CN107376912B - 一种多层TiO2纳米管基光催化剂及其制备方法与应用 - Google Patents

一种多层TiO2纳米管基光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN107376912B
CN107376912B CN201710747168.2A CN201710747168A CN107376912B CN 107376912 B CN107376912 B CN 107376912B CN 201710747168 A CN201710747168 A CN 201710747168A CN 107376912 B CN107376912 B CN 107376912B
Authority
CN
China
Prior art keywords
srtio
solution
nanotube
tio
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710747168.2A
Other languages
English (en)
Other versions
CN107376912A (zh
Inventor
纪红兵
王永庆
鲜丰莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201710747168.2A priority Critical patent/CN107376912B/zh
Publication of CN107376912A publication Critical patent/CN107376912A/zh
Application granted granted Critical
Publication of CN107376912B publication Critical patent/CN107376912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/681Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多层TiO2纳米管基光催化剂及其制备方法与应用。光催化剂为TN@SrTiO3@Ag@Bi2O3@Ag,每层Ag的质量分数0.5%,SrTiO3为1%,Bi2O3为1%。制备方法如下:1)将TiO2纳米管放于马弗炉中煅烧得到锐钛矿型TN;2)通过搅拌将TN均匀分散于Sr(OH)2溶液中,再水热处理得到TN@SrTiO3;3)通过搅拌将TN@SrTiO3均匀分散于AgNO3溶液中,再经过微波水热处理得到TN@SrTiO3@Ag;4)通过搅拌将TN@SrTiO3@Ag均匀分散于Bi(NO3)3溶液中,随后微波水热处理,洗涤、干燥、煅烧处理;5)按照3)中方法将TN@SrTiO3@Ag@Bi2O3与AgNO3溶液水热反应得到。本发明的光催化剂将贵金属沉积在两层之间,通过Ag的界面调控,加快电子迁移速率,降低光生载流子的复合。同时所形成的异质结不仅拓宽了光响应范围,且增强了光吸收能力,表现出优异的光催化性能。

Description

一种多层TiO2纳米管基光催化剂及其制备方法与应用
技术领域
本发明涉及一种用于光催化反应的多层TiO2纳米管基材料及其制备方法,属于光催化材料和环境保护技术领域。
背景技术
随着工业的发展,环境污染问题日趋严重,室外废气的排放量越来越大,同时室内的空气污染问题也不容忽视,怎样更好地处理这些废气成为亟待解决的问题。光催化降解技术因反应过程快速高效、能耗低、无二次污染等优点,成为最有前景的技术之一。但仍存在一些缺陷,传统光催化剂如TiO2的禁带宽,只对紫外光响应,且电子和空穴易复合,导致光催化活性和效率降低。因此构筑高效TiO2光催化剂的研发和利用一直是光催化领域内的重点研究对象。 TN@SrTiO3@Ag@Bi2O3@Ag是在TiO2纳米管的基础上依次沉积 SrTiO3、Ag、Bi2O3、Ag而形成的。一维纳米管结构能促进对光子的捕获能力,有利于加快电荷的迁移和分离。SrTiO3能充当空穴传输层,有效抑制TN光生载流子的复合。同时将贵金属沉积在两层之间,通过Ag的界面调控,加快电子迁移速率,降低光生载流子的复合,从而提高光催化效率。Shuang Shuang等人(Sci Rep.2016;6:26670.) 提出一种TiO2纳米阵列管的设计。用Au和Pt纳米粒子通过连续离子层吸附和反应在室温下直接合成。显著提高了TiO2的光生电荷分离,进而提高光催化效率。Sunita Khanchandani等人(J.Phys.Chem. C 2013,117,5558-5567)制备了ZnO/In2S3II型核壳的纳米阵列。核 /壳光催化剂能够在可见光照射下明显的光催化降解RhB,效率高于 In2S3/ZnO纳米棒。催化活性的提高是由于两半导体异质结的形成促使光生电子-空穴的有效分离。但这些复合材料的合成方法,一是贵金属中Au、Pt价格较为昂贵,二是复合材料组分较为单一很难充分交织形成利于电子和空穴分离的相界面。
发明内容
针对上述光催化领域,特别是TiO2纳米管基光催化剂所面临的问题,本发明提供了一种多层TiO2纳米管基光催化剂及其制备方法,并用于光催化降解有机废气。
为了实现上述目的,本发明采用如下技术方案:
一种多层TiO2纳米管基光催化剂,所述光催化剂是由TiO2纳米管做基底,依次沉积SrTiO3、Ag、Bi2O3、Ag组成,以催化剂的重量为100%计,每层Ag的质量分数0.5%,SrTiO3的质量分数为1%, Bi2O3的质量分数为1%,余量为TiO2纳米管。
上述多层TiO2纳米管基光催化剂的制备方法,包括以下步骤:
(1)将TiO2纳米管放于马弗炉中煅烧得到处理好的TiO2纳米管;
(2)将TiO2纳米管溶解于乙醇中,磁力搅拌;取Sr(OH)2溶于纯水中,超声使其均匀;再将其滴加到TiO2纳米管溶液中,磁力搅拌;后水热,离心洗涤干燥得到TN@SrTiO3
(3)将TN@SrTiO3溶于乙醇与水体积比1:1的溶液中,磁力搅拌;取AgNO3溶于乙醇与水体积比1:1的溶液中,超声使其均匀;再将其滴加到TN@SrTiO3溶液中磁力搅拌;后微波水热,离心洗涤干燥得到TN@SrTiO3@Ag;
(4)将TN@SrTiO3@Ag溶于乙醇中,磁力搅拌;取Bi(NO3)3溶于乙二醇和乙醇混合溶液中,超声使其均匀;再将其滴加到 TN@SrTiO3@Ag溶液中磁力搅拌;后微波水热,离心洗涤干燥,再煅烧得到TN@SrTiO3@Ag@Bi2O3
(5)按照步骤(3)中方法在TN@SrTiO3@Ag@Bi2O3上再沉积一层Ag即得到TN@SrTiO3@Ag@Bi2O3@Ag。
其中步骤(1)中所述煅烧过程,是指在350~500℃条件下煅烧 2~4h。
步骤(2)中所述磁力搅拌时间均为30~60min,水热条件为 180~240℃水热18~30h,洗涤过程是指用0.05~0.2M醋酸洗涤几次,再用纯水和无水乙醇洗涤几次。干燥过程是指在60~80℃的空气氛围内恒温干燥6~24h。
步骤(3)中所述磁力搅拌时间均为30~60min,微波水热参数:温度为120~180℃,时间为1~3h,功率为300~500W。洗涤过程是指用纯水和无水乙醇洗涤几次。干燥过程是指在60~80℃的空气氛围内恒温干燥6~24h。
步骤(4)中所述磁力搅拌时间均为30~60min,微波水热参数:温度为120~180℃,时间为1~3h,功率为300~500W。洗涤过程是指用纯水和无水乙醇洗涤几次。干燥过程是指在60~80℃的空气氛围内恒温干燥6~24h。煅烧过程是指在马弗炉中400~600℃煅烧3~5h。
本发明的再一个目的是提供上述多层TiO2纳米管基光催化剂的应用。
本发明所提供的多层TiO2纳米管基光催化剂的应用是其在室温可见光催化领域中的应用。所述可见光催化剂对单体小分子有机物都具有一定的催化效果,可用于降解空气中有机污染物,如甲醛、甲苯等。
与现有技术相比,本发明具有如下有益效果:
本发明采用的多层TiO2纳米管基光催化剂的制备方法为微波水热法,一维纳米管结构能促进对光子的捕获能力,有利于加快电荷的迁移和分离。SrTiO3能充当空穴传输层,有效抑制TN光生载流子的复合。此外Ag作为一种贵金属均匀沉积在两层之间,通过Ag的界面调控,加快电子迁移速率,降低光生载流子的复合。同时还沉积有 Bi2O3作为复合相组分,形成多相异质结,促进光生电子-空穴的分离,从而提高光催化反应效率。用于低浓度甲苯、甲醛等有机气体的可见光催化反应时,可以在室温条件下将体系中甲苯、甲醛几乎完全氧化为二氧化碳和水。多层TiO2纳米管基光催化剂的制备方法条件温和,催化效率高,操作方便,便于工业放大生产。
附图说明
图 1为各实施例中制备的样品 TN@SrTiO3@Ag@Bi2O3@Ag(TSABA), TN@Ag@SrTiO3@Ag(TASA),TN@SrTiO3@Bi2O3@Ag(TSBA), TN@SrTiO3@Bi2O3(TSB)和TN@Ag(TA)的紫外可见光谱对比图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2) 将0.30g TiO2纳米管溶于20mL乙醇中,磁力搅拌30min。将0.0044 g Sr(OH)2溶于纯水中,并加入TiO2纳米管溶液中,再磁力搅拌30min后,倒入高压反应釜中200℃水热24h,自然冷却到室温后,离心分离得到固体,并用0.1M醋酸溶液洗涤2次,纯水和无水乙醇各洗3 次,放入60℃烘箱恒温干燥10h得到TN@SrTiO3;(3)将0.30g TN@SrTiO3溶于20mL乙醇与水体积比1:1的溶液中,磁力搅拌30 min。将0.0024gAgNO3溶于20mL乙醇与水体积比1:1的溶液中,并加入TN@SrTiO3溶液中,磁力搅拌30min。150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h得到 TN@SrTiO3@Ag;(4)将0.30g TN@SrTiO3@Ag溶于20mL乙醇中。将0.0031g Bi(NO3)3溶于20mL乙二醇和20mL乙醇混合溶液中,并加入TN@SrTiO3@Ag溶液中,磁力搅拌30min,150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h后, 450℃煅烧3h得到TN@SrTiO3@Ag@Bi2O3;(5)按照(3)中方法在TN@SrTiO3@Ag@Bi2O3上再沉积一层Ag得到最终产品。
对比例1
对比一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2)将0.30g TiO2纳米管溶于20mL乙醇中,磁力搅拌30min。将0.0044g Sr(OH)2溶于纯水中,并加入TiO2纳米管溶液中,再磁力搅拌30min后,倒入高压反应釜中200℃水热24h,自然冷却到室温后,离心分离得到固体,并用0.1M醋酸溶液洗涤2次,纯水和无水乙醇各洗3次,放入60℃烘箱恒温干燥10h得到TN@SrTiO3;(3)将0.30g TN@SrTiO3溶于20mL乙醇与水体积比1:1的溶液中,磁力搅拌30min。将0.0024gAgNO3溶于20mL乙醇与水体积比1:1的溶液中,并加入TN@SrTiO3溶液中,磁力搅拌30min。150℃水热2h 后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h 得到TN@SrTiO3@Ag;(4)将0.30g TN@SrTiO3@Ag溶于20mL 乙醇中。将0.0031g Bi(NO3)3溶于20mL乙二醇和20mL乙醇混合溶液中,并加入TN@SrTiO3@Ag溶液中,磁力搅拌30min,150℃水热 2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h 后,450℃煅烧3h得到最终产品。
实施例2
一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2) 将0.30g TN溶于20mL乙醇与水体积比1:1的溶液中,磁力搅拌30 min。将0.0024g AgNO3溶于20mL乙醇与水体积比1:1的溶液中,并加入TN溶液中,磁力搅拌30min。150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h得到TN@Ag; (3)通过搅拌将TN@Ag溶液和Sr(OH)2溶液混合,再通过水热得到TN@Ag@SrTiO3将0.30g TN@Ag溶于20mL乙醇中,磁力搅拌 30min。将0.0044g Sr(OH)2溶于纯水中,并加入TN@Ag溶液中,再磁力搅拌30min后,倒入高压反应釜中200℃水热24h,自然冷却到室温后,离心分离得到固体,并用0.1M醋酸溶液洗涤2次,纯水和无水乙醇各洗3次,放入60℃烘箱恒温干燥10h得到 TN@Ag@SrTiO3;(4)按照(2)中方法在TN@Ag@SrTiO3上再沉积一层Ag得到最终产品。
实施例3
一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2) 将0.30g TiO2纳米管溶于20mL乙醇中,磁力搅拌30min。将0.0044 g Sr(OH)2溶于纯水中,并加入TiO2纳米管溶液中,再磁力搅拌30min后,倒入高压反应釜中200℃水热24h,自然冷却到室温后,离心分离得到固体,并用0.1M醋酸溶液洗涤2次,纯水和无水乙醇各洗3 次,放入60℃烘箱恒温干燥10h得到TN@SrTiO3;(3)将0.30g TN@SrTiO3溶于20mL乙醇中。将0.0031g Bi(NO3)3溶于20mL乙二醇和20mL乙醇混合溶液中,并加入TN@SrTiO3溶液中,磁力搅拌 30min,150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h后,450℃煅烧3h得到TN@SrTiO3@Bi2O3;(4) 将0.30gTN@SrTiO3@Bi2O3溶于20mL乙醇与水体积比1:1的溶液中,磁力搅拌30min。将0.0024g AgNO3溶于20mL乙醇与水体积比1:1的溶液中,并加入TN@SrTiO3@Bi2O3溶液中,磁力搅拌30min。150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h得到最终产品。
实施例4
一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2) 将0.30g TiO2纳米管溶于20mL乙醇中,磁力搅拌30min。将0.0044 g Sr(OH)2溶于纯水中,并加入TiO2纳米管溶液中,再磁力搅拌30min后,倒入高压反应釜中200℃水热24h,自然冷却到室温后,离心分离得到固体,并用0.1M醋酸溶液洗涤2次,纯水和无水乙醇各洗3 次,放入60℃烘箱恒温干燥10h得到TN@SrTiO3;(3)将0.30g TN@SrTiO3溶于20mL乙醇中。将0.0031g Bi(NO3)3溶于20mL乙二醇和20mL乙醇混合溶液中,并加入TN@SrTiO3溶液中,磁力搅拌 30min,150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h后,450℃煅烧3h得到最终产品。
实施例5
一种多层TiO2纳米管基光催化剂的制备方法:(1)将购买的TiO2纳米管放于马弗炉中400℃煅烧2h得到处理好的TiO2纳米管;(2) 将0.30g TN溶于20mL乙醇与水体积比1:1的溶液中,磁力搅拌30 min。将0.0024g AgNO3溶于20mL乙醇与水体积比1:1的溶液中,并加入TN溶液中,磁力搅拌30min。150℃水热2h后,用纯水和无水乙醇各洗涤3次,放入60℃烘箱恒温干燥10h得到最终产品。
实施例6
分别取0.2g实施例1-5所述催化剂,以纯水作溶剂,均匀涂抹在7.0cm2的表面皿内并烘干,置于反应釜底部,用混合气(O2:N2=1:3)吹扫20min除去反应釜内CO2。甲苯可见光催化反应实验条件为:纯甲苯液体通过鼓泡,由混合气(O2:N2=1:3)吹入反应釜,控制反应釜内甲苯初始浓度为~400ppm,相对湿度为~18%,光照前反应釜在室温下避光处理20min,使甲苯在催化剂表面达到吸附-脱附平衡。装上全反射片和滤掉紫外的反射片,使用200w的氙灯作为模拟可见光源(λ=420~780nm,光强为150mw·cm-2),反应5h,每隔30min取一次样,通过气相色谱(GC7900,FID)检测甲苯浓度和(GC2060,FID)检测CO2产量。并用以下公式算出转化率:
Figure BDA0001390305930000091
其中
Figure BDA0001390305930000092
为甲苯初始物质的量(mol),为某时刻CO2的物质的量(mol)。
表1多层TiO2纳米管基光催化剂TN@SrTiO3@Ag@Bi2O3@Ag的活性评价结果
Figure BDA0001390305930000094

