CN106747669B - 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法 - Google Patents

一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106747669B
CN106747669B CN201611241556.5A CN201611241556A CN106747669B CN 106747669 B CN106747669 B CN 106747669B CN 201611241556 A CN201611241556 A CN 201611241556A CN 106747669 B CN106747669 B CN 106747669B
Authority
CN
China
Prior art keywords
ceramic material
temperature
ball
hours
sodium niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611241556.5A
Other languages
English (en)
Other versions
CN106747669A (zh
Inventor
杨祖培
柴启珍
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201611241556.5A priority Critical patent/CN106747669B/zh
Publication of CN106747669A publication Critical patent/CN106747669A/zh
Application granted granted Critical
Publication of CN106747669B publication Critical patent/CN106747669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法,该陶瓷材料的通式为(1‑x)K0.5Na0.5NbO3‑xBa(Zn1/3Nb2/3)O3,式中x表示Ba(Zn1/3Nb2/3)O3的摩尔数,x的取值为0.03~0.05,该陶瓷材料通过高温固相法制备而成。本发明制备方法简单、重复性好、成品率高,所得陶瓷材料的透明性高、介电性能好、居里温度高,其中透过率为66%~82%(近红外区)、介电常数为1566~1813、居里温度为344~395℃,且在温度为30~500℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有较好的铁电性能,其剩余极化强度为2~4μC/cm2、矫顽场为13~16kV/cm。

Description

一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷 材料及其制备方法
技术领域
本发明属于铁电陶瓷材料技术领域,具体涉及一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法。
背景技术
透明铁电陶瓷是一类重要的、国际竞争极为激烈的新型功能材料。由于其具有优异的铁电、机械性能以及显著的光电效应,且还具有耐高温、耐腐蚀、高硬度和高透明等特性,使该类材料在核实验人员及飞行人员用双层护目镜、坦克用透明防弹复合装甲、火箭弹配用的成型装药装甲等军事、航空领域中占有极其重要的地位;同时还在声表面波器件、激光调制器、激光倍频器、光波导器件、光全息存储器等光学器件的商业领域显示出巨大的应用潜力,成为不可缺少的未来光计算机技术和现代先进技术中的关键材料。
由于铅基透明铁电陶瓷含有约70%PbO或Pb3O4,在生产、使用以及废弃后的处理过程中都会给人类和生态环境造成严重损害,因此开发和研究新型无铅透明铁电陶瓷对于国家安全和电子信息领域的发展具有重大战略意义。2004年日本的Saito教授成功制备了铌酸钾钠(KNN)陶瓷,其压电常数达到了490,同时具有较高的居里温度,达到了390℃,成为最有希望替代锆钛酸铅(PZT)和铌镁酸铅-钛酸铅(PMN-PT)等的无铅陶瓷材料。随后,2007年Du等人在研究KNN-LiNbO3时发现了其透明现象。紧接着2007年8月Du通过掺杂Bi2O3,首次***研究了铌酸钾钠基的透明无铅铁电陶瓷。之后,铌酸钾钠基陶瓷引起了研究者的广泛关注。
但是,在有关铌酸钾钠基透明陶瓷的报道中,为了获得高透明性或者高的介电性能,通过对铌酸钾钠基陶瓷进行掺杂改性时,居里温度都有所降低,很难获得高居里温度、高介电常数、高透明性的铌酸钾钠基陶瓷。
发明内容
本发明所要解决的技术问题在于提供一种具有高透明性、高居里温度、高介电常数且温度稳定性好的铌酸钾钠基透明铁电陶瓷材料,以及该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的组成通式是(1-x)(K0.5Na0.5)NbO3-xBa(Zn1/3Nb2/3)O3,式中x表示Ba(Zn1/3Nb2/3)O3的摩尔数,x的取值为0.03~0.05。
上述铌酸钾钠基透明铁电陶瓷材料的制备方法如下:
1、配料
按照(1-x)(K0.5Na0.5)NbO3-xBa(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的原料Na2CO3、K2CO3、Nb2O5、BaCO3、ZnO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,850℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1130~1160℃,烧结5~8小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基透明铁电陶瓷材料。
上述步骤5中,优选以3℃/分钟的升温速率升温至1150℃,烧结6小时。
本发明制备方法简单、重复性好、成品率高,所得陶瓷材料的透明性高、介电性能好、居里温度高,其中透过率为66%~82%(近红外区)、介电常数为1566~1813、居里温度为344~395℃,且在温度为30~500℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有较好的铁电性能,其剩余极化强度为2~4μC/cm2、矫顽场为13~16kV/cm。本发明陶瓷材料在光学上各向同性、实用性强、易于生产,能兼顾电学性能和光学性能,是一种性能优良的无铅透明铁电陶瓷。
附图说明
图1是实施例1和2制备的铌酸钾钠基透明铁电陶瓷材料的XRD图。
图2是实施例1和2制备的铌酸钾钠基透明铁电陶瓷材料的透过率图。
图3是实施例1和2制备的铌酸钾钠基透明铁电陶瓷材料在1MHz下的介电常数随温度的变化关系图。
图4是实施例1和2制备的铌酸钾钠基透明铁电陶瓷材料在1MHz下的居里温度和最大介电常数随x取值的变化关系图。
图5是实施例1和2制备的铌酸钾钠基透明铁电陶瓷材料的电滞回线图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.97(K0.5Na0.5)NbO3-0.03Ba(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.9036g、纯度为99.99%的K2CO3 5.0903g、纯度为99.99%的Nb2O519.9834g、纯度为99.99%的BaCO3 0.8991g、纯度为99.99%的ZnO 0.1236g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥10小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至850℃预烧5小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥15小时,用研钵研磨10分钟,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1150℃,烧结6小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精搽拭干净。采用日本理学MiniFlex600型衍射仪进行XRD测试,采用UV-3600型紫外可见近红外光分光光度计进行光学透过率测试,结果见图1~2。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成0.97(K0.5Na0.5)NbO3-0.03Ba(Zn1/3Nb2/3)O3陶瓷材料。采用Agilient4980A型精密阻抗分析仪和AixACCT-TF2000型铁电参数测试仪分别对陶瓷材料的介电性能和铁电性能进行测试,结果见图3~5。
实施例2
本实施例的配料步骤1中,按照0.95(K0.5Na0.5)NbO3-0.05Ba(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.7776g、纯度为99.99%的K2CO3 4.9260g、纯度为99.99%的Nb2O5 19.6123g、纯度为99.99%的BaCO3 1.4806g、纯度为99.99%的ZnO0.2036g,其他步骤与实施例1相同,制备成0.95(K0.5Na0.5)NbO3-0.05Ba(Zn1/3Nb2/3)O3陶瓷材料。
由图1可见,实施例1和2制备的陶瓷材料均为纯的钙钛矿结构。由图2可见,实施例1和2制备的陶瓷材料均呈现较高的透明性,其在近红外区(790~2000nm)透过率最高可达80%以上。由图3~5可见,实施例1和2制备的陶瓷材料在具有高透明性的同时也具有较好的电学性能,其中x=0.03时,陶瓷材料的介电常数为1813、居里温度为395℃、剩余极化强度为2μC/cm2、矫顽场为13kV/cm,x=0.05时,陶瓷材料的介电常数为1566、居里温度为344℃、剩余极化强度为4μC/cm2、矫顽场为16kV/cm,且所得陶瓷材料在温度为30~500℃范围内,介电常数随温度变化小,具有优异的温度稳定性。

Claims (3)

1.一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料,其特征在于:该陶瓷材料的通式为(1-x)K0.5Na0.5NbO3-xBa(Zn1/3Nb2/3)O3,式中x表示Ba(Zn1/3Nb2/3)O3的摩尔数,x的取值为0.03~0.05;该陶瓷材料在近红外区的透过率为66%~82%,介电常数为1566~1813、居里温度为344~395℃、剩余极化强度为2~4μC/cm2、矫顽场为13~16kV/cm。
2.一种权利要求1所述的铌酸钾钠基透明铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)(K0.5Na0.5)NbO3-xBa(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的原料Na2CO3、K2CO3、Nb2O5、BaCO3、ZnO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,850℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛;
(4)造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1130~1160℃,烧结5~8小时,随炉自然冷却至室温;
(6)抛光
将步骤(5)烧结后的陶瓷选取其中一个表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
(7)烧银
在步骤(6)抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基透明铁电陶瓷材料。
3.根据权利要求2所述的铌酸钾钠基透明铁电陶瓷材料的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1150℃,烧结6小时,随炉自然冷却至室温。
CN201611241556.5A 2016-12-29 2016-12-29 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法 Active CN106747669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611241556.5A CN106747669B (zh) 2016-12-29 2016-12-29 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611241556.5A CN106747669B (zh) 2016-12-29 2016-12-29 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106747669A CN106747669A (zh) 2017-05-31
CN106747669B true CN106747669B (zh) 2019-10-25

Family

ID=58923422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611241556.5A Active CN106747669B (zh) 2016-12-29 2016-12-29 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106747669B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180185B (zh) * 2018-11-16 2021-03-23 陕西师范大学 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN109206137A (zh) * 2018-11-19 2019-01-15 福州大学 一种铌酸钾钠-钛酸锌锶透明陶瓷的制备方法
CN113004038B (zh) * 2021-03-25 2023-04-07 陕西师范大学 一种高击穿场强、高光电流密度的铌酸钠基无铅铁电陶瓷材料及其制备方法
CN113121226B (zh) * 2021-04-30 2022-06-24 桂林电子科技大学 一种光介电铁电陶瓷材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070337A (zh) * 2010-10-29 2011-05-25 景德镇陶瓷学院 一种低温烧结铌酸钾钠无铅压电陶瓷及其制备方法
WO2014123488A1 (en) * 2013-02-06 2014-08-14 Agency For Science, Technology And Research Electro-optic ceramic materials
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN105819855A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070337A (zh) * 2010-10-29 2011-05-25 景德镇陶瓷学院 一种低温烧结铌酸钾钠无铅压电陶瓷及其制备方法
WO2014123488A1 (en) * 2013-02-06 2014-08-14 Agency For Science, Technology And Research Electro-optic ceramic materials
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN105819855A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法

Also Published As

Publication number Publication date
CN106747669A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106747669B (zh) 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN103304235B (zh) 一种细晶高强度pmn-pzt压电陶瓷材料的生产方法
CN101265084A (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN103102154A (zh) Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
CN110981468B (zh) 一种钛酸铋钠基压电陶瓷的制备方法
CN103979955A (zh) 锂-铝离子对掺杂改性的钛酸钡基无铅压电陶瓷材料及其制备方法
CN106588011B (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN108558400B (zh) 一种锆钛酸钡钙基透明陶瓷的制备方法
CN105837200A (zh) 一种锰掺杂钛铌酸铋钙锂铈基陶瓷材料及其制备方法
CN104557058A (zh) 真空-氧气氛复合热压烧结制备高透过率透明电光陶瓷的方法
CN105819855B (zh) 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法
CN108863360A (zh) 一种铒掺杂铌酸钾钠-钛酸锶透明陶瓷的制备方法
CN106673650B (zh) 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
CN107216149A (zh) 一种透明无铅压电陶瓷材料及其制备方法
CN101786880A (zh) 一种铌酸钾钠-铌酸钾锂压电陶瓷及其制备方法
CN109320243A (zh) 一种高透明度的铌酸钾钠-钛酸钡锶透明陶瓷的制备方法
CN101337815A (zh) 无铅压电陶瓷及其制备方法
CN102285794B (zh) B位复合钙钛矿结构化合物组成的无铅压电陶瓷
CN104402426B (zh) 一种铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
CN102173790A (zh) 无铅反铁电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant