CN106841964B - 高精度可编程电压软启动电路 - Google Patents

高精度可编程电压软启动电路 Download PDF

Info

Publication number
CN106841964B
CN106841964B CN201611165856.XA CN201611165856A CN106841964B CN 106841964 B CN106841964 B CN 106841964B CN 201611165856 A CN201611165856 A CN 201611165856A CN 106841964 B CN106841964 B CN 106841964B
Authority
CN
China
Prior art keywords
operational amplifier
resistance
input terminal
inverting input
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611165856.XA
Other languages
English (en)
Other versions
CN106841964A (zh
Inventor
王俊
王文廷
李斌
张根苗
栗永强
张永坡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Institute
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201611165856.XA priority Critical patent/CN106841964B/zh
Publication of CN106841964A publication Critical patent/CN106841964A/zh
Application granted granted Critical
Publication of CN106841964B publication Critical patent/CN106841964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本发明提出一种高精度可编程电压软启动电路,现场可编程门阵列FPGA信号连接数字电位器,参考产生电路中的参考电压VREF经数字电位器连接第一运算放大器的同相输入端,第一运算放大器的同相输入端经分压电阻接地,第一运算放大器的反相输入端连接第一运算放大器的输出端,第一运算放大器的输出端连接第二运算放大器的同相输入端,输出电压依次经第一电阻、第二电阻接地,第一电阻和第二电阻之间连接第二运算放大器的反相输入端,第二运算放大器的反相输入端经校正器电路连接第二运算放大器的输出端,第二运算放大器的输出端信号连接脉宽调制器。本发明的有益效果为:可以实现电压软启动时间可编程设计以及输出电压软启动时间高精度设计。

Description

高精度可编程电压软启动电路
技术领域
本发明涉及半导体器件分析技术领域,特别是涉及一种高精度可编程电压软启动电路。
背景技术
随着半导体器件制造技术、电力电子技术的发展和复杂自动测试的需求,常规的电压-电流(IV)测量和电容-电压(CV)测量已经无法满足半导体器件测试需求,需要高精度大电流脉冲源来测试其动态性能特性。
常用的直流输入大电流脉冲源框图,如图1所示:由DC-DC变换、脉冲产生、控制电路、驱动隔离电路、采样电路、辅助电源和人机接口组成。框图中有三个关键的电路:DC-DC变换、脉冲产生和控制电路,特别是DC-DC变换电路提供了整个输出的激励功率,在设计时通常采用大容量储能电容,来提高大电流脉冲的输出能力。但是大容量储能电容的使用,给DC-DC变换器的启动带来很大的困难。在DC-DC变换电路设计时,通常是利用PWM芯片的软启动引脚连接电容来实现软启动。常用的PWM芯片软启动内部部分电路,如图2所示:在引脚8连接有电容来实现输出电压软启动,软启动时间由外接电容、恒流源充电电流和电压参考(VREF)决定,由于连接电容误差、电压参考精度问题和PWM芯片内部恒流源的精度问题,造成输出电压软启动时间的高精度设计困难,以及无法实现输出电压软启动时间的可编程设计。
发明内容
本发明的目的在于提供一种高精度可编程电压软启动电路,解决电压软启动时间不能进行编程设计和输出电压软启动时间高精度设计困难的问题。
本发明提供一种高精度可编程电压软启动电路,包括现场可编程门阵列FPGA、可变电阻产生电路、参考产生电路、误差放大电路和脉宽调制电路,可变电阻产生电路包括数字电位器及可变电阻产生电路***电路,现场可编程门阵列FPGA信号连接数字电位器,参考产生电路包括第一运算放大器,参考产生电路中的参考电压VREF经数字电位器连接第一运算放大器的同相输入端,第一运算放大器的同相输入端经分压电阻接地,第一运算放大器的反相输入端连接第一运算放大器的输出端,误差放大电路包括第二运算放大器,第一运算放大器的输出端连接第二运算放大器的同相输入端,输出电压依次经第一电阻、第二电阻接地,第一电阻和第二电阻之间连接第二运算放大器的反相输入端,第二运算放大器的反相输入端经校正器电路连接第二运算放大器的输出端,脉宽调制电路中包括脉宽调制器及脉宽调制***电路,第二运算放大器的输出端信号连接脉宽调制器。
进一步的,数字电位器的CLK端、SDI端、端和端分别连接现场可编程门阵列FPGA。
进一步的,可变电阻产生电路***电路中,数字电位器的CLK端、SDI端、端和端分别经第三电阻、第四电阻、第五电阻、第六电阻连接电源。
进一步的,可变电阻产生电路***电路中,数字电位器的电源端连接电源,电源经第一电容接地。
进一步的,分压电阻为精度是0.1%的精密电阻。
进一步的,第一运算放大器的电源引脚连接电源,电源经第二电容接地。
进一步的,第二运算放大器的同相输入端经第三电容接地。
进一步的,校正器电路包括第四电容、第五电容和第七电阻,第二运算放大器的反相输入端一路经第四电容、第七电阻连接第二运算放大器的输出端,第二运算放大器的反相输入端另一路经第五电容连接第二运算放大器的输出端。
与现有技术相比,本发明的高精度可编程电压软启动电路具有以下特点和优点:
本发明的高精度可编程电压软启动电路,可以实现电压软启动时间可编程设计以及输出电压软启动时间高精度设计。
结合附图阅读本发明的具体实施方式后,本发明的特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为常用的直流输入大电流脉冲源框图;
图2为常用的PWM芯片软启动内部部分电路;
图3为本发明实施例中高精度可编程电压软启动电路。
具体实施方式
如图3所示,本实施例提供一种高精度可编程电压软启动电路,包括现场可编程门阵列FPGA、可变电阻产生电路、参考产生电路、误差放大电路和脉宽调制电路。
可变电阻产生电路包括数字电位器D1及可变电阻产生电路***电路,本实施例中的数字电位器D1采用ANALOG DEVICES公司的型号为AD5260BRUZ20的256位数字电位器D1,其引脚6、引脚7、引脚8和引脚9分别对应CLK端、SDI端、端和端,数字电位器D1的CLK端、SDI端、端和端分别经电阻R7、R6、R5、R4连接电源+5V,数字电位器D1的电源端连接电源,电源经电容C7接地,CLK端、SDI端、端和端分别连接现场可编程门阵列FPGA。引脚6、引脚7、引脚8和引脚9的控制信号由现场可编程门阵列FPGA产生,从而精确控制可变电阻产生电路的输出电阻值以及编程时间。
D2采用ANALOG DEVICES公司的低功耗、低噪声和低失真双运算放大器,包括第一运算放大器D2:1和第二运算放大器D2:2。
参考产生电路包括第一运算放大器D2:1及其***电路,参考产生电路中的参考电压VREF采用LINEAR TECHNOLOGY公司的LT1009CZ产生2.5V参考电压信号,其参考电压最大初始精度为0.2%。参考电压VREF连接数字电位器D1的引脚2,参考电压VREF经以数字电位器D1为主要构成部件的可变电阻产生电路继续经引脚3连接第一运算放大器D2:1的同相输入端。第一运算放大器D2:1的同相输入端经分压电阻R9接地,分压电阻R9精度为0.1%的精密电阻。第一运算放大器D2:1的反相输入端连接第一运算放大器D2:1的输出端。参考电压VREF经可变电阻产生电路、分压电阻R9分压后,通过第一运算放大器D2:1产生参考信号REFVSET。
误差放大电路包括第二运算放大器D2:2及其***电路,第一运算放大器D2:1的输出端连接第二运算放大器D2:2的同相输入端,第一运算放大器D2:1的电源引脚连接电源+5V,电源+5V经电容C8接地,第二运算放大器D2:2的同相输入端经电容C9接地。输出电压VO依次经电阻R11、电阻R12接地分压,电阻R11和电阻R12之间经电阻R13连接第二运算放大器D2:2的反相输入端,第二运算放大器D2:2的反相输入端经校正器电路连接第二运算放大器D2:2的输出端。本实施例中的校正器电路包括电容C10、电容C11和电阻R14,采用PI调节。第二运算放大器D2:2的反相输入端一路经电容C10、电阻R14连接第二运算放大器D2:2的输出端,第二运算放大器D2:2的反相输入端另一路经电容C11连接第二运算放大器D2:2的输出端。
输出电压V0经过电阻R11和电阻R12分压后和可变的参考信号REFVSET进行误差放大,产生误差控制信号COMP去控制脉宽调制器N1的COMP引脚。脉宽调制电路中包括脉宽调制器N1及脉宽调制***电路,第二运算放大器D2:2的输出端信号连接脉宽调制器N1。脉宽调制器N1采用TEXAS INSTRUMENTS公司的型号为LM5035MH的脉宽调制器N1。脉宽调制器N1集成了半桥电路驱动以及同步整流驱动,其主要作用是将误差放大电路产生的误差控制信号COMP转化成为驱动信号通过HS端(引脚12)、HO端(引脚13)、LO端(引脚14)去驱动控制开关管,从而完成输出电压V0的闭环控制。
综上,经现场可编程门阵列FPGA编程,通过上述的可变电阻产生电路、参考产生电路、误差放大电路和脉宽调制电路,实现电压软启动时间可编程设计以及输出电压V0软启动时间高精度设计。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (8)

1.一种高精度可编程电压软启动电路,其特征在于:包括现场可编程门阵列FPGA、可变电阻产生电路、参考产生电路、误差放大电路和脉宽调制电路,可变电阻产生电路包括数字电位器及可变电阻产生电路***电路,现场可编程门阵列FPGA信号连接数字电位器,参考产生电路包括第一运算放大器,参考产生电路中的参考电压VREF经数字电位器连接第一运算放大器的同相输入端,第一运算放大器的同相输入端经分压电阻接地,第一运算放大器的反相输入端连接第一运算放大器的输出端,误差放大电路包括第二运算放大器,第一运算放大器的输出端连接第二运算放大器的同相输入端,输出电压依次经第一电阻、第二电阻接地,第一电阻和第二电阻之间连接第二运算放大器的反相输入端,第二运算放大器的反相输入端经校正器电路连接第二运算放大器的输出端,脉宽调制电路中包括脉宽调制器及脉宽调制***电路,第二运算放大器的输出端信号连接脉宽调制器。
2.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:数字电位器的CLK端、SDI端、端和端分别连接现场可编程门阵列FPGA。
3.根据权利要求2所述的高精度可编程电压软启动电路,其特征在于:可变电阻产生电路***电路中,数字电位器的CLK端、SDI端、端和端分别经第三电阻、第四电阻、第五电阻、第六电阻连接电源。
4.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:可变电阻产生电路***电路中,数字电位器的电源端连接电源,电源经第一电容接地。
5.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:分压电阻为精度是0.1%的精密电阻。
6.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:第一运算放大器的电源引脚连接电源,电源经第二电容接地。
7.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:第二运算放大器的同相输入端经第三电容接地。
8.根据权利要求1所述的高精度可编程电压软启动电路,其特征在于:校正器电路包括第四电容、第五电容和第七电阻,第二运算放大器的反相输入端一路经第四电容、第七电阻连接第二运算放大器的输出端,第二运算放大器的反相输入端另一路经第五电容连接第二运算放大器的输出端。
CN201611165856.XA 2016-12-16 2016-12-16 高精度可编程电压软启动电路 Active CN106841964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611165856.XA CN106841964B (zh) 2016-12-16 2016-12-16 高精度可编程电压软启动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611165856.XA CN106841964B (zh) 2016-12-16 2016-12-16 高精度可编程电压软启动电路

Publications (2)

Publication Number Publication Date
CN106841964A CN106841964A (zh) 2017-06-13
CN106841964B true CN106841964B (zh) 2019-04-09

Family

ID=59140197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611165856.XA Active CN106841964B (zh) 2016-12-16 2016-12-16 高精度可编程电压软启动电路

Country Status (1)

Country Link
CN (1) CN106841964B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954329B (zh) * 2020-07-08 2022-05-06 中国电子科技集团公司第四十一研究所 一种基于fpga的连续功率闭环控制装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295922A (zh) * 2008-06-13 2008-10-29 北京中星微电子有限公司 一种可实现线性控制的软启动装置
CN101340142A (zh) * 2008-08-15 2009-01-07 华为技术有限公司 一种电源软启动的方法、装置及***
CN101562394A (zh) * 2009-03-06 2009-10-21 西安民展微电子有限公司 一种用于单片集成开关型调整器的软启动电路
CN202182911U (zh) * 2011-07-27 2012-04-04 万洲电气集团有限公司 一种低压软起动器的自动增益调节电流检测电路
CN102904429A (zh) * 2012-09-17 2013-01-30 苏州天辰马智能设备有限公司 交流伺服驱动器母线电压的软启动方法及装置
CN103378717A (zh) * 2012-04-16 2013-10-30 鸿富锦精密工业(深圳)有限公司 软启动时间控制电路
CN203352508U (zh) * 2013-07-16 2013-12-18 成都新洲航空设备有限责任公司 基于fpga的航空电机软启动***
CN104883045A (zh) * 2015-05-28 2015-09-02 株洲变流技术国家工程研究中心有限公司 一种开关电源软启动电路及开关电源软启动方法
CN205178924U (zh) * 2015-10-28 2016-04-20 大力电工襄阳股份有限公司 一种sfc高压静止同步变频软启动装置主控制单元
CN205429689U (zh) * 2015-12-10 2016-08-03 国网甘肃省电力公司 直流大功率电子设备上电软保护电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248026B2 (en) * 2005-11-28 2007-07-24 Micrel, Incorporated Single-pin tracking/soft-start function with timer control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295922A (zh) * 2008-06-13 2008-10-29 北京中星微电子有限公司 一种可实现线性控制的软启动装置
CN101340142A (zh) * 2008-08-15 2009-01-07 华为技术有限公司 一种电源软启动的方法、装置及***
CN101562394A (zh) * 2009-03-06 2009-10-21 西安民展微电子有限公司 一种用于单片集成开关型调整器的软启动电路
CN202182911U (zh) * 2011-07-27 2012-04-04 万洲电气集团有限公司 一种低压软起动器的自动增益调节电流检测电路
CN103378717A (zh) * 2012-04-16 2013-10-30 鸿富锦精密工业(深圳)有限公司 软启动时间控制电路
CN102904429A (zh) * 2012-09-17 2013-01-30 苏州天辰马智能设备有限公司 交流伺服驱动器母线电压的软启动方法及装置
CN203352508U (zh) * 2013-07-16 2013-12-18 成都新洲航空设备有限责任公司 基于fpga的航空电机软启动***
CN104883045A (zh) * 2015-05-28 2015-09-02 株洲变流技术国家工程研究中心有限公司 一种开关电源软启动电路及开关电源软启动方法
CN205178924U (zh) * 2015-10-28 2016-04-20 大力电工襄阳股份有限公司 一种sfc高压静止同步变频软启动装置主控制单元
CN205429689U (zh) * 2015-12-10 2016-08-03 国网甘肃省电力公司 直流大功率电子设备上电软保护电路

Also Published As

Publication number Publication date
CN106841964A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN107659151A (zh) 无需外部采样电阻的Buck负载电流检测电路及方法
CN104158392A (zh) 一种用于dc-dc变换器的纹波补偿控制电路
CN105628243B (zh) 一种电阻型温度传感芯片
CN102270006B (zh) 电压调节电路
CN106774575B (zh) 一种低压差线性稳压器
CN203630657U (zh) 稳压电路
CN104242629A (zh) 一种具有斜坡补偿功能的低压低功耗 pwm 比较器
CN106841964B (zh) 高精度可编程电压软启动电路
CN101858940B (zh) 输出阻抗测量方法及装置
CN209182729U (zh) 一种半周期电容比例可编程带隙基准电路
CN203881815U (zh) 一种简易高精度直流电子负载
CN104092381B (zh) 高质量多通道电压连续可调电源模块
CN103926550A (zh) 一种基于虚拟仪器校验电力互感器的装置及方法
CN105278610B (zh) 一种压控电流源电路
CN103457465B (zh) 一种具有外部可调限流功能的恒流/恒压dc-dc转换***
CN206057429U (zh) 一种宽范围的动态电压测量电路
CN105375761B (zh) 一种反激式开关电源的环路控制电路及应用其的反激式开关电源
CN103439379A (zh) 一种基于电化学传感器的读出电路及读出方法
CN104460812B (zh) 一种原边反馈变换器的输出整流二极管温度补偿电路
CN102386765B (zh) 电源电路
CN107422773B (zh) 数字低压差稳压器
CN206878708U (zh) 升降压变换装置
CN103840664A (zh) 恒流控制电路、开关调节器、集成电路和恒流控制方法
CN206226263U (zh) 电压钳位电路以及dc‑dc变换器
CN104485634B (zh) 实现平均电流保护的电源管理***及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant