CN1080949C - 电源设备与电压转换器 - Google Patents

电源设备与电压转换器 Download PDF

Info

Publication number
CN1080949C
CN1080949C CN97180254A CN97180254A CN1080949C CN 1080949 C CN1080949 C CN 1080949C CN 97180254 A CN97180254 A CN 97180254A CN 97180254 A CN97180254 A CN 97180254A CN 1080949 C CN1080949 C CN 1080949C
Authority
CN
China
Prior art keywords
voltage
energy
node
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97180254A
Other languages
English (en)
Other versions
CN1239601A (zh
Inventor
楠本馨一
松泽昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1239601A publication Critical patent/CN1239601A/zh
Application granted granted Critical
Publication of CN1080949C publication Critical patent/CN1080949C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源设备200包括一个能量提供电路210和一个能量保存电路220,前者用来在预定的时间提供能量;后者用未接收由能量提供电路210提供的能量和保存该能量。能量保存电路220含有一个电感221、一个在一个节点222处连接于电感于221的一端的电容223和一个在一个节点224处连接于电感221的另一端的电容225。能量是通过节点222和节点224中的至少一个节点提供给负载的。

Description

电源设备与电压转换器
技术领域
本发明涉及适用于小功率LSI(大规模集成电路)的一种电源设备与一种电压转换器。
背景技术
用来把一个直流输入电压值增大、减小、或极性倒转成一个不同的直流输出电压值的电路包括DC(直流)/DC转换器。从转换效率和发热量的角度看,与稳压器相比,DC/DC转换器的转换效率较高而发热量较少。与变压器相比,DC/DC转换器的体积较小。由于这些特性,它们适用于要求有高转换效率、低发热量和小体积的工作站和个人计算机。
图51A和51B示出一种普通DC/DC转换器61的结构。图51A示出把输入电压降低和输出的部分。在一个电压输入端提供一个电源电压。两个NMOS(N型—金属氧化物半导体)晶体管50和51根据提供在信号输入端A和B的脉冲信号,在断开和导通状态之间变化。当NMOS晶体管50导通而NMOS晶体管51断开时,将有一个电流施加到LC(电感电容)部分上。施加电流随时间的变化被电感L转变成电压,并且输入端A处的电压增大比输出端处的快。接着,当NMOS晶体管50断开而NMOS晶体管51导通时,LC部分将放电。施加电流与放电电流的比值确定了输出电压。当NMOS晶体管50的导通时间大于NMOS晶体管51的导通时间时,输出电压将增大。当NMOS晶体管50的导通时间小于NMOS晶体管51的导通时间时,输出电压将降低。例如,假定当NMOS晶体管50和51的导通时间相等时输出电压为1.5V,则当晶体管50比51有较大的导通时间时输出电压将大于1.5V,反之则输出电压将小于1.5V。
如图51B所示,指令NMOS晶体管50和51处于断开或导通状态的信息是通过信号输入端A和B输入的,而输入给信号输入端A和B的脉冲信号是由一个脉冲发生部分55产生的。脉冲发生部分55输出脉冲的周期和脉宽是由一个控制部分57控制的。控制部分57通过对来自一个参考电压发生部分56的输出电压与电压转换部分54的一个监视端处的电压进行比较,来控制脉冲发生部分输出的脉冲信号的周期和脉宽,使得监视端处的电压处于目标电压。
近来,为了延长锂(离子)电池的寿命,还有人建议在诸如移动电话或PHS(个人处理***)这些便携设备中使用DC/DC转换器。这是因为存在着这样的可能性。如果利用DC/DC转换器把锂电池的3V输出电压降低到1V左右,同时使移动电话中所用的LSI也工作于1V左右,就可以减小LSI的功耗。
然而,为了实现这样的电池寿命延长,要求DC/DC转换器必须同时解决下述问题(1)和(2)。
(1)即使当把电池电压转换为其一半或不足一半时,转换效率也不会减小。
用于移动电话的锂电池的输出电压为3V。为了减小LSI的功耗,必须高效率地把该电压降低到1V。然而,当试图用普通的DC/DC转换器61(图51B)来实现这一电压降低时,转换效率将减小。这是由于普通DC/DC转换器61中的控制***电路58的功耗比较大。例如,当电源电压为1V时,LSI的功耗约为10mW,但包括了脉冲发生部分55、控制部分57和参考电压发生部分56的控制***电路58的功耗约要100mW。所以,低电源电压时转换效率减小的原因在于,DC/DC转换器61的控制***电路58的功耗要大于LSI的功耗。
(2)电压转换部分的效率需等于或大于90%。
普通DC/DC转换器61中电压转换部分54效率减小的原因在于流经NMOS晶体管50和51的电流。在电压转换部分54中,在一个周期中有双重的效率减小。这是因为在电压转换部分54的一个周期中NMOS晶体管50和51都要断开。
此外,还存在着下面(3)所述的与芯片形成(on-chip)技术相关的问题。
(3)芯片实现必须容易
在普通的DC/DC转换器61中,电感52的值约为100μH。然而在硅基底上形成这样大电感值的电感是困难的。这是因为在硅基底上最多只能形成约200nH的电感。当使用约100μH的电感时,电磁辐射噪声有可能使其他的LSI发生故障。
还有,为了在普通DC/DC转换器61中实现等于或大于80%的转换效率,NMOS晶体管50和51导通时的电阻(导通电阻,ON电阻)必须为0.1mΩ左右。然而在硅基底上要形成具有这样小的ON电阻的开关是困难的。这是因为在硅基底上最多只能形成ON电阻约为500mΩ的开关。当使用ON电阻约为500mΩ的开关时,转换效率将减小到等于或小于60%。
所以普通的DC/DC转换器61对上述问题(1)-(3)一个也不能解决。
本发明的一个目的是提供一种即使当输出小电流时也能实现高效率电压转换的电压转换器,以同时解决上述问题(1)-(3)。
此外,本发明是关于适用于小功率LSI的电源设备的一项基本发明。本发明的一个目的是提供一种具有下列特性的电源设备:(1)基本上没有能量损失;(2)能够产生各种类型的电压波形;以及(3)适于用作LSI的电源。
还有,本发明的一个目的是提供一种包括一个电源设备的半导体集成电路,它含有一个LC谐振电路和至少一个其电源电压由该电源设备供给的电路模块,其中有可能减小因LC谐振电路的工作所产生的噪声。
已经公布的申请JP6-121528公开了一种电路,该电路可防止大于额定值的电流流过DC-DC转换器中的切换元件。但是JP6-121528未涉及DC-DC转换器在一个芯片上的实现。
本发明公开的内容
根据本发明,提供一种电源设备,它包括:能量提供装置,用来在预定时间提供能量;以及能量保存装置,用来接收由能量提供装置提供的能量并保存该能量,其中:能量保存装置包含一个电感、一个在一个第一节点处连接于电感一端的第一电容、和一个在一个第二节点处连接于电感另一端的第二电容;能量是通过第一节点提供给负载的,而且第一电容的值足够地大于第二电容的值。
在一个实施例中,负载是一个具有整流功能的结构的半导体电路。
在另一个实施例中,从第一节点或第二节点向负载提供直流电压波形。
在又一个实施例中,从第一节点或第二节点向负载提供交流电压波形。
在又一个实施例中,从第一节点和第二节点中的一个节点向负载提供直流电压波形,从另一个节点向负载提供交流电压波形。
在又一个实施例中,从第一节点和第二节点中的一个节点向负载提供交流电压波形,从另一个节点向负载提供交流电压波形。
在又一个实施例中,电源设备和负载形成在同一块半导体芯片上。
在又一个实施例中,在从电源设备提供给负载的能量中至少有一部分被返回到电源设备中,以供重新利用。
在又一个实施例中,在从电源设备提供给负载的能量中至少有一部分通过第一和第二节点中那个用来向该负载提供能量的节点返回到电源设备中。
在又一个实施例中,在从电源设备提供给负载的能量中至少有一部分通过第一和第二节点中的那个不是用来向该负载提供能量的节点返回到电源设备中。
本发明的一种电压转换器包括:一个电压转换部分,用来把从一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及一个控制部分,用来控制电压转换部分,使得从电源向电压转换部分提供的功率基本上等于电压接收电路所消耗的功率,从而实现上述一些目的。
在一个实施例中,控制部分包括一个第一探测器,用来探测电压转换部分输出的第二电压已降低到低于某个希望电压;并且当第一探测器探测到电压转换部分输出的第二电压已降低到低于该希望电压时控制部分将控制电压转换部分。
本发明的另一种电压转换器包括:一个电压转换部分,用来把一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及一个用来控制电压转换部分的控制部分,其中:电压转换部分包含一个谐振电路和一个开关,前者含有一个电感、一个在一个第一节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容,后者含有第一端和第二端,第一端连接在电源上,第二端连接在谐振电路的第一节点上;并且控制部分控制开关的断开/接通。这样便实现了上述一些目的。
在一个实施例中,控制部分包括一个第一探测器,用来探测电压转换部分输出的第二电压已降低到低于某一希望电压;并且当第一探测器探测到上述情况时控制部分将控制开关的断开/接通。
在另一个实施例中,控制部分在第一节点处的电压小于电源提供的第一电压但大于希望电压的时期内将控制开关的断开/接通。
在又一个实施例中,控制部分还包括:一个第二探测器,用来探测第一节点处的电压已达到一个预定的第一参考电压;以及一个第三探测器,用来探测第一节点处的电压已达到一个大于预定第一参考电压的预定第二参考电压,其中:当第二探测器探测到第一节点电压已达到预定第一参考电压时,控制部分将控制开关使其从断开状态改变为接通状态;当第三探测器探测到第一节点电压已达到预定第二参考电压时,控制部分将控制开关使其状态从接通状态改变为断开状态。
在又一个实施例中,第一探测器与电压接收电路工作同步地开始其工作。
在又一个实施例中,控制部分包括一个第四探测器,用来探测电压转换部分输出的第二电压已达到某一预定的参考电压;在响应于一个复原信号时,控制部分将控制开关使其从断开状态改变成接通状态;而当第四探测器探测到了电压转换部分输出的第二电压已达到预定参考电压时,控制部分将控制开关使其从接通状态改变成断开状态。
在又一个实施例中,控制部分还包括:一个时钟信号发生器,用来根据第一节点处的电压变化产生一个时钟信号;以及一个电路,用来在探测到时钟信号频率不同于某一预定频率时输出复原信号。
在又一个实施例中,控制部分还包括一个电路,用来在探测到第一节点处的电压变化的最大值小于某一预定参考电压时输出复原信号。
在又一个实施例中,控制部分还包括一个第一参考电压发生器,用来产生希望电压;并且第一参考电压发生器仅在第一探测器工作的时期内工作。
在又一个实施例中,控制部分还包括一个第一参考电压发生器,用来产生希望电压;并且第一参考电压发生器根据一个从电压接收电路输送来的信号改变希望电压。
在又一个实施例中,控制部分还包括一个第二探测器,用来探测第一节点处的电压已达到一个预定的第一参考电压;当第二探测器探测到了这一情况时,控制部分将控制开关使其从断开状态改变成接通状态,并且在这一状态改变后经过一段预定的时间,又控制开关使其从接通状态改变成断开状态。
在又一个实施例中,控制部分在第一节点处的电压上升的阶段中控制开关的断开/接通。
在又一个实施例中,控制部分在第一节点处的电压下降的阶段中控制开关的断开/接通。
在又一个实施例中,电压转换部分还包括存储装置,用来暂时存储通过开关从电感流向电源的返回电流。
本发明的又一种电压转换器是这样一个电压转换器,它能把由一个电源提供的电压转换成希望电压,并把该希望电压提供给一个电压接收电路,该电压转换器包括:一个具有第一转换效率的第一电压转换器;一个具有第二转换效率的第二电压转换器,其中当从电压转换器流向电压接收电路的电流小于某一预定电流值时第二转换效率大于第一转换效率;以及一个电流探测器,用来探测从电压转换器流向电压接收电路的电流,其中,当电流探测器探测到的电流大于预定电流时第一电压转换器将工作,但当电流探测器探测到的电流小于预定电流时第二电压转换器将工作。这样便实现了上述一些目的。
本发明的又一种电压转换器包括:一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及一个控制部分,用来控制电压转换部分,其中,电压转换部分包含:一个第一谐振电路,它含有一个第一电感、一个在一个第一节点处连接于第一电感一端的第一电容、和一个在一个第二节点处连接于第一电感另一端的第二电容;一个第一开关,它含有一个第一端和一个第二端,第一端连接在电源上,第二端连接在第一谐振电路的第一节点上;一个第二谐振电路,它含有一个第二电感、一个在一个第三节点处连接于第二电感一端的第三电容、和一个在一个第四节点处连接于第二电感另一端的第四电容;以及一个第二开关,它含有一个第三端和一个第四端,第三端连接在第一谐振电路的第二节点上,第四端连接在第二谐振电路的第三节点上;并且,控制部分控制第一和第二开关的断开/接通。这样便实现了上述一些目的。
本发明的又一种电压转换器包括:一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及一个控制部分,用来控制电压转换部分,其中,电压转换部分包含:一个谐振电路,它含有一个第一电感、一个在一个第一节点处连接于第一电感一端的第一电容、和一个在一个第二节点处连接于第一电感另一端的第二电容;一个第一开关,它含有一个第一端和一个第二端,第一端连接在电源上,第二端连接在谐振电路的第一节点上;以及一个调制谐振电路,它含有一个第二电感、一个第三电容和一个带有一个第三端和一个第四端的第二开关,第二电感的一端在一个第三节点处与第二电容相连接,第二电感的另一端连接在第二节点上,第二开关的第三端连接在电源上,第二开关的第四端连接在第三节点上;而控制部分则控制第一开关和第二开关的断开/接通。这样就实现了上述一些目的。
本发明的又一种电压转换器包括:一个电压转换部分,用来把一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及一个控制部分,用来控制电压转换部分,其中,电压转换部分包含:一个谐振电路,它含有一个第一电感、一个在一个第一节点处连接于第一电感一端的第一电容、和一个在一个第二节点处连接于第一电感另一端的第二电容;一个第一开关,它带有一个第一端和一个第二端,第一端连接在电源上,第二端连接在谐振电路的第一节点上;以及一个调制谐振电路,它含有一个第二电感、一个第三电容和一个带有一个第三端和一个第四端的第二开关,第二电感的一端连接在第一节点上,第二电感的另一端在一个第三节点处连接在第三电容上,第二开关的第三端连接在电源上,第二开关的第四端连接在第三节点上;而控制部分则控制第一开关和第二开关的断开/接通。这样就实现了上述一些目的。
本发明的一种半导体集成电路包括:一个含有一个LC谐振电路的电源设备;以及至少一个其电源电压是由电源设备提供的电路模块,其中,LC谐振电路的谐振频率被设定得能使根据该谐振频率来确定的噪声强度在该至少一个电路模块所使用的频带内等于或小于一个预定值。这样就实现了上述一些目的。
电源设备和至少一个电路模块可以形成在同一块半导体芯片上。
电源设备和至少一个电路模块可以形成在不同的半导体芯片上。
电源设备可以向至少一个电路模块提供直流电压。
附图的简单说明
图1是说明根据本发明的一种电源设备200的结构的图;
图2A-2E是示意性说明在能量保存电路200中,动态能量在电容223与电容225之间通过电感221流动时保持恒定的图;
图3是说明当C1>>C2时节点222处的一个示例***流电压波形的图;
图4A和4B都是说明示例***流电压波形的图;
图5是说明当一个带有寄生二极管250的LSI(大规模集成电路)被连接到电源设备200的节点222上时的等效电路的图;
图6A-6D都是说明能量提供电路210的结构的图;
图7A-7E都是说明电压v的波形和电流i1的波形的图;
图8是说明一种电源设备1301的结构的图;
图9A和9B都是说明在一个节点处的电压波形的图;
图10A是说明探测动态能量的处理过程的流程图;
图10B是说明探测静态能量的处理过程的流程图;
图11A是说明一种电源设备1302的结构的图;
图11B和11C都是说明元件391的结构的图;
图11D是说明一个节点处的电压波形的图;
图12是说明一种电源设备1303的结构的图;
图13A是说明一种电源设备1304的结构的图;
图13B是说明一个节点处的电压波形的图;
图14是说明调节动态能量的处理过程的流程图;
图15是说明开关部分212e的一种示例性结构的图;
图16A是说明一种DC(直流)型电源设备201的结构的图;
图16B是说明一个节点处的电压波形的图;
图17A是说明一种AC(交流)型电源设备202的结构的图;
图17B是说明一个节点处的电压波形的图;
图18A是说明一种DC-AC型电源设备203的结构的图;
图18B是说明一个节点处的电压波形的图;
图19A是说明一种AC-AC型电源设备204的结构的图;
图19B是说明一个节点处的电压波形的图;
图20A是说明一种AC-AC型电源设备205的结构的图;
图20B是说明一个节点处的电压波形的图;
图21是说明一种AC-AC型电源设备206的结构的图;
图22是说明一个节点处的电压波形的图;
图23A一23D分别是说明时期T1-T4中的电荷运动的图;
图24A和24B都是说明一个节点处的电压波形的图;
图25A是说明一种能量再利用DC型电源设备1202的结构的图;
图25B是说明一个节点处的电压波形的图;
图26A是说明一种能量再利用AC-AC型电源设备1203的结构的图;
图26B是说明一个节点处的电压波形的图;
图27A是说明一种能量再利用AC-DC型电源设备1204的结构的图;
图27B是说明一个节点处的电压波形的图;
图28A是说明一种能量再利用DC-AC型电源设备1205的结构的图;
图28B是说明一个节点处的电压波形的图;
图29是说明根据本发明的一种电压转换器20的结构的图;
图30是说明电压转换部分3的一种结构的图;
图31是说明谐振电路140的等效电路的图;
图32是说明电压转换器20的工作的图;
图33是说明电压转换器20在稳态工作时期的工作的图;
图34是说明电压转换部分3的端头3C处的电压变化(波形a)和电压转换部分3的端头3e处的电压变化(波形b)的图;
图35是说明稳态工作状态时的波形a和波形b的图;
图36是说明稳态工作状态时的波形a和波形b的图;
图37A是说明探测器8的一种结构的图;
图37B是说明探测器8的工作的图;
图38是说明当负载2为一个数字LSI时减小噪声作用的一种方法的图;
图39A是说明探测器15的一种结构的图;
图39B是说明探测器15的工作的图;
图40是说明电压转换器20的另一种结构的图;
图41是说明监视器661的处理过程的控制流程图;
图42是说明一种用来实现图41的控制流程的示例性电路结构的图;
图43是说明从参考电压发生器14输出的电压Vs是如何改变的图;
图44是说明确定电压Vc的处理过程的控制流程图;
图45是说明根据本发明的电压转换器的另一种结构的图;
图46是说明电压改变的速度是如何通过结合电压转换器20和普通的DC/DC转换器61而增大的图;
图47是说明存在着一个能被DC/DC转换器61的电压转换部分54和电压转换器20的电压转换部分3所共用的电路部分的图;
图48A和48B都是说明电压转换部分3的另一种结构的图;
图49A和49B都是说明电压转换部分3的又一种结构的图;
图50是说明电压转换器20的另一种工作过程的图;
图51A和51B都是说明普通DC/DC转换器61的结构的图;
图52是说明LSI的噪声产生机制的图;
图53A是说明在普通DC/DC转换器61中负载功耗PL与转换损失Pt之间的关系的图;
图53B是说明在根据本发明的电压转换器20中负载功耗PL与转换损失Pt之间的关系的图;
图54A是说明在普通DC/DC转换器61中负载功耗PL与总损失率ηct之间的关系的图;
图54B是说明在根据本发明的电压转换器20中负载功耗PL与总损失ηct之间的关系的图。
图55是说明一种用来向多个负载提供不同电源电压的电源设备的结构的图;
图56是说明一个节点处的电压波形的图;
图57是说明动态能量和静态能量环绕能量保存电路220流动的图;
图58A是说明能量提供电路210的另一种结构的图;
图58B是说明节点222处的电压变化(波形(A))和节点224处的电压变化(波形(B))的图;
图59是说明一种电压转换器1500的结构的图;
图60A和60B都是说明电压转换部分1501的一种结构的图;
图61A-61C都是说明电源电压VDD是如何降低的图;
图62A是说明控制部分1518接通和断开电压转换部分1501的开关1502的时刻的控制流程图;
图62B是说明控制部分1518接通和断开电压转换部分1501的开关1506的时刻的控制流程图;
图63A和63B都是说明开关1506被接通和断开的时刻的图;
图64是说明一种电压转换器1600的结构的图;
图65是说明电压转换部分1601的一种结构的图;
图66是说明当电压转换部分1601处于稳态时各个点处的电压变化的图;
图67是说明如何调节端头1601e处的电压相位与端头1601f处的电压相位之间的关系的图;
图68A和68B都是说明端头1601e处的电压(曲线E)和端头1601f处的电压(曲线F)是如何具有相反相位的图。
图69是说明控制部分1632接通和断开电压转换部分1601的开关1619的时刻的控制流程图;
图70是说明控制部分1632接通和断开电压转换部分1601的开关1620的时刻的控制流程图;
图71是说明一种电压转换器1700的结构的图;
图72是说明电压转换部分1701的一种结构的图;
图73A是说明第一基础谐振电路的结构的图;
图73B是说明第一基础谐振电路的结构的图;
图74是说明当电压转换部分1701处于稳态时各个点处的电压变化的图;
图75是说明***LSI的一个实施例的图;
图76是说明噪声强度相对于LC振电路的谐振频率的分布的图;
图77是说明一个例子的图,其中一个含有LC谐振电路的电源设备1806和一个中频及高频模拟电路模块1802形成在不同的芯片上。
图78是说明噪声强度相对于***LSI1807与中频及高频模拟电路模块1802之间的距离D的分布的图;
图79是说明含有一种具有L-C结构的LC谐振电路的电源设备1806的结构的图。
实施本发明的最佳模式
1.本发明电源设备的基本原理
图1示出根据本发明的一各电源设备200的结构。该电源设备200包含一个能量提供电路210和一个能量保存电路220。
能量提供电路210在预定的时间向能量保存电路220提供能量。由能量提供电路210所提供的能量可以是任何能量。例如,由能量提供电路210所提供的能量可以是电能(电功率)、光能、磁能或辐射能。
能量保存电路220接收能量提供电路210所提供的能量并保存该能量。能量保存电路220包含一个电感221、一个在节点222处连接于电感221-端的电容223、和一个于节点224处连接在电感221另一端的电容225。这里L代表电感221的值,C1代表电容225的电容值,C2代表电容223的电容值。
保存在能量保存电路220中的能量通过节点222和节点224中的至少一个节点提供给一个负载(图1中未示出)。
电源设备200和负载可以形成在同一块半导体芯片上。如下面将说明的,在电源设备200中只需要使用电感值比较小的电感就足够了。例如,该电感值约为100nH。因此,把电源设备200形成在一个硅基底上是容易的。
电源设备200具有以下特性(1)-(3):
(1)在电源设备200中基本上没有能量损失;
(2)电源设备200能产生各种类型的电压波形;以
(3)电源设备200适合用作LSI的电源。特性1:基本没有能量损失
如图1所示,电容223含有极板223-1和极板223-2。这两个极板是互相电绝缘的。极板223-1连接在节点222上,极板223-2连接在地上。类似地,电容225含有极板225-1和225-2。这两个极板互相电绝缘。极板225-1连接在节点224上,极板225-2连接在地上。
由能量提供电路210提供的能量在从电容223的极板223-1经过电感221到电容225的极板225-1这一封闭***中产生电荷。这样产生的电荷不能跑到该封闭***的外部。其原因是,由于电极板223-1与电极板223-2是互相电绝缘的,所以不存在电荷从电极板223-1流动到电极板223-2的通道,而且由于电极板225-1与电极板225-2是互相电绝缘的,所以不存在电荷从电极板225-1流动到电极板225-2的通道。
所以,该封闭***中的电荷量是保持恒定的。这意味着在能量保存电路220中静态能量是保持恒定的。其原因是,静态能量是由封闭***中的电荷量代表的。能量保存电路220中所保存的静态能量可表示为1/2·(q1+q2)2/(C1+C2)。这里,q1和q2分别代表存储在电容225和223中的电荷量。换言之,静态能量可以认为是当封闭***所含各端头处的电压不再变化而变为恒定时,也即当这些电压变得所谓稳定时,该闭路***所具有的能量。
图2A-2E示意性地示出在能量保存电路220中,动态能量虽然通过电感221在电容223与电容225之间流动,但保持着恒定不变,在能量保存电路220中,动态能量的状态从图2A所示的状态过渡到图2E所示的状态,然后又从图2E所示的状态过渡到图2A所示的状态。其后再重复这一状态变化。
动态能量被分类成存储在电感221中的能量和取决于电容223与电容225之间的电荷量差(电位差)的能量。在图2A至2E中,EM1代表存储在电感221中的能量,EM2代表取决于电容223与电容225之间的电荷量差(电位差)的能量。(EM1+EM2)保持为常量。EM1=1/2·Li1 2。这里i1代表流经电感221的电流。EM2=|1/2·q1 2/C1-1/2·q2 2/C2|。这里q1代表存储在电容225中的电荷量,q2代表存储在电容223中的电荷量。换言之,可以把动态能量看作是能使含在封闭***内的各端头处的电压发生振荡的能量,也就是能所谓移动电压的能量。
存储在电感221中的能量EM1使电荷从电容223移向电容225(或从电容225移向电容223)。因此,直到存储在电感221中的能量变为零之前,电荷从电容223向电容225(或从电容225向电容223)的运动不会停止。
当存储在电感221中的能量EM1为零时,取决于电容223与225之间的电荷量差(电位差)的能量EM2达到最大。因此,电荷开始向消除电容223与225之间的电荷量差(电位差)的方向运动。当电荷流经电感221时,能量EM1将存储在电感221中。此后重复这一过程。
于是,能量保存电路220基本上保持静态能量和动态能量恒定。换言之,基本上没有静态能量和动态能量泄漏到能量保存电路220的外部。这里,“基本上”的含义是除了非故意的能量泄漏之外没有能量泄漏,非故意泄漏例如是由于电容223和225的两极板之间的漏电流所造成的静态能量泄漏,或者是由于电感221的电阻的衰减所造成的动态能量泄漏。这意味着电源设备200中一般没有能量损失。所以有可能提供一种低功耗类型的电源设备。特性2:能够产生各种类型的电压波形
通过把电容223和电容225的电容值设定得满足关系式C1>>C2,有可能在节点222处产生交流电压波形而在节点224处产生直流电压波形。这样的电压波形可以根据能量保存电路220中的谐振得到。关于电压波形的数学基础将在后面参考(表达式1)至(表达式17)说明。
此外,通过把电容223和225的电容值设定得满足关系式C1≈C2,有可能在节点222和节点224处都产生交流电压波形。
还有,通过调节能量提供电路210所提供的能量中分别作为静态能量和动态能量存储在能量保存电路220中的这两部分能量的比例,有可能任意地设定交流电压波形的振幅中心和振幅大小。这是因为,静态能量确定了交流电压波形振幅的中心,而动态能量确定了交流电压波形的振幅。
图3示出C1>>C2时节点222处的一个示例***流电压波形。如上所述,通过适当地提供静态能量Es和动态能量EM,有可能得到一个其振幅中心在电压Vp处,其振幅为1/2VDD的交流电压波形。注意,节点222处的电压永远高于或等于地电压。
当C1>>C2时,节点222处的电压波形可以近似成一个正弦波,其振荡周期T0=2π√(LC2)。因此,通过使电感221的电感值L与电容223的电容值C2的乘积(LC2)可被改变,就可能把节点222处的电压波形的周期T0调节到任意值。可以在电源设备200工作之前事先把LC2调节到某一预定值,并在电源设备200工作中使它固定在该预定值上。或者,也可以用一个控制电路在电源设备200工作过程中动态地控制LC2。例如,控制电路可以这样地控制LC2,使得当从能量提供电路210向能量保存电路220提供的能量较小时周期T0较大,而当从能量提供电路210向能量保存电路220提供的能量较大时周期T0较小。通过上述这样地控制周期T0,当从能量提供电路210提供给电能保存电路220的能量较大时单位时间内节点222处的电压接近于电源电压VDD的次数就能增多。因此,通过把提供能量的时间控制得使能量提供电路210在节点222处的电压接近于电源电压VDD的时期(图3中的时期TA)内向能量保存电路220提供能量,便可能使从能量提供电路210向能量保存电路220提供能量时所发生的能量损失最小化。这是因为,效率最高的能量提供是在节点222处的电压接近于电源电压VDD的时期(图3中的时期TA)内由能量提供电路210向能量保存电路220提供能量。
此外,通过在保持LC2恒定的条件下使L和C2可变,有可能在不改变周期T0的情况下调节含在由能量提供电路210所提供的能量中的静态能量Es与动态能量EM之间的比例。通过减小电感221的电感值L和增大电容223的电容值C2,有可能增大存储在电容223和225中的能量(静态能量)和减小存储在电感221中的能量(动态能量)。反之,通过增大电感221的电感量L和减小电容223的电容值C2,有可能减小存储在电容223和225中的能量(静态能量)和增大存储在电感221中的能量(动态能量)。
上面已说明了电容值C2和电感值L的示例性调节。此外,此外,通过调节电容值C1、电容值C2和电感值L,有可能更特定地调节静态能量Es与动态能量EM之间的比例。
例如,假定能量提供电路210使一个电流i0从节点222流出。假定电流i0中流入电容223的部分是电流i1,流入电容225的部分是电流i2。通过调节电容值C1、C2和电感值L可以把电流i1与i2的比例设定为任何值。存储在电容223和225中的能量(静态能量)可表示为1/2·(q1+q2)2/(C1+C2),存储在电感221中的能量(动态能量)可表示为1/2Li2 1。这里,q1和q2分别表示存储在电容225和223中的电荷量。因此,通过调节电流i1与i2之间的比例,有可能调节存储在电容223和225中的能量(静态能量)和存储在电感221中的能量(动态能量)。
上述可以自由地控制交流电压波形的振幅中心和振幅大小的能力适合于利用“绝热充电原理”来对电容性负载充电。“绝热充电原理”是一个关于利用交流电压波形对一个电容性负载充电的原理。已经知道,根据“绝热充电原理”,当电容负载被充电了较长时间时,与充电相关连的能量损失将可减小。
图4A示出一个以周期T0在电源电压VDD与地电压GND之间振荡的交流电压波形(A),作为对比还示出了一个以周期T0在电源电压VDD与负电压-VDD之间振荡的交流电压波形。在从电源电压VDD向地电压GND作绝热充电时,交流电压波形(A)的绝热充电时期TA的长度是交流电压波形(B)的绝热充电时期TB的长度的两倍。因此,可以看出,用交流电压波形(A)来进行绝热充电将因其能量损失较小而是有利的。类似地,对于从地电压GND向电源电压VDD的绝热充电,情况也是这样。
图4B示出一个以周期T0在电源电压VDD与电压1/2VDD之间振荡的交流电压波形(A),作为对比周时示出了一个以周期T0在电源电压VDD与电压-VDD之间振荡的交流电压波形(B)。在从电源电压VDD向电压1/2VDD作绝热充电时,交流电压波形(A)的绝热充电时期TA的长度约为交流电压波形(B)的绝热充电时期TB的长度的4倍。因此,可以看出,用交流电压波形(A)来进行绝热充电将因其能量损失较小而是有利的。类似地,当从电压1/2VDD向电源电压VDD作绝热充电时情况也是这样。
此外,对图4A与图4B进行比较表明,交流电压波形的振幅愈小,则在进行绝热充电时愈有效。特性3:适合于用作LSI的电源
考虑以一个LSI作为负载连接在电源设备200的节点222上的情况。LSI永远含有一个寄生二极管。在本说明书中,寄生二极管是指具有有整流功能的结构的半导体电路。例如,用来保护LSI的内部不被发生在LSI外部的电流入侵的保护二极管就是一个寄生二极管。又如,当LSI使用双极晶体管时,在基极与发射极之间和基极与集电极之间将形成寄生二极管。再如,当LSI使用MOS(金属氧化物半导体)晶体管时,在源极与井极和漏极与井极之间将形成寄生二极管。
图5示出当一个含有寄生二极管250的LSI被连接在电源设备200的节点222上时的等效电路。当节点222处的电压低于地电压GND时,将有一个前向电流流过该寄生二极管250。于是在寄生二极管250中将消耗功率。其结果是产生了能量损失。此外,前向电流流经寄生二极管250可能会损坏该寄生二极管250。这是因为存储在电感221中的能量可能以集中的形式被寄生二极管250消耗。
反之,使用根据本发明的电源设备200有可能把交流电压波形控制得使节点222处的电压永远高于或等于地电压GND,如在特性2中所说明的。在这样的控制下,前向电流永远不会流过寄生二极管250。因此,永远不会因LSI中所含的寄生二极管250而发生能量损失。
此外,即使有前向电流流过寄生二极管250,也永远不会造成寄生二极管250的损坏。其原因是存储在电感221中的动态能量被转换成了静态能量并保存在能量保存电路220中。
通常,把一些数字电路、SRAM(静态随机访问存储器)或ROM(只读存储器)集成为一个LSI是很普通的。近年来,存在着把一些闪烁存储器、DRAM(动态随机访问存储器)或从高频直到低频范围内的模拟电路集成为一个LSI的趋势。可以预期,这一趋势将来会进一步发展,我们将在10年内进入一个新的集成电路时代。为了使这样一个集成电路的各个电路模块能在更高的控制水平下工作,必须有一个能以高效率产生各电路模块所需的各种电压的电源。这是因为有可能通过减小各种类型电路模块的功耗来实现集成电路的改进的***工作。此外,在某些频率区域内要求有低噪声特性。
本发明的电源设备作为单个电源实现了从动态能量到静态能量的高效率转换以及直流电源和交流电流对负载的高效率供电。把多个这样的单电源设备结合起来可得到一个多电源设备。多电源设备能产生多种电源电压。多电源设备可以由结合多个相同类型的电源设备得到,也可以由结合多个不同类型的电源设备得到。
图6A示出能量提供电路210的一种结构。能量提供电路210向能量保存电路220的节点222提供电能(功率)。能量提供电路210连接在能量保存电路220的节点222上。
图6A所示的能量提供电路210包含一个直流电源211和一个设置在直流电源211与节点222之间的开关212。
当开关212接通时,直流电源211将通过开关212向能量保存电路220提供电荷。通过控制接通开关212的时间,便能在预定的时间由直流电源211向能量保存电路220提供电荷。
可以用一个交流电源来取代直流电源211。通过在预定的时刻通、断交流电源的功率,交流电源可当作为一个直流电源。
此外,还可以用一个能提供脉冲波形电压的电源来取代直流电源211。由这种电源提供的功率大小例如可以通过脉宽调制来控制。当使用这种电源时不再需要开关212。
图6B示出能量提供电路210的另一种结构。该能量提供电路210向能量保存电路220的电感221提供磁能。能量提供电路210与能量保存电路220不互相接触。
图6B所示的能量提供电路210包含一个电感214和一个交流电源215。流过能量提供电路210的电感214的电流将产生一个磁场,由于该磁场,将有电流流过能量保存电路220的电感221。由于有电流流过电感221,使其中存储了动态能量。这样,能量提供电路210所提供的磁能被能量保存电路220的电感221接收并作为动态能量被保存在能量保存电路220中。
图6C示出能量提供电路210的另一种结构。该能量提供电路210向能量保存电路220的电容223和225中的至少一个电容提供光能。能量提供电路210与能量保存电路220不相互接触。
图6C所示的能量提供电路210包含一个能辐射光的光发射电路216。电容223和225中至少有一个具有把接收到的光转换成电的功能。这样,由能量提供电路210所提供的光能被能量保存电路220的电容223(或225)接收并作为静态能量被保存在能量保存电路220中。例如,电容223(或225)可以是一个光电二极管或一个太阳能电池。
图6D示出能量提供电路210的另一种结构。
图6D所示的能量提供电路210包含一个电源211、一个开关212、一个开关212a、一个反相器212b、和一个电容212c。
在能量保存电路220中,典型地,当节点222处的电压升高时将有一个电流从电容225通过电感221向电容223流动。如果在该电流流动时接通开关212,则将有一个电流暂时地从电感221经过开关212流向电源211。这里,该电流被称作“返回电流”。返回电流被存储在电源211中。然而,当电源211是一个非能量存储型电源(例如这样一种电源,其中的输出级一般将吸入电流并不加利用地将其通地)时,或者当电源211是一个诸如电池等这样的具有大寄生内阻的电源(例如锂电池)时,都将增大能量损失。这是因为,对于非能量存储型电源,电源211将使返回电流直接通地;而对于电池,则因寄生内阻而损失了能量。
设置开关212a和电容212c的目的是防止返回电流流入电源211。开关212a设置在电源211与开关212之间。电容212c连接在开关212a与开关212之间的节点212d上。电容212c的电容值为C0
当开关212接通时开关212a被断开。这时返回电流将被存储在电容212c中。存储在电容212c中的能量可以提供给能量保存电路220。
当开关212断开时开关212a被接通。结果有电流从电源211流向电容212c,从而电容212c上的电压变得等于电源电压VDD
反相器212b用来交替地接通/断开开关212和212a。通过交替地接通/断开开关212和212a,使上述过程重复进行。
图58A示出能量提供电路210的另一种结构。
图58A所示的能量提供电路210包含一个电源211、一个开关212、一个开关212a、和一个电容212c。电容212c用来暂时存储返回电流。
图58B示出节点222处的电压变化(波形(A))和节点224处的电压变化(波形(B))。
在时刻t1,一个比较器272a探测到节点222处的电压已达到电源电压VDD,并向控制电路271a输出一个探测信号。控制电路271a在响应该探测信号时将使开关212a从断开状态转变成接通状态。
当存在在返回电流时,节点222处的电压在时刻t1与时刻t2之间的时期内将向着一个高于电源电压VDD的电压升高。这一电压变化表明,有返回电流从节点222向电容212c流动,并且该返回电流被暂时存储在电容212c中。
在时刻t2,节点222处的电压达到峰值,其后开始下降。
在时刻t2至t3的时期内,有一个电流开始从电容212c流向能量保存电路220。
在时刻t3,比较器272a探测到节点222处的电压再次达到电源电压VDD,于是向控制电路271a输出一个探测信号。控制电路271a在响应于该探测信号时,使开关212a从接通状态转变为断开状态。
此外,在时刻t3,控制电路271使开关212从断开状态转变为接通状态。其后直到时刻t4之前,开关212保持接通。在开关212接通的时期内,电源2111通过工关212向能量保存电路220提供能量。
这样,返回电流被暂时存储在电容212c中而不会返回到电源211中。
2、动态能量与静态能量之间比例的调节
当能量提供电路210具有图6A所示的结构时,有可能通过调节接通开关212的时间来调节提供给能量保存电路220的动态能量与静态能量之间的比例。
根据节点222处电压v的大小和流经电感221的电流i1的方向,可以把开关212接通的时期分类成以下4个时期。这里假定当电流i1沿节点224到节点222的方向流动时其值为正,返之其值为负。
时期I:电流i1为正值并且电源电压VDD与电压V之间的差值小于一个预定电压VTH的时期。
时期II:电流i1为负值并且电源电压VDD与电压V之间的差值小于预定电压VTH的时期。
时期III:电流i1为正值并且电源电压VDD与电压V之间的差值大于预定电压VTH的时期。
时期IV:电流i1为负值并且电源电压VDD与电压V之间的差值大于一个预定电压VTH的时期。
图7A示出时期I-IV、电压V的波形、与电流i1的波形之间的关系。电压V的波形是一个环绕中心电压即预定电压VTH振荡的正弦波形。电流i1的波形是一个环绕作为中心电压的零进行振荡的正弦波形。
为了使在由能量提供电路210向能量保存电路220提供能量时发生的能量损失最小化,需要在开关212的两端间电压尽可能小的时候接通开关212。这根据的是“绝热充电原理”:当用电荷对一个电容充电时,通过使施加在位于电源与电容之间的电阻两端的电压最小化,便可以使该电阻造成的能量损失最小化。因此,为了使能量损失最小化,最好在时期I或II中接通开关212,在这两个时期内电源电压VDD与电压V的差是比较小的。
现在将说明在时期I和II中施加给能量保存电路220的动态能量与静态能量的比例。
图7B示出时期I中流经电感221的电流i1和流经开关212的电流i2,图7C示出时期I中接通开关212的时间。
如图7B所示,在时期I中电流i1、和电流i2的流动方向相反。结果电流i2比流向电感221更多地流向电容223。这意味着在时期I中提供给能量保存电路220的静态能量比动态能量多。这是因为动态能量主要是由流经电感221的电流产生的。
图7D示出在时期II中流经电感221的电流i1和流经开关212的电流i2,图7E示出时期II中接通开关212的时间。
如图7D所示,在时期II中电流i1和电流i2的流动方向相同。结果电流i2比流向电容223更多地流向电感221。这意味着在时期II中提供给能量保存电路220的动态能量多于静态能量。这是因为动态能量主要由流经电感221的电流产生。
如上所述,通过把时期I或时期II选为接通开关212的时间,便能调节由能量提供电路210提供给能量保存电路220的动态能量与静态能量的比例。
3、动态能量和静态能量的探测
能量保存电路220保存动态能量和静态能量。一个连接在能量保存电路220上的负载所消耗的动态能量值和静态能量值随着该负载性质(即,其电容性质较强还是其电阻性质较强)的不同而改变。
为了保持能量保存电路220中所保存的动态能量值和静态能量值恒定不变,需要分别探测动态能量和静态能量的减少量,以便根据动态能量的减少量和静态能量的减少量来由能量提供电路210向能量保存电路220提供能量。
现在将说明动态能量和静态能量的探测以及根据探测结果的动态能量和静态能量的提供。这里假定能量提供电路210具有图6A所示的结构。不过下面将说明的关于探测与提供动态能量和静态能量的方法也适用于能量提供电路210具有其他结构(例如图6B或6C所示的结构)的情况。
图8示出一种具有探测动态能量和静态能量功能的电源设备1301的结构。负载370连接在电源设备1301的节点224处。负载370至少含有一个电容元件和一个电阻元件。
电源设备1301除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含:控制电路271、参考电压发生电路371-374、比较器375-379和一个时钟信号发生电路380。
电容值C1和C2的设定满足关系式C1>>C2。所以在节点222处将得到交流电压波形,而在节点224处将得到直流电压波形。
图9A示出与交流电压波形(A)相对比的一个交流电压波形(A’)。这里,交流电压波形(A)代表当保存在能量保存电路220中的动态能量保持恒定时节点222处的电压随时间的变化,交流电压波形(A’)代表当保存在能量保存电路220中的动态能量减小时节点222处的电压随时间的变化。如图9A所示,当保存在能量保存电路220中的动态能量减小时,节点222处的交流电压波形的振荡中心没有改变,但其振荡振幅减小。
图9B示出与交流电压波形(A)相对比的交流电压波形(A’)。这里,交流电压波形(A)代表当保存在能量保存电路220中的静态能量保持恒定时节点222处的电压随时间的变化,交流电压波形(A’)代表当保存在能量保存电路220中的静态能量减少时节点222处的电压随时间的变化。如图9B所示,当保存在能量保存电路220中的静态能量减小时,节点222处的交流电压波形的振荡中心将移动。
图10A示出探测动态能量的处理过程。该处理由控制电路271(见图8)在每个预定的时间内执行。这里,VA代表节点222处的电压,Vp、Vr1、Vr2和Vr3分别代表参考电压发生电路371-374所产生的参考电压输出,VDD代表电源电压。这些电压满足关系式Vp<Vr3<Vr2<Vr1<VDD。此外,时钟信号发生电路380(见图8)产生一个其周期等同于交流电压波形(A)和(A’)周期的时钟信号。该时钟信号的波形示于图9A。
在步骤S11中,在电压VA的上升阶段判断它是否超过了电压Vr3。电压VA在其上升阶段超过了电压Vr3这一事实由比较器379的输出信号从L(低)电平变为H(高)电平的变化被探测到。当电压VA在其上升阶段超过了电压Vr3时,处理进入步骤S12。
在步骤S12中,判断电压VA在其上升阶段是否超过了电压Vr1。电压VA在其上升阶段超过了电压Vr1这一事实由比较器276的输出信号从L电平变为H电平的变化被探测到。当电压VA在其上升阶段超过了电压Vr1时,处理将终止并且不从能量提供电路210向能量保存电路220提供动态能量。这是因为已经判定,保存在能量保存电路220中的动态能量还没有减少到需要提供动态能量的程度。
另一方面,如果在电压VA的上升阶段中在探测到时钟信号的跳变沿之前没有出现电压VA超过电压Vr1(步骤S13),则将判定需要由能量提供电路210向能量保存电路220提供动态能量。这是因为直到交流电压波形(A’)的下一个周期之前电压VA不可能达到电压Vr1。因此,在这种情况下处理将进入步骤S14。
在步骤S14中,判断电压VA在其下降阶段是否下降到了低于电压Vr2。电压VA在其下降阶段下降到了低于电压Vr2这一事实由比较器378的输出信号从H电平变为L电平的变化被探测到。当电压VA在其下降阶段降低到了低于电压Vr2。时,控制电路271将接通开关212(步骤S15)。
在步骤S16中,判断电压VA在其下降阶段是否下降到了低于电压Vr3。电压VA在其下降阶段降低到了低于电压Vr3这一事实由比较器379的输出信号从H电平变为L电平的变化被探测到。当电压VA在其下降阶段下降到了低于电压Vr3时,检制电路271将切断开关212(步骤S17)。
这样,当保存在能量保存电路220中的动态能量减少时,开关212将在时期T1中接通,在该时期T1内电压VA接近于电源电压VDD并且在降低。于是有可能由能量提供电路210向能量保存电路220提供动态能量。
图10B示出探测静态能量的处理过程。该处理由控制电路271(见图8)在每个预定的时期内执行。这里,VA代表节点222处的电压,Vp、Vr1、Vr2和Vr3分别代表由参考电压发生电路371-374输出的参考电压,VDD代表电源电压。这些电压满足关系式Vp<Vr3<Vr2<Vr1<VDD
在步骤S21中,判断时期T1是否小于时期T2。这里,时期T1的定义是:从交流电压波形(A)的电压VA超过电压Vp的时刻到其后的电压VA降低到低于电压Vp的时刻之间的时间。时期T2的定义是:从交流电压波形(A’)的电压VA超过电压Vp的时刻到其后的电压VA降低到低于电压Vp的时刻之间的时间。时期T1和T2由控制电路271确定,其方法是测量从比较器375的输出信号自L电平变为H电平的变化时刻到该输出信号自H电平变为L电平的变化时刻之间的时间。
当判定出时期T1小于时期T2时,就可判定需要从能量提供电路210向能量保存电路220提供静态能量。因此在这种情况下处理将进入步骤S22。
在步骤S22中,判断电压VA在其上升阶段是否超过了电压Vr3。电压VA在其上升阶段超过了电压Vr3这一事实由比较器379的输出信号从L电平变为H电平的变化被探测到。当电压VA在其上升阶段超过了电压Vr3时,控制电路271将接通开关212(步骤S23)。
在步骤S24中,判断电压VA在其上升阶段是否超过了电压Vr2。电压VA在其上升阶段超过了电压Vr2这一事实由比较器378的输出信号从L电平变为H电平的变化被探测到。当电压VA在其上升阶段超过了电压Vr2时,控制电路271将断开开关212(步骤S25)。
这样,当保存在能量保存电路220中的静态能量减小时,开关212将在时期T3内接通,在该时期T3中电压VA接近电源电压VDD并在下降。因此有可能由能量提供电路210向能量保存电路220提供静态能量。
4、动态能量的调节
图11A示出一种具有调节保存在能量保存电路220中的动态能量大小的功能的电源设备1302的结构。负载390连接在电源设备1302的节点224处。负载390至少含有一个电容元件和一个电阻元件。
电源设备1302除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含:控制电路271、一个比较器272、和一个参考电压发生电路273。
当过多地向能量保存电路220提供动态能量时,节点222处的交流电压波形的振荡振幅将增大。提供电源设备1302的目的是,当节点222处的电压变得低于或等于地电压GND时将减小节点222处的交流电压波形的振荡振幅。
在能量保存电路220中提供一个元件391。该元件391连接在节点222上。例如,元件391是一个二极管,其一一个端头a为阴极,另一个端头b为阳极(见图11B)。或者,元件391也可以是一个PMOS(p型MOS)晶体管,其端头a为漏极、端头b为源极、而电源VDD为井极,并且门极与源互相连接(见图11C)。这种PMOS晶体管的阈值VT可以是高的,也可以是低的。
图11D示出节点222处的交流电压波形(A)。
对于把图11B的二极管用作元件391的情形,当节点222处的电压变得低于或等于地电压GND时,该二极管将被前向偏置。结果,节点222处的电压被固定在一个比地电压GND低二极管前向电压VT的电压上(例如见图11D的时期t3-t4)。由于二极管被前向偏置,故存在前向电流。二极管的该前向电流是靠存储在电感中的动态能量产生的。因此,存储在电感中的动态能量被二极管消耗。结果,节点222处的交流电压波形的振荡振幅减小。另一方面,二极管前向电流将向能量保存电路220提供电荷。于是静态能量增大。
对于把图11C中的PMOS晶体管用作元件391的情形,当漏极电压变得等于一个比地电压GND低阈值电压VT的电压时,PMOS晶体管将导通。结果,将有一漏极电流从PMOS晶体管的端头b(源极)流向端头a(漏极)。该漏极电流是靠存储在电感中的动态能量产生的。因此,存储在电感中的动态能量被PMOS晶体管消耗。结果,节点222处的交流电压波形的振荡振幅将减小。另一方面,漏极电流将向能量保存电路220提供电荷。于是静态能量增大。
图12示出一种具有调节保存在能量保存电路220中的动态能量大小的功能的电源设备1303的结构。该电源设备1303利用磁耦合把能量提供电路210提供给能量保存电路220。
在能量保存电路220中提供一个元件391。元件391连接在节点222上。元件391的结构与上述相同。
当过多地向能量保存电路220提供动态能量时,存储在电感中的动态能量将被元件391消耗。结果,节点222处的交流电压波形的振荡振幅将减小。另一方面,元件391将向能量保存电路220提供电荷。于是,静态能量增大。
随着过度的动态能量这样地被元件391消耗,节点222处的交流电压波形的振荡振幅将衰减。于是保存在能量保存电路220中的动态能量大小被保持恒定。
图13A示出一种具有调节保存在能量保存电路220中的动态能量大小的功能的电源设备1304的结构。负载400连接在电源设备1304的节点224上。负载400至少含有一个电容元件和一个电阻元件。
电源设备1304除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含:控制电路271、比较器272、参考电压发生电路273、一个控制电路402、比较器403-404、和参考电压发生电路405-406。
当给能量保存电路220提供了过多的动态能量时,节点222处的交流电压波形的振荡振幅将增大。提供电源设备1304的目的是,当节点222处的电压变得低于或等于地电压GND时,减小节点222处的交流电压波形的振荡振幅。
在能量保存电路220中提供一个开关401。开关401连接在节点222上。开关401例如可以是一个NMOS晶体管。开关401的断开/接通时间由控制电路402控制。
电容值C1和C2的设定使得满足关系式C1>>C2。于是在节点222处得到交流电压波形,在节点224处得到直流电压波形。
图13B示出节点222处的交流电压波形(A)和节点224处的直流电压波形(B)。
当节点224处的电压降低到低于目标电压Vp时,控制电路271将接通开关212。例如,控制电路271在t3-t4时刻之间的时期内接通开关212。或者,接通开关212的时期也可以在时刻t1-t2之间或t1-t4之间。这样,能量便由能量提供电路210提供给能量保存电路220。结果,节点222处交流电压波形的振荡振幅将增大。
当向能量保存电路220提供了过多的动态能量时,节点222处的电压将低于或等于地电压GND。当保存在能量保存电路220中的静态能量减小,从而节点222处交流电压波形的振荡振幅的中心变得低于1/2VDD时,也会出现该电压低于或等于地电压GND的情况。
在节点222处的电压低于或等于地电压GND的时期内,控制电路和402将在时刻t5-t6之间的时期内接通开关401。或者,接通开关401的时期也可以是时刻t7-t8或t5-t8之间的时期。结果有一个电流从地电压GND流向节点222。该电流是由存储在电感中的动态能量产生的。因此,存储在电感中的动态能量被开关401消耗。结果,节点222处交流电压波形的振荡振幅将减小。另一方面,将通过开关401向能量保存电路220提供电荷。于是,静态能量增大。
通过如上所述地在节点222处电压低于电压GND时接通开关401,保存在能量保存电路220中的一部分动态能量将被转换成热能并被开关401的寄生电阻消耗,另一部分动态能量将被转换成静态能量并保存在能量保存电路220中。
另一方面,如果在节点222处的电压高于地电压GND时开关401,则保存在能量保存电路220中的静态能量将向地电压GND释放。从能量保存电路220释放的一部分静态能量被转换成热能并被开关401的寄生电阻消耗,另一部分静态能量借助于流经电感221的电荷而转换成动态能量。
特别地,通过在电压低于地电压GND时接通开关401,便可能减少保存在能量保存电路220中的动态能量而增大静态能量。通过在电压高于地电压GND时接通开关401,便可能增大保存在能量保存电路220中的动态能量而减小静态能量。
如上所述,通过调节接通开关401的时间,便可能调节保存在能量保存电路220中的动态能量和静态能量。接通开关401的时间可以通过调节由参考电压发生电路406输出的参考电压Vr3和Vr4来任意调节。
图14示出调节动态能量的处理过程。该处理由控制电路271(见图13A)在每个预定的时期执行。这里,VA代表节点222处的电压、VB代表节点224处的电压、Vp代表从参考电压发生电路273输出的参考电压、Vr1和Vr2代表从参考电压发生电路405有选择地输出的参考电压、Vr3和Vr4代表从参考电压发生电路406有选择地输出的参考电压,VDD代表电源电压,GND代表地电压。这些电压满足关系式Vr4<Vr3<GND<Vp<Vr2<Vr1<VDD
在步骤S31中,判断电压VB是否已降低到降低于电压Vp。电压VB已降低到低于电压Vp这一事实由比较器272的输出信号从H电平改变为L电平的变化探测到。当电压VB已降低到低于电压Vp时,处理将进入步骤S32。
在步骤S32中,判断电压VA在其下降阶段是否已降低到低于电压Vr1。电压VA在其下降阶段已降低到低于电压Vr1这一事实由比较器403的输出信号从L电平改变成H电平的变化探测到。当电压VA在其下降阶段已降低到低于电压Vr1时,控制电路271将接通开关212(步骤S33)。
在步骤S34中,判断电压VA在其下降阶段是否已降低到低于电压Vr2。电压VA在其下降阶段已降低到低于电压Vr2这一事实由比较器403的输出信号从L电平变为H电平的变化探测到。当电压VA在其下降阶段已降低到低于电压Vr2时,控制电路271将断开开关212(步骤S35)。
在步骤S36中,判断当电压VA在其下降阶段是否已降低到低于电压Vr3。电压VA在其下降阶段已降低到低于电压Vr3这一事实由比较器404的输出信号从L电平变为H电平的变化探测到。当电压VA在其下降阶段已降低到低于电压Vr3时,控制电路271将接通开关401(步骤S37)。
在步骤S38中,判断电压VA在其下降阶段是否已降低到低于电压Vr4。电压VA在其下降阶段已降低到低于电压Vr4这一事实由比较器404的输出信号从L电平变为H电平的变化探测到。当电压VA在其下降阶段已降低到低于电压Vr4时,控制电路271将断开开关401(步骤S39)。
这样,在节点222处的电压低于或等于地电压GND的时期内开关401将被接通。随着多余的动态能量被开关401消耗,节点222处交流电压波形的振荡振幅并衰减。于是保存在能量保存电路220中的动态能量将保持恒定。5.关于噪声
如图6A所示,对于由能量提供电路210通过开关212向能量保存电路220提供能量的情况,所提供的动态能量和静态能量的总量(或动态能量和静态能量的总转换量)由开关212接通的时间长度确定。随着从能量保存电路220向负载提供的动态能量和静态能量的增大,开关212接通的时间长度将被控制得较长。随着从能量保存电路220向负载提供的动态能量和静态能量的减少,开关212接通的时间长度将被控制得较短。
当如上所述开关212的接通时间长度改变时,节点222处的正弦波振荡畸变也发生改变。结果,畸变的频谱将发生变化。
节点222处的正弦波振荡使电流通过电感221。流过电感221的电流将产生一个电磁波。该电磁波的频率唯一地与正弦波振的频率有关。由流过电感221的电流所产生的电磁波在与另一个电感耦合时将会影响含有该电感的电路。这就是所谓的噪声。
噪声可以用一个滤波器去除。为了实现用滤波器去除噪声,希望噪声的频谱最好总的来说是恒定的和不变的。通过保持开关212的接通时间长度恒定,可以保持噪声频谱恒定。为了保持开关212接通时间长度恒定,可以通过改变开关212的寄生电阻来调节能量的提供量和转换量。
改变开关212的寄生电阻的方法例如是,在电感221与节点222之间提供多个互相串联的开关,并改变这多个开关中被同时接通的开关数目。
图15示出开关部分212e的示例性结构。开关部分212e含有4个互相并联的开关212-1至212-4。在某一时刻内只有开关212-1接通。在另一时期内开关212-1和212-2接通。在又一个时期内开关212-1至212-3接通。在再一个时期内开关212-1至212-4都接通。随着同时接通的开关数目增多,能量的提供量和转换量增大。
在如上所述地通过改变开关212的寄生电阻而调节能量提供量和转换量的同时,通过保持开关212接通时间为恒定,就可能保持噪声频谱恒定。这样就实现了用滤波器去除噪声。
6.关于谐振工作
当满足关系式C1>>C2时,能量保存电路220节点222处的正弦波振荡的频率f可表示为f=1/{2π√(LC2)}。这里,L代表电感221的电感值,C1和C2分别代表电容225和223的电容值。
当电容值C2增大时频率f将减小。此外,当电感值L增大时频率f将减小。
频率f低意味着输入给用于各种类型电源电路的比较器的信号的变化率小。这样,比较器可以不出错的探测电压。这是因为比较器的特性是,被探测信号变化愈慢则电压探测精度愈高。此外,当比较器具有以足够的精度探测电压的能力时,有可能通过降低比较器探测精度来减小它的功耗。还有,可以在开关212两端的电压差小的时间内集中进行从能量提供电路210向能量保存电路220的能量提供,由此可以避免由下述原因而产生噪声:由于开关212两端的大电压差而发生的冲击电流。
这样,能量保存电路220具有这样一个特性,即能够通过改变电容值和/或电感值来增大和减小节点222处正弦波振荡的频率f。因此可能在谐振工作时增大或减小噪声频率。
当在节点222处的正弦波振荡的振幅保持不变的情况下增大电容值C2时,给电容223充电的电荷量也增大。结果,流入电容223的电流增大。
当用正弦波振荡给负载提供荷时,或者当从负载取出电荷时,电荷量将根据负载改变。因此,在能量保存电路220的电路设计时需要考虑频率f和提供给负载的电荷量(和/或从负载取出的电荷量)。
7.关于基于LC振荡工作的噪声抑制
可以期望,随着LSI集成密度的增大,将在同一块芯片上形成存储器电路(例如DRAM)、数字电路、和模拟电路。人们相信,由于在一块芯片上混合了这些不同的电路,进入到中频模拟电路的工作频带中的噪声将会影响该模拟电路的性能,这在将来将逐渐成为一个问题。
图75示出一个***LSI的实施例。例如,***LSI1801的功能是接收和解调例如由移动电话发射的高频无线电波。
***LSI1801包含:一个中频和高频模拟电路模块1802,其功能是接收高频信号并将它解调成中频信号;一个DRAM模拟1803,用来存储解调所需的程序;一个低频模拟电路模块1804,用来控制解调操作,它还含一个用来把解调信号转换成数字信号的A/D(模/数)转换器;一个数字电路模块1805,用来执行例如去除数字解调信号中的噪声等信号处理;以及一个含有LC谐振电路的电源设备1806。电路模块1802-1805以及电源设备1806全都形成在同一块硅芯片上。电源设备1806向电路模块1802-1805中的至少一个模块提供电源电压。
如图75所示,中频和高频模拟电路模块1802和电源设备1806是相互邻近放置的,因此由LC谐振电路的电感所产生的噪声将被导入中频和高频模拟电路模块1802。另一方面,由于模块1802的特性会被噪声明显地降低,所以对例如信号发射等每一种应用形式都有相应标准规定了可接受的噪声强度。例如,有一个标准规定了禁止有等于或大于-60dBm的噪声被导入到10-20MHZ的频带内。
为了防止导入噪声,有一种方法采用了不含电感的电源设备,例如采用运算放大器的电源设备。然而,不含电感的电源设备有大的能量损失,从而对于减小功率和LSI所产生的热量是不利的。当采用含有电感的电源设备时,流经电感的电流又会产生辐射噪声。因此,有必要保证不在会影响中频和高频模拟电路模块特性的频带内导入其强度大于可接受强度的噪声。
在图51A所示的带有电压转换部分54的普通DC/DC转换器61中,当从开关50提供的电流停止时,开关50从断开路状态变为接通状态。当开关50从断开状态变为接通状态时,流经电感52的电流突然改变,因此根据电感52的特性,信号输入端A处的电压将瞬间地达到地电压。结果,由于信号输入端A处电压的快速变化,电感52所产生的噪声的分布将达到高频域。这可能将在会影响中频和高频模拟电路模块特性的频带内导入其强度大于可接受强度的噪声。
另一方面,对于含有LC谐振电路的电源设备1806的情况,有可能通过适当地设定LC谐振电路的谐振频率来限制流经电感的电流的变化。所以有可能减小噪声的频率。
图77示出噪声强声强度分布与LC谐振电路谐振频率的关系。在图77中,曲线a、b、c分别对应于LC谐振电路的谐振频率为fLa、fLb、fLc的慰问。这里,有关系式fLa<fLb<fLc。这三个谐振频率fLa、fLb、fLc都是在设计阶段通过适当地设定电容值C(例如图1中的C2)和电感值L(例如图1中的L)来设定的。于是有可能在设计阶段适当地选择和设定L和C。谐振频率f由下式确定:f=1/2π√(LC)。可以看出,随着LC谐振电路谐振频率的减小,噪声分布的频带将变窄。曲线d代表上述普通的DC/DC转换器61的噪声分布。
假定需要在一个特定频带(从频率f1至f2)内使噪声强度小于或等于对应于中频和高频模拟电路和模块1802的一个预定值P2。这时,通过把LC谐振电路的谐振频率设定为fLa或fLb,就可能把该特定频带内的噪声强度设定得小于或等于预定值P2。这样,就能防止中频和高频模拟电路模块1802的特性因噪声而降低。频率f1例如为10MHz,频率f2例如为20MHz。预定值P2例如为-60dBm。
不仅当各种电路模块混合在同一块芯片上时,而且当LSI的封装密度增大时,例如当在一个基底上有多芯片模块或有高密度封装时,也需要保证在会影响中频和高频模拟电路模块特性的频带内不导入其强度大于可接受强度的噪声。
图76示出含有LC谐振电路的电源设备与中频和高频模拟电路模块1802形成在不同芯片上的一个例子。***LSI1807包含数字电路模块1805和电源设备1806。***LSI1807与中频和高频模拟电路模块1802形成在不同芯片上。电源设备1806向电路模块1802至1805中的至少一个模块提供电源电压。
图78示出噪声强度分布和***LSI1807与中频和高频模拟电路模块1802的距离D之间的关系。在图78中,曲线e、f、g分别对应于***LSI 1807与中频和高频模拟电路模块1802之间的距离De、Df、Dg。这里有关系式De>Df>Dg。可以看出,随着***LSI1807与模拟电路模块1802之间的距离D的减小,噪声分布的频带将增宽。
如上所述,通过把LC谐振电路的谐振频率设定得足够小,便可能把特定频带中的噪声强度设定得小于或等于预定值。于是,能防止高频和中频模拟电路1802的特性因噪声而降低。
本说明书第8章和第9章中说明的任一类型的电源设备都可用作含有LC谐振电路的电源设备1806。不过LC谐振电路并不一定需要具有这样的结构:第一个电容连接在电感的一端而第二个电容连接在电感的另一端(以下将该结构称为C-L-C结构)。LC谐振电路的结构也可以是只有一个电容连接在电感的一端(以下称为L-C结构)。
图79示出一种含有L-C结构的LC谐振电路的电源设备1806的结构。该电源设备1806向多个电路模块中的至少一个模块提供直流电源电压。电源设备1806和多个电路模块可以形成在同一块半导体芯片上,也可以形成在不同的半导体芯片上。
LC谐振电路由一个电感1820和一个电容1821组成。有一个电流调节电路1811连接在LC谐振电路上。与电流调节电路1811相连接的电感1820的那个端头处的电压被设定为VDD/2。这里假定电源电压为VDD
当流经电感1820的电流是从电流调节电路1811流向电容1821时,节点1818处的电压将增大。反之,节点1818处的电压将降低。
电流调节电路和1811在监视节点1818处电压的同时调节电流的输入/输出,使得节点1818处的电压以一个预定的电压振幅作LC振荡。为了把节点1818处的振荡电压转换成直流电压,设置了比较器1813和1819、一个参考电压发生电路1814和一个控制电路1812。通过用控制电路1812断开/接通开关1815,负载1817的节点1816处的电压被转换成直流电压。这种转换方法与下面将参考图17A说明的电源设备的转换方法类似。图79所示的控制电路1812、比较器1819和1813、开关1815、负载1817和参考电压发生电路1814分别对应于图17A所示的控制电路283、比较器284和285、开关282、负载280和参考电压发生电路286。
8.电源设备200的类型
电源设备200一般可以分成以下4种类型(1)-(4)。
(1)DC型:这种类型利用能量保存电路220的节点222和224中的一个节点所提供的直流电压波形。
(2)AC型:这种类型利用能量保存电路220的节点222和224中的一个节点所提供的交流电压波形。
(3)DC-AC型:这种类型利用能量保存电路220的节点222和224中的一个节点所提供的直流电压波形和另一个节点所提供的交流电压波形。
(4)AC-AC型:这种类型利用能量保存电路220的节点222和224中的一个节点所提供的交流电压波形和另一个节点所提供的交流电压波形。
8.1 DC型电源设备
图16示出一种DC型电源设备201的结构,它向连接在节点224上的负载270提供直流电压波形。负载270至少含有一个电容元件和一个电阻元件。
电源设备201除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含控制电路271、比较器272、和参考电压发生电路273。在图16A所示的例子中,能量提供电路210采用了图6A所示的结构。不过,图6A-6D或图58A所示的结构也都可用作能量提供电路210的结构。图11A、11B或13A所示的结构可用作调节动态能量的装置。
电容值C1和C2的设定使得满足关系式C1>>C2。于是在节点222处得到交流电压波形而在节点224处得到的直流电压波形。
图16B示出节点222处的交流电压波形(A)(以虚线表示)和节点224处的直流电压波形(B)(以实线表示)。严格地说,节点224处的电压波形也是一个交流电压波形。不过节点224处的交流电压波形可以被当作是一个直流电压波形。这是因为节点224处的电压振荡足够地小于节点222处的电压振荡。
如上所述,通过适当地调节由能量提供电路210提供的静态能量与动态能量的比例,有可能得到这样的交流电压波形(A),使得其振荡中心位于电压Vp,振幅等于1/2 VDD。直流电压波形(B)通常等于交流电压波形(A)的振荡中心。
现在将说明电源设备201的工作。
比较器272把节点224处的电压与参考电压发生电路273输出的电压Vp进行比较,以探测节点224处电压是否已降低到低于电压Vp。当节点224处电压等于或高于电压Vp时,比较器272的输出信号为H电平。当节点224处电压低于电压Vp时,比较器272的输出信号为L电平。
当节点224处电压在时刻t1降低到低于电压Vp时,比较器272的输出信号从H电平变为L电平。控制电路271在响应于比较器272输出信号的这一变化时将接通开关212。于是开始了向能量保存电路220的能量提供。结果节点224处的电压增大。
当节点224处电压在时刻t2变得等于或大于电压Vp时,比较器272的输出信号从L电平变为H电平。控制电路和271在响应于此变化时将断开开关212。于是中止了对能量保存电路220的能量提供。
类似地,对能量保存电路220的能量提供开始于时刻t3,中止于时刻t4
这样,被负载270消耗的能量通过保存在能量保存电路220中的能量减少而被探测到。然后给能量保存电路220提供能量以补偿减少的能量。
这样,DC型电源设备201能向负载270提供低于电源电压VDD的电压。
8.2 AC型电源设备
图17A示出一种AC型电源设备202的结构,它能把一个连接在节点222上的负载280中的节点281处的电压充电到希望的电压。负载280至少含有一个电容元件、一个电阻元件和开关282。
电源设备202除了包含图16A所示电源设备201的各元件之外,还包含控制电路283、比较器284、比较器在285和参考电压发生电路286。图11A、11B或13A所示的结构可以用作调节动态能量的装置。
电容值C1和C2的设定使得满足关系式C1>>C2。于是在节点222处得到交流电压波形而在节点224处得到直流电压波形。
图17B示出节点222处的交流电压波形(A),节点224处的直流电压波形(B)和节点281处的电压波形(C)。
如上所述,通过适当地调节能量提供电路210所提供的静态能量与动态能量之间的比例,有可能得到这样的交流电压波形(A),使得其振荡中心为电压Vp,振幅为1/2 VDD。直流电压波形(B)通常等于交流电压波形(A)的振荡中心。
现在将说明电源设备202把节点281处的电压从电压V1设置成小于电压V1的电压Vr1的工作。假定在时刻t=0时节点281已被充电到电压V1
比较器284将节点222处的电压与节点281处的电压相比较,以探测节点222处电压在交流电压波形(A)的下降阶段是否已达到电压V1,或者探测节点222处电压在交流电压波形(A)的上升阶段是否已达到电压V1。当节点222处电压在交流电压波形(A)的下降阶段达到了电压V1时,比较器284的输出信号将从L电平变为H电平;当节点222处电压在交流电压波形(A)的上升阶段达到了电压V1时,比较器284的输出信号将从H电平变为L电平。
当节点222处电压在交流电压波形(A)的下降阶段于时刻t1达到了电压V1时,比较器284的输出信号从L电平变为H电平。控制器283在响应这一变化时将接通开关282。于是节点281处电压将随交流电压波形(A)改变。
比较器285将节点281处电压与参考电压发生电路286的输出电压Vr1相比较,以探测节点281处电压是否已达到电压Vr1
当节点281处电压于时刻t2达到了电压Vr1时,比较器285的输出信号从L电平变为H电平。控制电路283在响应于这一变化时将断开开关282。于是节点281处的电压被保持在电压Vr1上。
不过,当把节点281处的电压从电压Vr1设定到高于Vr1的电压Vr2上时,要利用交流电压波形(A)的上升阶段。
当节点222处的电压在交流电压波形(A)的上升阶段于时刻t3达到电压Vr1时,比较器284的输出信号从H电平变为L电平。控制电路283在响应于这一变化时将接通开关282。于是节点281处的电压将随交流电压波形(A)改变。
比较器285将节点281处的电压与参考电压发生电路286的输出电压Vr2相比较,以探测节点281处电压是否已达到电压Vr2。这样,参考电压发生电路286按预定的时间交替地输出电压Vr1和Vr2
当节点281处的电压在时刻t4达到电压Vr2时,比较器285的输出信号将从H电平变为L电平。控制电路283在响应于这一变化时将断开开关282。于是节点281处的电压将保持在电压Vr2上。
通过调节参考电压发生器286的输出电压,可以把负载280节点281处的电压充电到任何电压。
与直流型电源设备201中的情况相同,被负载280消耗的能量通过保存在能量保存电路220中的能量减小来探测。然后向能量保存电路220提供能量以补偿减小的能量。
这样,AC型电源设备202能利用交流电压波形把连接在节点222上的负载280的节点281处的电压充电到希望的电压。利用交流电压波形对含有电容元件的负载280的充电是基于前述的“绝热充电原理“的。因此,在对负载280充电时消耗的能量是极小的。
8.3 DC-AC型电源设备
图18A示出一种DC-AC型电源设备203的结构。除了有负载270被连接在节点224上之外,电源设备203的结构与图17A所示电源设备202的结构相同。
通过把负载270连接在节点224上,有可能向负载270提供直流电压波形。此外,通过把负载280连接在节点222上,还有可能利用交流电压波形把负载280中的节点281处的电压充电压充电到希望的电压。
图18B示出节点222处的交流电压波形(A)、节点224处的直流电压波形(B)和节点281处的电压(C)。
8.4 AC-AC型电源设备(变体1)
图19A示出一种AC-AC型电源设备204的结构。电源设备204利用第一支流电压波形把连接在节点222上的负载280中的节点281处的电压充电到希望的电压,并利用第二交流电压波形把连接在节点224上的负载290中的节点291处的电压充电到希望电压,其中第二和第一交流电压波形的相位相差180°。负载290至少含有一个电容元件、一个电阻元件和开关292。
电源设备204除了包含图17A所示电源设备202的各元件之外,还包含一个控制电路293、一个比较器294和一个比较器295。控制电路和293的功能与控制电路283的相同。比较器294和295功能分别与比较器284和285的相同。示于图11A、11B或13A的结构可以用作调节动态能量的装置。
参考电压发生电路286按预定的时间交替地输出电压Vr1和Vr2。参考电压发生电路286在向比较器285输出电压Vr1的同时向比较器295输出电压Vr2;而在向比较器285输出电压Vr2的同时向比较器295输出电压Vr1
电容值C1和C2的设定使得满足关系式C1≈C2。于是在节点222和224处都将得到交流电压波形。
图19B示出节点222处的交流电压波形(A),节点224处的交流电压波形(B)、节点281处的电压波形(C)和节点291处的电压波形(D)。交流电压波形(A)和(B)在振荡中心和振幅方面一般是相同的,但是它们的相位相差180°。
通过同时利用交流电压波形(A)和(B),有可能在利用交流电压波形(A)的下降阶段把节点281处的电压从电压V1设置到低于V1的电压Vr1上的同时,利用交流电压波形(B)的上升阶段把节点291处的电压V2设置到高于V2的电压Vr2上。类似地,有可能在利用交流电压波形(A)的上升阶段把节点281处的电压从电压Vr1设置到高于V1的电压Vr2上的同时,利用交流电压波形(B)的下降阶段把节点291处的电压从电压Vr2设置到低于Vr2的电压Vr1上。电容值C1和C2之间的关系可以是C1>C2,也可以是C1<C2
8.5 AC-AC型电源设备(变体2)
图20A示出一种AC-AC电源设备205的结构。电源设备205有选择地利用第一交流电压波形和有不同相位的第二交流电压波形把连接在节点222和224上的负载300中的节点301处的电压充电到希望电压。负载300至少含有一个电容元件、一个电阻元件、一个开关302和一个开关303。
电源设备205除了包含图16A所示电源设备201的各元件之外,还包含一个控制电路304、一个比较器305、一个比较器306、一个比较器307和一个参考电压发生电路308。示于图11A、11B或13A的结构可以用作调节动态能量的装置。
电容值C1和C2的设定使得满足关系式C1≈C2。于是在节点222和224处都得到交流电压波形。
图20B示出节点222处的交流电压波形(A)、节点224处的交流电压波形(B)、和节点301处的电压波形(C)和(C′)。交流电压波形(A)和(B)的振荡中心和振幅一般是相同的,但它们的相位相差180°。
现在将说明电源设备205把节点301处的电压从电压V1设置到高于电压V1的电压Vr2上的工作。假定在时刻t=0时节点301已被充电到电压V1
比较器305将节点222处的电压与节点301处的电压相比较,以探测在交流电压波形(A)的下降阶段节点222处的电压是否已达到电压V1,或者探测在交流电压波形(A)的上升阶段节点222处的电压是否已达到电压V1。当在波形(A)的下降阶段节点222处电压达到电压V1时,比较器305的输出信号将从L电平变为H电平。当在波形(A)的上升阶段节点222处电压达到电压V1时,比较器305的输出信号将从H电平变为L电平。
比较器307将节点224处的电压与节点301处的电压相比较,以探测在交流电压波形(B)的下降阶段节点224处电压是否达到了电压V1,或者探测在波形(B)的上升阶段节点224处电压是否已达到电压V1。当在波形(B)的下降阶段节点224处电压达到了电压V1时,比较器307的输出信号将从L电平变为H电平。当在波形(B)的上升阶段节点224处电压达到了电压V1时,比较器307的输出信号将从H电平变为L电平。
当节点224的电压在交流电压波形(B)的上升阶段于时刻t2达到了电压V1时,比较器307的输出信号从H电平变为L电平。控制电路304在响应于这一变化时将接通开关303。于是节点301处的电压将随交流电压波形(B)改变。
比较器306将节点301处的电压与参考电压发生电路308输出的电压Vr2相比较,以探测节点301处的电压是否已达到电压Vr2
当节点301处电压于时刻t3达到了电压Vr2时,比较器306的输出信号将从L电平变为H电平。控制电路304在响应于这一变化时将断开开关303。于是节点301处的电压保持在电压Vr2上。
接着,将说明电源设备205把节点301处的电压从电压V1设置到低于V1的电压Vr1上的工作。假定在时刻t=0时节点301处的电压已充电到了电压V1
当节点222处的电压在交流电压波形(A)的下降阶段于时刻t1达到了电压V1,比较器305的输出信号将从L电平变为H电平。控制电路304在响应于这一变化时将接通开关302。于是节点301处电压将随交流电压波形(A)改变。
比较器306将节点301处的电压与参考电压发生电路308输出的电压Vr1相比较,以探测节点301处电压是否已达到电压Vr1。这样,参考电压发生电路308以预定的时间交替地产生电压Vr1和Vr2
当探测到节点301处电压于时刻t3达到了电压Vr1时,比较器306的输出信号将从L电平变为H电平。控制电路304在响应于这一变化时将断开开关302。于是节点301处的电压将保持在电压Vr1上。
通过调节参考电压发生电路308的输出电压,可以把负载300中的节点301处的电压充电到任何电压上。
与DC型电源设备201的情况相同,负载300所消耗的能量由保存在能量保存电路220中的能量减小探测到。给能量保存电路220提供能量以补偿减小的能量。
这样,通过有选择地利用交流电压波形(A)和(B)中的一个波形,便可能缩短把负载300充电到希望电压所需的时间,更快地达到希望电压。电容值C1与C2之间的关系可以是C1>C2,也可以是C1<C2
8.6 AC-AC型电源设备(变体3)
图21示出一种AC-AC型电源设备206的结构。负载410连接在电源设备206的节点1222、1224和1226上。负载410至少含有一个电容元件,一个电阻元件,和开关412-414。
电源设备206包含能量提供电路210和能量保存电路1220。示于图11A、11B或13A的结构可用作调节动态能量的装置。
在能量保存电路1220的结构中有两个LC谐振电路以级联的形式连接在一起。较具体地说,能量保存电路1220含有:一个电感1221、一个电感1228、一个电容1223、一个电容1225、和一个电容1227。电感1221与1228在节点1224处串联。电容1223在节点1222处与电感1221连接。电容1225在节点1224处与电感1221和1228相连接。电容1227在节点1226处与电感1228连接。这里,L1和L2分别代表电感1221和1228的电感值。C1-C3分别代表电容1223、1225和1227的电容值。
电源设备206还含有:一个控制电路271、一个比较器272、一个参考电压发生电路273、一个控制电路415、比较器416-419、和一个参考电压发生电路420。
电容值C1、C2、C3的设定使得满足关系式C1≈C2≈C3。于是,在节点1222、1224、1226处都得到交流电压波形。
图22示出节点1222处的交流电压波形(A)、节点1224处的交流电压波形(B)、节点1226处的交流电压波形(C)、和负载410中节点411处的电压波形(D)。一般,交流电压波形(A)-(C)有相同的振荡中心和振幅。交流电压波形(A)与(C)的相位相差180°。
图23A-23D分别示出在图22所示的时期T1-T4中的电荷运动。这里定义VA代表节点1222处的电压,VB代表节点1224处的电压,VC代表节点1226处的电压。
在时期T1中,存储在电容1223中的电荷向电容1225和1227运动(图23A)。于是电压VA降低而电压VB和VC升高。
在时期T2中,存储在电容1223和1225中的电荷向电容1227运动(图23B)。于是电压VA和VB降低而电压VC升高。
在时期T3中,存储在电容1225和1227中的电荷向电容1223运动(图23C)。于是电压VA升高而电压VB和VC下降。
在时期T4中,存储在电容1227中的电荷向电容1223和1225运动(图23D)。于是电压VA和VB升高而电压VC下降。
现在将说明电源设备206把节点411处的电压从电压V1设置到低于V1的电压Vr1上的工作。假定在t=0时节点411已充电到了电压V1
当电压VC在其下降阶段于时刻t1达到了节点411处的电压(即电压V1)时,控制电路415将接通开关414。结果节点411处的电压将随交流电压波形(C)降低。
当电压VC在其下降阶段于时刻t2达到了参考电压发生电路420输出的参考电压Vr2时,控制电路415将断开开关414。结果节点411处的电压将保持在电压Vr2上。
接着将说明电源设备206把节点411处的电压从电压Vr2设置到高于Vr2的电压Vr1上的工作。
当电压VC在其上升阶段于时刻t3到达了参考电压发生电路420输出的参考电压Vr2时,控制电路415将接通开关414。结果节点411处的电压将随交流电压波形(C)升高。
当电压VC在其上升阶段于时刻t4达到了参考电压发生电路420输出的参考电压Vr1时,控制电路415将断开开关414。这样,负载410中的电容元件被绝热充电。到目前为止该电源设备的工作相似于前述AC-AC型电源设备204和205的工作。
当在时刻t4把节点411处的电压从电压Vr1设置到电压Vr2时,利用交流电压波形(B)来替代(C)将更为有效。这是因为,如果让节点411处电压随交流电压波形(C)来降低,则必须等待到时刻t5才能接通开关414。但如果利用波形(B),则可以在早于时刻t5的时刻t4接通开关413。所以,通过利用交流电压波形(B)可以增大工作频率。
典型地,当利用分别由各个电路产生的多个交流电压波形时,需要调节这些波形之间的相位关系。反之,对于电源设备206而言,不需要调节交流电压波形(A)-(C)之间的相位关系。这是因为,由于级联LC谐振电路的特性,交流电压波形(B)的相位被设置在交流电压波形(A)和(C)之间。
图24A示出当电容值C1-C3的设定满足关系式C1、C2<<C3时在各个节点处得到的电压波形,在节点1222和1224处分别得到了交流电压波形(A)和(B),而在节点1226处得到了直流电压波形(C)。
图24B示出当电容值C1-C3的设定满足关系式C1、C3<<C2时在各个节点处得到的电压波形。在节点1222和1226处分别得到了交流电压波形(A)和(C),而在节点1224处得到了直流电压波形(B)。
这样,通过适当地组合电容值C1-C3,便可能产生各种类型的电压波形。
表1概要地示出分别在节点1222、1224和1226处得到的电压波形的各种组合情况。
                       表1
Figure C9718025400591
9.电源设备200的能量再利用类型
电源设备200一般分成以下5种类型(1)-(5)。
(1)能量再利用AC型:该类型通过把电能量保存电路220的节点222和节点224中的一个节点所提供的至少一部分交流电压能量通过该同一节点返回给能量保存电路220,而实现能量再利用。
(2)能量再利用DC型:该类型通过把由能量保存电路220的节点222和节点224中的一个节点所提供的至少一部分直流电压能量通过该同一节点返回给能量保存电路220,而实现能量再利用。
(3)能量再利用AC-AC型:该类型通过把由能量保存电路220的节点222和节点224中的一个节点所提供的至少一部分交流电压能量仍以交流电压能量的形式通过另一个节点返回给能量保存电路220,而实现能量再利用。
(4)能量再利用AC-DC型,该类型通过把由能量保存电路220的节点222和节点224中的一个节点所提供的至少一部分交流电压能量以直流电压能量的形式通过另一个节点返回给能量保存电路220,而实现能量再利用。
(5)能量再利用DC-AC型:该类型通过把由能量保存电路220的节点222和节点224中的一个节点所提供的至少一部分直流电压能量以交流电压能量的形式通过另一个节点返回给能量保存电路220,而实现能量再利用。
9.1能量再利用AC型电源设备
图19A所示的AC-AC型电源设备204对应于一种能量再利用AC型电源设备1201。这是因为,当能量保存电路220的节点222所提供的交流电压波形(A)(见图19B)在上升阶段时由能量保存电路220向负载280提供能量,而当交流电压波形(A)在下降阶段时能量从负载280通过节点222返回给能量保存电路220。对于由能量保存电路220的节点224所提供的交流电压波形(B),情况也是类似的。
这样,通过把存储在负载280和290的电容元件中的电荷返回给能量保存电路220这一形式,能量得到了再利用。于是有可能以极少的能量损失对负载280和290充放电。
9.2能量再利用DC型电源设备
图25A示出一种能量再利用DC型设备1202的结构。负载310连接在电源设备1202的节点224上。负载310含有一个电容元件C3、一个电阻元件312和一个开关313。
电源设备1202通过节点224向负载310提供直流电压波形。所提供的能量被存储在负载310的电容C3中。该被存储能量中的至少一部分仍通过节点224返回给电源设备1202。于是能量得到再利用。
电源设备1202除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含控制电路271、比较器272、参考电压发生电路273、和控制电路314。在图25A所示的例子中,能量提供电路210采用了图6A所示的结构。不过,示于图6A-6D和58A的任一种结构都可用作能量提供电路210的结构。图11A、11B或13A所示的结构可用作调节动态能量的装置。
电容值C1和C2的设定使得能满足关系式C1>>C2。于是在节点222处得到交流电压波形而在节点224处得到直流电压波形。
图25B示出节点222处的交流电压波形(A)、节点224处的直流电压波形(B),和节点311处的电压波形(C)。
现在将说明电源设备1202的工作。
比较器272将节点224处的电压与参考电压发生电路273输出的电压Vp相比较,以探测节点224处的电压是否已降低到低于电压Vp。当节点224处电压等于或高于电压Vp时,比较器272的输出信号为H电平。当节点224处电压低于电压Vp时,比较器272的输出信号为L电平。
在时刻t=0时,开关312是断开的,而开关313是接通的。因此负载310的节点311处的电压被设置在地电压GND上。
在时刻t1,控制电路314接通开关312,断开开关313。结果,节点311处的电压向着电源电压VDD充电。由于节点311处电压在时刻t1至t2时期内升高,所以存储在负载310的电容元件C3中的电荷将通过节点224返回到能量保存电路220中。
在时刻t3,控制电路314断开开关312,接通开关313。结果,节点311处的电压向着地电压GND充电。由于节点311处电压在时刻t3至t1的时期内下降,所以由能量保存电路220通过节点224提供的电荷将被存储在负载310的电容元件C3中。
通过向负载310提供能量,能量保存电路220的节点224处的电压将降低。
当节点224处电压于时刻t4降低到低于电压Vp时,比较器272的输出信号从H电平变为L电平。控制电路271在响应于这一变化时将接通开关212。于是开始向能量保存电路220提供能量。结果,节点224处的电压升高。
当节点224处电压于时刻t5变得等于或高于电压Vp时,比较器272的输出信号从L电平变为H电平。控制电路271在响应于这一变化时,将断开开关212。于是中止向能量保存电路220提供能量。
负载310的节点311处的电压被控制得从地电压GND升高到电源电压VDD,或从电源电压VDD下降到地电压GND。当节点311处电压升高时,存储在负载310的电容元件C3中的电荷通过节点224返回到能量保存电路220中。当存储在负载310的节点311处的电压降低时,由能量保存电路220提供的电荷通过节点224被存储在负载310的电容元件C3中。
这样,通过让存储在负载310的电容元件C3中的电荷返回到能量保存电路220中,能量得到了再利用。于是有可能以极少的能量损失对负载310充放电。
9.3能量再利用AC-AC型电源设备
图26A示出一种能量再利用AC-AC型电源设备1203的结构。该结构与图20A所示的AC-AC型电源设备205的结构相同。负载300连接在电源设备1203的节点222和224上。负载300含有电容元件C3、开关302和开关303。示于图11A、11B或13A的结构可以用作调节动态能量的装置。