Claims (6)

1.一种多层TiO2纳米管基光催化剂的制备方法,其特征在于:所述光催化剂是由TiO2纳米管做基底,依次沉积SrTiO3、Ag、Bi2O3、Ag组成,以催化剂的重量为100%计,每层Ag的质量分数0.5%,SrTiO3的质量分数为1%,Bi2O3的质量分数为1%,余量为TiO2纳米管;
制备方法包括以下步骤:
(1)将TiO2纳米管放于马弗炉中煅烧得到处理好的TiO2纳米管;
(2)将TiO2纳米管溶解于乙醇中,磁力搅拌;取Sr(OH)2溶于纯水中,超声使其均匀;再将其滴加到TiO2纳米管溶液中,磁力搅拌;后水热,离心洗涤干燥得到TN@SrTiO3
(3)将TN@SrTiO3溶于乙醇与水体积比1:1的溶液中,磁力搅拌;取AgNO3溶于乙醇与水体积比1:1的溶液中,超声使其均匀;再将其滴加到TN@SrTiO3溶液中磁力搅拌;后微波水热,离心洗涤干燥得到TN@SrTiO3@Ag;
(4)将TN@SrTiO3@Ag溶于乙醇中,磁力搅拌;取Bi(NO3)3溶于乙二醇和乙醇混合溶液中,超声使其均匀;再将其滴加到TN@SrTiO3@Ag溶液中磁力搅拌;后微波水热,离心洗涤干燥,再煅烧得到TN@SrTiO3@Ag@Bi2O3
(5)按照步骤(3)中方法在TN@SrTiO3@Ag@Bi2O3上再沉积一层Ag即得到TN@SrTiO3@Ag@Bi2O3@Ag。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述煅烧过程,是指在350~500 ℃条件下煅烧2~4 h。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述磁力搅拌时间均为30~60 min,水热条件为180~240 ℃水热18~30 h,洗涤过程是指用0.05~0.2 M 醋酸洗涤几次,再用纯水和无水乙醇洗涤几次;干燥过程是指在60~80 ℃的空气氛围内恒温干燥6~24 h。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述磁力搅拌时间均为30~60 min,微波水热参数:温度为120~180 ℃,时间为1~3 h,功率为300~500 W;洗涤过程是指用纯水和无水乙醇洗涤几次;干燥过程是指在60~80 ℃的空气氛围内恒温干燥6~24 h。
5.根据权利要求1所述的制备方法,其特征在于:步骤(4)中所述磁力搅拌时间均为30~60 min,微波水热参数:温度为120~180 ℃,时间为1~3 h,功率为300~500 W;洗涤过程是指用纯水和无水乙醇洗涤几次;干燥过程是指在60~80 ℃的空气氛围内恒温干燥6~24 h;煅烧过程是指在马弗炉中400~600 ℃煅烧3~5 h。
6.权利要求1~5任一项所述制备方法所得到的多层TiO2纳米管基光催化剂在作为可见光催化剂中的应用。
CN201710747168.2A 2017-08-28 2017-08-28 一种多层TiO2纳米管基光催化剂及其制备方法与应用 Active CN107376912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710747168.2A CN107376912B (zh) 2017-08-28 2017-08-28 一种多层TiO2纳米管基光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710747168.2A CN107376912B (zh) 2017-08-28 2017-08-28 一种多层TiO2纳米管基光催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107376912A CN107376912A (zh) 2017-11-24
CN107376912B true CN107376912B (zh) 2020-01-21

Family

ID=60346050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710747168.2A Active CN107376912B (zh) 2017-08-28 2017-08-28 一种多层TiO2纳米管基光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107376912B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514886A (zh) * 2018-03-20 2018-09-11 中山大学 一种用于光热协同催化甲苯降解的银基催化剂
CN109030594B (zh) * 2018-09-10 2020-09-08 合肥工业大学 一种铋酸银-银-二氧化钛纳米管阵列的制备方法及其应用
CN111139509A (zh) * 2020-01-10 2020-05-12 北京工业大学 一种铋改性二氧化钛纳米管阵列电极的制备方法
CN111595911B (zh) * 2020-06-24 2022-05-31 河北工业大学 一种用于铜、铁、锌离子混合溶液检测的电极组的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972641A (zh) * 2010-10-13 2011-02-16 中国科学院苏州纳米技术与纳米仿生研究所 大面积氧化钛纳米管薄膜、其制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541509B2 (en) * 2004-08-31 2009-06-02 University Of Florida Research Foundation, Inc. Photocatalytic nanocomposites and applications thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972641A (zh) * 2010-10-13 2011-02-16 中国科学院苏州纳米技术与纳米仿生研究所 大面积氧化钛纳米管薄膜、其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange;M. Malligavathy等;《J Mater Sci: Mater Electron》;20170823;第28卷;第2,4节 *
Synthesis of Ag-loaded SrTiO3/TiO2 heterostructure nanotube arrays for enhanced photocatalytic performances;Zijun Hu等;《Appl. Phys. A》;20170506;第123卷;第2.1,2.3节 *

Also Published As

Publication number Publication date
CN107376912A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107376912B (zh) 一种多层TiO2纳米管基光催化剂及其制备方法与应用
Wang et al. Fluorine-induced oxygen vacancies on TiO2 nanosheets for photocatalytic indoor VOCs degradation
CN108722497B (zh) 一种TiO2-MOFs光催化剂及其制备方法与应用
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN103285861B (zh) 一种具有可见光活性的Ag3VO4/TiO2复合纳米线其制备方法及应用
CN108786779B (zh) 一种石墨炔/多孔二氧化钛光催化剂及其制备方法和应用
CN104785280A (zh) 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法
CN108745393A (zh) 一种铋-碳酸氧铋异质结构光催化材料及其制备方法
CN111229285A (zh) ZnO/TiO2/g-C3N4复合光催化剂及其制备方法
CN111874988A (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN114832808B (zh) 一种光催化降解甲苯的WO3/Bi2WO6复合异质结材料的制备方法
CN113368872B (zh) 一种基于选择修饰的z型复合光催化剂及其制备方法
Li et al. Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation
Wu et al. Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2Tx hybrid for effectively removing tetracycline hydrochloride and rhodamine B
CN114950512A (zh) 一种TiO2/TiC/Fe3O4易分离光热催化剂及其制备方法
CN108772077B (zh) 一种AgIO3/Ag2O异质结光催化材料及其制备方法和应用
CN111389465A (zh) 一种MOF@TiO2@PDVB光催化剂及其制备方法与应用
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN112892524A (zh) 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用
CN112844384A (zh) 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用
CN107497428A (zh) 一种多壳层纳米颗粒的TiO2光催化剂及其制备方法与应用
CN110856816B (zh) 表面调控等离子体催化剂及其制备方法与应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN113769735B (zh) CeO2/MnO2复合光催化剂及其制备方法和应用
CN115849441A (zh) 一种富氧空位Bi12O17Cl2超薄纳米片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant