CN106848254B - 一种钠离子电池负极材料及其制备方法、钠离子电池 - Google Patents

一种钠离子电池负极材料及其制备方法、钠离子电池 Download PDF

Info

Publication number
CN106848254B
CN106848254B CN201710165908.1A CN201710165908A CN106848254B CN 106848254 B CN106848254 B CN 106848254B CN 201710165908 A CN201710165908 A CN 201710165908A CN 106848254 B CN106848254 B CN 106848254B
Authority
CN
China
Prior art keywords
sodium
ion battery
negative electrode
electrode material
coconut shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710165908.1A
Other languages
English (en)
Other versions
CN106848254A (zh
Inventor
王红
廖小珍
马紫峰
周广盖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Sinopoly Jiahua Battery Technology Co ltd
Shanghai Jiaotong University
Original Assignee
Shanghai Sinopoly Jiahua Battery Technology Co ltd
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Sinopoly Jiahua Battery Technology Co ltd, Shanghai Jiaotong University filed Critical Shanghai Sinopoly Jiahua Battery Technology Co ltd
Priority to CN201710165908.1A priority Critical patent/CN106848254B/zh
Publication of CN106848254A publication Critical patent/CN106848254A/zh
Application granted granted Critical
Publication of CN106848254B publication Critical patent/CN106848254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钠离子电池负极材料及其制备方法、钠离子电池。本该材料由椰壳炭、二硫化锡和聚吡咯复合而成;二硫化锡沉积于椰壳炭的微孔中,形成颗粒;颗粒的外壳包裹聚吡咯;椰壳炭相对于二硫化锡的质量比为5‑10%;聚吡咯相对于二硫化锡的质量比为1‑5%。本发明的钠离子电池负极材料,可有效减缓硫化锡的体积膨胀效应,防止颗粒在充放电过程中破碎,可有效防止负极在充放电过程中与集流体脱落,提高负极材料的循环性能;本发明的负极材料不仅可吸收颗粒在体积膨胀时产生的机械应力,进一步防止颗粒破碎,还可明显提高电化学性能,特别是倍率性能。此外,本发明的钠离子电池负极材料循环性能得到明显提高。

