械科技有限公司 自移动机器人工作区域虚拟边界的生成方法、***、自移动机器人及可读存储介质
CN111557622B (zh) * 2020-04-30 2021-10-26 深圳拓邦股份有限公司 清扫路径生成方法及装置、计算机装置及存储装置
CN113625701A (zh) * 2020-05-09 2021-11-09 苏州宝时得电动工具有限公司 一种割草机器人路径规划方法及割草机器人
CN212969077U (zh) * 2020-05-26 2021-04-13 纳恩博(北京)科技有限公司 充电桩
BE1028355B1 (fr) * 2020-05-28 2022-01-11 Yamabiko Europe Robot mobile et méthode de limitation spatiale d’un déplacement d’un robot mobile
SE545728C2 (en) * 2020-06-02 2023-12-19 Husqvarna Ab Method of providing a position estimate of a robotic tool, a robotic tool, and a robotic tool system
US11971719B2 (en) 2020-06-04 2024-04-30 Firefly Automatix, Inc. Performing low profile object detection on a mower
CN113740892B (zh) * 2020-06-05 2024-03-01 北京沃东天骏信息技术有限公司 用户的路线引导方法、装置和***
CA3188303A1 (en) * 2020-06-26 2021-12-30 Piper Networks, Inc. Multi-sensor vehicle positioning system employing shared data protocol
CN113899376B (zh) * 2020-07-06 2023-10-20 苏州宝时得电动工具有限公司 自移动设备地图生成方法、***和自动工作***
CN111796598A (zh) * 2020-07-16 2020-10-20 苏州科瓴精密机械科技有限公司 自动行走设备及其控制方法和***及存储介质
CN114200916A (zh) * 2020-08-26 2022-03-18 深圳市杉川机器人有限公司 一种自移动设备及回归充电站的方法
CN114111780A (zh) * 2020-08-26 2022-03-01 深圳市杉川机器人有限公司 一种定位误差校正方法、装置、自移动设备及***
CN112099494B (zh) * 2020-09-02 2021-09-07 西安交通大学 一种面向全地形车及其自动检测楼梯与攀爬方法
CN111966109B (zh) * 2020-09-07 2021-08-17 中国南方电网有限责任公司超高压输电公司天生桥局 基于柔性直流换流站阀厅的巡检机器人定位方法及装置
EP3968051A1 (en) * 2020-09-15 2022-03-16 Infineon Technologies AG Guiding system for a robot, base station including such a guiding system, and method for guiding a robot
DE102020211960A1 (de) * 2020-09-24 2022-03-24 Ford Global Technologies, Llc Kartierung eines befahrbaren Bereiches
CN114339843B (zh) * 2020-09-27 2023-08-15 ***通信集团浙江有限公司 一种基于网络覆盖的锚点问题识别方法和装置
EP3979029A1 (en) 2020-09-30 2022-04-06 Carnegie Robotics, LLC Systems and methods for enabling navigation in environments with dynamic objects
CN112435477B (zh) * 2020-10-10 2022-05-27 北京无线电计量测试研究所 一种路侧智能停车识别巡检装置及巡检方法
CN114375676B (zh) * 2020-10-16 2023-04-21 南京泉峰科技有限公司 自移动设备及其控制方法和自移动工作***
CN112486173B (zh) * 2020-12-01 2023-08-08 南京苏美达智能技术有限公司 一种自行走设备作业边界获取方法和自行走设备
CN112651775B (zh) * 2020-12-22 2024-02-27 北京彩智科技有限公司 一种确定地理辐射范围的方法、装置及电子设备
CN112731934B (zh) * 2020-12-23 2023-10-03 南京苏美达智能技术有限公司 基于区域分割的智能割草机快速回充电站的方法
CN112720443A (zh) * 2020-12-23 2021-04-30 中国计量大学 一种巡检机器人及其控制装置和巡检方法
CN114756014A (zh) * 2020-12-26 2022-07-15 莱克电气绿能科技(苏州)有限公司 回归控制方法、自动行走设备以及自动行走***
CN112733346B (zh) * 2020-12-31 2022-08-09 博迈科海洋工程股份有限公司 一种电气操作间宜人化区域规划方法
CN112797986B (zh) * 2021-02-07 2023-03-31 江西省智能产业技术创新研究院 基于无人自主技术的智能物流机器人定位***及方法
US11906952B2 (en) * 2021-02-19 2024-02-20 Joy Global Surface Mining Inc System and method for operating a mining machine with respect to a geofence using a dynamic operation zone
US20220269283A1 (en) * 2021-02-19 2022-08-25 Joy Global Surface Mining Inc System and method for operating a mining machine with respect to a geofence using nested operation zones
US20220305658A1 (en) * 2021-03-29 2022-09-29 Husqvarna Ab Operation for a Robotic Work Tool
CN113129472B (zh) * 2021-04-20 2023-07-25 树根互联股份有限公司 工况数据处理方法、装置、终端设备和可读存储介质
CN115328108B (zh) * 2021-04-23 2024-06-18 南京泉峰科技有限公司 智能割草设备及其运行控制方法
CN115342804A (zh) * 2021-05-14 2022-11-15 苏州宝时得电动工具有限公司 一种生成工作地图的方法、装置和自移动设备
CN115378790A (zh) * 2021-05-20 2022-11-22 ***通信集团辽宁有限公司 故障预警方法、装置、电子设备和存储介质
CN115480559A (zh) * 2021-05-31 2022-12-16 苏州宝时得电动工具有限公司 自移动设备及躲避障碍的控制方法、存储介质
SE545372C2 (en) * 2021-06-11 2023-07-18 Husqvarna Ab Method of assisting a user of a robotic tool system based on the inclination of the tool at a docking station, a robotic tool and robotic tool system
CN113359766B (zh) * 2021-07-05 2023-06-23 杭州萤石软件有限公司 一种移动机器人的移动控制方法、以及移动机器人
CN113467479B (zh) * 2021-08-05 2023-08-15 南京苏美达智能技术有限公司 一种工作区域中作业路径的调整方法及自动行走设备
CN113655798B (zh) * 2021-08-19 2024-04-19 山东交工建设集团有限公司 一种压路机多机作业的路径规划方法及***
US11912304B1 (en) * 2021-08-25 2024-02-27 Amazon Technologies, Inc. System to maintain a dock location of an autonomous mobile device
CA3181601A1 (en) * 2021-11-10 2023-05-10 Techtronic Cordless Gp Robotic lawn mowers
CN114115265A (zh) * 2021-11-23 2022-03-01 未岚大陆(北京)科技有限公司 自移动设备的路径处理方法、及自移动设备
CN114166247A (zh) * 2021-11-25 2022-03-11 中船航海科技有限责任公司 基于海流数值预报信息的航线评估***、方法及存储介质
CN114137987A (zh) * 2021-12-01 2022-03-04 山东新坐标智能装备有限公司 机器人路径规划方法、***、机器人及存储介质
CN114136307B (zh) * 2021-12-07 2024-01-26 上汽大众汽车有限公司 一种车载导航***地图全自动更新方法
CN114139268A (zh) * 2021-12-10 2022-03-04 深圳须弥云图空间科技有限公司 面积轮廓确定的方法、装置、电子设备及介质
CN114545924A (zh) * 2021-12-30 2022-05-27 深圳银星智能集团股份有限公司 行进方向的偏移修正方法及相关设备
CN114291083B (zh) * 2022-01-12 2023-07-25 未岚大陆(北京)科技有限公司 自移动装置控制方法、装置、***、介质及自移动装置
JP7176652B1 (ja) * 2022-02-02 2022-11-22 トヨタ自動車株式会社 草刈機
WO2023155155A1 (en) * 2022-02-18 2023-08-24 Beijing Smorobot Technology Co., Ltd Method, apparatus for return control of swimming pool cleaning robot, and electronic device thereof
CN114545948A (zh) * 2022-02-28 2022-05-27 珠海一微半导体股份有限公司 一种割草机器人控制方法、芯片及割草机器人
SE546086C2 (en) * 2022-03-02 2024-05-14 Husqvarna Ab Robotic lawnmower arranged to operate in an operational area and a method therefor
AU2023202440A1 (en) * 2022-04-28 2023-11-16 Techtronic Cordless Gp Creation of a virtual boundary for a robotic garden tool
CN114912893B (zh) * 2022-05-12 2023-04-28 上海丰麓园林绿化建设有限公司 一种园林绿化管理方法、***、存储介质及智能终端
CN114980142B (zh) * 2022-06-10 2023-05-12 未岚大陆(北京)科技有限公司 基站安装位置的推荐方法、装置、存储介质及割草机
SE2250703A1 (en) * 2022-06-13 2023-12-14 Husqvarna Ab Improved navigation for a robotic work tool system
CN115039559B (zh) * 2022-06-15 2024-05-24 深圳市杉川机器人有限公司 一种智能割草机的防压草算法及***
CN115167418B (zh) * 2022-07-04 2023-06-27 未岚大陆(北京)科技有限公司 转移路径生成方法、装置、电子设备和计算机存储介质
CN115413471B (zh) * 2022-09-16 2024-01-23 格力博(江苏)股份有限公司 一种将割草机引导至预定位置的方法、***及割草机
CN115443792A (zh) * 2022-08-12 2022-12-09 深圳拓邦股份有限公司 割草机的建图方法、***及可读存储介质
SE2251014A1 (en) * 2022-09-02 2024-02-27 Husqvarna Ab Improved navigation for a robotic lawnmower
CN115175311B (zh) * 2022-09-06 2022-12-20 上海银基信息安全技术股份有限公司 车辆数字钥匙的定位方法、装置、车辆及介质
WO2024059134A1 (en) * 2022-09-14 2024-03-21 The Toro Company Boundary definition for autonomous machine work region
CN115291613A (zh) * 2022-09-16 2022-11-04 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质
CN115443795B (zh) * 2022-09-29 2024-01-30 宁波东贝智能科技有限公司 一种割草机碰撞检测方法、***、存储介质及智能终端
US20240168488A1 (en) * 2022-11-17 2024-05-23 Techtronic Cordless Gp Determining a location to place a base station device used by a robotic garden tool
CN117044478B (zh) * 2023-08-31 2024-03-19 未岚大陆(北京)科技有限公司 割草机控制方法、装置、割草机、电子设备及存储介质
CN117249834B (zh) * 2023-11-17 2024-01-30 未岚大陆(北京)科技有限公司 路径规划方法、装置、设备及存储介质
CN117824665B (zh) * 2024-03-05 2024-05-14 安徽领云物联科技有限公司 一种基于gis的巡检机器人路线规划***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202182945U (zh) * 2011-07-15 2012-04-04 成都唐源电气有限责任公司 基于雷达和相机扫描的综合定位装置
CN102520415A (zh) * 2011-12-15 2012-06-27 大唐移动通信设备有限公司 一种终端的定位方法及终端
CN106164799A (zh) * 2014-03-28 2016-11-23 洋马株式会社 自主行驶作业车辆
CN107064961A (zh) * 2017-03-24 2017-08-18 北京航空航天大学 对卫星导航***完好性监测性能进行测试的方法及装置
CN107153211A (zh) * 2016-03-03 2017-09-12 苏州宝时得电动工具有限公司 精确定位***及其基站及自移动机器人***
CN107290764A (zh) * 2016-04-13 2017-10-24 苏州宝时得电动工具有限公司 差分全球定位***及其定位方法

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8313338D0 (en) * 1983-05-14 1983-06-22 Gen Electric Co Plc Vehicle control
JP2669889B2 (ja) * 1989-04-07 1997-10-29 住友電気工業株式会社 自立航法装置に用いる角速度センサの較正装置
JP3286334B2 (ja) * 1992-01-17 2002-05-27 本田技研工業株式会社 移動体の制御装置
US5563787A (en) * 1993-12-22 1996-10-08 Kabushiki Kaisha Komatsu Seisakusho Apparatus for measuring position of moving body and apparatus for measuring relative distance
IL113913A (en) * 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
DE69615789T2 (de) * 1995-11-07 2002-07-04 Friendly Robotics Ltd System zur Ermittlung von Grenzlinien für einen automatisierten Roboter
US5906653A (en) * 1995-12-01 1999-05-25 Fujitsu Ten Limited Navigation system and gyroscopic device
JP3700882B2 (ja) * 1996-08-29 2005-09-28 ソニー株式会社 Gps受信装置、ナビゲーシヨン装置、車両、衛星受信装置及び受信レベル表示方法
IL124413A (en) * 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
US6611738B2 (en) * 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
BG107622A (bg) * 2003-03-07 2004-09-30 Raysat Cyprus Limited Следяща система за плоска мобилна антенна система
US6907336B2 (en) * 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle
CN1544177A (zh) * 2003-11-28 2004-11-10 清华大学 大型复杂曲面钢板水火加工智能机器人控制方法
US7639646B2 (en) * 2004-03-17 2009-12-29 Qualcomm Incorporated Satellite diversity system, apparatus and method
US7248211B2 (en) * 2004-07-26 2007-07-24 Navcom Technology Inc. Moving reference receiver for RTK navigation
US7733269B2 (en) * 2005-05-09 2010-06-08 Sueo Sugimoto Positioning apparatus and positioning system
US8868237B2 (en) * 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
US20070282565A1 (en) * 2006-06-06 2007-12-06 Honeywell International Inc. Object locating in restricted environments using personal navigation
US7733230B2 (en) * 2006-07-26 2010-06-08 Sensormatic Electronics, LLC Mobile readpoint system and method for reading electronic tags
KR20090068473A (ko) * 2007-12-24 2009-06-29 (주)밴지스테크 실시간 공정관리가 가능한 성토다짐관리시스템
JP5365012B2 (ja) * 2008-01-29 2013-12-11 セイコーエプソン株式会社 衛星信号受信装置および衛星信号受信装置の制御方法
WO2009132317A1 (en) * 2008-04-24 2009-10-29 Evolution Robotics Application of localization, positioning & navigation systems for robotic enabled mobile products
JP2010019703A (ja) * 2008-07-10 2010-01-28 Toyota Motor Corp 移動体用測位装置
US7956806B2 (en) * 2009-06-15 2011-06-07 Northrop Grumman Space And Mission Systems Corp. Tracking arrangement for a communications system on a mobile platform
DE102009059215A1 (de) * 2009-08-12 2011-02-17 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Gerät sowie Verfahren zur Zielführung eines solchen Gerätes
EP2495632B1 (en) * 2009-10-30 2018-09-12 Yujin Robot Co., Ltd. Map generating and updating method for mobile robot position recognition
CN101738206B (zh) * 2009-12-17 2011-11-23 哈尔滨工业大学 具有故障模拟功能的gps接收机模拟方法
EP2558918B1 (en) * 2010-04-14 2018-02-28 Husqvarna AB Robotic garden tool following wires at a distance using multiple signals
CN102082466A (zh) * 2010-10-15 2011-06-01 重庆市电力公司超高压局 变电站设备智能巡检机器人***
KR101203897B1 (ko) * 2011-02-25 2012-11-23 동국대학교 산학협력단 이동체(mobile body)를 위한 셀?기반 경로 계획 장치 및 방법
US20120260617A1 (en) * 2011-04-18 2012-10-18 Briggs & Stratton Corporation Charging station for battery-powered lawn mower
WO2013018736A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 表示装置
DE102011083309A1 (de) * 2011-09-23 2013-03-28 Robert Bosch Gmbh Autonomes Arbeitsgerät
CN102421064B (zh) * 2011-11-10 2017-02-22 厦门雅迅网络股份有限公司 一种基于gps和通信基站监测车辆位移的方法及***
CN103217976B (zh) * 2012-01-19 2017-09-26 苏州宝时得电动工具有限公司 自驱动移动装置
GB201202344D0 (en) * 2012-02-10 2012-03-28 Isis Innovation Method of locating a sensor and related apparatus
CN102541062B (zh) * 2012-02-24 2014-01-15 天津大学 一种水下自主式航行器的局部路径规划方法
CN102591331A (zh) * 2012-03-14 2012-07-18 桂林中昊力创机电设备有限公司 自动化设备故障可视化诊断***
CN103324191A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 控制方法及执行该控制方法的控制***
CN103324192A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 边界设置方法及边界设置***
CN103388873B (zh) * 2012-05-08 2016-04-27 珠海格力电器股份有限公司 空调***的故障处理方法和装置
US9026299B2 (en) * 2012-07-09 2015-05-05 Deere & Company Navigation system and method for autonomous mower
KR101977733B1 (ko) * 2012-07-12 2019-05-13 삼성전자주식회사 오류 기반 공격의 검출 방법
CN109213123A (zh) * 2012-07-26 2019-01-15 苏州宝时得电动工具有限公司 机器人的控制方法及机器人***
CN102909148B (zh) * 2012-08-13 2014-10-29 东南大学 一种多喷枪自适应建模的喷涂路径自动生成方法
JP5920743B2 (ja) * 2012-09-28 2016-05-18 株式会社日立製作所 自律移動装置および自律移動システム
CN102955478B (zh) * 2012-10-24 2016-01-20 深圳一电科技有限公司 无人机飞行控制方法及***
CN103891463A (zh) * 2012-12-28 2014-07-02 苏州宝时得电动工具有限公司 自动割草***
CN103116360B (zh) * 2013-01-31 2015-06-17 南京航空航天大学 一种无人机避障控制方法
EP2972627B1 (en) * 2013-03-15 2019-05-08 MTD Products Inc Autonomous mobile work system comprising a variable reflectivity base station.
US9064352B2 (en) * 2013-04-24 2015-06-23 Caterpillar Inc. Position identification system with multiple cross-checks
US9642110B2 (en) * 2013-05-09 2017-05-02 Marvell World Trade Ltd. GPS and WLAN hybrid position determination
CN203352594U (zh) * 2013-07-18 2013-12-18 福建宝通科技有限公司 一种便携式简易寻星仪
EP2843997B1 (de) * 2013-08-30 2016-06-15 Swisscom AG Mobile virtuelle basisstation
JP2015075380A (ja) * 2013-10-08 2015-04-20 鹿島建設株式会社 リアルタイムキネマティックシステム及び位置測定方法
US9354070B2 (en) * 2013-10-31 2016-05-31 Crown Equipment Corporation Systems, methods, and industrial vehicles for determining the visibility of features
JP5949734B2 (ja) * 2013-11-29 2016-07-13 トヨタ自動車株式会社 異常判定システム、及びその判定方法
WO2015085483A1 (en) * 2013-12-10 2015-06-18 SZ DJI Technology Co., Ltd. Sensor fusion
EP3084541B1 (en) * 2013-12-19 2019-05-08 Husqvarna AB Navigation for a robotic working tool
US10078336B2 (en) * 2013-12-19 2018-09-18 Husqvarna Ab System and method for navigating a robotic working tool
CN103728644B (zh) 2013-12-25 2016-08-17 李青花 一种定位***及定位方法
CN104737698A (zh) * 2013-12-27 2015-07-01 苏州宝时得电动工具有限公司 自动割草机
CN103760908B (zh) * 2014-01-03 2015-09-23 北京控制工程研究所 一种巡视器闭环跟踪控制方法
CN103760585B (zh) * 2014-01-09 2017-05-10 中国林业科学研究院资源信息研究所 一种适用林区的星‑地结合定位方法
KR101513050B1 (ko) * 2014-01-29 2015-04-17 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
JP5923130B2 (ja) * 2014-03-28 2016-05-24 ソフトバンク株式会社 管理サーバ及びゲートウェイ装置
KR101578882B1 (ko) * 2014-05-02 2015-12-18 에브리봇 주식회사 로봇 청소기 및 그 제어 방법
CN105446330A (zh) * 2014-08-07 2016-03-30 苏州宝时得电动工具有限公司 自驱动移动装置及其异常警报方法
CN105511457B (zh) * 2014-09-25 2019-03-01 科沃斯机器人股份有限公司 机器人静态路径规划方法
CN105511458B (zh) * 2014-09-25 2019-06-28 中国科学院深圳先进技术研究院 自动行走设备及其路径规划方法
CN105446350B (zh) * 2014-09-26 2018-05-29 科沃斯机器人股份有限公司 自移动机器人移动界限划定方法
CN105890602A (zh) * 2014-11-17 2016-08-24 孔兵 差分卫星定位***的电子地图绘制装置及方法
US9420741B2 (en) * 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
WO2016097891A1 (en) * 2014-12-18 2016-06-23 Husqvarna Ab Robotic vehicle for detecting gps shadow zones
SE538373C2 (en) * 2014-12-23 2016-05-31 Husqvarna Ab Improved navigation for a robotic lawnmower
CN204440165U (zh) * 2015-02-12 2015-07-01 济南大学 一种适用于矩形割草范围的智能割草机
CN105988471B (zh) * 2015-02-15 2020-09-22 苏州宝时得电动工具有限公司 割草机的智能割草***及割草控制方法
WO2016144709A1 (en) * 2015-03-06 2016-09-15 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN112908042A (zh) * 2015-03-31 2021-06-04 深圳市大疆创新科技有限公司 用于操作无人飞行器的***和遥控器
CN104828698B (zh) * 2015-04-15 2017-01-04 华东师范大学 基于自组网的北斗定位***的起重机自动巡航***及方法
CN105004336A (zh) * 2015-07-10 2015-10-28 中国科学院深圳先进技术研究院 一种机器人的定位方法
CN105116902A (zh) * 2015-09-09 2015-12-02 北京进化者机器人科技有限公司 一种移动机器人避障导航的方法和***
CN105407500B (zh) * 2015-10-16 2018-09-14 深圳市华讯方舟卫星通信有限公司 一种智能终端及其卫星信号质量的显示方法和装置
CN105405451A (zh) 2015-11-20 2016-03-16 芜湖市振华戎科智能科技有限公司 北斗导航的宠物监管追踪***
CN105446343B (zh) * 2016-01-04 2019-03-08 杭州亚美利嘉科技有限公司 一种机器人的调度方法及装置
CN105676252B (zh) * 2016-01-19 2018-11-20 施浒立 一种用于信号遮挡区域的导航信号源
JP2017157924A (ja) * 2016-02-29 2017-09-07 アイシン精機株式会社 アンテナモジュール
CN105747988B (zh) * 2016-03-07 2018-03-30 德州职业技术学院 智能太阳能清洁机器人及其定位清洁方法
CN105738935A (zh) * 2016-04-26 2016-07-06 重庆卓观科技有限公司 一种基于卫星导航的移动通信基站天线姿态测量终端
CN105843219A (zh) * 2016-05-20 2016-08-10 吴江智远信息科技发展有限公司 一种具有导航故障自动检测的车载汽车故障诊断仪
CN205692049U (zh) * 2016-06-24 2016-11-16 桑斌修 一种无边界线的割草机器人
CN105856263A (zh) * 2016-06-24 2016-08-17 深圳市鑫益嘉科技股份有限公司 一种带有智能跟随功能的机器人
CN106155053A (zh) * 2016-06-24 2016-11-23 桑斌修 一种割草方法、装置以及***
CN106202241A (zh) * 2016-06-29 2016-12-07 泰华智慧产业集团股份有限公司 产业地图区域地斑智能上报方法及***
CN106153059B (zh) * 2016-07-01 2019-05-31 北京云迹科技有限公司 基于视觉标识对接充电装置的方法
CN106020210A (zh) * 2016-08-05 2016-10-12 江苏高科物流科技股份有限公司 一种基于无线终端的自动导引小车控制方法及***
CN106325271A (zh) 2016-08-19 2017-01-11 深圳市银星智能科技股份有限公司 智能割草装置及智能割草装置定位方法
WO2018086612A1 (zh) * 2016-11-11 2018-05-17 苏州宝时得电动工具有限公司 自动工作***及其控制方法
CN107390679B (zh) * 2017-06-13 2020-05-05 合肥中导机器人科技有限公司 存储设备、激光导航叉车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202182945U (zh) * 2011-07-15 2012-04-04 成都唐源电气有限责任公司 基于雷达和相机扫描的综合定位装置
CN102520415A (zh) * 2011-12-15 2012-06-27 大唐移动通信设备有限公司 一种终端的定位方法及终端
CN106164799A (zh) * 2014-03-28 2016-11-23 洋马株式会社 自主行驶作业车辆
CN107153211A (zh) * 2016-03-03 2017-09-12 苏州宝时得电动工具有限公司 精确定位***及其基站及自移动机器人***
CN107290764A (zh) * 2016-04-13 2017-10-24 苏州宝时得电动工具有限公司 差分全球定位***及其定位方法
CN107064961A (zh) * 2017-03-24 2017-08-18 北京航空航天大学 对卫星导航***完好性监测性能进行测试的方法及装置

Also Published As

Publication number Publication date
CN108228741A (zh) 2018-06-29
CN113110416A (zh) 2021-07-13
CN108226964B (zh) 2021-11-16
US20190369640A1 (en) 2019-12-05
CN108228739A (zh) 2018-06-29
CN108267752B (zh) 2022-01-18
CN108398944B (zh) 2021-04-06
WO2018108179A1 (zh) 2018-06-21
CN108227704A (zh) 2018-06-29
EP3561627A1 (en) 2019-10-30
CN108398944A (zh) 2018-08-14
CN108226965A (zh) 2018-06-29
WO2018108180A1 (zh) 2018-06-21
CN108226964A (zh) 2018-06-29
EP4276645A3 (en) 2024-01-10
US11442448B2 (en) 2022-09-13
US20190346848A1 (en) 2019-11-14
CN113110416B (zh) 2023-11-07
CN108227705A (zh) 2018-06-29
EP3561627A4 (en) 2020-07-22
CN207799086U (zh) 2018-08-31
EP3557355A1 (en) 2019-10-23
CN108227705B (zh) 2021-06-11
CN108267752A (zh) 2018-07-10
CN108226859A (zh) 2018-06-29
CN108226972A (zh) 2018-06-29
EP4276645A2 (en) 2023-11-15
CN108226972B (zh) 2020-11-17
EP3557355B1 (en) 2023-07-12
EP3557355A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CN108226965B (zh) 自移动设备的定位故障处理方法、装置和电子设备
US10646997B2 (en) Navigation for a robotic working tool
US20220075376A1 (en) Returning method of self-moving device, self-moving device, storage medium, and server
US11112505B2 (en) Navigation for a robotic work tool
US9720417B2 (en) Navigation for a robotic working tool
US10136576B2 (en) Navigation for a robotic working tool
US10078336B2 (en) System and method for navigating a robotic working tool
CN112578779A (zh) 地图建立方法、自移动设备、自动工作***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant