CN1067751A - 产生内部电源电压的电路 - Google Patents

产生内部电源电压的电路 Download PDF

Info

Publication number
CN1067751A
CN1067751A CN91108584A CN91108584A CN1067751A CN 1067751 A CN1067751 A CN 1067751A CN 91108584 A CN91108584 A CN 91108584A CN 91108584 A CN91108584 A CN 91108584A CN 1067751 A CN1067751 A CN 1067751A
Authority
CN
China
Prior art keywords
mentioned
voltage
coupled
output
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN91108584A
Other languages
English (en)
Other versions
CN1090775C (zh
Inventor
陈大济
全峻永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1067751A publication Critical patent/CN1067751A/zh
Application granted granted Critical
Publication of CN1090775C publication Critical patent/CN1090775C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/465Internal voltage generators for integrated circuits, e.g. step down generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)
  • Control Of Electrical Variables (AREA)
  • Logic Circuits (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Power Sources (AREA)

Abstract

一个内部电源电压产生器接收外部电源电压,不 管温度如何变化都能产生稳定且恒定的内部电源电 压,并施加在半导体存储器器件上。该产生器包括电 压共用电路(80),该电路设有作为负载元件的较高阻 值的第一可变电阻(R1′)和作为驱动元件的较低阻 值的第二可变电阻(R2′)。当温度升高时,第一可变 电阻阻值增大,以降低通过它形成的电流。与电压共 用电路(80)的输出端相连接的比较器(60)则使输出 电路(70)增加该内部电源电压以响应温度的升高。

Description

本发明涉及一种在高密度半导体存储器器件中使用的、用以产生内部电源电压的电路,具体涉及这样的内部电源电压产生电路,它响应温度的升高,使其产生的输出电压也随之升高。
近来,在具有大存储容量的半导体存储器器件中要求给小于微米单位量级的MOS晶体管提供低于外部电源5V电压(该电压通常是由计算机***提供的)的低电源电压。为此,在半导体芯片内除了存储器电路以外还必须设置一个内部电源电压产生器,以提供低的内部电源电压。例如,高于16兆比特量级的半导体DRAM(动态随机存储器)器件必需内含一个内部电源电压产生器,以成为一种高可靠性的存储器器件。
参照图1至图3,这些图公开了先有技术的内部电源电压产生器及其特性曲线。参照图1,这种传统的内部电源电压产生器100包括:参考电压产生器50、比较器60和输出电路70。图2示出了图1所示的内部电源电压产生器的特性曲线与外电源电压的对照图。图3示出了图1所示的参考电压产生器50的另一个实施例。
再参照图1,内部电源电压产生器100含有参考电压产生器50和输出电路70,输出电路70是由作为可变电阻的PMOS晶体管组成的。来自参考电压产生器50和输出电路70的输出电压随后在比较器60进行比较,比较器60是一个差分放大器,用以控制施加在PMOS晶体管10的栅极上的电压。参考电压产生器50具有第一电阻R1和第二电阻R2,它们串联连接在外部电源电压与地电平之间,在二者相连的节点3上产生参考电压Vref。比较器60具有构成一个差分放大器的第一NMOS晶体管6和第二NMOS晶体管7、作为恒流源的第三NMOS晶体管8、以及构成一个电流镜负载级的第一PMOS晶体管4和第二PMOS晶体管5。此外,PMOS晶体管10的源极与外部电源电压Vccext相连接。其漏极与输出节点11的内部电源电压Vccint相连接。在图中,将参考电压Vref施加在比较器60的第一NMOS晶体管6的栅极上。在从输出节点11到存储器电路(图中未示出)形成负载电流的情况下,在输出电路70的PMOS晶体管10上产生电压降,其结果是内部电源电压被设定为比该外部电源电压低的一个电压电平。与此同时,比较器60控制PMOS晶体管10的栅极电压,以使内部电源电压电平与参考电压Vref电平相同。
该内部电源电压产生器不管外部电源电压是否变化都必须保持恒定的内部电源电压,以使半导体存储器器件具有高度可靠性。然而,不希望的是,图1所示的这种传统的内部电源电压产生器100响应外部电压的升高,而具有如图2所示的电压差△V。上述这个问题是由于来自参考电压产生器50的参考电压Vref= (R2)/(R1+R2) Vccext而引起的,因此,参考电压Vref随外部电源电压的升高而升高,于是内部电源电压也就升高了,从而降低了半导体器件的可靠性。
参照图3,参考电压产生器50是由相互串联连接的第一、第二和第三PMOS晶体管12、13、14和相互串连接的第四和第五PMOS晶体管15、16组成的,第一至第三PMOS晶体管与第四和第五PMOS晶体管并联连接。第一至第五PMOS晶体管12-16每个的栅极与漏极都是二极管式连接的,而且第四PMOS晶体管15的栅极与第三PMOS晶体管14的源极相连接。第三PMOS晶体管14的源极被耦合成使第四PMOS晶体管15的栅极电压电平被设定为Vccext/3,第四PMOS晶体管15的源极成为输出节点17,于是参考电压产生器50通过输出节点17产生参考电压Vref。然而,当温度升高时,图3中所示的参考电压产生器50中的各PMOS晶体管的阈值电压Vth下降,因此参考电压Vref也将下降。如果参考电压降低了,则内部电源电压也会降低,使半导体存储器器件以低速工作。
为此,本发明的一个目的是提供一种用以产生内部电源电压的电路,该电路不管温度如何变化都能使半导体存储器器件以稳定且恒定的速度工作,其中,该电路的输出电压随温度的升高而升高。
为实现本发明的上述的和其它的目的以及特点,本发明的内部电源电压发生器包括一个电压共用电路,这个电压共用电路具有第一和第二可变负载电阻,二者串联连接在内部电源电压输出与地电平之间,两个可变负载电阻的公共连接点变为该电路的输出节点,以响应温度的升高,使内部电源电压的输出也升高。
为了更好地理解本发明,现通过举例的方式并参照附图来说明如何实施本发明。
图1示出一种传统的内部电源电压产生器;
图2示出图1所示的内部电源电压产生器的输出特性曲线;
图3示出图1所示的参考电压产生器的另一个实施例;
图4示出本发明的一种内部电源电压产生器;
图5示出图4所示的内部电源电压产生器的输出特性曲线;
图6示出图4所示的内部电源电压产生器的一个实施例;
图7示出MOS晶体管的电流驱动功率响应温度变化的下降比。
参照图4,图4清楚示出电压共用电路80如何与比较器60及输出电路70相连接的。加有外部电源电压的参考电压产生器50产生参考电压Vref。与参考电压产生器50的输出端相连接的比较器60将耦合予参考电压Vref的第一输入电压与第二输入电压相比较。比较器60的输出与输出电路70的输入端相耦合,以产生内部电源电压。电压共用电路80与输出电路70相连接,在其输出节点上产生第二输入电压,借此响应温度的升高使输出电路70的输出电压电平升高。还应该注意到,电压共用电路80具有第一和第二可变负载电阻R1′和R2′,响应温度的升高,两电阻的阻值随之增加,其中第一可变负载电阻R1′的阻值比第二可变负载电阻R2′的阻值大。此外根据温度的升高,第一可变负载电阻R1′的电阻增长比要比第二可变负载电阻R2′的电阻增长比高些。
图4所示的内部电源电压产生器100的输出电压Vccint可以写为Vccint= (1+R1′)/(R2′) Vref,其中电阻变化与温度变化之比是R1′的大于R2′的。因而从上可以看出,在温度升高时,第一可变负载电阻R1′的电阻增长比要比第二可变负载电阻R2′的电阻增长比高些,从而使内部电源电压Vccint增加。
如图5所示,可以理解,内部电源电压Vccint随着温度升高而稳定提高以使之保持恒定。据此,在传统电路中出现的问题是当温度升高时,参考电压产生器的参考电压Vref下降,导致不希望的低的内部电源电压,以及当外部电源电压升高时参考电压也升高从而产生不稳定的内部电源电压的问题,这两个问题都得到了解决。
下面参照图6详细描述图4所示的内部电源电压产生器50的一个实施例。参考电压产生器50具有:恒流源31,恒流源31的输入端与外部电源电压Vccext相耦合,其输出端与一个输出节点38相耦合;和一个连接在该输出节点与地电位之间的电路,用以将输出节点38的电压电平降低到一预定的电平上。
该电压下降电路具有:第一电阻35,其一端与该输出节点38连接,其另一端与第一双极晶体管32的集电极和基极相连接,该晶体管的发射极耦合到地电位上;第二电阻36,其一端耦合到输出节点38上,其另一端与第二双极晶体管33的集电极相耦合,第二双极晶体管33的基极与第一双极晶体管32的集电极相耦合,其发射极经过第三电阻37接地电位;此外,输出节点38与第三双极晶体管34的集电极相连接,该晶体管的基极与第二双极晶体管33的集电极相连接,其发射极接地电位。
比较器60具有第一PMOS晶体管39,其源极接到外部电源电压;第二PMOS晶体管40,其源极也接到外部电源电压。第一PMOS晶体管39的栅极与第二PMOS晶体管40的栅极和漏极共同连接。此外,第一NMOS晶体管41的栅极与第一输入电压(亦即参考电压Vref)相耦合,其漏极与第一PMOS晶体管39的漏极相连接,其源极与第二NMOS晶体管43的源极相连接。第二NMOS晶体管43的漏极与第二PMOS晶体管40的漏极相连接,其栅极与第二输入电压相耦合。第一和第二NMOS晶体管41、43的源极都与第三NMOS晶体管42的漏极相连接。第三NMOS晶体管42的源极接地电位,其栅极与第一输入电压相耦合。第一PMOS晶体管39的漏极与第一NMOS晶体管41的漏极的连接节点44作为比较器60的输出节点。
输出电路70包括一个PMOS晶体管45,其源极与外部电源电压Vccext相连接,其栅极与比较器60的输出节点44相连接。PMOS晶体管45的漏极与输出节点49连接,内部电源电压Vccint通过该节点49而产生。
电压共用电路80包括第一PMOS晶体管46,其源极与输出电路70的输出节点49相连接,其栅极和漏极为二极管式连接;第二PMOS晶体管47,其源极与第一PMOS晶体管46的漏极连接,其栅极和漏极二极管式连接到地电位;此外,有一个输出节点48,第一和第二PMOS晶体管的漏极和源极分别与节点48连接,输出节点48与第二输入电压连接。
为了不管温度如何变化而产生恒定的参考电压Vref,参考电压产生器50包括多个双极晶极管。作为参考,本发明的参考电压产生器50的输出电压为Vref=VBE+ (Rb)/(Rc) ·Vt·In( (I1)/(I2) · (Is2)/(Is1) )式中VBE为第三双极晶体管34的基极一发射极间电压;Vt为热电电压;Rb和Rc分别是第二和第三电阻36和37;以及Is1和Is2分别是第一和第二双极晶体管32和33的集电极饱和电流。该参考电压产生器50被制造得使该基极一发射极间电压VBE具有负温度系数为-2.2mV/℃,热电电压Vt具有正温度系数为0.085mV/℃,这二者相互结合,结果得到一个零温度系数。为此本发明的参考电压产生器50不像传统的参考电压产生器那样使用具有负温度系数为-3mV/℃的PMOS晶体管,本发明的参考电压产生器50不管温度如何变化都能产生一个稳定且恒定的参考电压Vref。
此外,电压共用电路80这样被连接,以根据温度的升高,使参考电压Vref增长,因此而提高内部电源电压Vccint。为此,第一PMOS晶体管46的沟道电导g1=
Figure 91108584X_IMG2
要比第二PMOS晶体管47的沟道电导g2低些,因而第一PMOS晶体管46的沟道电阻要比第二PMOS晶体管47的沟道电阻大些。众所周知,电导是电阻倒数。从上面的描述可以理解,对于具有高沟道电阻的MOS晶体管而言,其电流驱动功率下降了。总的来说,沟道长度长的MOS晶体管受温度影响要比沟道短的MOS晶体管的要大些,因此沟道长度长的MOS晶体管的沟道电阻随温度的变化是比较大的。
现在讨论图6所示的内部电源电压产生器在25℃正常温度下工作的情况。来自参考电压产生器50的参考电压Vref施加在第一和第三NOMS晶体管41和42的基极上。这时如果该电压高于施加在比较器60的第二NMOS晶体管43基极上的电压,则在输出电路70的输出节点49上将充电到一给定电压。在这同时,在参考电压Vref的电平与电压共用电路80的输出电压电平相同的情况下,内部电源电压Vccint由电压共用电路80维持恒定。过一小会儿,如果温度上升直到83℃以上,则电压共用电路80的第一PMOS晶体管46中的电流将会下降,于是低于正常温度期间的电压就施加在比较器60的第二NMOS晶体管43的基极上。因此,比较器60的输出节点44上的电压被充电得低于正常温度期间的电压,因而输出电路70的输出节点49上的电压亦即内部电源电压Vccint就会升高。况且,随着温度越升越高,电压共用电路80的第一PMOS晶体管46沟道上形成的电流越来越减小,使得输出电路70的输出节点49上的内部电源电压随着温度的增长而增长。其结果是,由于温度变化而造成MOS晶体管的劣化得以防止,因此能使半导体存储器器件稳定地工作。
为了更好地理解本发明的电压共用电路80,现在对图7所示的格表作如下的讨论。表中详细列出栅极氧化层厚度为160 的MOS晶体管的电流驱动功率下降比。为了方便起见,下文中将PMOS晶体管与NMOS晶体管一起描述,但将有关PMOS晶体管的情况用加括号的方式来描述。在该表中NMOS(PMOS)晶体管的电流驱动功率是在其栅极和漏极上施加的电压皆为+4.0V(-4.0V)、以及衬底源极电压为-2.0V(OV)的条件下测量的。85℃时电流驱动功率下降比是对照25℃时的电流驱动功率下降比来说明的。本领域中的技术人员可以理解,电流驱动功率的下降比高意味着MOS晶体管响应温度升高其沟道电阻比值增加得大,因此,在MOS晶体管的沟道电导下降时,其沟道电阻变大,从而使其电阻增长比也加大。
从上文所述的内容可以理解本发明的内部电源电压产生器可以补偿由于温度升高而引起的电流驱动功率的下降以及由于电流驱动功率的下降而引起的操作速度的下降。因而,使用本发明电路的半导体存储器器件不管温度如何变化都可以稳定地工作。
虽然在这里已经说明和描述了本发明的特定结构和操作过程,但是本发明并不限于已公开的这些元件和结构。本领域的技术人员不难理解,在不违背本发明的精神和范围的情况下还可以使用其它的特定的元件或其它的附属结构。

Claims (8)

1、一种接收外部电源电压、产生比该外部电源电压低的内部电源电压的电路,通过其外部装置将该内部电源电压施加给一个存储器装置,其特征在于包括:
一个电压共用装置,用以响应温度的升高而使输出电压提高;所述的电压共用装置包括:
第一和第二可变电阻装置,二者相互串联地耦合在上述输出装置和地电位之间;以及
在上述第一和第二可变电阻装置的连接点所形成的一个输出节点。
2、根据权利要求1所述的电路,其特征在于,响应温度的升高,上述第一可变电阻装置的电阻增长比大于上述第二可变电阻装置的电阻增长比。
3、根据权利要求1所述的电路,其特征在于,上述第一和第二可变电阻装置包括:
第一MOS晶体管,其沟道的一端与上述的输出装置相耦合,其沟道另一端和其基极是二极管式连接的;
第二MOS晶体管,其沟道的一端与该输出节点相耦合,其沟道另一端与其基低为二极管式连接并接地电位;以及
上述第一MOS晶体管的沟道长度要比第二MOS晶体管的长些。
4、一种用于半导体存储器器件内,接收外部电源电压以产生比该外部电源电压低的内部电源电压的电路,其特征在于包括:
一个参考电压产生装置,被连接成接收上述的外部电压以产生一个参考电压;
一个比较器装置,被连接成接收上述参考电压产生装置的输出,以将来自其第一输入线所施加的信号与来自其第二输入线的信号相比较,该第一输入线与上述参考电压的输出相耦合;
一个输出装置,接收上述比较器的输出,以在其输出节点上产生上述内部电源电压;及
一个电压共用装置,接收上述输出装置的输出以向上述比较器装置的第二输入线上提供其输出;
借此,上述的输出装置响应温度的升高使其输出增大。
5、根据权利要求4所述的电路,其特征在于,所述的参考电压产生装置包括:
一个第一电阻,其一端与上述参考电压产生器的输出节点相连接;
一个第一双极晶体管,其集电极和基极共同接到上述第一电阻的另一端上,其发射极接地电位;
一个第二电阻,其一端与上述参考电压产生器的输出节点相连接;
一个第二双极晶体管,其集电极与上述第二电阻的另一端相耦合,其基极与上述第一双极晶体管的集电极相耦合;
一个第三电阻,其一端与上述第二双极晶体管的发射极相耦合,其另一端接地电位;以及
一个第三双极晶体管,其集电极与上述参考电压产生器的输出节点相耦合,其基极与上述第二双极晶体管的集电极相耦合,其发射极接地电位。
6、根据权利要求4所述的电路,其特征在于,所述的比较器装置包括:
一个第一PMOS晶体管,其源极与上述外部电源电压相耦合;
一个第二PMOS晶体管,其源极与上述外部电源电压相耦合,其栅极和漏极共同都与上述第一PMOS晶体管的栅极相耦合;
一个第一NMOS晶体管,其栅极与该第一输入线相耦合,其漏极与上述第一PMOS晶体管的漏极相耦合;
一个第二NMOS晶体管,其栅极与该第二输入线相耦合,其漏极与上述第二PMOS晶体管的漏极相耦合;
一个第三NMOS晶体管,其栅极与该第一输入线相耦合,其源极接地电位,其漏极与该第一和第二NMOS晶体管的源极相耦合;以及
上述第一PMOS晶体管的漏极与上述第一NMOS晶体管的漏极的连接点形成的一个输出节点。
7、根据权利要求4所述的电路,其特征在于,所述的输出装置包括:
一个PMOS晶体管,其源极与该外部电源电压相耦合,其栅极与上述比较器装置的输出节点相耦合;和
一个输出节点,它与上述PMOS晶体管的漏极相耦合。
8、根据权利要求4所述的电路,其特征在于,所述的电压共用装置包括:
一个第一PMOS晶体管,其源极与上述输出装置的输出节点相耦合,其栅极和漏极为二极管式连接;
一个第二PMOS晶体管,其源极与上述第一PMOS晶体管的漏极相耦合,其栅极和漏极以二极管式连接地电位;以及
一个输出节点,是在该第一和第二PMOS晶体管共同连接处形成的。
CN91108584A 1991-06-12 1991-08-30 产生内部电源电压的电路 Expired - Fee Related CN1090775C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910009659A KR940003406B1 (ko) 1991-06-12 1991-06-12 내부 전원전압 발생회로
KR9659/91 1991-06-12

Publications (2)

Publication Number Publication Date
CN1067751A true CN1067751A (zh) 1993-01-06
CN1090775C CN1090775C (zh) 2002-09-11

Family

ID=19315675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91108584A Expired - Fee Related CN1090775C (zh) 1991-06-12 1991-08-30 产生内部电源电压的电路

Country Status (12)

Country Link
US (1) US5146152A (zh)
JP (1) JPH0793006B2 (zh)
KR (1) KR940003406B1 (zh)
CN (1) CN1090775C (zh)
DE (1) DE4124427C2 (zh)
FR (1) FR2677793B1 (zh)
GB (1) GB2256731B (zh)
HK (1) HK28597A (zh)
IT (1) IT1251297B (zh)
NL (1) NL193703C (zh)
RU (1) RU2146388C1 (zh)
TW (1) TW238439B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470458B (zh) * 2007-12-26 2010-10-27 中国科学院微电子研究所 带隙基准电压参考电路
CN103295623A (zh) * 2012-02-27 2013-09-11 三星电子株式会社 自适应于低外部供电电压的电压生成器
CN104460811A (zh) * 2014-12-26 2015-03-25 昆腾微电子股份有限公司 基准电压温度系数校准电路和方法
CN104751810A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 液晶显示器及其驱动方法
CN106571824A (zh) * 2015-10-08 2017-04-19 联发科技(新加坡)私人有限公司 信号处理电路
CN110047523A (zh) * 2018-01-15 2019-07-23 塔普思科技股份有限公司 电阻性内存单元的准定压降自我中止写入方法及其电路
CN110491436A (zh) * 2018-05-14 2019-11-22 华邦电子股份有限公司 半导体元件
CN114167929A (zh) * 2020-09-11 2022-03-11 北京兆易创新科技股份有限公司 电压产生电路及电子装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727809B2 (ja) * 1991-08-26 1998-03-18 日本電気株式会社 半導体集積回路
US5220273A (en) * 1992-01-02 1993-06-15 Etron Technology, Inc. Reference voltage circuit with positive temperature compensation
US5302888A (en) * 1992-04-01 1994-04-12 Texas Instruments Incorporated CMOS integrated mid-supply voltage generator
JPH05289760A (ja) * 1992-04-06 1993-11-05 Mitsubishi Electric Corp 基準電圧発生回路
JP3122239B2 (ja) * 1992-07-23 2001-01-09 株式会社東芝 半導体集積回路
DE4334918C2 (de) * 1992-10-15 2000-02-03 Mitsubishi Electric Corp Absenkkonverter zum Absenken einer externen Versorgungsspannung mit Kompensation herstellungsbedingter Abweichungen, seine Verwendung sowie zugehöriges Betriebsverfahren
JP2851767B2 (ja) * 1992-10-15 1999-01-27 三菱電機株式会社 電圧供給回路および内部降圧回路
FR2718273B1 (fr) * 1994-03-31 1996-05-24 Sgs Thomson Microelectronics Mémoire intégrée avec circuit de maintien de la tension de colonne.
US5448159A (en) * 1994-05-12 1995-09-05 Matsushita Electronics Corporation Reference voltage generator
DE19654934B4 (de) * 1995-02-06 2004-05-06 Mitsubishi Denki K.K. Halbleitereinrichtung
US5757174A (en) * 1995-07-19 1998-05-26 Micro Linear Corporation Current sensing technique using MOS transistor scaling with matched current sources
EP0765037A3 (en) * 1995-09-20 1998-01-14 Texas Instruments Incorporated Buffer for integrated circuit memories
US5694073A (en) * 1995-11-21 1997-12-02 Texas Instruments Incorporated Temperature and supply-voltage sensing circuit
JP3234153B2 (ja) * 1996-04-19 2001-12-04 株式会社東芝 半導体装置
FR2750240B1 (fr) * 1996-06-20 1998-07-31 Sgs Thomson Microelectronics Generateur de reference de tension
US5777514A (en) * 1996-09-27 1998-07-07 Micro Linear Corporation Differential to single ended conversion technique for an operational amplifier having low input offset voltage, high speed and high gain
US5770965A (en) * 1996-09-30 1998-06-23 Motorola, Inc. Circuit and method of compensating for non-linearities in a sensor signal
KR100481824B1 (ko) * 1997-05-07 2005-07-08 삼성전자주식회사 리플레쉬용발진회로를갖는반도체메모리장치
DE19735381C1 (de) * 1997-08-14 1999-01-14 Siemens Ag Bandgap-Referenzspannungsquelle und Verfahren zum Betreiben derselben
US6018265A (en) * 1997-12-10 2000-01-25 Lexar Media, Inc. Internal CMOS reference generator and voltage regulator
US6107887A (en) * 1998-10-02 2000-08-22 Micro Linear Corporation Differential to single-ended video cable driver having BICMOS current-mode operational amplifier
JP2000124744A (ja) * 1998-10-12 2000-04-28 Texas Instr Japan Ltd 定電圧発生回路
KR20000056765A (ko) * 1999-02-25 2000-09-15 김영환 온도변화에 무관한 전압조정회로
KR100577552B1 (ko) * 1999-04-20 2006-05-08 삼성전자주식회사 반도체 메모리 장치의 내부 전압 변환회로
US6404246B1 (en) 2000-12-20 2002-06-11 Lexa Media, Inc. Precision clock synthesizer using RC oscillator and calibration circuit
JP2002270768A (ja) * 2001-03-08 2002-09-20 Nec Corp Cmos基準電圧回路
KR100439024B1 (ko) * 2001-03-08 2004-07-03 삼성전자주식회사 기준전압 발생회로
KR100744109B1 (ko) * 2001-10-23 2007-08-01 삼성전자주식회사 공정, 전압 및 온도의 변화에 따라 단자들의 상태를최적으로 변화시킬 수 있는 메모리 장치
JP3927788B2 (ja) * 2001-11-01 2007-06-13 株式会社ルネサステクノロジ 半導体装置
JP3964182B2 (ja) 2001-11-02 2007-08-22 株式会社ルネサステクノロジ 半導体装置
JP3976665B2 (ja) * 2002-11-20 2007-09-19 富士通株式会社 バッファ回路装置
EP1501000B1 (en) * 2003-07-22 2007-03-21 STMicroelectronics Limited A voltage reference circuit
JP2006041175A (ja) * 2004-07-27 2006-02-09 Toshiba Corp 半導体集積回路装置
KR100825029B1 (ko) * 2006-05-31 2008-04-24 주식회사 하이닉스반도체 밴드갭 기준전압 발생장치 및 이를 구비하는 반도체 소자
KR100784918B1 (ko) * 2006-10-13 2007-12-11 주식회사 하이닉스반도체 반도체 메모리 장치의 내부전압 발생기
US7969808B2 (en) * 2007-07-20 2011-06-28 Samsung Electronics Co., Ltd. Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
KR20090116088A (ko) * 2008-05-06 2009-11-11 삼성전자주식회사 정보 유지 능력과 동작 특성이 향상된 커패시터리스 1t반도체 메모리 소자
KR101358930B1 (ko) * 2007-07-23 2014-02-05 삼성전자주식회사 전압 디바이더 및 이를 포함하는 내부 전원 전압 발생 회로
KR101308048B1 (ko) 2007-10-10 2013-09-12 삼성전자주식회사 반도체 메모리 장치
KR20090075063A (ko) * 2008-01-03 2009-07-08 삼성전자주식회사 플로팅 바디 트랜지스터를 이용한 동적 메모리 셀을 가지는메모리 셀 어레이를 구비하는 반도체 메모리 장치 및 이장치의 동작 방법
KR20100070158A (ko) * 2008-12-17 2010-06-25 삼성전자주식회사 커패시터가 없는 동작 메모리 셀을 구비한 반도체 메모리 장치 및 이 장치의 동작 방법
KR101442177B1 (ko) * 2008-12-18 2014-09-18 삼성전자주식회사 커패시터 없는 1-트랜지스터 메모리 셀을 갖는 반도체소자의 제조방법들
JP5176971B2 (ja) * 2009-01-15 2013-04-03 富士通株式会社 直流電位生成回路、多段回路、及び通信装置
JP2010219486A (ja) * 2009-03-19 2010-09-30 Renesas Electronics Corp 中間電位発生回路
US20120194150A1 (en) * 2011-02-01 2012-08-02 Samsung Electro-Mechanics Company Systems and methods for low-battery operation control in portable communication devices
DE102011051111A1 (de) 2011-06-16 2012-12-20 Packsys Global (Switzerland) Ltd. Verfahren zum Herstellen von Rohrkörpern für Verpackungstuben
RU2461864C1 (ru) * 2011-06-27 2012-09-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Источник опорного напряжения
JP2013092958A (ja) * 2011-10-27 2013-05-16 Semiconductor Components Industries Llc 電流検出回路及び電源回路
RU2518974C2 (ru) * 2012-10-04 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Источник опорного напряжения
FR3002049B1 (fr) * 2013-02-13 2016-11-04 Cddic Regulateur de tension compense en temperature a faible courant de consommation
CN109874314B (zh) * 2017-12-21 2021-08-17 北京比特大陆科技有限公司 串联供电电路、***和方法
WO2019126946A1 (en) * 2017-12-25 2019-07-04 Texas Instruments Incorporated Low-dropout regulator with load-adaptive frequency compensation
CN109582076B (zh) * 2019-01-09 2023-10-24 上海晟矽微电子股份有限公司 基准电流源

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095164A (en) * 1976-10-05 1978-06-13 Rca Corporation Voltage supply regulated in proportion to sum of positive- and negative-temperature-coefficient offset voltages
JPS53103770A (en) * 1977-02-22 1978-09-09 Seiko Instr & Electronics Ltd Electronic timepiece
SU744513A1 (ru) * 1978-03-06 1980-06-30 Предприятие П/Я В-8450 Стабилизатор напр жени посто нного тока
JPS6029123B2 (ja) * 1978-08-02 1985-07-09 富士通株式会社 電子回路
GB2046483A (en) * 1979-04-06 1980-11-12 Gen Electric Voltage regulator
US4298835A (en) * 1979-08-27 1981-11-03 Gte Products Corporation Voltage regulator with temperature dependent output
JPS56108258A (en) * 1980-02-01 1981-08-27 Seiko Instr & Electronics Ltd Semiconductor device
US4445083A (en) * 1981-08-26 1984-04-24 Honeywell Information Systems Inc. Integrated circuit compensatory regulator apparatus
JP2592234B2 (ja) * 1985-08-16 1997-03-19 富士通株式会社 半導体装置
JPS6269308A (ja) * 1985-09-17 1987-03-30 シ−メンス、アクチエンゲゼルシヤフト 基準電圧発生回路装置
JPH083766B2 (ja) * 1986-05-31 1996-01-17 株式会社東芝 半導体集積回路の電源電圧降下回路
US4746823A (en) * 1986-07-02 1988-05-24 Dallas Semiconductor Corporation Voltage-insensitive and temperature-compensated delay circuit for a monolithic integrated circuit
GB8630980D0 (en) * 1986-12-29 1987-02-04 Motorola Inc Bandgap reference circuit
JPH01124011A (ja) * 1987-11-10 1989-05-16 Furukawa Electric Co Ltd:The Led駆動回路
KR910005599B1 (ko) * 1989-05-01 1991-07-31 삼성전자 주식회사 고밀도 반도체 메모리장치의 전원 공급전압 변환회로
KR900019026A (ko) * 1989-05-11 1990-12-22 김광호 반도체 장치의 기준전압 발생회로
JP2674669B2 (ja) * 1989-08-23 1997-11-12 株式会社東芝 半導体集積回路
KR920010633A (ko) * 1990-11-30 1992-06-26 김광호 반도체 메모리 장치의 기준전압 발생회로

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470458B (zh) * 2007-12-26 2010-10-27 中国科学院微电子研究所 带隙基准电压参考电路
CN103295623A (zh) * 2012-02-27 2013-09-11 三星电子株式会社 自适应于低外部供电电压的电压生成器
CN103295623B (zh) * 2012-02-27 2018-02-13 三星电子株式会社 自适应于低外部供电电压的电压生成器
CN104751810A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 液晶显示器及其驱动方法
CN104460811A (zh) * 2014-12-26 2015-03-25 昆腾微电子股份有限公司 基准电压温度系数校准电路和方法
CN104460811B (zh) * 2014-12-26 2016-01-20 昆腾微电子股份有限公司 基准电压温度系数校准电路及其工作方法
CN106571824A (zh) * 2015-10-08 2017-04-19 联发科技(新加坡)私人有限公司 信号处理电路
CN110047523A (zh) * 2018-01-15 2019-07-23 塔普思科技股份有限公司 电阻性内存单元的准定压降自我中止写入方法及其电路
CN110491436A (zh) * 2018-05-14 2019-11-22 华邦电子股份有限公司 半导体元件
CN110491436B (zh) * 2018-05-14 2021-05-18 华邦电子股份有限公司 半导体元件
CN114167929A (zh) * 2020-09-11 2022-03-11 北京兆易创新科技股份有限公司 电压产生电路及电子装置

Also Published As

Publication number Publication date
ITMI912287A1 (it) 1992-12-13
FR2677793A1 (fr) 1992-12-18
FR2677793B1 (fr) 1997-01-31
DE4124427C2 (de) 1994-06-30
GB9118530D0 (en) 1991-10-16
ITMI912287A0 (it) 1991-08-26
JPH0793006B2 (ja) 1995-10-09
HK28597A (en) 1997-03-21
RU2146388C1 (ru) 2000-03-10
NL193703C (nl) 2000-07-04
KR930001574A (ko) 1993-01-16
TW238439B (zh) 1995-01-11
DE4124427A1 (de) 1992-12-17
IT1251297B (it) 1995-05-08
NL193703B (nl) 2000-03-01
KR940003406B1 (ko) 1994-04-21
JPH04366492A (ja) 1992-12-18
US5146152A (en) 1992-09-08
GB2256731B (en) 1996-01-10
NL9101377A (nl) 1993-01-04
CN1090775C (zh) 2002-09-11
GB2256731A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
CN1090775C (zh) 产生内部电源电压的电路
US4930112A (en) Semiconductor device having a voltage limiter
CN1061864A (zh) 半导体存储器件基准电压生成电路
US6271717B1 (en) Bias circuit for series connected decoupling capacitors
CN1080742A (zh) 使用cmos晶体管的基准电压发生器
JPH0632228B2 (ja) 集積回路電圧増倍器
US5834814A (en) Semiconductor integrated circuit
JP3487510B2 (ja) 半導体装置
US6049200A (en) Voltage regulator capable of lowering voltage applied across phase compensating capacitor
JPS60251414A (ja) 改良形バンドギヤツプ電圧基準回路
KR950000758B1 (ko) 반도체 기억장치
US5150188A (en) Reference voltage generating circuit device
JPS5968028A (ja) 信号変換器及び電子回路
US5515007A (en) Triple buffered amplifier output stage
US4131806A (en) I.I.L. with injector base resistor and schottky clamp
JPH04373158A (ja) 定電圧発生回路
WO2024146134A1 (zh) 电压监测电路和半导体存储器
US4716380A (en) FET differential amplifier
US5262688A (en) Operational amplifier circuit
US5731625A (en) Bipolar variable resistance device
US4577296A (en) Compensation current generator
US6377115B1 (en) Integrated potentiometer and corresponding fabrication process
JP2802441B2 (ja) 複合型半導体定電圧発生回路装置
KR100311981B1 (ko) 내부전압 발생회로를 구비하는 반도체장치
JP2693494B2 (ja) 電源変換回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020911

Termination date: 20100830