Description

一种钠离子电池负极材料及其制备方法、钠离子电池
技术领域
本发明具体涉及一种钠离子电池负极材料及其制备方法、钠离子电池。
背景技术
规模储能需要储能***廉价、安全、绿色、环保,在现有的规模储能方式中,电化学储能***以其高效、灵活的特点受到广泛关注,也是目前国内外研究热点,钠元素在地球储量十分丰富,分布广泛、提炼简单,钠离子电池具有低成本化优势,有望作为大规模储能应用。
钠离子电池作为规模储能应用优势明显,但同时也存在挑战,特别是寻找电化学性能优异的电极材料困难。现阶段钠离子电池研究还比较少,可供选择的正负极材料不成熟,相应的制备工艺进展很有限,从而导致目前钠离子电池性能还远远达不到预期目标。因此,寻找并发展高性能钠离子电池电极材料就显得尤为重要。研究结果表明,Sn金属及其复合材料具有较好的可逆嵌/脱钠特性,但Sn或其化合物在与钠反应过程中体积膨胀收缩效应明显,反复充放电后电极材料容易发生破裂,导致电池容量衰减、循环性能变差。硫化锡作为钠离子电池负极材料性能优异,中国专利(CN201610668657.4)公开了一种SnS2/C复合负极材料,中国专利(CN201610595712.1)公开了一种原位制备SnS2/CNT复合负极材料,可以提高材料的离子和电子电导率。中国专利(CN201610628012.8)公开了一种SnS2/CNT复合负极材料的制备方法。上述三份公开的专利,采用碳材料对锡基负极材料做了简单的修饰,能一定程度改善充放电容量和循环稳定性,但作用很有限,无法很好应对锡基材料的体积膨胀效应。故如何更有效的减缓体积膨胀效应一直是钠离子电池负极材料研究中的热点方向之一。
发明内容
本发明实际要解决的技术问题是克服了现有技术中钠离子电池锡基负极材料循环稳定性差,体积效应过大,无法从根本上解决SnS2在嵌/脱钠过程中的体积膨胀效应等缺陷,提供了一种钠离子电池负极材料及其制备方法、钠离子电池。本发明的钠离子电池负极材料,可有效减缓二硫化锡的体积膨胀效应,防止颗粒在充放电过程中破碎,可有效防止负极在充放电过程中与集流体脱落,提高负极材料的循环性能;本发明的负极材料不仅可吸收颗粒在体积膨胀时产生的机械应力,进一步防止颗粒破碎,还可明显提高电化学性能,特别是倍率性能。此外,本发明的钠离子电池负极材料循环性能得到明显提高。
本发明通过以下技术方案解决上述技术问题。
本发明提供了一种钠离子电池负极材料,所述钠离子电池负极材料由椰壳炭、二硫化锡和聚吡咯复合而成;其中,所述二硫化锡沉积于所述椰壳炭的微孔中,形成二硫化锡/椰壳炭颗粒;所述二硫化锡/椰壳炭颗粒的外壳包裹所述聚吡咯;
其中,所述椰壳炭的含量为5-10%,上述百分比为所述椰壳炭相对于所述二硫化锡的质量百分比;所述聚吡咯的含量为1-5%,上述百分比为所述聚吡咯相对于所述二硫化锡的质量百分比。
本发明中,所述椰壳炭可为本领域常规的椰壳炭,其为活性炭的一种,以椰壳制成而得名,一般为黑色无定型粒状物。所述椰壳炭的制备方法可为本领域常规的制备方法,较佳地按下述步骤制得:将椰壳在惰性气氛中碳化,冷却至室温后粉碎即得所述椰壳炭。
其中,所述惰性气氛可为本领域常规的惰性气氛,一般是指氦气或氮气,较佳地为氮气。所述碳化操作和条件可为本领域常规的操作和条件,所述碳化的温度较佳地为1000-1400℃,更佳地为1200-1300℃。所述碳化的时间较佳地为1-4h,更佳地为2h。所述的室温可为本领域常规,一般为10-35℃。
本发明中,所述椰壳炭的粒径可为本领域常规,较佳地为5-10μm,更佳地为8μm。
本发明中,所述椰壳炭的含量较佳地为8%。
本发明中,所述聚吡咯的含量较佳地为2-3%。
本发明中,所述聚吡咯较佳地连续均匀的分布在所述二硫化锡/椰壳炭颗粒的表面。
本发明还提供了一种钠离子电池负极材料的制备方法,其包括如下步骤:
(1)将椰壳炭与含有锡盐的混合溶液混合搅拌后,加入硫化物溶液反应完全;其中,所述椰壳炭的含量为5-10%,上述百分比为椰壳炭相对于二硫化锡(SnS2)的质量百分比;
(2)加入氧化剂,并逐滴加入吡咯乙醇溶液进行聚合反应,滴加完毕后超声,抽滤、洗涤、干燥后即得所述钠离子电池负极材料;其中,聚吡咯(ppy)的含量为1-5%,上述百分比为聚吡咯相对于二硫化锡(SnS2)的质量百分比。
步骤(1)中,所述锡盐为钠离子电池领域常规使用的锡盐,较佳地为四氯化锡。
步骤(1)中,所述混合溶液的溶剂较佳地为去离子水。
步骤(1)中,所述混合溶液的浓度可为本领域内常规,较佳地为1-2mol/L,更佳地为1mol/L。
步骤(1)中,所述混合搅拌的操作和条件可为本领域内常规的操作和条件。所述混合搅拌的速度较佳地为400-800r/min,更佳地为500r/min。
步骤(1)中,所述硫化物为钠离子电池领域常规硫化物,较佳地包括硫化钠或硫化铵,更佳地为硫化钠。
步骤(1)中,所述硫化物溶液的浓度可为本领域内常规,较佳地为1-2mol/L,更佳地为1mol/L。所述硫化物溶液加入反应釜的流量可为本领域常规,较佳地为4-100mL/min,更佳地为40mL/min或60mL/min。
步骤(1)中,所述反应的操作和条件可为本领域常规的操作和条件。所述反应的时间较佳地为1-3h,更佳地为2h。
步骤(1)中,所述硫化亚锡是加入所述硫化物溶液后反应所得。
步骤(2)中,所述氧化剂可为钠离子电池领域常规的氧化剂,较佳地包括过硫酸钠和/或过硫酸铵,更佳地为过硫酸钠。
步骤(2)中,所述吡咯乙醇溶液的滴加速度可为本领域常规。
步骤(2)中,所述聚合反应的操作和条件可为本领域常规的操作和条件,一般为常温常压下进行。
步骤(2)中,所述氧化剂与所述吡咯的摩尔比可为本领域常规,较佳地为(0.05-0.1):1,更佳地为0.08:1。
步骤(2)中,所述超声的操作和条件可为本领域常规的操作和条件。所述超声的时间较佳地为10-20min,更佳地为15min。
步骤(2)中,所述过滤的操作和条件可为本领域常规的操作和条件。
步骤(2)中,所述洗涤的操作和条件可为本领域常规的操作和条件。所述洗涤的溶液较佳地为去离子水。所述洗涤的次数较佳地为2次。
步骤(2)中,所述干燥的操作和条件可为本领域常规的操作和条件,较佳地为100-140℃烘干9-11h,更佳地为120-130℃烘干10h。
步骤(2)中,所述聚吡咯为加入吡咯乙醇溶液后聚合反应所得。
本发明还提供了一种由上述制备方法制得的钠离子电池负极材料。
本发明还提供了一种钠离子电池,其负极包括所述的钠离子电池负极材料。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1、本发明的负极材料有利于SnS2颗粒在嵌/脱钠过程中膨胀收缩,SnS2在体积膨胀后不会导致颗粒破碎,可有效防止负极在充放电过程中与集流体脱落,提高负极材料的循环性能;本发明的负极材料不仅可吸收颗粒在体积膨胀时产生的机械应力,进一步防止颗粒破碎,还可明显提高电化学性能,特别是电导率、倍率性能,当电流密度达到20mA/g时,钠离子电池负极材料的可逆充放电容量高于603mAh/g;当电流密度达到200mA/g时,钠离子电池负极材料的放电容量达到492mAh/g。此外,本发明负极材料的循环性能也得到明显提高,在电流密度为200mA/g时电池的循环性能,100个循环周期后,电池容量保持率超过91%。
2、本发明的钠离子电池负极材料可应用于制备软包钠离子电池。钠离子电池相于锂离子电池而言,绿色、安全、廉价,作为储能应用具有很大的优势。
附图说明
图1为实施例1钠离子电池负极材料在不同电流密度下的充放电曲线图。
图2为实施例1钠离子电池负极材料在200mA/g电流密度下循环曲线图。
图3为实施例1钠离子电池负极材料扫描电镜图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下述实施例中的室温为本领域常规,一般为10-35℃。
实施例1
钠离子电池负极材料的制备:
1、将椰壳在1200℃、氮气气氛下碳化2h,冷却至室温,研磨粉碎得粒径为5μm的椰壳炭;称取粒径为5μm的椰壳炭,分散于1mol/L四氯化锡水溶液中,搅拌速度400r/min,按照4mL/min速度滴加2mol/L硫化钠水溶液,反应1h;
2、在上述体系中加入过硫酸钠,并逐滴加入吡咯乙醇溶液进行聚合反应,过硫酸钠与吡咯乙醇摩尔比为0.05:1,滴加完毕后超声15min,过滤、去离子水洗涤2次、140℃烘干10小时,得钠离子电池负极材料。
其中,椰壳炭的用量为SnS2质量的10%,聚吡咯用量为SnS2质量的5%。
实施例2
钠离子电池负极材料的制备:
1、将椰壳在1000℃、氦气气氛下碳化1h,冷却至室温,研磨粉碎得粒径为5μm左右的椰壳炭;称取粒径5μm左右的椰壳炭,分散于1mol/L四氯化锡水溶液中,搅拌速度800r/min,按照100mL/min速度滴加2mol/L硫化钠水溶液,反应3h;
2、在上述体系中加入过硫酸钠,并逐滴加入吡咯乙醇溶液进行聚合反应,过硫酸钠与吡咯乙醇摩尔比为0.1:1,滴加完毕后超声10min,过滤、去离子水洗涤2次、100℃烘干9h,得钠离子电池负极材料。
其中,椰壳炭的用量为SnS2质量的5%,聚吡咯用量为SnS2质量的1%。
实施例3
钠离子电池正极材料的制备:
1、将椰壳在1400℃、氮气气氛下碳化4h,冷却至室温,研磨粉碎得粒径为10μm左右的椰壳炭;称取粒径10μm左右的椰壳炭,分散于1mol/L四氯化锡水溶液中,搅拌速度500r/min,按照40mL/min速度加入2mol/L硫化钠水溶液,反应2h;
2、在上述体系中加入过硫酸钠,并逐滴加入吡咯乙醇溶液进行聚合反应,过硫酸钠与吡咯乙醇摩尔比为0.08:1,滴加完毕后超声20min,过滤、去离子水洗涤2次、120℃烘干11h,得钠离子电池负极材料。
其中,椰壳炭的用量为SnS2质量的8%,聚吡咯用量为SnS2质量的3%。
实施例4
钠离子电池正极材料的制备:
1、将椰壳在1300℃、氮气气氛下碳化2h,冷却至室温,研磨粉碎得粒径8μm左右的椰壳炭;称取粒径8μm左右的椰壳炭,分散于1mol/L四氯化锡水溶液中,搅拌速度800r/min,按照60mL/min速度加入2mol/L硫化钠水溶液,反应2h;
2、在上述体系中加入过硫酸钠,并逐滴加入吡咯乙醇溶液进行聚合反应,过硫酸钠与吡咯乙醇摩尔比为0.08:1,滴加完毕后超声20min,过滤、去离子水洗涤2次、130℃烘干11h,得钠离子电池负极材料。
其中,椰壳炭的用量为SnS2质量的8%,聚吡咯用量为SnS2质量的2%。
实施例5
本实施例除下述条件外,其它条件与实施例1相同。
四氯化锡水溶液的浓度为2mol/L;硫化物为硫化铵;硫化铵水溶液的浓度为1mol/L;氧化剂为过硫酸铵。
效果实施例1
称取1.8g实施例1制备的钠离子电池负极材料,加入0.1g碳黑和0.1g溶于N,N’-甲基吡咯烷酮的聚偏氟乙烯,混合均匀后涂覆于铝箔上制成电极片。在氩气气氛的手套箱中,以金属钠片为对电极,Celgard2700为隔膜,1M NaClO4/PC:EMC(1:1)为电解液,组装成纽扣电池。
在0.02-2.0V电压范围,对电池进行充放电测试。图1为实施例1钠离子电池负极材料在20mA/g或200mA/g电流密度下的充放电测试曲线图。由图1可知,当电流密度达到20mA/g时,钠离子电池负极材料的可逆充放电容量高于603mAh/g;当电流密度达到200mA/g时,钠离子电池负极材料的放电容量达到492mAh/g,展现了很好的大电流放电能力。图2为实施例1制备的钠离子电池负极材料在电流密度为200mA/g时电池的循环性能,100个循环周期后,电池容量保持率超过91%。图3为实施例1所制备的钠离子电池负极材料扫描电镜图。
按照上述方法制作实施例2钠离子电池负极材料的纽扣电池,钠片为对电极,在200mA/g电流密度下循环100次后容量保持率为86%。按照上述方法制作实施例3钠离子电池负极材料的纽扣电池,钠片为对电极,在200mA/g电流密度下循环100次后容量保持率为88%。实施例4制备的钠离子电池负极材料也具有较高的充放电容量、倍率性能和循环稳定性。
综上,本发明制备的钠离子电池负极材料具有较高的充放电容量、较好的倍率性能和循环稳定性。
实施例3~5所制得的钠离子电池负极材料的性能与实施例1~2的效果相当。

Claims (13)

1.一种钠离子电池负极材料的制备方法,其特征在于,其包括如下步骤:
(1)将椰壳炭与含有锡盐的混合溶液混合搅拌后,加入硫化物溶液反应完全;
(2)加入氧化剂,并逐滴加入吡咯乙醇溶液进行聚合反应,滴加完毕后超声,抽滤、洗涤、干燥后即得所述钠离子电池负极材料;
其中,所述钠离子电池负极材料由所述椰壳炭、二硫化锡和聚吡咯复合而成;
所述二硫化锡沉积于所述椰壳炭的微孔中,形成二硫化锡/椰壳炭颗粒;所述二硫化锡/椰壳炭颗粒的外壳包裹所述聚吡咯;
其中,所述椰壳炭的含量为5-10%,上述百分比为所述椰壳炭相对于所述二硫化锡的质量百分比;
所述聚吡咯的含量为2-5%,上述百分比为所述聚吡咯相对于所述二硫化锡的质量百分比;
所述椰壳炭按下述步骤制得:将椰壳在惰性气氛中碳化,冷却至室温后粉碎即得所述椰壳炭;所述碳化的温度为1200-1400℃;所述碳化的时间为2-4h。
2.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,所述椰壳炭的粒径为5-10μm;
所述椰壳炭的含量为8%;
所述聚吡咯的含量为2-3%;
和/或,所述聚吡咯连续均匀的分布在所述二硫化锡/椰壳炭颗粒的表面。
3.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,所述惰性气氛为氮气。
4.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,所述碳化的温度为1200-1300℃。
5.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,所述碳化的时间为2h。
6.如权利要求2所述的钠离子电池负极材料的制备方法,其特征在于,所述椰壳炭的粒径为8μm。
7.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,步骤(1)中,所述混合搅拌的速度为400-800r/min;
步骤(1)中,所述硫化物溶液的流量为4-100mL/min;
和/或,步骤(1)中,所述反应的时间为1-3h。
8.如权利要求7所述的钠离子电池负极材料的制备方法,其特征在于,步骤(1)中,所述混合搅拌的速度为500r/min;
步骤(1)中,所述硫化物溶液的流量为40mL/min或60mL/min;
和/或,步骤(1)中,所述反应的时间为2h。
9.如权利要求8所述的钠离子电池负极材料的制备方法,其特征在于,步骤(1)中,所述锡盐为四氯化锡;
步骤(1)中,所述混合溶液的溶剂为去离子水;
步骤(1)中,所述混合溶液的浓度为1-2mol/L;
步骤(1)中,所述硫化物包括硫化钠或硫化铵;
步骤(1)中,所述硫化物溶液的浓度为1-2mol/L;
和/或,步骤(1)中,所述椰壳炭的含量为8%。
10.如权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,步骤(2)中,所述氧化剂包括过硫酸钠和/或过硫酸铵;
步骤(2)中,所述氧化剂与所述吡咯的摩尔比为(0.05-0.1):1;
步骤(2)中,所述超声的时间为10-20min;
步骤(2)中,所述洗涤的溶液为去离子水;所述洗涤的次数为2次;
和/或,步骤(2)中,所述干燥的操作为100-140℃烘干9-11h。
11.如权利要求10所述的钠离子电池负极材料的制备方法,其特征在于,步骤(2)中,所述氧化剂与所述吡咯的摩尔比为0.08:1;
步骤(2)中,所述超声的时间为15min;
和/或,步骤(2)中,所述干燥的操作为120-130℃烘干10h。
12.一种钠离子电池负极材料,其特征在于,其采用如权利要求1~11中任一项所述的钠离子电池负极材料的制备方法制得。
13.一种钠离子电池,其特征在于,其负极包括如权利要求12所述的钠离子电池负极材料。
CN201710165908.1A 2017-03-20 2017-03-20 一种钠离子电池负极材料及其制备方法、钠离子电池 Active CN106848254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710165908.1A CN106848254B (zh) 2017-03-20 2017-03-20 一种钠离子电池负极材料及其制备方法、钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710165908.1A CN106848254B (zh) 2017-03-20 2017-03-20 一种钠离子电池负极材料及其制备方法、钠离子电池

