CN106588011B - 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法 - Google Patents

高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法 Download PDF

Info

Publication number
CN106588011B
CN106588011B CN201611266530.6A CN201611266530A CN106588011B CN 106588011 B CN106588011 B CN 106588011B CN 201611266530 A CN201611266530 A CN 201611266530A CN 106588011 B CN106588011 B CN 106588011B
Authority
CN
China
Prior art keywords
ball
curie temperature
hours
remanent polarization
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611266530.6A
Other languages
English (en)
Other versions
CN106588011A (zh
Inventor
杨祖培
赵旭梅
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201611266530.6A priority Critical patent/CN106588011B/zh
Publication of CN106588011A publication Critical patent/CN106588011A/zh
Application granted granted Critical
Publication of CN106588011B publication Critical patent/CN106588011B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法,该陶瓷材料的通式为(1‑x)(K0.5Na0.5)NbO3‑xCa(Mg1/3Ta2/3)O3,x的取值为0.02~0.06,其通过高温固相法制备而成。本发明制备方法简单、重复性好、成品率高,所得陶瓷材料具有优异的电学性能和一定的透光率,其在近红外区的透过率为42%~64%、介电常数为2563~4190、居里温度为203~361℃、介电损耗为0.035~0.04、极化强度为22.2~32.6μC/cm2、剩余极化强度为6.6~21.6μC/cm2、压电常数为28~99pC/N。

Description

高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷 及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷,以及该陶瓷的制备方法。
背景技术
当今社会,压电、铁电材料作为一类重要的功能材料在光电器件上得到广泛应用。陶瓷压电材料以其稳定的性能,低廉的生产成本等优点成为压电材料的重要组成部分。相比于传统压电、铁电陶瓷,透明弛豫铁电陶瓷更具有优异的铁电、光学性能以及显著的电光效应,有望成为不可缺少的未来光计算机技术和现代先进技术中的关键材料。
目前应用的透明铁电陶瓷主要是锆钛酸铅(PZT)基陶瓷,含铅基陶瓷在制备、使用以及其废弃后处理过程中,都会危害环境以及人类健康。因此研发无铅透明陶瓷的意义深远。2004年,M.Kosec等人首次报道K0.5Na0.5NbO3-0.2SrTiO3半透明陶瓷。随后,Kwok等人通过热压烧结法先后制备的K0.48Na0.52Nb1-xBixO3和(K0.5Na0.5)1-xLixNb1-xBixO3陶瓷,其在近红外光区透光率都达到60%。最近,Du等人采用了常规烧结法制备了(1-x)K0.5Na0.5NbO3-xSr(Sc0.5Nb0.5)O3陶瓷,其中x=0.20(室温为伪立方相)时,该陶瓷在可见光内透光率达到60%,且具有高的储能特性(W=2.48J·cm-3)。研究发现,优异的透光性严重的降低了陶瓷的电学性能,尤其是压铁电性能,更有甚者,使其丧失了压铁电性。因此,开发一种具有压铁电性能的透明陶瓷具有重大的实际意义。
发明内容
本发明所要解决的技术问题在于提供一种具有透光性、高居里温度、高介电常数、高剩余极化强度、高压电常数的铌酸钾钠基透明铁电陶瓷材料,以及该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的通式为(1-x)(K0.5Na0.5)NbO3-xCa(Mg1/3Ta2/3)O3,式中x表示Ca(Mg1/3Ta2/3)O3的摩尔数,x的取值为0.02~0.06;该陶瓷在近红外区的透过率为42%~64%、介电常数为2563~4190、居里温度为203~361℃、介电损耗为0.035~0.04、极化强度为22.2~32.6μC/cm2、剩余极化强度为6.6~21.6μC/cm2、压电常数为28~99pC/N。
上述通式中,优选x的取值为0.02,该陶瓷在近红外区的透过率为42%~64%、介电常数为4190、居里温度为361℃、极化强度为32.6μC/cm2、剩余极化强度为21.6μC/cm2、压电常数为99pC/N。
本发明铌酸钾钠基无铅透明铁电陶瓷的制备方法由下述步骤组成:
1、配料
按照(1-x)(K0.5Na0.5)NbO3-xCa(Mg1/3Ta2/3)O3的化学计量分别称取纯度大于99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、MgO、Ta2O5,混合均匀;将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,在850℃保温3小时进行预烧,自然冷却至室温,用研钵研磨,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~16小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过120目筛。
4、造粒及压片
向步骤3过120目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过120~180目筛,用压片机压制成圆柱状坯体。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180~1200℃,烧结5~15小时,自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,得到高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷。
上述步骤5中,优选以3℃/分钟的升温速率升温至1190℃,烧结8小时。
本发明制备方法简单、重复性好、成品率高,所得陶瓷材料具有优异的电学性能和一定的透光率,其在近红外区的透过率为42%~64%、介电常数为2563~4190、居里温度为203~361℃、介电损耗为0.035~0.04、极化强度为22.2~32.6μC/cm2、剩余极化强度为6.6~21.6μC/cm2、压电常数为28~99pC/N。本发明陶瓷材料在光学上各向同性、实用性强、易于生产,能兼顾电学性能和光学性能,是一种性能优良的无铅透明铁电陶瓷。
附图说明
图1是实施例1~3制备的铌酸钾钠基无铅透明铁电陶瓷材料的XRD图。
图2是实施例1~3备的铌酸钾钠基无铅透明铁电陶瓷材料的透光率图。
图3是实施例1~3制备的铌酸钾钠基无铅透明铁电陶瓷材料在1MHz下的介电常数随温度变化关系图。
图4是实施例1~3制备的铌酸钾钠基无铅透明铁电陶瓷材料在1MHz下的居里温度和最大介电常数随x取值的变化关系图。
图5是实施例1~3制备的铌酸钾钠基无铅透明铁电陶瓷材料的电滞回线图谱。
图6是实施例1~3制备的铌酸钾钠基无铅透明铁电陶瓷材料的介电损耗、压电常数、最大极化强度和剩余极化强度随x取值的变化关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.98(K0.5Na0.5)NbO3-0.02Ca(Mg1/3Ta2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.6593g、纯度为99.99%的K2CO3 3.4676g、纯度为99.99%的Nb2O513.3382g、纯度为99.99%的CaCO3 0.2050g、纯度为99.99%的MgO 0.0302g、纯度为99.99%的Ta2O5 0.3017g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥24小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至850℃预烧3小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨16小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥24小时,用研钵研磨10分钟,过120目筛。
4、造粒及压片
向步骤3过120目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过180目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1190℃,烧结8小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精搽拭干净。采用日本理学MiniFlex600型衍射仪进行XRD测试,采用UV-3600型紫外可见近红外光分光光度计进行光学透过率测试,结果见图1~2。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基无铅透明铁电陶瓷材料。采用Agilient4980A型精密阻抗分析仪和AixACCT-TF2000型铁电参数测试仪分别对陶瓷材料的介电性能和铁电性能进行测试,结果见图3~6。
实施例2
本实施例的配料步骤1中,按照0.96(K0.5Na0.5)NbO3-0.04Ca(Mg1/3Ta2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5869g、纯度为99.99%的K2CO33.3733g、纯度为99.99%的Nb2O5 12.9754g、纯度为99.99%的CaCO3 0.4072g、纯度为99.99%的MgO0.0601g、纯度为99.99%的Ta2O5 0.5992g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例3
本实施例的配料步骤1中,按照0.94(K0.5Na0.5)NbO3-0.06Ca(Mg1/3Ta2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5156g、纯度为99.99%的K2CO33.2803g、纯度为99.99%的Nb2O5 12.6175g、纯度为99.99%的CaCO3 0.6065g、纯度为99.99%的MgO0.0895g、纯度为99.99%的Ta2O5 0.8926g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
由图1可见,实施例1~3制备的陶瓷材料均为纯的钙钛矿结构。由图2可见,实施例1~3制备的陶瓷材料均呈现一定透光性,其在近红外区的透光率可达42%~64%。由图3~6可见,实施例1~3备的陶瓷材料最大介电常数、居里温度、介电损耗剩余极化强度和压电常数均随着x的增大而降低,其中x取值为0.02时,该陶瓷材料的电学性能最佳,其最大介电常数(εm)为4190、居里温度(Tm)为361℃、介电损耗(tanδ)为0.04、最大极化强度(Pm)为32.6μC/cm2、剩余极化强度(Pr)为21.6μC/cm2、压电常数(d33)为99pC/N。

Claims (4)

1.一种高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷,其特征在于:该陶瓷材料的通式为(1-x)(K0.5Na0.5)NbO3-xCa(Mg1/3Ta2/3)O3,式中x表示Ca(Mg1/3Ta2/3)O3的摩尔数,x的取值为0.02~0.06;该陶瓷在近红外区的透过率为42%~64%、介电常数为2563~4190、居里温度为203~361℃、介电损耗为0.035~0.04、极化强度为22.2~32.6μC/cm2、剩余极化强度为6.6~21.6μC/cm2、压电常数为28~99pC/N。
2.根据权利要求1所述的高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷,其特征在于:所述x的取值为0.02,该陶瓷在近红外区的透过率为42%~64%、介电常数为4190、居里温度为361℃、极化强度为32.6μC/cm2、剩余极化强度为21.6μC/cm2、压电常数为99pC/N。
3.一种权利要求1所述的高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)(K0.5Na0.5)NbO3-xCa(Mg1/3Ta2/3)O3的化学计量分别称取纯度大于99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、MgO、Ta2O5,混合均匀;将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,在850℃保温3小时进行预烧,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~16小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过120目筛;
(4)造粒及压片
向步骤(3)过120目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过120~180目筛,用压片机压制成圆柱状坯体;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180~1200℃,烧结5~15小时,自然冷却至室温;
(6)抛光
将步骤(5)烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
(7)烧银
在步骤(6)抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,得到高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷。
4.根据权利要求3所述的铌酸钾钠基无铅透明铁电陶瓷的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1190℃,烧结8小时,随炉自然冷却至室温。
CN201611266530.6A 2016-12-31 2016-12-31 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法 Expired - Fee Related CN106588011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611266530.6A CN106588011B (zh) 2016-12-31 2016-12-31 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611266530.6A CN106588011B (zh) 2016-12-31 2016-12-31 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN106588011A CN106588011A (zh) 2017-04-26
CN106588011B true CN106588011B (zh) 2018-07-10

Family

ID=58581925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611266530.6A Expired - Fee Related CN106588011B (zh) 2016-12-31 2016-12-31 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106588011B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271376B2 (ja) * 2019-09-13 2023-05-11 株式会社東芝 複合酸化物、活物質複合材料、電極、電池、電池パック、及び車両
CN110981476A (zh) * 2019-12-17 2020-04-10 西安工业大学 一种铌酸钾钠基透明陶瓷材料及其制备方法
CN111302798B (zh) * 2020-02-25 2022-02-22 西安工业大学 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法
CN113121226B (zh) * 2021-04-30 2022-06-24 桂林电子科技大学 一种光介电铁电陶瓷材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764696A (zh) * 2013-11-28 2016-07-13 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764696A (zh) * 2013-11-28 2016-07-13 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置

Also Published As

Publication number Publication date
CN106588011A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN106588011B (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN104876567B (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN103304235B (zh) 一种细晶高强度pmn-pzt压电陶瓷材料的生产方法
CN102815938B (zh) 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN105541413B (zh) 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法
CN101265084A (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN107244898A (zh) 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN106064942B (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN106747669B (zh) 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN102910905A (zh) 一种低温烧结的锆钛酸钡钙基无铅压电陶瓷及其制备方法
CN110342933A (zh) 一种调控铌酸钠陶瓷居里温度的方法
CN106938929A (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN101429027A (zh) 一种铌酸钾钠基无铅压电陶瓷及其低温烧结制备方法
CN105819855B (zh) 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法
CN106673650B (zh) 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
CN104030683A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN101337815A (zh) 无铅压电陶瓷及其制备方法
CN109251030A (zh) 一种高光学温度传感特性的钬掺杂铌酸钾钠-钛酸锶透明陶瓷的制备方法
CN109320243A (zh) 一种高透明度的铌酸钾钠-钛酸钡锶透明陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180710

Termination date: 20201231

CF01 Termination of patent right due to non-payment of annual fee