电源设备1203分别通过节点222和224向负载300提供交流电压波形。通过节点224提供的能量被存储在负载300的电容元件C3中。至少一部分存储在电容元件C3中的能量将通过节点222返回给电源设备1203。于是能量被再利用。
图26B示出节点222处的交流电压波形(A)、节点224处的交流电压波形(B)和节点301处的电压波形(C)。交流电压波形(A)和(B)一般有相同的振荡中心和振幅,但它们的相位相差180°。
现在将说明电源设备1203的工作。
假定在时刻t=0时节点301已被充电到电压V1。开关302和开关303都是断开的。
当节点224处的电压在交流电压波形(B)的上升阶段于时刻t1达到了节点301处的电压(即电压V1)时,比较器307的输出信号将从H电平变为L电平。控制电路304在响应于该变化时将接通开关303。于是节点301处的电压将随交流电压波形(B)改变。
比较器306将节点301处的电压与参考电压发生电路308输出的电压Vr2相比较,以探测节点301处电压是否已达到电压Vr2
当节点301处电压于时刻t2达到电压Vr2时,比较器306的输出信号从L电平变为H电平。控制电路304在响应于这一变化时将断开开关303。于是节点301处的电压将保持在电压Vr2上。
当节点222处的电压在交流电压波形(A)下降阶段于时刻t3达到了节点301处的电压(即Vr2),比较器305的输出信号将从L电平变为H电平。控制电路304在响应于这一变化时将接通开关302。于是节点301处的电压将随交流电压波形(A)改变。
比较器306将节点301处的电压与参考电压发生电路308输出的电压Vr1相比较,以探测节点301处电压是否已达到电压Vr1。这样,参考电压发生电路308按预定的时间交替地输出电压Vr1和电压Vr2
当探测到节点301处的电压于时刻t4达到了电压Vr1时,比较器306的输出信号从H电平变为L电平。控制电路304在响应于这一变化时将断开开关302。于是节点301处的电压将保持在电压Vr1上。
在时刻t=0至t1的时期内,能量保存电路220和负载300之间没有能量移动。这是因为开关302和303都是断开的,从而能量保存电路220和负载300在这段时期中是互相电分离的。
在从时刻t1至时刻t2的时期内,有能量通过节点224从能量保存电路220提供给负载300。这是因为在该时期中开关302是断开的但开关303是接通的。结果,负载300的节点301处的电压升高。
在从时刻t2至时刻t3的时期内,在能量保存电路220和负载300之间没有能量流动。这是因为开关302和303都是断开的,从而在让时期中能量保存电路220和负载300是互相电分离的。
在从时刻t3至时刻t4的时期内,能量通过节点222从负载300返回到能量保存电路220中。这是因为在这段时期中开关302是接通的,而开关303是断开的。结果,负载300的节点301处的电压下降。
这样,至少一部分由能量保存电路220通过节点224提供给负载300的能量又通过节点222从负载300返回到了能量保存电路220,从而可以再利用该能量。于是有可能以极少的能量损失对负载300充放电。电容值C1和C2之间的关系可以是C1>C2,也可以是C1<C2
9.4能量再利用AC-DC型电源设备
图27A示出一种能量再利用AD-DC型电源设备1204的结构。负载320连接在电源设备1204的节点222和224上。负载320含有一个电容元件C3和开关323-326。示于图11A、11B或13A的结构可用作调节动态能量的装置。
电源设备1204分别通过节点222和224向负载320提供交流电压波形和直流电压波形。通过节点222提供的能量被存储在负载320的电容元件C3中。该能量中的至少一部分将通过节点224返回到电源设备1204中。这样,能量得到了再利用。
电源设备1204除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含控制电路271、比较器272、参考电压发生电路273、控制电路327、比较器328、比较器329、和参考电压发生电路330。在图27A所示的例子中,能量提供电路210采用了图6A所示的结构。但是,图6A-6C所示的任一种结构都可被用作能量提供电路210的结构。
电容值C1和C2的设定使得满足关系式C1>>C2。于是在节点222处得到交流电压波形而在节点224处得到直流电压波形。
图27B示出节点222处的交流电压波形(A)、节点224处的直流电压波形(B)、节点321处的电压波形(C)、和节点322处的电压波形(D)。
现在将说明电源设备1204的工作。
假定在时刻t=0时负载320的节点321已充电到电压V1。开关323-325是断开的,但开关326是接通的。
当节点222处的电压在交流电压波形(A)的上升阶段于时刻t1达到了节点321处的电压(即电压V1)时,比较器328的输出信号将从H电平变为L电平。控制电路327在响应于这一变化时将接通开关323。于是节点321处电压将随交流电压波形(A)改变。
比较器329将节点321处的电压与参考电压发生电路330输出的电源电压VDD相比较,以探测节点321处电压是否已达到电源电压VDD
当节点321处电压于时刻t2达到了电源电压VDD时,比较器329的输出信号将从L电平变为H电平。控制电路327在响应于这一变化时将断开开关323和接通开关324。于是节点321处的电压将向着节点224处的电压(即电压Vp)改变。
在时刻t3,节点321处的电压达到了电压Vp
在时刻t1至t2的时期内,能量通过节点222从能量保存电路220提供给负载320。该提供的能量被存储在负载320的电容元件C3中。在时刻t2至t3的时期内,能量通过节点224从负载320返回到能量保存电路320中。
这样,至少一部分通过节点222从能量保存电路320提供给负载320的能量又通过节点224从负载320返回到能量保存电路220中,于是再利用了能量。于是有可能以极少的能量损失对负载320充放电。
当节点222处的电压在交流电压波形(A)的上升阶段于时刻t4达到了节点321处的电压(即电压Vp)时,比较器328的输出信号从L电平变为H电平。控制电路327在响应于这一变化时将接通开关323和断开开关324。于是节点321处电压将随交流电压波形(A)改变。
当于时刻t5探测到节点321处电压已达到了电压Vr1时,比较器329的输出信号将从H电平变为L电平。控制电路327在响应于这一变化时将断开开关323和接通开关324。此外,在响应于比较器329输出信号的这一变化时,控制电路327还将接通开关325和断开开关326。于是节点321处电压将向着节点224处的电压(即电压Vp)改变。
在时刻t6,节点321处电压达到了电压Vp
在时刻t4至t5的时期内,能量通过节点222从负载320返回到能量保存电路220中。在时刻t5至t6的时期内,从能量保存电路220通过节点224向负载320提供能量。该提供的能量被存储在负载320的电容元件C3中。
这样,至少一部分通过节点224从能量保存电路220提供给负载320的能量又通过节点222从负载320返回到能量保存电路220中,由此再利用了能量。于是有可能以极少的能量损失向负载320充放电。
由于向负载320提供能量,能量保存电路320的节点224处的电压将下降。在图27B所示的例子中,节点224处电压于时刻t2降低到了低于电压Vp。当出现这一情况时,比较器272的输出信号将从H电平变为L电平。控制电路271在响应于这一变化时将接通开关212一段预定的时间。结果,节点224处的电压升高。
9.5能量再利用DC-AC型电源设备
图28A示出一种能量再利用DC-AC型电源设备1205的结构。负载350设置在电源设备1205的节点224与351之间。电容元件C3连接在节点351上。
电源设备1205通过节点224向负载350提供直流电压波形。电源设备1205通过节点224提供的能量被存储在电容元件C3中。至少一部分被存储在电容C3中的能量要通过节点222返回到电源设备1205中。这样能量得到了再利用。
电源设备1205除了包含能量提供电路210和能量保存电路220这两个基本单元之外,还包含控制电路271、比较器272、参考电压发生电路273、开关352、控制电路353、比较器354、比较器355、和参考电压发生电路356。在图28A所示的例子中,能量提供电路210采用了图6A所示的结构。但是,图6A-6D和58A所示的任一种结构都可以用作能量提供电路210的结构。示于图11A、11B或13A的结构可用作调节动态能量的装置。
电容值C1和C2的设定1使得满足关系式C1>>C2。于是在节点222处得到交流电压波形,在节点224处得到直流电压波形。
图28B示出节点222处的交流电压波形(A)、节点224处的直流电压波形(B)、和节点351处的电压波形(C)。
现在将说明电源设备1205的工作。
在从时刻t=0至时刻t1的时期内,通过节点224从能量保存电路220向负载350提供电荷。结果,节点224处的电压逐渐降低。一部分已通过负载350的电荷将再通过负载360到地。其余电荷被存储在电容元件C3中。结果,节点351处的电压逐渐升高。
当节点224处的电压于时刻t1下降到低于电压Vp时,比较器272的输出信号将从H电平变为L电平。控制电路271在响应于这一变化时将在时刻t1至t2的时期内接通开关212。于是能量从能量提供电路210提供给能量保存电路220。结果节点224处的电压升高。
在时刻t2至t3的时期内,没有能量从能量提供电路210提供给能量保存电路220。结果节点224处的电压逐渐降低。
当节点222处的电压在支流电压波形(A)的下降阶段于时刻t3达到了节点351处的电压时,比较器354的输出信号从L电平变为H电平,控制电路353在响应于这一变化时将接通开关352。于是节点351处的电压将随交流电压波形(A)改变。
在时刻t3至t4的时期内,存储在电容元件C3中的电荷通过开关352和节点222返回到能量保存电路220中。
当节点351处电压在时刻t4达到了电压Vr时,比较器355的输出信号将从H电平变为L电平。这里,参考电压发生电路将其输出电压Vr作为参考电压输出给比较器355。控制电路353在响应于比较器355输出信号的这一变化时将断开开关352。
在时刻t4至t5的时期内,没有能量从能量提供电路210提供给能量保存电路220,因此节点224处的电压将逐渐降低,并且存储在电容元件C3中的电荷也不返回到能量保存电路220中,因此节点351处的电压将逐渐升高。但当存储在电容元件C3中的电荷返回到能量保存电路220中时,节点224处的电压下降将转变为升高。从而节点224处的电压和节点351处的电压都将保持在希望电压附近。
在图28A所示的例子中,负载350设置在节点224与351之间,负载360设置在节点351与地之间。除了负载350和360之外,还可以在节点224与地之间再设置另一个负载。或者,也可以把负载350设置在节点224与351之间,而把负载360设置在节点224与地之间。或者也可以只设置负载350而不设置负载360。
10.本发明对电压转换器的应用
现在将说明本发明对电压转换器(DC/DC转换器)的应用。(实施例1)
图29示出根据本发明的一种电压转换器20的结构。电压转换器20包含一个电压转换部分3和一个控制部分130,前者用来把一个由电源1提供的电压转换成另一个电压并把这另一个电压提供给一个电压接收电路(负载)2;后者用来控制电压转换部分3,使得能把来自电源1的基本上等于负载2的功耗的功率提供给电压转换部分3。电源1连接在电压转换器20的端头21上。负载2连接在电压转换器20的端头22上。
控制部分130含有一个驱动电路4和一个同步电路5,前者用来断开/接通含在电压转换部分3中的一个开关26(图29中未示出,见图30);后者用来根据由探测器8、15和18输出的信号确定开关26的通断状态。
控制部分130还含有一个时钟发生器6和一个时钟探测器7,前者用来产生确定电压转换部分3的工作周期的时钟脉冲;后者用来探测从时钟发生器6输出的时钟脉冲。
控制部分130还含有:一个用来将从电压转换部分3的端头3e输出的电压与一个目标电压相比较的探测器8、一个用来产生目标电压的参考电压发生器9、和一个用来根据一个控制时钟脉冲和一个从时钟发生器6输出的时钟脉冲来控制探测器8和参考电压发生器9的工作时间的同步电路10。控制时钟脉冲通过端头23提供给同步电路10。此外,有一个指明目标电压的信号通过端头25提供给参考电压发生器9。
控制部分130还含有一个用来将从电压转换部分3的端头3e输出的电压与一个初始电压相比较的探测器11、一个用来产生初始电压的参考电压发生器12、和一个用来根据一个开始信号、一个控制时钟脉冲、一个从同步电路5输出的信号和一个从时钟探测器7输出的信号,来控制探测器11和参考电压发生器12的工作时间的同步电路13。开始信号通过端头24提供给同步电路13。控制时钟脉冲通过端头23提供给同步电路13。
控制部分130还含有:一个参考电压发生器14,用来产生一个能确定含在电压转换部分3中的开关26(图29中未示出,见图30)从断开状态变为接通状态的时刻的电压;一个探测器15,用来将参考电压发生器14输出的电压与电压转换部分3的端头3c输出的电压相比较;以及一个同步电路16,用来根据一个控制时钟脉冲和一个由时钟发生器6输出的时钟脉冲来控制参考电压发生器14和探测器15的工作时间。控制时钟脉冲通过端头23提供给同步电路16。
控制部分130还含有:一个参考电压发生器17,用来产生一个能确定含在电压转换部分3中的开关26(图29中未示出,见图30)从断开状态变为接通状态的时刻的电压;探测器18,用来将参考电压发生器17输出的电压与电压转换部分3的端头3c输出的电压相比较;以及一个同步电路19,用来根据一个控制时钟脉冲和一个由时钟发生器6输出的时钟脉冲来控制参考电压发生器17和探测器18的工作时间。控制时钟脉冲通过端头23提供给同步电路19。
图30示出电压转换部分3的结构。电压转换部分3具有端头3a-3e。端头3a通过端头21连接在电源1上。端头3b连接在驱动电路4上。端头3c连接在探测器15、探测器18和时钟发生器6上。端头3d通过端头22连接在负载2上。端头3e连接在探测器8和探测器11上。
电压转换部分3包含一个谐振电路140和一个开关26,后者与电源1和谐振电路140有电连接。
开关26例如可以是一个PMOS晶体管。
谐振电路140含有一个电感28和两个电容27、29。
电感28的一端与电容27在节点3f处连接。节点3f连接在端头3c上。在下面的说明中,把节点3f和端头3c看成是相同的。开关26连接在谐振电路140的节点3f上。
电感28的另一端与电容29在节点3g处连接。节点3g连接在端头3d和3e上。在下面的说明中,把节点3g、端头3d和端头3e看成是相同的。
一个控制开关26的断开/闭合状态的信号从端头3b输入。
现在将说明电压转换部分3的工作。这里,电容29和27的电容值分别用C1和C2表示,电感28的电值用L表示。
在谐振电路140中,一部分存储在电容29中的电荷通过电感28被运送给电容27。此外,被运送给电容27的电荷又通过电感28重新运送给电容29。这样,电容27和29通过电感28交换电荷。
图31示出在端头3d处没有连接负载2并且开关26断开的情形下谐振电路140的等效电路。在此情形中,流经电容27的电流与流经电容29的电流大小相同、方向相反。于是下面的(式1)成立。
C1·(dvg(t))/(dt)+C2·(dvf(t))/(dt)=0(式1)这里,vf(t)和vg(t)分别代表于时刻t时端头3f和3g处的电压。电感28的端间电压由下面的(式2)表示。
           vg(t)-vf(t)=L·(di)/(dt)(式2)
这里,i代表流经电感28的电流,当电流从端头3g流向3f时i取正号。此外,流经电感28的电流i等于流经电容27的电流。于是,下述(式3)成立。
                  i=C2·(dvf(t))/(dt)(式3)
从(式1)至(式3)解出vf(t)和vg(t),可得到下述的(式4)和(式5)。 v f ( t ) = ( v f ( o ) + i ( o ) C 2 - C 1 v g ( o ) + C 2 v f ( o ) C 1 + C 2 ) cos C 1 + C 2 LC 1 C 2 t
Figure C9718025400712
v g ( t ) = { ( C 2 ( v g ( o ) - v f ( o ) ) C 1 + C 2 ) 2 + ( i ( o ) C 2 ) 2 LC 1 C 2 C 1 + C 2 } 1 2 cos ( C 1 + C 2 LC 1 C 2 t + α )
Figure C9718025400714
为了简化(式4)和(式5)以便理解,考虑到实际的设计值,引入下述条件(式6)至(式8)。
                      C1>>C2(式6)
               C2/C1·vf(0)=0(式7)
               C2/C1·(vg(0)-vf(0))=0(式8)
把条件(式6)至(式8)应用到(式4)和(式5),后两式可简化成下述的(式9)和(式10)。
这里,vf(0)和vg(0)分别代表t=0时端头3f和3g处的电压。i(0)代表t=0时的电感电流i。此外,a由下面(式11)表示:
把条件(式6)至(式8)应用到(式11),(式11)可简化成下述(式12)。
从(式9)可以看出,端头3f处的电压vf(t)由第一项的表示成余弦函数的交流成份和第二项的直流成份代表。交流成份的频率fR可由余弦函数中时间t的系数(角速度)得到。具体地说,交流成份的频率fR由下述(式13)给出。
                 fR=1/(2π·√(LC2))(式13)
交流成份的振幅Af是余弦函数的系数。具体地说,该振幅Af由下述(式14)给出。
                  Af=vf(0)-vg(0)+i(0)/C2(式14)
从(式10)可以看出,端头3g处的电压vg(t)由第一项的表示成余弦函数的交流成份和第二项的直流成份代表。端头3g处电压vg(t)的交流成份的频率与端头3f处电压vf(t)的交流成份频率相同。
电压vg(t)的交流成份振幅Ag是余弦函数的系数。具体地说,该振幅Ag由下述(式15)给出。
        Ag=(i(0)/C1)·√(LC2)(式15)
在一个实际设计中,可以应用下述条件(式16)。
vf(0)-vg(0),i(0)/C2>>1(0)/C1(式16)
从(式16)可以看出,端头3f和3g处电压的交流成份振幅有下述关系。
Af>>Ag(式17)
在一个实际设计中,端头3g处电压的振幅约为端头3f处的1/50-1/100。
例如,假定要被转换的电源电压为3V,希望从电压转换器20输出的电压为1.5V。根据C1=50uF、C2=5uF、L=100nH条件下的仿真结果,端头3f处电压的振幅为1.5V,而端头3g处电压的振幅为20mV。频率为500RHz。因此,端头3g处电压振幅为3f处的1/75。
这样,端头3f处电压vf(t)的交流成份有大的振幅。另一方面可以看出,与vf(t)的振幅相比,端头3g处电压vg(t)的交流成份振幅小得可以忽略。
端头3f处电压vf(t)和端头3g处电压vg(t)的直流成份近似相同。例如,假定从电压转换器20输出的电压(即端头3g处电压vg(t))为1.5V,则端头3f处电压vf(t)的直流成份也是1.5V。因此可以看出,端头3f处电压vf(t)在3V与0V之间振荡,其中心为1.5V。
在图34中,曲线a示出端头3f处的电压变化。在时刻tss之后曲线a按余弦波振荡。这里,由于有负载2连接在电压转换器20的输出端22上,所以该余弦波随时间衰减。
在前面参考图31所作的讨论中,假定了负载2没有连接在电压转换器20的输出端22上,所以在(式4)或(式5)中不出现衰减项。但实际中负载2是连接在输出端22上的,因此(式4)和(式5)中应出现衰减项。这是因为有电流从电压转换器20流出到负载2。
如图34所示,余弦波有衰减。在图34中,VDD代表电源1的电压,Vp代表目标输出电压。
下面将参考图29-34详细说明对电压转换部分3的开关(PMOS晶体管)26的通断控制操作。
首先,参考图32,说明电压转换器20的工作。
通过端头24向电压转换器20输入开始信号。在向电压转换器20输入开始信号之前参考电压发生器12和探测器11不消耗电流。参考电压发生器12和探测器11不消耗电流这一工作状态称为“睡眠(Sleep)。”
在响应于开始信号时,参考电压发生器12的工作状态从睡眠转变成“参考电压输出”。在参考电压输出时期,参考电压发生器12开始工作并向探测器11输出参考电压Vs(图34中的电压Vs)。
在响应于开始信号时,探测器11的工作状态从睡眠转变成“设置(Set)”。在设置时期,探测器11对参考电压发生器12输出的参考电压Vs进行采样和保持。
在响应于开始信号时,开关26的状态从断开状态(OFF)变为接通(ON)状态。
在把参考电压Vs输出给探测器11之后,参考电压发生器12的工作状态从参考电压输出返回到睡眠。
在采样保持了参考电压Vs之后,探测器11的工作状态从设置转变为“探测”。在探测时期,探测器11将电压转换部分3的端头3e处(与端头d和g处相同)的电压与参考电压Vs相比较,以探测端头3e处电压是否高于参考电压Vs
当探测器11探测到端头3e处电压高于参考电压Vs时,它将输出一个脉冲信号(图32中的输出信号)。输出了输出信号之后,探测器11的工作状态将从探测返回到睡眠。
在响应于输出信号时,开关26将从接通状态(ON)改变到断开(OFF)状态。
下面将参考图34说明电压转换器20的工作。在图34中,波形a代表电压转换部分3的端头3c处的电压变化,波形b代表电压转换部分3的端头3e处的电压变化。
开始信号被输入给电压转奂器20。于是电压转换器20开始工作,在时刻ts,开关26从断开状态(OFF)改变成接通状态(ON)。
在时刻ts至te的时期内,电压转换部分3的端头3c和3e处的电压上升到参考电压Vs(电压转换器20的初始电压)。这一时期称作建立(setup)时期。在建立时期中,端头3c和3e处的电压(分别由图34的波形a和b表示)根据(式6)的条件升高。端头3c处电压的升高速度比端头3e处的快。
假定在时刻te至tsL时期内负载2没有被连接在端头3d上。这个时期称为“保持”时期。能作出这一假定的原因是,典型地,一个连接在电压转换器20输出端22(即电压转换部分3的端头3d)上的LSI不会在电压转换器20的建立时期刚结束时立即工作,而是要在建立时期结束后再经过一段时间才会工作。
在图29中,负载2用一个电阻符号表示。这是因为连接在端头22上的LSI的工作速度比电压转换器20的工作速度足够地快,所以LSI负载可以近似地用一个电阻负载来代替。电压转换器20的工作速度约为500kHz,而LSI的工作速度典型地是20MHz或更快。
在保持时期,电压转换部分3的端头3d处电压保持不变。这是因为负载2没有连接在电压转换部分3的输出端22上。在保持时期端头3d处电压保持不变这一事实在图34中由波形b在该时期内平行于水平轴表示。
根据(式4)和(式5),端头3c处电压(波形a)和端头3e处电压(波形b)都开始按正弦波振荡。这里,虽然端头3e处电压是按正弦波振荡的,但图34没有示出端头3e处电压(波形b)是按正弦波振荡的。这是因为从(式17)可以看出,波形b的振幅远小于波形a的振幅。
电压转换部分3的端头3c处电压的振幅在保持时期要大于其他时期的振幅。这是因为端头3c处的电压因建立时期的电压变化而在时刻te降低到了低于电源电压VDD。于是,位于端头3f一侧的PMOS开关26的漏极区和井区所形成的二极管是前向偏置的。结果,正弦波a被箝位。
在时间tss之后,电压转换部分3的端头3f处的电压不再被箝位。这是因为一旦端头3f处电压(波形a)在过渡时期(时刻tsL至tss的时期)被箝位,振荡能量就要衰减,于是端头3f处电压v(波形a)的振幅将减小。
时刻tss之后的时期称作“稳态工作时期”。在稳态工作时期,电压转换部分3的端头3f和3g处的电压按正弦波振荡。不过,在稳态工作时期,连接在输出端22上的LSI开始工作(由于负载2是连接在其上的),于是该振荡将是衰减型的正弦波振荡。不过,虽然该正弦波振荡实际上在衰减,但在正弦波振荡的一个周期左右的时间内,端头3f和3g处的电压可认为分别是按(式4)和(式5)振荡的。这是因为衰减量是足够小的。
图35示出图34中的时刻t1之后的波形a和b。若在稳态工作时期中的一段等于或大于正弦波振荡周期的时间内考察波形a和波形b,将发现它们的正弦波振幅和直流成份是在衰减的。这是因为有电流流过了负载2。
图33示出电压转换器20在稳态工作时期的工作。
图33示出了谐振时钟的波形。谐振时钟是这样得到的,利用时钟发生器6把电压转换部分3的端头3f处的正弦波振荡整形成时钟脉冲。
在响应于谐振时钟从H电平变为L电平的变化时,探测器8的工作状态从睡眠变成“采样”。在采样时期,探测器8执行所谓的采样操作,即跟随和保持电压转换部分3的端头3g处的电压。或者,探测器8也可以同步于电压接收电路(负载)2的工作时刻开始工作。
在采样时期结束之后,探测器8的工作状态从采样转变成“比较”。在比较时期,探测器8将参考电压发生器9输出的希望电压Vp与采样的电压相比较。结果,当希望电压Vp高于采样的电压时(即采样的电压低于希望电压Vp时),探测器8的输出信号从L电平变为H电平。在比较时期结束之后,探测器8返回睡眠状态。
与探测器8从采样状态转变到比较状态相同步,参考电压发生器9的工作状态从睡眠转变成电压输出。在电压输出时期,参考电压发生器9向探测器8输出希望电压Vp。功率输出时期结束之后,参考电压发生器9返回睡眠状态。
当探测器8的输出信号为H电平时,参考电压发生器14在响应于谐振时钟从L电平向H电平的变化时,其工作状态将从睡眠转变成电压输出。在电压输出时期,参考电压发生器14向探测器15输出参考电压Vs。参考电压Vs用来确定接通开关26的时刻。电压输出时期结束之后,参考电压发生器14返回睡眠状态。
与参考电压发生器14的工作状态从睡眠转变为电压输出相同步,探测器15从睡眠转变为“设置”。在设置时期,探测器15对参考电压发生器14输出的参考电压Vs进行采样和保持。其后,探测器15的工作状态从设置转变为“探测”。在探测时期,探测器15将电压转换部分3的端头3f处的电压(图35中的波形a)与参考电压Vs相比较,以探测端头3f处电压
(图35中的波形a)是否已达到参考电压Vs。当端头3f处电压达到了参考电压Vs时(图35中的点1),探测器15的输出信号将从L电平变为H电平。这一电平变化被传送给同步电路5。同步电路5在响应于这一电平变化时将使开关26从断开状态变为接通状态。探测时期结束之后,探测器15返回睡眠状态。
当探测器8的输出信号为H电平时,参考电压发生器17在响应于谐振时钟从L电平变为H电平的变化时其工作状态将从睡眠变为电压输出。在电压输出时期,参考电压发生器17向探测器15输出参考电压Vc。参考电压Vc用来确定断开开关26的时刻。电压输出时期结束之后,参考电压发生器17返回睡眠状态。
与参考电压发生器17从睡眠状态转变成电压输出状态相同步,探测器18从睡眠转变为设置。在设置时期,探测器18对参考电压发生器17输出的参考电压Vc进行采样和保持。其后,探测器18的工作状态从设置转变为探测。在探测时期,探测器18将电压转换部分3的端头3f处的电压(图35中的波形a)与参考电压Vc相比较,以探测端头3f处电压是否已达到参考电压Vc。当端头3f电压达到了参考电压Vc时(图35中的点2),探测器18的输出信号将从L电平变为H电平。这一电平变化被传送给同步电路5。同步电路5在响应于这一电平变化时将使开关26从接通状态转变成断开状态。探测时期结束之后,探测器18返回睡眠状态。
在从探测器15输出信号由L电平变为H电平的时刻到探测器18输出信号由L电平变为H电平的时刻之间的时期内,开关26是接通(ON)的,在其他时期内开关26是断开(OFF)的。所以,在端头3f处的电压低于电压VDD和高于目标电压Vp的时期内,开关26被断开/接通。
电压转换部分3在上述稳态工作时期中的工作小结如下。
当探测器8探测到电压转换部分3的端头3g处的电压已下降到低于希望电压Vp时,将有一个工作开始信号从探测器8通过同步电路5发送给探测器15和18。在响应于该工作开始信号时,将起动从电源1向电压转换部分3注入电荷的操作。
在响应于来自探测器8的工作开始信号时,探测器15和18都将开始各自的工作。当探测器15探测到端头3f处电压已达到参考电压Vs时,开关26将被控制得从断开状态变成接通状态。其后,当探测器18探测到端头3f处电压已达到参考电压Vc(>参考电压Vs)时,开关26将被控制得从接通状态变成断开状态。
或者,也可以把开关26控制得在电压转换器20的设置时期结束后经过某一段时间从接通状态变成断开状态。或者,也可以在开关26被从断开状态转变成接通状态之后,把它控制得在探测器18探测到了端头3f处电压已达到参考电压Vc(>参考电压Vs)后经过某一段时间从接通状态变成断开状态。
在开关26接通的时期内,待转换电源1是与电压转换部分3互相连接的。结果,有电荷从电源1注入到电压转换部分3中,由此提供了功率。
根据本发明的电压转换器20的一个优点是功耗极小。下面将说明其原因。
在开关26接通的时期中,有电流从待转换电源1流向电压转换部分3。该电流从PMOS开关26的源极(连接在电源1上的极)流向其漏极(连接在端头3f一侧的极)。PMOS开关26的源极与漏极之间有一个电阻。因此,在PMOS开关26的这两个极之间将产生一个电压,并且在这两个极之间流动的电流将消耗功率。这一功耗是电压转换时发生的转换能量损失。转换能量损失率ηc由下述(式18)确定。
ηc=(PMOS开关26的源极与漏极之间的功耗)/(负
     载2的功耗)(式18)
电压转换器的转换效率差意味着其转换能量损失率ηc大。反之,具有希望的转换效率的电压转换器意味着它的转换能量损失率ηc小。根据欧姆定律,当负载2的电阻值和转换后的电压都一定时,(式18)的分母为常数。于是,为了减小转换能量损失率ηc需要减小分子。如果用Vds代表在PMOS开关26的源极与漏极之间产生的电压,用Id代表流经这两个极的电源(假定从源极流向漏极的电流方向为正),则功耗Pt可由下式表示。
Pt=Vds·Id(式19)
当负载2的电阻值和转换后的电压都一定时,需要提供的电流Id(需要提供的电荷总量)也是一定的。因此可以通过减小极间电压Vds来减小功耗Pt
如图35所示,电压转换器20通过使电压转换部分3的端头3f处的电压振荡,从而可以在连接于PMOS开关源极上的待转换电源1的电压VDD与端头3f处的电压(波形a)相互接近时才接通PMOS开关26。通过在待转换电源1的电压VDD与端头3f处电压相互接近时接通PMOS开关26,便可以减小功耗Pt。这是因为当在这样的时期内接通PMOS开关26时,对于流经源极和漏极的电流id相同的情况,在这两个极之间产生的电压Vds便会减小。
此外,由于电压转换部分3中的电阻元件就是PMOS开关26源、漏极之间的电阻,而如上所述,这部分的功耗是小的。从这个角度来说,电压转换部分3中一般不会产生热量。
再有,当探测器8对参考电压发生器9输出的参考电压(希望电压)与电压转换部分3的端头3d处的电压的比较结果表明Vp低于端头3d处电压时,探测器15、参考电压发生器14、同步电路16、探测器18、参考电压发生器17、以及同步电路19都不工作。这例如对应于图33中所示的第二个周期的工作。于是通过控制部分130执行有条件的操作,功耗得到了减小。为了进一步减小功耗,可以在电压转换器20输出小电流的时期延长探测器8和参考电压发生器9的工作周期。
另外,根据本发明的电压转换器20具有下述优点。整个控制部分130所消耗的功率大部分来自以下各电路的功耗:探测器8、参考电压发生器9、探测器11、参考电压发生器12、探测器15、参考电压发生器14、探测器18、以及参考电压发生器17。典型地,影响控制电路***功耗的主要因素是需要高精度和/或高速度工作。例如,对于参考电压发生器,其功耗随输出电压精度要求的提高而增大。对于探测器,其耗随探测精度和速度要求的提高而增大。因此,从减小功耗的角度来说,最好让控制电路***进行低精度的电压输出和低精度、低速度的探测。由于如前所述,根据本发明的电压转换器20中的电压转换部分3的谐振频率约为1MHz-500kHz,电压转换部分3的端头3f处的电压变化十分缓慢。因此控制电压转换部分3的控制部分130不需要进行高精度和高速度操作。例如,在探测图35中的点1和点2时,只要低速度和低精度探测就足够了(虽然对于高速工作需要高精度、高速度探测)。
于是有可能把控制部分130的功耗减小到十分的小。在一个实际设计中,已经确认控制部分130的功耗可以减小到1mW或更小。这意味着,即使负载2的功耗为10mW或更小,控制部分130的功耗也只有其10%左右。由于可以把谐振频率设定得低,所以可以减小因谐振工作所造成的噪声频率。
图53A示出普通DC/DC转换器中功耗PL与转换损失Pt之间的关系。图54B示出在根据本发明的电压转换器20中功耗P1与转换损失在Pt之间的关系。这里,转换损失Pt是控制***电路的耗Pc和电压转换部分的功耗Ps之和,即Pt=Ps
图54A示出普通DC/DC转换器中负载功耗P1与总损失率ηct之间的关系。图54B示出在根据本发明的电压转换20中负载功耗PL与总损失率ηct之间的关系。这里,总损失率ηct是转换损失Pt除以负载功耗PL,即
ηct=Pt/pL=(Pc+Ps)/PL
表2归结了普通DC/DC转换器61和根据本发明的电压转换器20的一些特性。
            表2
Figure C9718025400821
此外,根据本发明的电压转换器20具有易于做成芯片的优点。下面将说明其原因。
对于谐振电路140的电感28,其电感值约为100nH就足够了。所以电感28的值足够地小,使得在硅基底上易于形成电压转换器20。而且,由于电感28的值足够地小,所以基本上不产生辐射电磁噪声。再有,在开关26的极间不产生大电压,所以不会像当开关26有大极间电压差时那样因出现冲击电流而产生噪声。
此外,当把PMOS晶体管用作开关26时,可以把开关26的接通(导通)电阻设置在500mΩ左右。这样,因为开关26的接通电阻足够大,所以易于在硅基底上形成电压转换器20。即使当开关的接通电阻为500mΩ左右时,也仍可保证转换效率为90%或更高。
现在将说明电压转换器20的非稳态工作。电压转换部分3的端头3f处的正弦波振荡电压被时钟发生器6转换成方波时钟脉冲。时钟发生器6输出的时钟脉冲被提供给同步电路10、16、和19。因此,不正确的时钟脉冲输出将导致电压转换器20工作不正常。这是因为探测器8、15、18和参考电压发生器9、14、17是同步于由同步电路10、16、19所提供的时钟脉冲工作的。
设置时钟探测器7的目的是在时钟发生器6没有正确输出时钟脉冲时把电压转换器20导回到正常工作状态。时钟脉冲的不正确输出例如可能在电压转换部分3的端头3f处出现了异常的电压变化的情况下发生。当探测到时钟发生器6没有正确输出时钟脉冲时,时钟探测部分7将向同步电路13输出一个复原信号。
同步电路13在响应于该复原信号时,将恢复电压转换器20的正常工作。同步电路13接收到复原信号之后的电压转换器20的工作过程与同步电路13通过端头24接收到了开始信号之后的电压转换器20的工作过程是相似的。于是在电压转换器部分3中重新产生谐振工作,时钟发生器6重新产生时钟脉冲输出。结果,电压转换器20返回到稳态工作状态。
现在将说明电压转换器20的另一种非稳态工作。
当端头3f处的振荡振幅减小时,可能出现端头3f处电压能达到参考电压Vs但不能到达参考电压Vc的情况。在该情况中,当PMOS开关26从断开状态转变成接通状态之后,它将停留在接通状态而不能转变回到断开状态。
这一非稳态工作情况由同步电路5探测到。当同步电路5在一个,是电压转换部分3的电容27、29和电感28所确定的预定时期(谐振电路的振荡周期)内探测到下列3个信号中有任一个信号来被产生时,将向同步电路13输出一个复原信号。这3个信号是:
·工作开始信号,它应从探测器8经过同步电路5输出给探测器15和18。
·一个应由探测器15输出给同步电路5的信号,该信号确定了PMOS开关26从断开状态变为接通状态的时刻。
·一个应由探测器18输出给同步电路5的信号,该信号确定了PMOS开关26从接通状态变为断开状态的时刻。
同步电路13在响应于该复原信号时,将恢复电压转换器20的正常工作。同步电路13接收到复原信号之后的电压转换器20的工作过程与同步电路13通过端头24接收到了开始信号之后的电压转换器20的工作过程是相似的。于是在电压转换部分3中重新产生谐振工作。结果,电压转换器20返回到稳态工作状态。
现在将说明电压转换器20的另一种不同于稳态工作的工作状态。
电压转换器20的输出电压(端头22处的电压)变化总是使电压转换器20的端头3e处的电与参考电压发生器9输出的参考电压Vp(希望电压)相匹配。希望电压Vp是由一个通过端头25输入给参考电压发生器9的信号指定的。当参考电压发生器9的输入信号指令要改变希望电压Vp时,电压转换器20的输出电压(端头22处的电压)将向改变后的希望电压Vp变化。
当电压转换器20的输出电压降低时,电压转换部分3的端头3f处的振荡振幅衰减,于是如果前、后的希望电压有大的差别时,端头3f处的振荡振幅的衰减也大。为了保持端头3f处的振荡振幅,可以在前、后的希望电压之间设置一个中间电压,使得探测器15和18能够在电压转换器20的输出电压下降到低于中间电压时断开/接通PMOS开关26。通过向电压转换部分3的谐振电路提供电荷(谐振能量),有可能恢复端头3f处的振荡振幅。
下面将说明向电压转换电路3提供电荷的另一种方法。按照上述参考图35说明的方法,向电压转换电路3提供电荷的时间是这样控制的:在端头3f处的电压上升阶段,在点1处使PMOS开关26从断开状态变为接通状态,在点2处使PMOS开关26从接通状态变为断开状态。
向电压转换部分3提供电荷的时间也可以在端头3f处的电压下降阶段中而不是上升阶段中。
图36示出稳态工作时端头3f处的电压变化(波形a)和端头3e处的电压变化(波形b)。如图36所示,向电压转换电路3提供电荷的时间可以是这样控制的:在端头3f处电压达到参考电压Vs的点(点3)上使PMOS开关26从断开状态变为接通状态,在端头3f电压达到参考电压Vc的点(点4)上使PMOS开关26从接通状态变为断开状态。
当然,有可能把在端头3f处的电压升高阶段(图35)和电压下降阶段(图36)向电压转换部分3提供电荷的操作结合起来。通过把这两种操作结合起来,有可能实现转换效率高于仅使用一种操作的电压转换操作。这样的两种操作结合在转换效率方面是有利的,但不利的是对PMOS开关26的控制将变得复杂。不过,由于这样做电路规模的增大不多,可以忽略不计,所以结合操作可认为是一种优越的电压转换操作。然而,由于用来控制PMOS开关26工作的控制电路将增大功耗,所以当电压转换器20的输出电流值大时,结合两种控制是有利的;但当输出电流值小时,则基于单一控制的工作是有利的。
图37A和37B示出探测器8的结构和工作。在图37A中,输入端I1,连接在电压转换部分3的端头3e(端头3f)上。参考电压发生器9的输出电压输入给输入端I2。探测器8包含:一个斩波比较器,其中含有晶体管30-35、37、38和一个电容36;以及逻辑门39和40。
斩波比较器按照图37B所示的工作过程将电压转换部分3的端头3g(端头3e和3d,输出端22)处的电压与参考电压发生器9的输出电压相比较,在时钟脉冲φ11B是φ1的反相时钟脉冲)从L电平变为H电平的时期(图37B中的采样时期)内,跟随和保持电压转换部分3的端头3g(端头3e和3d,输出端22)处的电压。在时钟脉冲φ1从H电平变为L电平的时期(图37B中的比较时期)内,参考电压发生器9的输出电压从端头I2输入。当端头3g处电压低于参考电压发生器9的输出电压时,在反相器(晶体管37和38)的输出端将输出一个L电平信号。
当时钟脉冲φ44B是φ4的反相时钟脉冲)从L电平变为H电平时,探测器8可以输出端头3g处电压与参考电压发生器9的输出电压之间的比较结果,使输出端O从L电平变为H电平(当端头3g处电压低于参考电压发生器9的输出电压时)。时钟脉冲φ4从L电平变为H电平的时刻要滞后于斩波比较器进入比较时期的时刻(此时时钟脉冲φ2变成H电平)。这是为了防止因斩波比较器在比较时期初期其输出值不稳定而造成探测器8输出不稳定信号。探测器8在(采样之后)保持了参考电压发生器9的输出电压(端头3e处的电压)之后将采样的电压与该电压相比较。采样端头3e处电压的原因是为了减小当负载2是一个数字LSI时的噪声影响。通过采样端头3e处的电压,有可能避免探测器8探测到加上了叠加在端头22上的噪声的电压。
图38示出当负载2为数字LSI时减小噪声影响的一个方法。通过把经过端头23输入给同步电路10的时钟脉冲作为连接在端头22上的数字LSI的时钟脉冲(同步时钟脉冲),有可能确定从数字LSI产生噪声的时间并避开该噪声。在图38中,***时钟是输入给数字LSI(负载2)的工作时钟脉冲。在图38中,在***脉冲的跳变点上由数字LSI产生的噪声用电压Vp的叠加噪声表示,这里Vp是从电压转换器20输出的。由于该叠加噪声在***时钟的跳变点之后经过一段时间td之后将衰减,所以有可能通过让探测器8在经过时间td后再保持电压转换部分3的端头3e处的电压来避开噪声。输入给端头23的时钟脉冲不需要具有相同于输入给连接在端头22上的数字LSI的时钟脉冲周期,但需要同步化。
参见图52,现在将说明LSI中产生噪声的机制。LSI含有一个被封装的硅芯片。封装的插脚与硅芯片互相用导线连接。连接线带有电感值Lp。当***时钟跳变时,有一个电流i(t)流经硅芯片。随着电流i(t)的变化,将因电感值Lp而产生一个电压。该电压就是噪声。
图39A示出探测器15的一种结构。由于探测器18与15有相同的结构,所以将只详细说明探测器15的结构而略去说明探测器18的结构。
与图37A的区别是连接在端头I1和I2上的开关是PMOS开关4 1和42。采用PMOS开关41和42作为开关的原因如下。当电压转换器20的输出电压低于待转换电源1的电压的1/2时,端头I2(即向电压转换部分3的端头3f处输入电压的那个端头)处的电压将振荡到低于0V。在把NMOS晶体管或并行连接PMOS晶体管用作开关的结构中,由NMOS晶体管的漏极(源极)和井极所形成的二极管将被正向偏置,从而电压转换部分3的电荷将通过该二极管流失。电荷的流失就是提供给谐振电路电荷的损失,这会减小电压转换效率。
采用PMOS开关40和41的目的就是避免这种电荷流失。
在输出端使用了一个“与”门,使得当参考电压发生器14的输出电压高于电压转换部分3的输出电压时,把探测器15的输出信号从L电平变成H电平。时钟脉冲φ4从L电平变为H电平的时刻滞后于斩波比较器进入比较时期的时刻(这时时钟脉冲φ2B变成L电平)。这是为了防止由于斩波比较器在比较时期初期的输出值不稳定而造成探测器15输出不稳定的信号。
图39B示出探测器15的工作情况。在采样时期(采样参考电压发生器14的电压)时钟脉冲φ1B转变成L电平,在比较时期时钟脉冲φ2B转变成L电平。
虽然被时钟发生器6转换的时钟脉冲与端头3f处的正弦波振荡电压有相同的周期,但该时钟脉冲的周期也可以是端头3f处正弦波振荡电压周期的倍数。当时钟脉冲的周期为端头3f处正弦波振荡电压周期的两倍时,探测器8对电压转换部分3的输出电压(端头3g处的电压)的采样周期将为图33所示工作周期的两倍。随着探测器8工作周期的降低,整个电压转换器20的功耗将变小。但由于PMOS开关26的功耗随着电压转换器20输出电压的增大而增大,故需要根据负载2的大小适当地设计输出电压。(实施例2)
图40示出电压转换器20的另一种结构。除了一个监视器661之外,图40所示电压转换器的结构与图29所示的电压转换器20的结构相同。
监视器661有2个输入端和3个输出端。其中一个输入端连接在电压转换部分3的端头3d上。另一个输入端连接在同步电路10上。3个输出端分别连接在同步电路5、参考电压发生器14和17上。监视器661探测电压转换部分3的端头3d处的电流(单位时间内的电压减小)。这是因为流入负载2的电流可以从该电流(单位时间内的电压减小)获得。监视器661基本上给出了由电源1提供给电压转换部分3的功率中被负载2消耗的功率。例如,当监视器661探测到负载2的消耗电流增大时,监视器661将通过增大电压转换部分3中的PMOS开关26的接通时期来增大提供给电压转换部分3的电荷量。
为了增大PMOS开关26接通的时期,例如可以降低参考电压发生器14的输出电压(开关26从断开状态转变成接通状态的时刻取决于这个电压),以及可以提高参考电压发生器17的输出电压(开关26从接通状态转变成断开状态的时刻取决于这个电压)。
关于电压转换效率可以作下述的考虑。从改进电压转换效率的角度看,PMOS开关26的接通时期最好比较短,并且这个接通时期最好在电压转换部分3的端头3f处的振荡电压与待转换电源1的电压相接近的时间点附近。希望通过调节参考电压发生器14和17的输出电压来实现较佳的转换效率。
可以根据探测8的工作状态来调节参考电压发生器14和17的输出电压,使得PMOS开关26的接通时期增大。例如,当对电压转换部分3的端头3e处的电压与参考电压发生器9的输出电压进行比较的结果表明,端头3e处电压接连两次降低到低于参考电压发生器9的输出电压时,这意味着负载2所消耗的电荷量多于PMOS开关26接通时由待转换电源1提供的电荷量。在这种情况下,除非增大PMOS开关26的接通时期,否则电压转换器20输出端22处的电压就不能保持在希望电压上。于是,探测器8向监视器661发送一个信号,指明端头3e处电压降低到了低于参考电压发生器9的输出电压。监视器661在响应于探测器8的这一信号时,将调节参考电压发生器14和17的输出电压,以增大PMOS开关26的接通时期。
因此,在增大PMOS开关26的接通时期方面,有可能用监视器661根据端头3e处电压与参考电压发生器9的输出电压之间的比较结果来探测端头3e处电压降低到低于参考电压发生器9的输出电压的发生频率,而不是用监视器661来探测电压转换部分3的输出电流。
此外,电压转换部分3中PMOS开关26从接通状态转变成断开状态的时刻不仅可以通过提高参考电压发生器17的输出电压来推迟,而且也可以通过利用监视器661延迟同步电路5的关于让PMOS开关26从接通状态转变成断开状态的工作信号来推迟。利用监视器661的这种信号延迟,可以在不增大电路规模的情况下进行细微调节。因此,一种有利的调节方法可以是,用参考电压发生器17进行粗调,用延迟同步电路5的关于让PMOS开关26从接通状态转变成断开状态的工作信号进行微调。
图41是监视器661处理过程的控制流程。
在控制模块C1中,电压转换部分3的端头3d处的电压Vd被与目标电压(即参考电压发生器9的输出电压)Vp相比较。当电压Vd低于电压Vp时,处理进入控制模块C2。当电压Vd高于电压Vp时,重复进行控制模块C3的处理。控制模块C1对电压Vd和电压Vp的比较结果存储在控制模块C2中。在控制模块C2中,探测连续出现5次控制模块C1的比较结果为Vd<Vp的情况。当Vd<Vp连续5次成立时,在控制模块C3中将电压Vs降低△V。这里,电压Vs是参考电压发生器14的输出电压,电压△V是电压Vs的最小改变量。在控制模块C3的处理结束之后,处理返回到控制模块C1。
控制模块C2探测到Vd<Vp连续5次成立意味着由电源1提供给电压转换部分3的功率小于负载2的功耗。要等到Vd<Vp连续成立5次是为了提供余地(margin)。当电压Vd低于电压Vp时,电源1将向电压转换部分3提供率。当提供的功率小于负载2的功耗时,在控制模块C1进行下一次比较时将仍然得到电压Vd低于电压Vp。因此,连续2次有Vd<Vp意味着电源1给电压转换部分3提供的功率是不够的。然而,电压Vd与电压Vp之间的比较是受噪声干扰的。尤其是当Vd变得接近于Vp比较结果对噪声更为敏感。为了使比较结果较不敏感于噪声,用Vd<Vp连续成立5次来判定电源1提供给电压转换部分3的功率不足要比用Vd<Vp连续成立2次来判定要好。这是因为在提供了相当于三个处理周期的余地后可以排除因噪声造成的错误比较结果,使得判断更为可靠。控制模块C3中的将电压Vs降低△V意味着增大电源1向电压转换部分3提供的功率。这是因为当电压Vs降低时开关26的接通时期将增长。
类似于控制模块C1-C3中的处理,进行模块C4-C6的处理。具体地说,在控制模块C4中比较电压Vd与电压Vp。当在控制模块C5中探测到Vd>Vp连续5次成立时,控制模块C6中将使电压Vs提高△V。控制模块C5中连续5次探测到Vd>Vp意味着电源1向电压转换部分3提供的功率大于负载2的功耗。控制模块C6中把电压Vs提高△V意味着减小电源1向电压转换部分3提供的功率。这是因为当电压Vs提高时开关26的接通时期将缩短。
图42示出实现图41控制流程的一个示例性电路结构。参考电压发生器141产生电压Vp。探测器142比较电压Vd与电压Vp。当Vd<Vp时探测器142向移位寄存器143输出“0”,当Vd>Vp向移位寄存器143输出“1”。移位寄存器143保持探测器142,5个周期的输出信号“0”和“1”。当保持在移位寄存器143中的5个周期的数据均为“0”时(即连续5次出现“0”时),编码器144将使参考电压发生器14的输出电压Vs降低△V;当保持在移位寄存器143中的5个周期的数据均为“1”时(即连续5次出现“1”时),编码器144将使参考电压发生器14的输出电压Vs提高△V。这样就实现了图41所示的控制。
图43示出参考电压发生器14的输出电压Vs是如何改变的。当一次电压改变不够时,将再重复进行电压改变,直到电源1向电压转换部分3提供的功率等于负载2的功耗。
图44是确定电压Vc的处理过程的控制流程。
在控制模块C7中,电压转换部分3的端头3d处的电压Vd被与目标电压(即参考电压发生器9的输出电压)Vp相比较。当电压Vd低于电压Vp时,处理进入控制模块C8,否则重复控制模块C7的处理。在控制模块C8中,判断Vd<Vp是否连续5次成立。当Vd<Vp连续5次成立时,处理返回到控制模块C7。否则,处理进入控制模块C9。在控制模块C9中,将电压Vc提高△V。然后处理进入控制模块C10。在控制模块C10中,比较电压Vd与电压Vp。当电压Vd高于电压Vp时,处理进入控制模块C11,否则,重复控制模块C10的处理。在控制模块C11中,判断Vd>Vp是否连续5次成立。当连续5次Vd>Vp成立时,处理返回到控制模块C7和C14。否则,处理进入控制模块C12和C13,由此使电压Vc降低2△V。然后处理返回控制模块C7和C14。在控制模块C14中,比较电压Vd与电压Vp。当电压Vd高于电压Vp时,处理进入控制模块C15,否则,重复控制模块C14的处理。在控制模块15中,判断Vd>Vp是否连续5次成立。当Vd>Vp连续5次成立时,处理返回到控制模块C14。否则,处理进入控制模块C9。
下面将说明控制模块C7-C15的意义。控制模块C7和C8的流程意味着,如对图41所示控制流程所说明的,“宽度”(电压Vs与电压Vc之间的电位差)是根据Vd<Vp是否连续5次成立来确定的。对于控制模块C14和C15来说,情况也是这样。当控制模块C8和C15的输出为“否”时,意味着该宽度已被确定。一旦确定了宽度,就确定了“高度”(电压Vc)。在控制模块C9中,电压Vc被提高△V。这一操作意味着在图41所示的控制之后,电压Vc被故意改变得偏离合适宽度。当合适的宽度被故意加宽时(当电压Vc被被提高△V时),电源1向电压转换部分3提供的功率增大,于是可以期望在控制模块C10中对电压Vd与Vp进行比较时将会有Vd>Vp连续5次成立。当Vd>Vp连续5次成立时,图44所示的流程就完成了。然而,如果Vd>Vp不是连续5次成立,则意味着电压Vc被过多地提高了。通过提高电压Vc,由于宽度增大,电源1向电压转换部分3提供的功率在正常情况下也应增大;但是,由于在开关26接通的时期中电压转换部分3的端头3f处的电压是高于电源1的电压的,从而提供给电压转换部分3的功率将流回到电源1中,所以实际的功率增大太少了(Vd>Vp不是连续5次成立)。在这种情况下,开关26必须在较低的Vc电压下从接通状态转变为断开状态。因此,在该情况下,考虑到电压Vc已在控制模块C9中被升高了△V,所以在控制模块C12和C13中需把电压Vc降低2△V。上面是调节电压Vc高度的一个示例性过程。
下列表3总结了宽度、高度的确定和中间操作。
                     表3
宽度(Vs与Vc之间的电压差)的确定 随着宽度的减小,开关26的功耗将减小,由此提高了效率
高度(电压Vc)的确定 随着高度的增大,效率也提高。但是,当高度过度地高时,将发生电流从电压转换部分3回流到电源1的现象,从而降低了效率。电压Vc应在不发生回流的条件下设定得尽可能地高。
中间处理 当将宽度设定到其最小值上之后,开关26的工作将从每个周期一次断开/接通转变成每隔一个周期一次断开/接通。这样减少了控制电路的工作次数,从而减少了功耗。
(实施例3)
图45示出根据本发明的电压转换器的另一种结构。代号61代表普通的DC/DC转换器。代号62代表待转换电源,63代表连接在电压转换器20的端头23上的时钟脉冲发生器,64代表连接在端头24上的开始信号发生器。代号65代表LSI,它将作为接受经转换电压的负载。LSI65向电压转换器20的端头25发送希望的最佳电源电压值。虽然当向LSI65提供小电流时电压转换器20可进行高效率的电压转换,但当提供的电流增大时该转换效率将降低到低于普通DC/DC转换器的转换效率。
图45所示电压转换器20的结构与图40所示的相似。电压转换器20包含一个电流探测器,用来探测从端头22流向LSI65的电流。或者,也可以把该电流探测器设置在电压转换器20的外部。
当电流探测器探测到的电流小于一个预定电流值时,电压转换器20将工作。当电流探测器探测到的电流大于该预定电流值时,DC/DC转换器61将工作。
或者,也可以当端头22向LSI65的输出电压高于一个预定电压值的时间积分值时电压转换器20工作,而当端头22向LSI65的输出电压低于该预定电压值的时间积分值时DC/DC转换器61工作。
这样,当DC/DC转换器61的电压转换效率大于电压转换器20的转换效率时,电压转换器20将停止供电,而由DC/DC转换器61提供电流。
此外,DC/DC转换器61除了要对付LSI65功耗的变化之外,还要在希望电压有大变化时执行向希望电压的转变。达到了希望电压之后,开始由电压转换器20提供电流。这样将提高向希望电压转变(设置)的速度。DC/DC转换器61除了在两个希望电压转变期间执行转变操作之外,还可以执行电压转换器20的起动和复原操作。
图46示出如何通过结合电压转换器20和普通DC/DC转换器61来提高电压改变速度的。
在图46中,在时期I和III中仅有电压转换器20工作。因此在这两个时期能以高转换效率向负载2提供功率。在时期II中,电压转换器20和DC/DC转换器61同时工作,由此使输出电压从1V提高到2V要快于仅由电压转换器20工作的情形。不过在该时期内转换效率要降低。
图47示出存在着可以被DC/DC转换器61的电压转换部分54和电压转换器20的电压转换部分3所共用的电路部分。开关26和66、电容27和29、以及电感28对DC/DC转换器61和电压转换器20的电路规模有最大的影响。因此,能过合用一些电路部分,可以在不增大电路规模的情况下把DC/DC转换器61结合到电压转换器20中。具体地说,有可能通过把NMOS开关66连接到电压转换部分3的端头3f上来设置DC/DC转换器61的电压转换部分54,如图47所示。由于其余的电路部分可以被电压转换部分54和3共用,所以采用图47所示结构有可能实现DC/DC转换器61和电压转换器20而基本上不增加电路规模。(实施例4)
图48A和48B示出电压转换部分3的另两种结构。
图48A所示电压转换部分3的结构与图30所示电压转换部分3的结构的差别在于,开关26上连接了一个二极管67和一个电容66。二极管67例如可以是一个肖特基阻挡层二极管。
图48B所示电压转换部分3的结构与图30所示电压转换部分3的结构的差别在于,开关26上连接了一个齐纳二极管68。
图48A和48B中的端头3a-3e与图29中的端头3a-3e相同。如图33所示,由于电压转换部分3在建立时期的工作特性,端头3f处的电压(波形a的电压)高于待转换的电压VDD,于是当由PMOS晶体管26的连接在端头3f上的漏极和井极所形成的(寄生)二极管为前向偏置时将有电流从漏极流向井极。根据电容27、29和电感28的值,该电流的值可能较大,以至超过了漏极和井极之间的二极管的前向击穿电流值,从而损坏PMOS晶体管。所以,在端头3f与3a之间连接二极管67,在端头3a与地之间连接电容66。当端头3f处电压高于待转换电源1的电压(端头3a处的电压)时,将使二极管67前向偏置,从而使电流从端头3f流向端头3a,而流入端头3a的电流则将流入电容66。这里,二极管67开始前向导通的电压要低于PMOS晶体管26漏、井极二极管开始前向导通的电压。因为没有大电流流经PMOS晶体管26,所以不会发生击穿。不过,由于二极管67需要具有大的击穿电流值,所以典型地它被设置成一个外部元件,而不设置在半导体集成电路上。电容66把二极管67的前向电流提供给待转换电源1,从而减少了回流量。
在图48B所示的结构中,用齐纳二极管68把端头3f的电流导向地端,从而不会有大电流流过PMOS晶体管26。这里,齐纳二极管68的导通电压低于开始使电流流经PMOS晶体管26漏、井极的电压,但高于待转换电源1的电压。(实施例5)
图49A和49B示出电压转换部分3的另两种结构。
图49A所示电压转换部分3与图30所示电压转换部分3的结构差别在于,在端头3f与地端之间连接了一个二极管69。二极管69例如可以是一个肖特基阻挡层二极管。
图49B所示电压转换部分3与图30所示电压转换部分3的结构差别在于,在端头3f与地端之间连接了一个齐纳二极管70。
在图49A所示的结构中,当端头3f处的电压低于地电压GND时将有电流从地端流向端头3f,由此使二极管69前向偏置。可以把开始使电流前向流经二极管69的电压设置得低于在PMOS晶体管26的连接在端头3f上的漏极与井极之间形成的二极管的反向击空电压,从而防止PMOS晶体管26被击穿。
图49B所示的结构可以通过把图49A结构中的二极管69换成齐纳二极管70而得到。可以把开始使电流流过齐纳二极管70的电压设置得低于在PMOS晶体管26的连接在端头3f上的漏极与井极之间形成的二极管的反向击穿电压,从而防止PMOS晶体管26被击穿。典型地,二极管69和齐纳二极管70作为外部元件设置,而不是设置在半导体集成电路上。(实施例6)
图50示出电压转换器20的另一种工作过程。它与图33所示的电压转换器20工作过程的差别在于,探测器15和18的探测时期、探测器15和18的输出信号、和PMOS晶体管26的断开/接通操作不同。
当探测器15进入探测时期时,将把电压转换部分3的端头3f处的电压与参考电压发生器14的输出电压Vs相比较并在端头3f处电压超过电压Vs时输出一个H脉冲作为其输出信号。其后,当端头3f处电压在变化过程中经过其峰值而开始下降时,将再次接近电压Vs。在端头3f处电压下降到低于电压Vs时探测器15将再次输出高脉冲作为其输出信号。
当探测器18进入探测时期时,将把电压转换部分3的端头3f处的电压与参考电压发生器17的输出电压Vc相比较,并在端头3f处电压超过电压Vc时输出一个H脉冲作为其输出信号。当端头3f处电压在下降到电压Vs之后开始再次升高时,将又一次接近电压Vc。当它超过电压Vc时探测器18将输出一个H脉冲作为其输出信号。
在响应于探测器15的第一个H脉冲时(该信号在端头3f处电压超过电压Vs时给出),开关26将从断开状态转变成接通状态。其后,在响应于探测器17的第一个H脉冲时(该信号在端头3f处电压超过电压Vc时给出),开关26将从接通状态转变成断开状态。
接着,在响应于探测器15的下一个H脉冲时(该信号在端头3f处电压降低到低于Vs时给出),开关26将从断开状态转变成接通状态。最后,在响应于探测器17的下一个H脉冲时(该信号在端头3f处电压超过Vc给出),开关26将从接通状态转变成断开状态。
这样,PMOS开关26将在图35中的点1与点2之间接通,然后又在图36中的点3与4点之间再次接通。
通过上述那样在一个工作周期中2次接通PMOS开关26,有可能使确定向电压转换部分3提供电荷的点1和点3的电压Vs更接近于待转电源1的电压。于是电压转换效率得到改善。
在上述实施列中,PMOS开关26从断开状态到接通状态的转变时刻和从接通状态至断开状态的转变时刻是互相独立地被控制的。或着,PMOS开关26从接通状态到断开状态的转变时也可以根据从断开状态到接通状态的转变时刻来控制。例如,POMS开关26从接通状态到断开状态的转变的时刻可以通过对从断开状态到接通状态的转变时刻进行一定的延迟来确定。(实施例7)
图59示出电压转换器1500的结构。电压转换器1500包含一个电压转换部分1501和一个控制部分1518,前者用来把电源1516所提供的电源电压转换成希望电压,后者用来控制电压转换部分1501。
电压转换部分1501含有端头1501a-1501f。端头1501a连接在电源1516上。端头1501f连接在负载1517上。负载1517至少含有一个电阻元件和一个电容元件。从电压转换部分1501输出的希望电压通过端头1501f提供给负1517。
控制部分1518含有探测部分1510、1512、1513、1515、和同步部分1511、1514。
图60A示出电压转换部分1501的一种结构。电压转换部1501含有一个开关1502、一个谐振电路LC1、一个开关1506、和一个谐振电路LC2。
谐振电路LC1含有一个电感1504、一个在节点1504-1处连接于电感1504一端的电容1503、和一个在节点1504-2处连接于电感1504另一端的电容1505。
开关1502含有端头S1和S2。在响应于一个控制信号时,开关1502将端头S1和S2互相电连接在一起,或者将端头S1和S2互相电分离。该控制信号是同步部分1511通过端头1501b提供的。开关1502的端头S1通过端头1501a连接在电源1516上。开关1502的端头S2连接在谐振电路LC1的节点1504-1上。
谐振电路LC2含有一个电感1508、一个在节点1508-1处连接于探测部分1508的一端的电容1507、和一个在节点1508-2处连接于探测部分1508另一端的电容1509。
开关1506含有端头S1和S2。在响应于一个控制信号时,开关1506将把端头S1和S2电连接在一起,或者使端头S1和S2互相分离。该控制信号是同步电路1514通过端头1501e提供的。开关1506的端头S1连接在谐振电路LC1的节点1504-2上。开关1506的端头S2连接在谐振电路LC2的节点1508-1上。
这里,如果把一个开关和一个连接在其上的谐振电路称作为一个“基础谐振电路”,则电压转换部分1501的结构将是两个互相串联在一起的基础谐振电路。当然,基础谐振电路的数目不局限于两个。电压转换部分1501可以含有N个基础谐振电路。这里N是任何等于或大于2的整数。
具有一些互相串联在一起的基础谐振电路的结构的电压转换部分1501适合于有效地降低电源1516所提供的电源电压VDD。这是因为从第一级基础谐振电路输出的电压Vp(Vp<VDD)可以用作第二级基础谐振电路的电源电压。
只使用一个基础谐振电路的降低电源电压VDD的方法可以包括把一个交流电压波形的振荡中的向下移动和减小该交流电压波形的振幅。
图61A示出只使用一个基础谐振电路时是如何通过下移交流电压波形(A)的振荡中心来降低电源电压VDD的。波形(A)是把交流电压波形(A)的振荡中心下移后所得到的波形。这样得到的波形(A’)的一部分将低于地电压GND。从保护LSI的角度看这是不利的。
图61B示出只使用一个基础谐振电路时是如何通过减小交流电压波形(A)的振幅来降低电源电压VDD的。波形(A’)是减小交流电压波形(A)的振幅后所得到的波形。电压Vp与波形(A’)的电压差△V最小(VDD-Vp)。因此,开关接通时的能量损失是大的。
图61C示出当使用由两个互相串联的基础谐振电路构成的电压转换部分1501时是如何降低电源电压VDD的。两个基础谐振电路互相串联的结构解决了只用一个基础谐振电路来降低电源电压VDD时所出现的问题。
在图61C中波形(A)代表谐振电路LC1的节点1504-1处的电压变化。波形(A)是一个以电压Vp为中心的在电源电压VDD与地GND之间振荡的交流波形。波形(B)代表谐振电路LC1的节点1504-2处的电压变化。波形(B)是一个电压Vp的直流波形。波形(C)代表谐振电路LC2的节点1508-1处的电压变化。波形(C)是一个以电压VDD为中心的在电压Vp与地GND之间振荡的交流波形。波形(D)是一个电压Vpp的直流波形。这里有VDD>Vp>Vpp>GND。
谐振电路LC2可以利用谐振电路LC1的输出电压Vp作为电源电压。因此,开关1502可以在电压Vp与波形(C)之间的电压差为△V的时期内被接通。通过上述那样来控制开关1502的接通时期,有可能使开关1502接通时期的能量损失最小化。此外,在图61C中T1<T2。这表明波形(C)比波形(A)更适合于绝热充电。
图60B示出当从“能量提供电路210”和“能量保存电路220”的观点来重新考察电压转换部分1501的结构时将会得到什么结论。如图60B所示,可以把开关1502、谐振电路LC1、和开关1506看成为“能量提供电路210”,把谐振电路LC2看成为“能量保存电路220”。在此情形下,谐振电路LC1起着一个电容器的作用,它可暂时存储从谐振电路LC2通过开关1506向电源1516回流的电流。从这个意义上说,电压转换部分1501的结构与图6D所示的结构类似。由于把来自电源1516的电流存储在谐振电路LC1中,电压转换部分1501相对于图6D所示结构的一个优点是功率较低,这是因为开关1502可以在其端头之间的电位差较小的时期内接通。
图62A是说明控制部分1518接通/断开电压转换部分1501的开关1502的时刻的控制流程图。
步骤S51:探测部分1510将端头1501d处的电压Vd与目标电压Vp1相比较。当电压Vd低于目标电压Vp1时,处理将进入步骤S52。这时探测部分1510向探测部分1512输出一个表明电压Vd低于目标电压Vp1的信号。
步骤S52:探测部分1512判断在电压Vc上升阶段它是否变得等于或高于一个预定电压Vs1。预定电压Vs1用来确定把开关1502从断开转变成接通的时刻。当电压Vc在其上升阶段变得等于或高于预定电压Vs1时,处理将进入步骤S53。这时探测器1512将向同步电路1511输出一个表明电压Vc在其上升阶段已变得等于或高于预定电压Vs1的探测信号。
步骤S53:同步电路1511接通开关1502。
步骤S54:探测部分1512判断在端头1501C处的电压Vc上升阶段它是否变得等于或高于一个预定电压Vsp1。预定电压Vsp1用来确定把开关1502从接通转变成断开的时刻。当电压Vc在其上升阶段变得等于或高于预定电压Vsp1时,处理将时入步骤S55。这时,探测器1512将向同步电路1511输出一个表时电压Vc在其上升阶段已变得等于或高于预定电压Vspl的探测信号。
步骤S55:同步电路1511断开开关1502。
这里,预定电压Vsp1高于预定电压Vs1。预定电压Vsp1与预定电压Vs1之间的电位差愈大,开关1502的接通时期将愈长。
图62B是说明控制部分1518接通/断开电压转换部分1501的开关1506的时刻的控制流程图。除了把电压Vp2用作目标电压,把电压Vs2和Vsp2用作确定开关1506的接通时期的电压之外,图62B所示的控制流程图与图62A所示的相似。
这样,开关1506的接通/断开可以独立于开关1502的接通/断开受到控制。
当端头1501d处的电压Vd为直流电压时,即使谐振电路LC1和谐振电路LC2中的正弦波振荡互相独立,也不会影响电压转换效率。这是因为谐振电路LC2在工作时把电压Vd当作电源电压。
另一方面,当端头1501d处的电压Vd为交流电压时,电压Vd是否与端头1501f处的电压Vf相同步将会影响转换效率。为了减少能量从谐振电路LC1转移到谐振电路LC2时出现的能量损失,有必要控制电压Vf的振幅和相位,使得开关1506在其端头间的电位差(即电压Vd与Vf之间的电位差)小的时期内被接通。这一控制例如可以这样实现:调节用来确定开关1506接通时期的电压Vs2和Vsp2
图63A示出当电压Vd和Vf互相同步时接通/断开开关1506的时刻。图63B示出当电压Vd和Vs不相互同步时接通/断开开关1506的时刻。
在图63A和63B中,波形(A)代表电压Vd的变化,波形(B)代表电压Vf的变化。图63A,中在开关1506接通的时期内其端头之间的电位差(即电压Vd与Vf之间的电位差)要小于图63B中的。因此,图63A,中因开关1506所造成的能量损失要比图63B中的小。(实施例8)
图64示出一种电压转换器1600的结构。电压转换器1600包含一个电压转换部分1601和一个控制部分1632,前者用来把由一个电源1616提供的电源电压转换成希望电压,后者用来控制电压转换部分1601。
电压转换部分1601含有端头1601a-1601g。端头1601a和1601b连接在电源1616上。端头1601g连接在负载1617上。负载1617至少含有一个电阻元件和一个电容元件。由电压转换部分1601输出的希望电压通过端头1601g提供给负载1617。
控制部分1632含有探测部分1627、1629、1631和同步部分1628、1630。
图65示出电压转换部分1601的结构。电压转换部分1601含有一个开关1619、一个谐振电路LC和一个调制谐振电路MLC。
谐振电路LC含有一个电感1623、一个在节点1623-1处连接于电感1623一端的电容1621、和一个在节点1623-2处连接于电感1623另一端的电容1625。
开关1619含有端头S1和S2,在响应于一个控制信号时,开关1619将使端头S1和S2互相电连接或使端头S1和S2互相电分离,该控制信号是由同步电路1628通过端头1601c提供的。开关1619的端头S1通过端头1601a连接在电源1616上。开关1619的端头S2连接在谐振电路LC的节点1623-1上。
调制谐振电路MLC含有一个电感1624、一个电容1622和一个开关1620。电感1624的一端在节点1624-1处连接于电容1622。电感1624的另一端连接在谐振电路LC的节点1623-2上。
开关1620含有端头S1和S2。在响应于一个控制信号时,开关1620将使端头S1和S2互相电连接或互相电分离。该控制信号是由同步部分1630通过端头1601d提供的。开关1620的端头S1通过端头1601b连接在电源1616上。开关1620的端头连接在节点1624-1上。
可以认为电压转换部分1601包括一个第一基础谐振电路和一个第二基础谐振电路,前者含有开关1619,电感1623、以及电容1621和1625,后者含有开关1620,探测部分1624、以及电容1622和1625。特别地,电容1625起着第一和第二基础谐振电路的公用电容的作用。电压转换部分1601的一个优点是能从端头1601g输出无纹波的直流电压。
端头1601g处的电压等于第一和第二基础谐振电路的输出电压的叠加。因此,有可能通过控制电压转换部分1601使得第一和第二基础谐振电路的输出电压有相同的振幅但有相反的相位(两相位互相错开180°),从而在端头1601g处得到消除纹波的直流电压。
图66示出在稳态情形下电压转换部分1601各点处的电压变化。由线E代表端头1601e处的电压变化。曲线F代表端头1601f处的电压变化。曲线G′代表第二基础谐振电路输出电压的变化。曲线G″代表第一基础谐振电路输出电压的变化。曲线G是根据叠加原理把曲线G′和G″互相叠加所得到的。
控制部分1632控制开关1620的断开/接通时刻,使得端头1601e处的电压(曲线E)与端头1601f处的电压(曲线F)有相同的振幅和互相错开180°的相反相位。这样的控制将导致第一基础谐振电路的输出电压(曲线G″)与第二基础谐振电路的输出电压(曲线G′)有相同的振幅和相互错开180°的相反相位。结果,曲线G′和G″的振幅将相互抵消,从而得到没有振荡的直流电压(曲线G)。这样,便可以从端头1601g输出的直流电压中消除纹波。
当端头1601e和1601f处的电压不具有相反相位时,控制部分1632将控制开关1620的接通/断开时刻,使得这两个电压有相反的相位。具体地说,控制部分1632通过以端头1601e处的电压相位作为基准来提前或延迟端头1601f处的电压相位,从而对端头1601e与1601f处的电压的相位关系进行调节。
图67示出端头1601e与1601f处电压的相位关系是如何被调节的。在图67中,曲线E和F分别代表端头1601e和1601f处的电压变化。
通过在端头1601f处电压上升阶段中的时期△toa内接通开关1620,端头1601f处的电压将被提高。于是曲线F被转变成曲线F′。这意味着提前了曲线F的相位。此外,通过调节开点1620的接通时期△toa的长度可以调节曲线F相位的提前程度。
通过在端头1601f处电压下降阶段中的时期△tob内接通开点1620,端关1601f处的电压将被提高。于是曲线上将转变成曲线F″。这意味着延迟了曲线F的相位。此外,通过调节开关1620的接通时期△tob的长度,可以调节曲线F的相位的延迟程度。
这样,端头1601f处的电压(曲线F)的相位可被提前或延迟。
图68A示出是如何通过提前端头1601f处的电压相位来使端头1601e处的电压(曲线E)与端头1601f处的电压(曲线F)有相反相位的。在图68A中,通过在端头1601f处电压的上升阶段中接通开关1620,端头1601e和1601f处的电压于时刻t5变得有相反的相位。
图68B示出是如何通过延迟端头1601f处的电压相位来使端头1601e处的电压(曲线E)与端头1601f处的电压(曲线F)有相反相位的。在图68B中,通过在端头1601f处电压的下降阶段中接通开关1620,端头1601e和1601f处的电压于时刻t5变得有相反的相位。
现在将说明控制部分1632的工作。
图69是说明控制部分1632接通/断开电压转换部分1601的开关1619的时刻的控制流程图。
步骤S71:探测部分1627将端头1601g处的电压Vg与目标电压Vp相比较。当电压Vg低于目标电压Vp时处理将进入步骤S72。这时,探测部分1627将向探测部分1629输出一个表明电压Vg低于目标电压Vp的探测信号。
步骤S72:探测部分1629判断在端头1601e处的电压Ve升高的阶骤它是否变得等于或高于一个预定电压Vs1。预定电压Vs1用来确定把开关1619从断开转变成接通的时刻。当电压Ve在其上升阶段变得等于或高于预定电压Vs1时,处理将进入步骤S73。这时,探测部分1629将向同步部分1628输出一个表明电压Ve在其上升阶段已变得等于或高于预定电压Vs1的探测信号。
步骤S73:同步部分1628接通开关1619。
步骤S74:探测部分1629判断端头1601e处的电压Ve在其上升阶段是否变得等于或高于一个预定电压Vsp1。预定电压Vspl用来确定把开关1619从接通转变成断开的时刻。当电压Ve在其上阶段变得等于或高于预定电压Vsp1时,处理将进入步骤S75。这时,探测部分1629将向同步部分1628输出一个表明电压Ve在其上升阶段已变得等于或高于预定电压Vsp1的探测信号。
步骤S75:同步部分1628断开开关1619。
这里,预定电压Vsp1是高于预定电压Vs1的。预定电压Vsp1与Vs1之间的电位差愈大,开关1619的接通时期将愈长。
图70是说明控制部分1632接通/断开电压转换部分1601的开关1620的时刻的控制流程图。
步骤S81:探测部分1629探测端头1601e处的电压Ve在其下降阶段与目标电压Vp相匹配的时刻。探测到的时刻t1通知给同步部分1630。
步骤S82:探测部分1631探测端头1601f处的电压Vf在其上升阶段与目标电压Vp相匹配的时刻。探测到的时刻t2通知给同步部分1630。
步骤S83:同步部分1630将时刻t1与时刻t2相比较。当t1<t2时,处理进入步骤S84。当t1≥t2时,处理进入步骤S88。
步骤S84:探测部分1631判断电压Vf在其上升阶段是否变得等于或高于一个预定电压Vsf。预定电压Vsf用来确定把开关1620从断开状态转变成接通状态的时刻。当电压Vf在其上升阶段变得等于或高于预定电压Vsf时,处理将进入步骤S85。这时探测部分1631将向同步部分1630输出一个指明电压Vf在其上升阶段已变得等于或高于电压Vsf的探测信号。
步骤S85:同步部分1630接通开关1620。
步骤S86:探测部分1631判断电压Vf在其上升阶段是否变得等于或高于一个预定电压Vspf,预定电压Vspf用来确定把开关1620从接通状态转变成断开状态的时刻。当电压Vf在其上升阶段变得等于或高于预定电压Vspf时,处理将进入步骤S87。这时,探测部分1631将向同步部分1630输出一个指明电压Vf在其上升阶段已变得等于或高于预定电压Vspf的探测信号。
步骤S87:同步部分1630断开开关1620。
这里,预定电压Vspf高于预定电压Vsf。预定电压Vspf与Vsf之间的电位差愈大,开关1620的接通时期将愈长。
步骤S88:探测部分1631判断电压Vf在其下降阶段是否已变得低于或等于一个预定电压Vsd。预定电压Vsd用来确定把开关1620从断开状态转变成接通状态的时刻。当电压Vf在其下降阶段变得低于或等于预定电压Vsd时,处理将进入步骤S89。这时探测部分1631将向同步部分1630输出一个指明电压Vf在其下降阶段已变得低于或等于预定电压Vsd的探测信号。
步骤S89:同步部分1630接通开关1620。
步骤S90:探测部分1631判断电压Vf在其下降阶段是否变得低于或等于一个预定电压Vspd。预定电压Vspd用来确定把开关1620从接通状态转变成断开状态的时刻。当电压Vf在其下降阶段变得低于或等于预定电压Vspd时,处理将进入步骤S91。这时,探测部分1631将向同步部分1630输出一个指明电压Vf在其下降阶段已变得低于或等于预定电压Vspd的探测信号。
步骤S91:同步部分1630断开开关1620。
这里,预定电压Vspd低于预定电压Vsd。预定电压Vspd与Vsd之间的电位差愈大,开关1620的接通时期将愈长,(实施例9)
图71示出一种电压转换器1700的结构。电压转换器1700包含一个电压转换部分1701和一个控制部分1758,前者用来将由电源1716所提供的电源电压转变成希望电压,后者用来控制电压转换问部分1701。
电压转换部分1701含有端头1701a-1701g。端头1701a和1701e连接在电源1716上。端头1701c连接负载1717上。负载1717至少含有一个电阻元件和一个电容元件。从电压转换部分1701输出的希望电压通过端头1701c提供给负载1717。
控制部分1758含有探测部分1753-1755和同步部分1756、1757。
图72示出电压转换部分1701的结构。电压转换部分1701含有一个开关1747、一个谐振电路LC和一个调制谐振电路MLC。
谐振电路LC含有一个电感1748、一个在节点1748-1处连接于电感1748一端的电容1746和一个在节点1748-2处连接于电感1748另一端的电容1749。
开关1747含有端头S1和S2。在响应于一个控制信号时,开点1747将端头S1和S2互相电连接或将端头S1和S2互相电分离。该控制信号是由同步部分1756通过端头1701b提供的。开关1747的端头S1通过端头1701a连接在电源1716上。开关1747的端头S2连接在谐振电路LC的节点1748-1上。
调制谐振电路MLC含有一个电感1750、一个电容1751和一个开关1752。电感1750的一端通过节点1750-1连接在电容1751上。电感1750的另一端连接在谐振电路LC的节点1748-1上。
开关1752含有端头S1和S2。在响应于一个控制信号时,开关1752将使端头S1和S2互相电连接或使端头S1和S2互相电分离。该控制信号是由同步部分1757通过端头1701d提供的。开关1752的端头S1通过端头1701e连接在电源1716上。开关1752的端头S2连接在节点1750-1。
可以认为电压转换部分1701包括一个第一基础谐振电路(见图73A)和一个第二基础谐振电路(见图73B),前者含有开关1747、电感1748和电容1746、1749;后者含有开关1752、电感1750和电容1746、1751。特别是,电容1746起着第一和第二基础谐振电路的共用电容的作用。电压转换部分1701的一个优点是能给出长时间的端头1701g处电压与电源电压VDD之间有小电位差的时期。
端头1701g处的电压等于第一基础谐振电路的节点1748-1处和第二基础谐振电路的节点1748-1处的电压的叠加。
图74示出在稳态时电压转换部分1701中各点处的电压变化。曲线G代表端头1701g处的电压变化。曲线G′代表第一基础谐振电路节点1748-1处的电压变化。曲线G ″代表第二基础谐振电路节点1748-1处的电压变化。曲线G是根据叠加原理由互相叠加曲线G′和G″得到的。
曲线G′和G″的相位是用类似于实施例8中所说明的方法调节的。
如图74所示,曲线G的电位与电源电位VDD之间的电位差小的时期△tc1长于正常正弦波曲线A与电源电位VDD之间的电位差小的时期△tc2。因此,通过在时期△tc1中接通开关1747,有可能减小开关1747所造成的能量损失。这样,通过设置调制谐振电路MLC,则相对于使用正常的正弦波振荡的情况来说,有可能得到具有更高效率并能承受较大输出电流的电压转换器。
11.作为LSI的***电源
作为LSI的***电源,本发明的电源设备具有分别向多个负载提供不同电源电压的能力。
图55示出一种电源设备的结构,其中有多个负载280-1至280-4连接在能量保存电路220的节点222上。分别含有负载280-1至280-4的各个能量接收部分287-1至287-4都具有类似于图17A所示能量接收电路的结构。能量接收部分287-1至287-4的区别在于它们的参考电压发生电路286-1至286-4分别输出不同的参考电压Vr1至Vr4
图56示出点222处的交流电压波形(A)、节点224处的直流电压波形(B)、负载280-1的节点281-1处的电压波形(C)、负载280-2的节点281-2处的电压波形(D)、负载280-3的节点281-3处的电压波形(E)和负载280-4的节点281-4的节点281-4处的电压波形(F)。这里,各电压之间满足关系式:
Vr4<V4<GND<V3<Vr3<Vp<Vr2<VDD<V1<Vr1
通过增大保存在能量保存电路220中的动态能量,可次使交流电压波形(A)在一个高于电源电压VDD的电压与一个低于地电压GND的电压之间振荡。这里,振荡中心设置在电压Vp(=1/2VDD)处。交流电压波形(A)的振荡中心也可设置在任何电压处。
当节点222处的电压在其上升阶段于时刻t1达到负载280-1的节点281-1处的电压时,控制电路283-1将响应于比较器284-1的输出值变化而使开关282-1从断开状态转变成接通状态。结果,节点281-1处的电压将随交流电压波形(A)上升。
当节点222处的电压于时刻t2达到参考电压Vr1时,控制电路283-1将响应于比较器285-1的输出值变化而使开关282-1从接通状态转变断开状态。结果节点281-1处的电压被设定在电压Vr1。其后,节点281处的电压将逐渐向电压V1降低。这是因为能量要被负载280-1消耗。
当节点222处的电压在其上升阶段再次达到负载280-1的节点281-1处的电压时,控制电路283-1将响应于比较器284-1的输出值变化而使开关282-1从断开状态转变成接通状态。结果,节点281-1处的电压将随交流电压波形(A)上升。
这样,节点281-1处的电压反复地在电压V1和电压Vr1之间上升和下降。通过把电压V1与Vr1之间的差值设置得足够小,可以向负载280-1提供一个可看作是直流的电压。这里,电压Vr1可以设置成任何值。
类似地,节点281-2处的电压反复地在电压V2和电压Vr2之间上升和下降。通过把电压V2与Vr2之间的差值设置得足够小,可以向负载280-2提供一个可看作是直流的电压。节点281-3处的电压反复地在电压V3和电压Vr3之间上升和下降。通过把电压V3与Vr3之间的差值设置得足够小,可以向负载280-3提供一个可看作是直流的电压。
电压V4和电压Vr4低于地电压GND。通过在节点222处电压的下降阶段使开关282-4从断开状态转变成接通状态,节点281-4处压将随交流电压波形(A)下降。结果,能量保存电路220将收集到电荷。
节点281-4处的电压反复地在电压V4和Vr4之间上升和下降。通过把电压V4与Vr4之间的差值设置得足够小,可以向负载280-4提供一个可看作是直流的电压。
提供给负载280-1至280-4的电压是互不相同的。所以有可能向多个负载提供不同的电源电压。
在图55所示的例子中,并联在节点222上的各个能量接收部分287-1至287-4具有相同类型的结构。不过各能量接收部分287-1至287-4也可以有不同类型的结构。例如,能量接收部分287-1至287-4中任何一个的结构都可以用第8章所述任何类型的电源设备中的连接在节点222或224上的能量接收部分的结构来替换。此外,能量接收部分287-1至287-4中任一个的结构都可以用第9章所述任何类型的电源设备中的连接在节点222或224上的能量接收部分的结构来替换。对于有多个能量接收部分并联在节点224上的情况,以上所述也是适用的。
通过适当地结合下面列出的各项要点,有可能把本发明的电源设备用作各作类型电路的电源,这些要点是:向能量保存电路220注入能量并在其中保存能量的基本原理;高效地向能量保存电路220注入动态能量和静态能量的方法;控制动态能量与静态能量之间比例的方法;把保存在能量保存电路220中的动态(或静态)能量转换成静态(或动态)能量的方法;以及通过调节开关尺寸来保持噪声频率恒定的方法。对于把本发明的电源设备应用到第10章所讨论的电压转换器(DC/DC转换器)的情况,以上所述也是适用的。
现在将从能量流动的角度来重新考虑能量保存电路220的作用。
图57示出以能量保存电路220为能量流动中心的动态和静态能量流动情况。能量保存电路220在使由电路中的电阻元件所造成的能量损失最小化的同时,实现了能量提供电路210与能量保存电路220之间的双向动态和静态能量交换。此外,能量保存电路220在使由电路中的电阻元件所造成的能量损失最小化的同时,实现了能量保存电路220与负载之间的动态和静态能量交换。
这样,可以看出,存在着以能量保存电路220为能量流动中心的,动态和静态能量向/从电子电路和元件的,例如能量提供电路210和负载的,低损失流动。
存储在能量保存电路220中的动态和静态能量可以通过在一个控制电路与能量提供电路210、能量保存电路220和负载中的每一个之间交换控制信号,根据能量提供电路210和负载所需要的动态和静态能量的总和及比例,来进行适当的控制。或者,有可能需要根据存储在能量保存电路220中的动态和静态能量来适当地设计被能量提供电路210和负载所消耗的能量。
在上述各个实施例中,动态和静态能量被电路中的电阻元件转变成热能,而这些热能又消散到电子电路***的能量***的外部。提供了一个转换电路把热能转换成动态能量和静态能量,并把转换电路得到的动态能量和静态能量高效地反馈给能量提供电路210和/或能量保存电路220,由此有可能减小消散到电子电路***的能量***外部的能量。
本申请的说明书公开了以下的内容。
一种本发明的电压转换器包括:一个电压转换部分和一个控制部分,前者用来把由一个电源提供的第一电压转换成第二电压,并把第二电压提供给电压接收电路;后者用来控制电压转换部分。电压转换部分包含一个谐振电路和一个开关,前者含有一个电感、一个在一个第一节点处连接于电感一端的第一电容、和一个在一个第二节点处接于电感另一端的第二电容;后者含有一个第一端头和一个第二端头,第一端头连接在电源上,第二端头连接在谐振电路的第一节点上,并且控制部分控制开关的断开和接通。
控制部分包括一个第一探测器,用来探测电压转换部分输出的第二电压已下降到低于一个希望电压;并且控制部分在第一探测器探测到了电压转换部分输出的第二电压已下降到低于希望电压时将控制开关的断开/接通。
控制部分还包括:一个第二探测器,用来探测第一节点处的电压已达到一个预定的第一参考电压;以及一个第三探测器,用来探测第一节点处的电压已达到一个预定的高于第一参考电压的第二参考电压,其中:当第二探测器探测到第一节点处的电压已达到预定的第一参考电压时,控制部分将控制开关使其从断开状态转变成接通状态;当第三探测器探测到第一节点处的电压已达到预定的第二参考电压时,控制部分将控制开关使其从接通状态转变成断开状态。
控制部分包括一个时钟信号发生器,用来根据第一节点处的电压变化产生一个时钟信号,其中:当在时钟信号的一个周期的前半周期中第一探测器探测到电压转换部分输出的第二电压已下降到低于希望电压时,第二探测器和第三探测器将在时钟信号该周期的后半周期中工作。
控制部分还包括一个第二参考电压发生器,用来产生第一参考电压,并且第二参考电压发生器仅在第二探测器工作的时期内工作。
控制部分还包括一个第三参考电压发生器,用来产生第二参考电压,并且第三参考电压发生器仅在第三探测器工作的时期内工作。
控制部分还包括一个第二参考电压发生器和一个监视器电路,前者用来产生第一参考电压;后者用来监视电压转换部分输出的第二电压的转变时期,其中第二参考电压发生器根据监视器电路的输出来改变第一参考电压。
控制部分还包括一个第三参考电压发生器和一个监视器电路,前者用来产生第二参考电压;后者用来监视电压转换部分输出的第二电压的转变时期,其中第三参考电压发生器根据监视器电路的输出来改变第二参考电压。
当监视器电路探测到电压转换部分输出的第二电压没有达到希望电压时,第二参考电压发生器将降低第一参考电压。
当监视器电路探测到电压转换部分输出的第二电压没有达到希望电压时,第三参考电压发生器将提高第二参考电压。
当监视器电路探测到电压转换部分输出的第二电压已达到希望电压时,第二参考电压发生器将提高第一参考电压。
当监视器电路控测到电压转换部分输出的第二电压已达到希望电路时,第三参考电压发生器将降低第二参考电压。
控制部分还包括一个监视器电路,用来监视电压转换部分输出的第二电压的转变时期,其中,当监视器电路探测到电压转换部分输出的第二电压没有达到希望电压时,控制部分将从第三控测器控测到第一节点处的电压已达到预定的第二电压的时刻开始经过一段预定的时间后控制开关使其接通状态转变成断开状态。
控制部分从第三探测器探测到第一节点处的电压已达到预定的第二电压的时刻开始经过一段预定的时间后控制开关使其从接通状态转变成断开状态。工业应用性
本发明的电源设备在一个能量保存装置中含有一个电感、一个第一电容、和一个第二电容,由此形成一个基本上没有能量泄漏到能量保存装置外部的封闭***。由于基本上没有能量泄漏到能量保存装置外部,在该电源设备中基本上没有能量损失。于是有可能提供一种低功耗类型的电源设备。
此外,通过把第一和第二电容设定在它们各自的预定值上,有可能分别从第一节点和第二节点向负载提供各种类型的电压波形。再有,本发明的电源设备适合于用作LSI的电源。
按照本发明的电压转换器,电压转换部分被控制得能从电源向电压转换部分提供基本上等于电压接收电路所消耗功率的功率。于是有可能实现在电压转换中几乎没有能量损失的高效率(90%或更高)电压转换器。
此外,在本发明的另一种电压转换器中,一个电源与一个谐振电路通过一个开关连接,并且开关的断开/接通操作由控制部分控制。谐振电路包含一个电感、一个在第一节点处连接于电感一端的第一电容、和一个在第二节点处连接于电感另一端的第二电容。通过在预定的时刻执行开关的断开/接通操作,有可能实现在电压转换中几乎没有能量损失的电压转换器。
在控制开关的断开/按通操作时,通过在谐振电路的第一节点处的电压接近于电源电压时接通开关以使电流从电源注入谐振电路,有可能在开点两端之间的电压差较小时把电流注入谐振电路。此外,当开点从断开状态转变成接通状态之后,在谐振电路第一节点处的电压变得高于电源电压之前让开点从接通状态转变成断开状态,由此防止了电流从谐振电路回流到电源中。对于从电源流入谐振电路的电流恒定(如果负载的功耗稳定,则从电源流入谐振电路的电流将恒定)的情况,开关两端之间的电压差愈小,则开关所消耗的功率将愈小,从而改善了电压转换效率。再有,通过防止电流从谐振电路到电源的回流,功耗被减小了。
根据本发明的另一种电压转换器,有可能通过结合两个转换效率不同的电压转换器来实现良好转换效率的电压转换器。
根据本发明的一种半导体集成电路,一个电源含有一个LC谐振电路,并且该LC谐振电路的谐振频率被设定得使由谐振频率所确定的噪声强度在由该电源提供电源电压的电路模块所使用的频带的等于或小于一个预定值。于是有可能防止该电路模块的特性因LC电路所产生的噪音而下降。

Claims (38)

1.一种电源设备,它包括:
能量提供装置,用来在预定时间提供能量;以及
能量保存装置,用来接收由能量提供装置提供的能量并保存该能量,其中:
能量保存装置包含一个电感、一个在一个第一节点处连接于电感一端的第一电容、和一个在一个第二节点处连接于电感另一端的第二电容;
其特征在于:
能量是通过第一节点提供给负载的,而且第一电容的值足够地大于第二电容的值。
2.一种电源设备,它包括:
能量提供装置,用来在预定时间提供能量;以及
能量保存装置,用来接收由能量提供装置提供的能量并保存该能量,其中:
能量保存装置包含一个电感、一个在一个第一节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容;
其特征在于:
能量是通过第一节点和第二节点中的至少一个节点提供给负载的,而且从第一节点和第二节点中的一个节点向负载提供交流电压波形。
3.根据权利要求1的电源设备,其中从第一节点向负载提供直流电压波形,从第二节点向负载提供交流电压波形。
4.根据权利要求2的电源设备,其中从第一节点和第二节点中的另一个节点提供交流电压波形。
5.一种电源设备,它包括:
能量提供装置,用来在预定时间提供能量;以及
能量保存装置,用来接收由能量提供装置提供的能量并保存该能量,其中;
能量保存装置包含一个电感、一个在一个第一个节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容;
能量是通过第一节点和第二节点中的至少一个节点提供给负载的;
其特征在于:
由电源设备提供给负载的能量中的至少一部分被返回电源设备中以供重新利用。
6.根据权利要求5的电源设备,其中由电源设备提供给负载的能量中的至少一部分通过第一节点和第二节点中那个用来向负载提供能量的节点返回到电源设备中。
7.根据权利要求5的电源设备,其中由电源设备提供给负载的能量中的至少一部分通过第一节点和第二节点中那个不是用来向负载提供能量的节点返回到电源设备中。
8.一种电压转换器,它包括:
一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压并把该第二电压提供给一个电压接收电路;以及
一个控制部分,用来控制电压转换部分,其中:
由压转换部分包含:
一个谐振电路,它含有一个电感、一个在一个第一节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容;以及
一个开关,它含有第一端头和第二端头,第一端头连接在电源上,第二端头连接在谐振电路的第一节点上;
第一节点处的电压具有交流电压波形;并且
控制部分根据第一电压与第一节点处电压之间的差值控制开关的断开/接通。
9.根据权利要求8的电压转换器,其中:
控制部分包括一个第一探测器,用来探测电压转换部分输出的第二电压已降低于一个希望电压;并且
当第一探测器探测到电压转换部分输出的第二电压已降低到低于希望电压时控制部分将控制开关的断开/接通。
10.根据权利要求9的电压转换器,其中控制部分还包括:
一个第二探测器,用来探测第一节点处的电压已达到一个预定的第一参考电压;以及
一个第三探测器,用来探测第一节点处的电压已达到一个高于第一参考电压的预定的第二参考电压,其中:
当第二探测器探测到第一节点处的电压已达到预定的第一参考电压时,控制部分将控制开点使其从断开状态转变成接通状态;并且
当第三探测器探测到第一节点处的电压已达到预定的第二参考电压时,控制部分将控制开关使其从接通状态转变成断开状态。
11.根据权利要求9的电压转换器,其中第一探测器同步于电压接收电路工作的时刻开始其工作。
12.根据权利要求8的电压转换器,其中,
控制部分句括一个第四探测器,用来探测电压转换部分输出的第二电压已达到一个预定的参考电压;
在响应于一个复原信号时,控制部分将控制开关使其从断开状态转变成接通状态;以及
当第四探测器探测到电压转换部分输出的第二电压已达到预定的参考电压时,控制部分将控制开关使其从接通状态转变成断开状态。
13.根据权利要求12的电压转换器,其中控制部分还包括:
一个时钟信号发生器,用来根据第一节点处的电压变化产生一个时钟信号;以及
一个电路,用来在探测到时钟信号的频率不同于一个预定频率时输出复原信号。
14.根据权利要求12的电压转换器,其中控制部分还包括一个电路,用来在探测到第一节点处的电压变化的最大值小于一个预定参考电压时输出复原信号。
15.根据权利要求8的电压转换器,其中:
控制部分还包括一个第一参考电压发生器,用来产生希望电压;并且
第一参考电压发生器仅在第一探测器工作的时期内工作。
16.根据权利要求8的电压转换器,其中:
控制部分还包括一个第一参考电压发生器,用来产生希望电压;并且
第一参考电压发生器根据一个从电压接收电路送来的信号改变希望电压。
17.根据权利要求8的电压转换器,其中:
控制部分还包括一个第二探测器,用来探测第一节点处的电压已达到一个预定的第一参考电压;
当第二探测器探测到第一节点处的电压已达到预定的第一参考电压时,控制部分将控制开关使其从断开状态转变成接通状态;并且
控制部分从开关由断开状态转变成接通状态的时刻开始经过一段预定的时间后控制开关使其由接通状态转变成断开状态。
18.根据权利要求7的电压转换器,其中控制部分在第一节点处的电压的上升阶段中控制开关的断开/接通。
19.根据权利要求7的电压转换器,其中控制部分在第一节点处的电压的下降阶段中控制开关的断开/接通。
20.一种电压转换器,它包括:
一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压,并把该第二电压提供给一个电压接收电路;以及
一个控制部分,用来控制电压转换部分,其中:
电压转换部分包含:
一个谐振电路,它含有一个电感、一个在一个第一节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容;以及
一个开关,它含有第一端头和第二端头,第一端头连接在电源上,第二端头连接在谐振电路的第一节点上;
控制部分控制开关的断开/接通;并且
电压转换部分还包括存储装置,用来暂时存储通过开关从电感流向电源的返回电流。
21.一种用来把由一个电源提供的电压转换成希望电压并把该希望电压提供给一个电压接收电路的电压转换器
该电压转换器包括:
一个具有第一转换效率的第一电压转换器;
一个具有第二转换效率的第二电压转换器,其中当从电压转换器流向电压接收电路的电流小于一个预定电流值时,第二转换效率高于第一转换效率;以及
一个电流探测器,用来探测从电压转换器流向电压接收电路的电流,其中
当电流探测器所探测到的电流大于预定电流值时,第一电压转换器工作;而当电流探测器所探测到的电流小于预定电流值时,第二电压转换器工作。
22.一种电压转换器,它包括:
一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压,并把该第二电压提供给一个电压接收电路;以及
一个控制部分,用来控制电压转换部分,其中:
电压转换部分包含:
一个第一谐振电路,它含有一个第电感、一个在一个第一节点处连接于第一电感一端的第一电容和一个在一个第二节点处接于第一电感另一端的第二电容:
一个第一开关,它含有第一端头和第二端头,第一端头连接在电源上,第二端头连接在第一谐振电路的第一节点上;
一个第二谐振电路,它含有一个第二电感、一个在一个第三节点处接于第二电感一端的第三电容和一个在一个第四节点处连接于第二电感另一端的第四电容;以及
一个第二开关,它含有第三端头和第四端头,第三端头连接在第一谐振电路的第二节点上,第四端头连接在二谐振电路的第三节点上;并且
控制部分控制第一开关和第二开关的断开/接通。
23.一种电压转换器,它包括:
一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压,并把该第二电压提供给一个电压接收电路;以及
一个控制部分,用来控制电压转换部分;其中:
电压转换部分包含:
一个谐振电路,它含有一个第一电感、一个在一个第一节点处连接于第一电感一端的第一电容、和一个在一个第二节点处连接于第一电感另一端的第二电容;
一个第一开关,它含有第一端头和第二端头,第一端头连接在电源上,第二端头连接在谐振电路第一节点上;以及
一个调制谐振电路,它含有一个第二电感,一个第三电容、和一个含有第三端头和第四端头的第二开关,第二电感的一端在一个第三节点处连接于第二电容,第二电感的另一端连接在第二节点上,第二开关的第三端头连接在电源上,第二开关的第四端头连接在第三节点上;并且
控制部分控制第一开关和第二开关的断开/接通。
24.一种电压转换器,它包括:
一个电压转换部分,用来把由一个电源提供的第一电压转换成第二电压,并把该第二电压提供给一个电压接收电路;以及
一个控制部分,用来控制电压转换部分,其中:
电压转换部分包含:
一个谐振电路,它含有一个第一电感、一个在一个第一节点处连接于第一电感一端的第一电容、和一个在一个第二节点处连接于第一电感另一端的第二电容;
一个第一开关,它含有第一端头和第二端头,第一端头连接在电源上,第二端头连接在谐振电路的第一节点上;以及
一个调制谐振电路,它含有一个第二电感、一个第三电容和一个含有第三端头和第四端头的第二开关,第二电感的一端连接在第一节点上,第二电感的另一端在一个第三节点处连接于第三电容,第二开关的第三端头连接在电源上,第二开关的第四端头连接在第三节点上;并且
控制电路控制第一开关和第二开关的断开/接通。
25.一种半导体集成电路,它包括:
一个含有一个LC谐振电路的电源设备;以及
至少一个由电源设备提供电源电压的电路模块,其中
LC谐振电路的谐振频率设定使得根据该谐振频率确定的噪声强度在上述至少一个电路模块所使用的频带内等于或小于一个预定值。
26.根据权利要求25的半导体集成电路,其中的电源设备和至少一个电路模块形成在同一块半导体芯片上。
27.根据权利要求25的半导体集成电路,其中的电源设备和至少一个电路模块形成在不同的半导体芯片上。
28.根据权利要求25的半导体集成电路,其中电源设备向至少一个电路模块提供直流电压。
29.一种电源设备,它包括:
能量提供装置,用来提供动态能量和静态能量;以及
能量保存装置,用来接收由能量提供装置提供的动态能量和静态能量并保存该动态能量和静态能量,其中:
能量保存装置包含一个电感、一个在一个第一节点处连接于电感一端的第一电容和一个在一个第二节点处连接于电感另一端的第二电容;并且
能量保存装置还包含能量转换装置,用来把存储在能量保存装置中的至少一部分动态能量转换成静态能量,或者把存储在能量保存装置中的至少一部分静态能量转换成动态能量。
30.根据权利要求29的电源设备,其中能量保存装置含有一个连接在第二节点上的开关,并且在第二节点处的电压等于或低于地电压的时期内该开关被控制得处于接通状态。
31.根据权利要求29的电源设备,其中能量保存装置含有一个连接在第二节点上的开关,并且在第二节点处的电压高于地电压的时期内该开关被控制得处于接通状态。
32.一种用来把由一个电源提供的电压转换成希望电压并把该希望电压提供给一个能量接收电路的电压转换器,该电压转换器包括:
一个具有第一转换效率的第一电压转换器;以及
一个具有第二转换效率的第二电压转换器,其中在一个第一情况下第二转换效率高于第一转换效率,其中:
在第一情况下第二电压转换器工作;在一个不同于第一情况的第二情况下第一电压转换器工作。
33.根据权利要求32的电压转换器,其中的第一情况和第二情况是利用从电压转换器流向电压接收电路的电流的一个预定值作为分界来区分的。
34.根据权利要求33的电压转换器,其中:
电压转换器还包括一个电流探测器,用来探测从电压转换器流向电压接收电路的电流;并且
当电流探测器所探所到的电流大于预定电流值时,第二电压转换器工作;当电流探测器所探测到的电流小于预定电流值时,第一电压转换器工作。
35.一种根据权利要求1、2和5任一项的电源设备,其中负载是具有提供整流功能的结构的半导体电路。
36.一种根据权利要求1、2和5任一项的电源设备,其中该电源设备和负载形成在单个的半导体芯片上。
37.一种电源设备,包括:
能量提供装置,用于提供能量;
能量保留装置,用于接收从能量提供装置提供的能量并保留该能量;
能量检测装置,用于检测能量保留装置的能量状态,其中:
该能量保留装置包括一个感应器、在第一节点连接到该感应器一端的第一电容、在第二节点连接到该感应器的另一端的第二电容;
其特征在于:
能量经第一节点提供到负载,第一电容比第二电容足够大;及
在能量检测装置检测到的能量状态所确定的时间上,能量提供装置向能量保留装置提供能量。
38.一种电源设备,包括:
能量提供装置,用于在预定时间提供能量;
能量保留装置,用于接收从能量提供装置提供的能量并保留该能量;
能量检测装置,用于检测能量保留装置的能量状态,其中:
该能量保留装置包括一个感应器、在第一节点连接到该感应器一端的第一电容、在第二节点连接到该感应器的另一端的第二电容;
其特征在于:
能量至少经第一节点和第二节点之一提供到负载,从第一节点和第二节点之一向负载提供交流电压波形;及
在能量检测装置检测到的能量状态所确定的时间上,能量提供装置向能量保留装置提供能量。
CN97180254A 1996-10-08 1997-10-06 电源设备与电压转换器 Expired - Fee Related CN1080949C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26761996 1996-10-08
JP267619/96 1996-10-08
JP327345/96 1996-12-06
JP32734596 1996-12-06
JP149742/97 1997-06-06
JP14974297 1997-06-06

Publications (2)

Publication Number Publication Date
CN1239601A CN1239601A (zh) 1999-12-22
CN1080949C true CN1080949C (zh) 2002-03-13

Family

ID=27319819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97180254A Expired - Fee Related CN1080949C (zh) 1996-10-08 1997-10-06 电源设备与电压转换器

Country Status (7)

Country Link
US (2) US6201382B1 (zh)
EP (1) EP0932247A4 (zh)
KR (1) KR100374439B1 (zh)
CN (1) CN1080949C (zh)
AU (1) AU4399797A (zh)
TW (1) TW357483B (zh)
WO (1) WO1998016003A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9806415D0 (en) * 1998-03-26 1998-05-20 Raytec Components Limited Dx1 power regulator
JP2002019558A (ja) * 2000-07-11 2002-01-23 Denso Corp コンデンサの電荷制御回路及びマイクロコンピュータ
US6958594B2 (en) * 2004-01-21 2005-10-25 Analog Devices, Inc. Switched noise filter circuit for a DC-DC converter
TWI237110B (en) * 2004-02-20 2005-08-01 Asia Optical Co Inc Optical power meter
US7196498B2 (en) * 2004-09-08 2007-03-27 Honeywell International Inc. Method and apparatus for generator control
DE102005008698A1 (de) * 2005-02-25 2006-10-26 Dräger Medical AG & Co. KG Vorrichtung zur Messung eines Volumenstroms mit induktiver Kopplung
KR100667110B1 (ko) * 2005-06-24 2007-01-12 엘지전자 주식회사 플라즈마 표시 패널의 구동장치 및 구동방법
WO2007020550A1 (en) * 2005-08-16 2007-02-22 Koninklijke Philips Electronics N.V. Resonant power converter
TWI280396B (en) * 2005-12-26 2007-05-01 Inventec Appliances Corp Method for detecting a battery voltage with a high precision
JP2008061440A (ja) * 2006-09-01 2008-03-13 Fujitsu Ten Ltd 電源装置、電源装置の制御装置および電子装置
JP5221100B2 (ja) * 2007-10-22 2013-06-26 ローム株式会社 キャパシタ充電回路の制御回路、制御方法およびそれを用いたキャパシタ充電回路、電子機器
US7989985B2 (en) * 2008-06-26 2011-08-02 Ciena Corporation Method and system to stop return current from flowing into a disconnected power port of a dual battery powered device
US8072095B2 (en) * 2009-05-26 2011-12-06 Bae Systems Information And Electronic Systems Integration Inc. Power management for power constrained devices
WO2011155295A1 (en) 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
FR2985116B1 (fr) 2011-12-21 2014-03-07 Continental Automotive France Dispositif de communication entre un module electronique et un capteur
CN102802345A (zh) * 2012-08-24 2012-11-28 江苏惠通集团有限责任公司 电路板和多功能集成***
TWI470253B (zh) * 2012-10-02 2015-01-21 Chang Mei Ling 具電能回收之直流電源測試系統
JP6460592B2 (ja) 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 Dcdcコンバータ、及び半導体装置
US9793807B2 (en) * 2015-03-22 2017-10-17 Boris Ablov Lossless power conversion to DC method and device
JP6416033B2 (ja) * 2015-03-31 2018-10-31 株式会社東芝 熱発電装置
EP3285395A4 (en) * 2015-04-14 2018-10-10 Alps Electric Co., Ltd. Sine wave multiplication device and input device having same
US10361565B2 (en) * 2015-09-25 2019-07-23 Intel Corporation Detecting resonant frequencies
EP3384587B1 (en) * 2015-12-03 2021-03-17 ABB Beijing Drive Systems Co., Ltd. Chopper assembly and controlling method thereof
JP6554453B2 (ja) * 2015-12-24 2019-07-31 矢崎総業株式会社 差電圧測定装置
US10250046B2 (en) * 2016-08-30 2019-04-02 Dialog Semiconductor, Inc. Electromagnetic interference blocking system
TWI594102B (zh) * 2016-11-03 2017-08-01 緯創資通股份有限公司 電壓調節電路及其控制方法
EP3471248B1 (en) * 2017-10-16 2020-04-08 The Swatch Group Research and Development Ltd Energy harvesting circuit with an oscillating structure
CN110196611B (zh) * 2018-02-27 2021-06-29 联发科技股份有限公司 一种低压差稳压器及其***
JP2021043786A (ja) * 2019-09-12 2021-03-18 キオクシア株式会社 半導体装置および電圧供給方法
US11392156B2 (en) * 2019-12-24 2022-07-19 Shenzhen GOODIX Technology Co., Ltd. Voltage generator with multiple voltage vs. temperature slope domains

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121528A (ja) * 1984-03-16 1986-01-30 Nec Corp コ−ド変換方式

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175941A (ja) * 1974-12-26 1976-06-30 Sharp Kk Suitsuchinguhoshikino teidenatsudengensochi
FR2542522A1 (fr) * 1983-03-11 1984-09-14 Thomson Csf Dispositif d'alimentation a decoupage fournissant plusieurs tensions continues stabilisees
JPS60226774A (ja) * 1984-04-23 1985-11-12 Amada Co Ltd バ−スト波平滑回路
US4999761A (en) * 1985-10-01 1991-03-12 Maxim Integrated Products Integrated dual charge pump power supply and RS-232 transmitter/receiver
JPS63131625A (ja) * 1986-11-20 1988-06-03 Sony Corp 受信機のスイツチング電源回路
US4857822A (en) * 1987-09-23 1989-08-15 Virginia Tech Intellectual Properties, Inc. Zero-voltage-switched multi-resonant converters including the buck and forward type
US4860184A (en) * 1987-09-23 1989-08-22 Virginia Tech Intellectual Properties, Inc. Half-bridge zero-voltage switched multi-resonant converters
JPH0246693A (ja) * 1988-08-08 1990-02-16 Hitachi Ltd マグネトロン用インバータ電源
US4931716A (en) * 1989-05-05 1990-06-05 Milan Jovanovic Constant frequency zero-voltage-switching multi-resonant converter
FR2655786B1 (fr) * 1989-12-12 1993-11-12 Sextant Avionique Alimentation du type convertisseur alternatif-continu a decoupage.
GB9000238D0 (en) 1990-01-05 1990-03-07 Rca Licensing Corp Minimum power standby circuit arrangement
JPH0433522A (ja) * 1990-05-30 1992-02-04 Fujitsu Ltd Dc/dcコンバータ装置
JPH04325866A (ja) * 1991-04-24 1992-11-16 Mitsubishi Electric Corp 直流電源装置
JPH0591745A (ja) * 1991-09-26 1993-04-09 Toshiba Lighting & Technol Corp 電源装置
EP0534379A3 (en) * 1991-09-27 1993-09-08 Yamaha Corporation Power supply circuit
MY108974A (en) * 1992-05-29 1996-11-30 Thomson Consumer Electronics Inc Tracking run/standby power supplies
JPH06121528A (ja) * 1992-10-05 1994-04-28 Toyota Autom Loom Works Ltd 共振形dc−dcコンバータ
JP3143284B2 (ja) 1993-09-21 2001-03-07 シャープ株式会社 直流安定化電源装置
US5548206A (en) * 1993-09-30 1996-08-20 National Semiconductor Corporation System and method for dual mode DC-DC power conversion
US5528132A (en) 1994-02-25 1996-06-18 Maxim Integrated Products Method and apparatus for increasing switching regulator light load efficiency
US6118678A (en) * 1999-06-10 2000-09-12 Limpaecher; Rudolf Charge transfer apparatus and method therefore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121528A (ja) * 1984-03-16 1986-01-30 Nec Corp コ−ド変換方式

Also Published As

Publication number Publication date
US6201382B1 (en) 2001-03-13
KR100374439B1 (ko) 2003-03-15
US20010006342A1 (en) 2001-07-05
EP0932247A1 (en) 1999-07-28
EP0932247A4 (en) 2000-06-07
KR20000048991A (ko) 2000-07-25
CN1239601A (zh) 1999-12-22
WO1998016003A1 (fr) 1998-04-16
AU4399797A (en) 1998-05-05
US6326772B2 (en) 2001-12-04
TW357483B (en) 1999-05-01

Similar Documents

Publication Publication Date Title
CN1080949C (zh) 电源设备与电压转换器
CN1252902C (zh) 无损耗开关变换器、电源转换方法和减少直流能量存储的方法
CN1248400C (zh) 开关dc-dc变流器
CN1192474C (zh) 供电装置、供电方法、携带式电子机器和电子表
CN1183658C (zh) 振荡电路、电子电路、半导体装置、电子装置和电子表
CN1061484C (zh) 内部电源电路
CN1454407A (zh) 无损耗切换直流-直流转换器
CN1175543C (zh) 串联补偿器
CN1302610C (zh) Dc-dc变换器
CN1311618C (zh) 开关电源装置
CN1756060A (zh) 开关电源电路
CN1607718A (zh) 开关电源电路
CN1171376C (zh) 压电变压器驱动电路
CN1801592A (zh) 开关电源电路
CN1705217A (zh) 开关电源电路
CN1617435A (zh) 开关电源电路
CN1832316A (zh) 开关电源电路
CN1858981A (zh) 电源调整电路及半导体器件
CN1641987A (zh) 开关电源电路
CN1671031A (zh) 升压电路、半导体装置以及电子设备
CN1992523A (zh) 开关电路和二极管
CN1750376A (zh) 开关电源电路
CN1926752A (zh) 多输出电流谐振型dc-dc变换器
CN1829092A (zh) 电平移动电路和移位寄存器和显示设备
CN1835366A (zh) 开关转换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020313

Termination date: 20121006