Publications (2)

Publication Number Publication Date
CN106848254A CN106848254A (zh) 2017-06-13
CN106848254B true CN106848254B (zh) 2020-09-01

Family

ID=59130868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710165908.1A Active CN106848254B (zh) 2017-03-20 2017-03-20 一种钠离子电池负极材料及其制备方法、钠离子电池

Country Status (1)

Country Link
CN (1) CN106848254B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242544B (zh) * 2018-01-03 2020-07-24 中南大学 一种生物质活性碳基碳材料及其制备方法和在钠离子电池中的应用
CN114975964A (zh) * 2022-06-28 2022-08-30 四川轻化工大学 一种聚吡咯包覆二氧化锡/纳米碳球负极材料及其制备方法和钠离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762347A (zh) * 2014-01-24 2014-04-30 上海理工大学 一种电极材料及其制备方法
CN104319371A (zh) * 2014-11-06 2015-01-28 深圳职业技术学院 一种锂离子电池SnS2/CNTs/PPy复合负极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509781B (zh) * 2011-10-27 2015-11-04 上海交通大学 硅碳复合负极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762347A (zh) * 2014-01-24 2014-04-30 上海理工大学 一种电极材料及其制备方法
CN104319371A (zh) * 2014-11-06 2015-01-28 深圳职业技术学院 一种锂离子电池SnS2/CNTs/PPy复合负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热解活化法制备高吸附性能椰壳活性炭;刘雪梅等;《生物质化学工程》;20120531;第46卷(第3期);第5-8页 *

Also Published As

Publication number Publication date
CN106848254A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
US9440861B2 (en) Method for modification of lithium ion battery positive electrode material
CN105810914A (zh) 一种钠离子电池硫掺杂多孔碳材料及其制备方法
CN109399601B (zh) 一种氮磷共掺杂生物炭材料的制备方法和用途
CN109767928B (zh) 氟掺杂碳包覆氧化硅纳米颗粒@碳纳米管复合材料的合成方法及其应用
CN108777294B (zh) 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN106410153B (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN108987683A (zh) 一种碳包覆三元正极材料的制备方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN104852040B (zh) 一种高倍率锂离子电池的镍锰酸锂正极材料的制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN110467170B (zh) 一种钾离子电池高电位正极材料及其制备方法
CN107026263B (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用
CN106848254B (zh) 一种钠离子电池负极材料及其制备方法、钠离子电池
CN104934577B (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用
CN110233251A (zh) 一种多孔硅/碳复合材料的制备方法及其应用
CN115084471B (zh) 层状卤化物双钙钛矿锂离子电池负极材料及其制备方法
CN115395013A (zh) 一种双离子钠电池正极材料的制备方法
CN115249792A (zh) 一种正极补锂材料及其制备方法、正极片及二次电池
CN111063885B (zh) 水系钙离子电池正极材料、水系钙离子电池正极和水系钙离子电池
CN110060880B (zh) 一种普鲁士蓝类似物及其制备方法和应用
CN112820940B (zh) 含有2-氟-3-吡啶硼酸的非水电解液,及含有该非水电解液的锂金属电池
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN109768259B (zh) 一种铁掺杂的分等级结构二氧化锗
CN109119607B (zh) 一种聚吡咯纳米管包覆镍锰酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant