CN106659882A - 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构 - Google Patents

用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构 Download PDF

Info

Publication number
CN106659882A
CN106659882A CN201580043876.7A CN201580043876A CN106659882A CN 106659882 A CN106659882 A CN 106659882A CN 201580043876 A CN201580043876 A CN 201580043876A CN 106659882 A CN106659882 A CN 106659882A
Authority
CN
China
Prior art keywords
lead
pointed tooth
anchor log
anchor
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580043876.7A
Other languages
English (en)
Inventor
H·李
A·胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axonics Inc
Original Assignee
Axonics Modulation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axonics Modulation Technologies Inc filed Critical Axonics Modulation Technologies Inc
Priority to CN202011496654.XA priority Critical patent/CN112657054A/zh
Publication of CN106659882A publication Critical patent/CN106659882A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本文中提供了用于将神经刺激***的植入式引线附着在患者体内的目标位置处的锚定设备和方法。这种锚定设备包括螺旋主体,所述螺旋主体具有当被展开时从所述引线横向地向外延伸的多个尖齿,所述多个尖齿与组织接合以便抑制所述植入式引线的轴向运动。所述多个尖齿被偏置朝向所述横向延伸的展开构型并且朝向所述引线向内折叠成递送构型以便促进通过护套来递送所述引线。所述尖齿可以在近端方向上或者在近端方向和远端方向两者上成一定角度并且可以包括用于辅助对所述引线的可视化和递送的各种特征。所述锚定件可以根据各种方法形成,包括对管状区段的激光切割连同用于将材料与所述锚定件一起定形为所述展开构型的加热和回流、以及注塑成型。

Description

用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植 入引线附着结构
相关申请的交叉引用
本申请是于2014年8月15日提交的美国临时申请号62/038,122以及于2015年1月30日提交的美国临时申请号62/110,274的非临时申请并请求其权益,所述申请中的每一个申请通过引用以其文结合在此。
本申请还涉及以下同时提交的美国非临时专利申请号:题为“External PulseGenerator Device and Associated Methods for Trial Nerve Stimulation(用于试验神经刺激的外部脉冲发生器设备和相关联方法)”的_____[代理人案卷号97672-001110US-947226];题为“Electromyographic Lead Positioning and Stimulation Titration ina Nerve Stimulation System for Treatment of Overactive Bladder(在用于治疗膀胱过度活动症的神经刺激***中的肌电图引线定位和刺激滴定)”的_____,[代理人案卷号97672-001211US-947564];题为“Integrated Electromyographic Clinician ProgrammerFor Use With an Implantable Neurostimulator(用于与可植入神经刺激器一起使用的集成肌电图临床医生程控器)”的_____[代理人案卷号97672-001221US-947566];以及题为“Systems and Methods for Neurostimulation Electrode Configurations Based onNeural Localization(用于基于神经定位来进行神经刺激电极配置的***和方法)”的_____[代理人案卷号97672-001231US-947224];以及以下美国临时申请号:于2015年1月9日提交的题为“Patient Remote and Associated Methods of Use With a NerveStimulation System(与神经刺激***一起使用的患者遥控器和相关联方法)”的62/101,666;于2015年1月9日提交的题为“Attachment Devices and Associated Methods of UseWith a Nerve Stimulation Charging Device(与神经刺激充电设备一起使用的附接设备和相关联方法)”的62/101,884;于2015年1月9日提交的题为“Improved Antenna andMethods of Use For an Implantable Nerve Stimulator(可植入神经刺激器的改进天线和使用方法)”的62/101,782;以及于2015年7月10日提交的题为“Implantable NerveStimulator Having Internal Electronics Without ASIC and Methods of Use(具有无ASIC的内部电子器件的可植入神经刺激器以及使用方法)”的62/191,134,所述申请中的每一个申请都转让给相同的受让人并出于所有目的通过引用以其全部内容结合在此。
技术领域
本发明涉及神经刺激治疗***和相关联的设备;以及这种治疗***的治疗、植入和配置方法。
背景技术
近年来,使用可植入神经刺激***来进行治疗已经变得越来越普遍。虽然这种***已经在治疗许多病情方面显示出了前景,但是治疗有效性可能在患者之间明显变化。许多因素可能导致患者经历非常不同的疗效,并且在植入之前可能难以确定治疗的可行性。例如,刺激***通常利用电极阵列来治疗一个或多个目标神经结构。电极通常一起安装在多电极引线上,并且所述引线在患者的组织中被植入在旨在引起电极与目标神经结构的电耦合的位置处,通常经由中间组织来提供耦合的至少一部分。也可以采用其他方式,例如,一个或多个电极附接至覆盖目标神经结构的皮肤上、植入在目标神经周围的袖口中等等。无论如何,内科医生将通常试图通过改变应用到电极上的电刺激来建立适当的治疗方案。
当前刺激电极放置/植入技术和众所周知的治疗设置技术具有显著的缺点。不同患者的神经组织结构可能大不相同,准确地预测或标识执行特定功能和/或衰弱特定器官的神经的位置和分支是一种挑战。在不同的患者当中,围绕目标神经结构的组织结构的电特性也可能大不相同,并且对刺激的神经反应可能随着有效影响一位患者的身体功能并且潜在地向另一位患者施加显著不适或疼痛或对所述另一位患者具有有限效果的电刺激脉冲模式、脉冲宽度、频率、和/或振幅而明显不同。甚至在对神经刺激***的植入提供有效治疗的患者体内,在可以确定适当的治疗程序之前,经常需要频繁地调节和改变刺激方案,经常涉及在实现效果之前患者的重复就诊和显著不适。虽然已经实施了许多复杂且成熟的引线结构和刺激设置方案来试图克服这些挑担,但是引线放置结果的可变性、用于建立适当刺激信号的临床医生时间、以及施加给患者的不适(以及在某些情况下,显著疼痛)仍然不太理想。此外,这种设备的使用期和电池寿命相对短,从而使得每隔几年对植入的***进行常规替换,这需要附加手术、患者不适、以及医疗***的显著费用。
此外,因为神经结构的形态在患者之间明显变化,所以可能难以控制神经刺激引线相对于目标神经结构的放置和对准,这可能导致不一致的放置、不可预测的结果以及非常不同的患者疗效。出于这些原因,神经刺激引线通常包括多个电极,以期至少一个电极或一对电极将被布置在适合于递送神经刺激的位置中。这种方式的一个缺点是可能需要重复就诊来确定要使用的适当电极和/或来达成递送有效治疗的神经刺激程序。通常,可用神经刺激程序的数量可能受限于不精确的引线放置。
仍未完全实现这些神经刺激治疗的巨大效益。因此,期望的是提供改进的神经刺激方法、***和设备,以及用于为所治疗的特定患者或病情植入这种神经刺激***的方法。将特别有帮助的是,提供这种***和方法,以便提高医生在定位和附着这种引线方面的易用性,以便确保在植入之后维持适当的引线放置,从而在递送神经刺激治疗之后提供一致且可预测的结果。因此,期望的是,提供用于植入神经刺激引线的在植入期间改进对引线的锚定并允许减小的引线递送轮廓的方法和设备。
发明内容
本申请涉及可植入神经刺激***,并且具体涉及用于锚定植入神经刺激引线的设备和方法。在一方面,本发明包括绕引线螺旋状地延伸的锚定主体以及沿着锚定主体布置的多个尖齿。所述多个尖齿偏置朝向展开位置,在展开位置中,尖齿从螺旋主体处横向地向外延伸,以便充分地与组织接合从而抑制植入式引线的轴向位移。尖齿被构造成在植入期间可朝着螺旋主体弹性地偏转以便在受递送护套约束时朝着螺旋锚定主体向内折叠从而促进在植入期间递送至目标位置。
在一方面,根据本发明的方面的神经刺激***包括可植入引线,所述植入引线具有布置在引线主体内的一个或多个导体,所述一个或多个导体从所述引线的近端延伸到布置在所述引线的远端处或附近的一个或多个神经刺激电极;脉冲发生器,所述脉冲发生器可耦合至所述可植入引线的所述近端,当所述脉冲发生器耦合至所述可植入引线时,所述脉冲发生器与所述一个或多个神经刺激电极电耦合,所述脉冲发生器被配置成用于当被植入在目标位置处时生成多个电脉冲以便通过所述一个或多个神经刺激电极来向患者递送神经刺激治疗;以及锚定件,所述锚定件与恰好在所述电极近端的所述引线主体耦合。
在一方面,锚定件包括在引线主体外部沿着其纵向轴线螺旋状地延伸的螺旋主体以及横向地延伸远离螺旋主体的多个尖齿。所述多个尖齿中的每一个尖齿被偏置朝向展开构型和递送构型。在展开构型中,所述多个尖齿横向地延伸远离纵向轴线(当螺旋主体布置在其上时),并且在递送构型中,所述多个尖齿朝向引线主体的纵向轴线向内折叠以便促进在植入期间递送神经刺激引线。在某些实施例中,锚定件被配置成使得在递送构型中,所述多个尖齿中的每一个尖齿都折叠抵靠引线主体,以便进一步减小递送轮廓,在递送构型中,锚定件具有与直径为5Fr(French)或更大的护套相兼容的横截面轮廓或横断轮廓。在某些实施例中,所述螺旋主体和所述多个尖齿由相同的材料整体形成,而在其他实施例中,尖齿可以是附接至螺旋主体的单独元件。所述尖齿由具有足够刚度的材料形成,从而使得,当所述尖齿被植入在所述患者的组织内所述目标位置处时,组织与所述多个尖齿的接合抑制引线的轴向运动。在一些实施例中,锚定件可由肖氏硬度在50A与80D之间的范围内的基于聚氨酯的材料模制而成。在其他实施例中,锚定件可由如形状记忆合金等金属形成。在仍其他实施例中,锚定件可由如基于聚合物的材料和金属(比如,形状记忆合金线)等材料的组合形成。
在某些实施例中,锚定件的尺寸被设定成使得当螺旋主体耦合在引线主体上时螺旋主体沿着引线主体延伸10mm与30mm之间的长度,优选地,约20mm。所述多个尖齿中的每一个尖齿可以从纵向轴线横向地向外延伸1mm与4mm之间的距离。所述多个尖齿中的每一个尖齿的长度可以在1.5mm与3mm之间并且宽度可以在0.5mm与2.0mm之间。在一些实施例中,所述多个尖齿包括在近端方向上具有变化长度、宽度和角度的尖齿,而在其他实施例中,所述多个尖齿可以具有不同的长度或者可以在近端方向和远端方向两者上成一定角度。所述多个尖齿可以具有基本上矩形的标签形状,并且可以包括倒圆或倒角的角和/或边缘,以便抑制在角和/或边缘处的组织损伤。在一些实施例中,尖齿在展开构型中被偏置朝向与纵向轴线成30与80度之间的角度。
在一方面,螺旋主体附接至引线主体具有凹陷部分的锚定部分中,所述凹陷部分具有减小的轮廓,以便进一步减小横截面,比如,减小至2mm或更少以便容纳用于植入引线的5Fr护套。在一些实施例中,锚定件包括可以彼此附接且彼此相邻地部署的多个锚定件区段。这种特征可以允许用户关于锚定件的长度和尖齿方向而定制锚定部分,通过颠倒锚定件或将不同类型的锚定件组合在锚定部分内。锚定件可以进一步包括一个或多个附加特征,包括以下各项中的任何项:延伸螺旋主体的实长的不透射线元件以便促进使用可视化技术来进行定位;适合于屏蔽由磁共振引起的发热的嵌入式屏蔽材料;以及可生物降解尖齿或药物洗脱尖齿。
在某些实施例中,螺旋主体是连续螺旋阀瓣,并且所述多个尖齿包括连续螺旋阀瓣的多个区段,所述多个区段由沿着连续螺旋阀瓣的长度的多个切口限定,以便允许所述多个区段向内折叠而不会彼此重叠。
在其他实施例中,锚定件通过以下方式形成:对材料(例如,聚合物或金属,比如,镍钛诺)的管状部分进行激光切割,以及在锚定件处于展开构型中时通过热定形或回流来定形材料。在仍其他实施例中,锚定件可以通过将在多件式模具组件中对聚合物材料进行注塑成型来形成,这允许在锚定结构中的进一步可变性,比如,锚定件的不同部分的变化厚度。
本公开的进一步适用领域将根据下文所提供的详细说明而变得明显。应当理解的是,虽然详细说明和具体示例指示了各种实施例,但它们仅旨在用于说明目的而并非旨在必定限制本公开的范围。
附图说明
图1根据本发明的各方面示意性地展示了神经刺激***,所述神经刺激***包括用于对试验神经刺激***和永久性植入式神经刺激***两者进行定位和/或程控的临床医生程控器和患者遥控器。
图2A至图2C示出了沿着脊柱、下背部和骶骨区域的可以根据本发明的各方面进行刺激的神经结构的图示。
图3A根据本发明的各方面示出了完全植入式神经刺激***的示例。
图3B根据本发明的各方面示出了神经刺激***的示例,所述神经刺激***具有用于试验刺激的部分植入式刺激引线以及粘附至患者皮肤的外部脉冲发生器。
图4根据本发明的各方面示出了神经刺激***的示例,所述神经刺激***具有可植入刺激引线、可植入脉冲发生器、和外部充电设备。
图5A至图5C根据本发明的各方面示出了用于神经刺激***的可植入脉冲发生器和相关联部件的详细视图。
图6A至图6C根据本发明的各方面示出了用于与神经刺激引线和可植入脉冲发生器一起使用的应变消除结构。
图7根据本发明的各方面展示了其上具有锚定件结构的神经刺激引线。
图8根据本发明的各方面展示了示例锚定件结构。
图9A和图9B根据本发明的各方面展示了在展开之前和之后的其上具有锚定件结构的神经刺激引线。
图10A和图10B根据本发明的各方面展示了示例锚定件结构。
图11A和图11B根据本发明的各方面展示了示例锚定件结构。
图12A和图12B根据本发明的各方面展示了示例锚定件结构。
图13A和图13B根据本发明的各方面展示了示例锚定件结构。
图14A和图14B根据本发明的各方面展示了示例锚定件结构。
根据本发明的各方面,图15A至图15C展示了在展开之前和之后的示例锚定件结构,并且图15C展示了展开锚定件结构的端视图。
图16A和图16B根据本发明的各方面展示了通过激光切割来形成的示例锚定件结构(在展开之前和之后示出的结构)。
图17A和图17B根据本发明的各方面展示了通过注塑成型过程来形成的替代性示例锚定件结构。
图18至图20根据本发明的各方面展示了形成锚定件的方法以及锚定神经刺激引线的方法。
具体实施方式
本发明涉及神经刺激治疗***和相关联设备;以及这种治疗***的治疗、植入/放置和配置方法。在特定实施例中,本发明涉及被配置成用于治疗膀胱功能障碍(包括膀胱过度活动症(“Overactive Bladder,OAB”))以及大便功能障碍并缓解与其相关联的症状的骶神经刺激治疗***。然而,将理解的是,如本领域的技术人员将理解的,本发明还可以用于治疗疼痛或其他适应症,比如,运动障碍或情感障碍。
I.神经刺激适应症
神经刺激治疗***(比如,本文中所描述的神经刺激治疗***中的任何神经刺激治疗***)可用于治疗各种各样的疾病和相关联的症状(比如,急性疼痛障碍、运动障碍、情感障碍、以及与膀胱相关的功能障碍和肠功能障碍和大便功能障碍)。可通过神经刺激来治疗的疼痛障碍的示例包括腰椎手术失败综合征、反射***感神经营养不良或复杂性区域疼痛综合征、灼痛、蛛网膜炎、和周围神经病变。运动顺序包括肌肉麻痹、震颤、肌张力障碍、和帕金森病。情感障碍包括抑郁、强迫症、丛集性头痛、图雷特综合症、以及某些类型的慢性疼痛。膀胱相关功能障碍包括但不限于OAB、急迫性尿失禁、尿急-尿频、和尿潴留。OAB可以单独地或组合地包括急迫性尿失禁和尿急-尿频。急迫性尿失禁是与突然强烈的排放欲望相关联的无意识流失或尿液(尿急)。尿急-尿频是通常导致非常小量的***(尿频)的频繁、通常不可控的排尿欲望(尿急)。尿潴留是无法排空膀胱。神经刺激治疗可以被配置成用于通过对目标神经组织实施与关联于特定病情或相关联症状的感觉和/或运动控制相关的神经刺激来处理该病情。
在一方面,本文中所描述的方法和***特别适合于治疗泌尿和大便功能障碍。医学界在历史上还未意识到这些病情,并且对这些病情显著地缺医少药。OAB是最常见的泌尿功能障碍之一。它是由麻烦的泌尿症状(包括尿急、尿频、夜尿症、和急迫性尿失禁)的存在表征的复杂病情。据估计,约4千万美国人患有OAB。成年人口中,所有男性和女性中大约16%患有OAB症状。
OAB症状可能对患者的社会心理功能和生活质量具有显著的负面影响。患有OAB的人员通常限制活动和/或开发应对策略。此外,OAB给个人、他们的家庭和医疗机构施加了显著的财政负担。患有OAB的患者的合并症病情患病率比普通人群中的患病率显著更高。合并症可以包括跌倒骨折、***、皮肤感染、外阴***炎、心血管疾病、和中枢神经***病理。在患有OAB的患者更频繁地发生慢性便秘、大便失禁、和重叠的慢性便秘。
OAB的常规治疗通常包括作为第一行动步骤的生活方式改变。生活方式改变包括将膀胱刺激物(比如,咖啡因)从食物中消除、管理液体摄取、降低体重、停止吸烟、以及管理肠规律性。行为改变包括改变***习惯(比如,膀胱训练和延迟的***)、训练盆底肌以便改善尿道***的力量和控制、生物反馈、和用于欲望抑制的技术。药物被认为是对OAB的二线治疗。这些药物包括抗胆碱药物(口服、皮肤药贴、和凝胶)和口服β3肾上腺素能激动剂。然而,抗胆碱药物经常与麻烦的***性副作用(比如,口干、便秘、尿潴留、视力模糊、嗜睡、和困惑)相关联。研究发现,超过50%的患者在90天内由于缺少效果、不良事件或费用原因而停止使用抗胆碱药物。
当这些方式成功时,美国泌尿协会建议的三线治疗选择包括肉毒杆菌毒素(BTX)的逼尿肌内(膀胱平滑肌)注射、经皮胫神经刺激(PTNS)、和骶神经刺激(SNM)。BTX在膀胱镜检查指导下经由逼尿肌内注射来提供,但是通常需要每隔4到12个月进行重复的BTX注射以便维持效果,并且BTX可能不期望地导致尿潴留。许多随机对照研究显示了BTX注射对OAB患者的一些效果,但是BTX对OAB的长期安全性和有效性在很大程度上是未知的。
PTNS治疗由每周30分钟疗程(在12周的时间内)组成,每一个疗程使用经由胫神经来从手持式刺激器递送至骶丛的电刺激。对于反应良好且继续治疗的患者,需要持续疗程(通常每隔3到4周)来维持症状减轻。如果患者未能坚持治疗时间表,那么效果有可能降低。在很少随机对照研究中展示了PTNS的效果,然而,关于超过3年的PTNS有效性的数据有限,并且对于寻求治愈急迫性尿失禁(UUI)(例如,100%减少失禁事件)(EAU指南)的患者,不推荐PTNS。
II.骶神经调节
SNM是已确定的治疗,其针对急迫性尿失禁、尿急-尿频和非阻塞性尿潴留提供安全、有效、可逆和持久的治疗选择。SNM治疗涉及使用温和型电脉冲来刺激位于下背部中的骶神经。通过将电极引线***骶骨的相应孔中来将电极放置在骶神经(通常在S3级)旁边。电极被***在皮下并且随后被附接至可植入脉冲发生器(IPG)。SNM对OAB治疗的安全性和有效性(包括五年内对急迫性尿失禁和尿急-尿频患者的耐久性)由多项研究支持并被良好记录。SNM还被批准用于治疗已经失败或者并非更保守治疗的人选的患者的慢性大便失禁。
A.对骶神经调节***的植入
当前,SNM资质处于试验阶段,并且如果成功,则随后进行永久性植入。试验阶段是测试刺激期,在所述测试刺激期内,允许患者评估治疗是否有效。通常,存在用于执行测试刺激的两种技术。第一种技术是被称为经皮神经评估(PNE)的基于诊室的过程,并且另一种技术是阶段性试验。
在PNE中,通常首先使用孔针来标识最优刺激位置(通常在S3级)以及来评估骶神经的完整性。如在下表1中所描述的,运动反应和感觉反应用于验证正确的针放置。然后,将临时性刺激引线(单极电极)放置在局部麻醉的骶神经附近。可以在不需要荧光镜检查的情况下在诊室设置中进行此过程。然后,将临时性引线连接至在试验阶段用胶带连接到患者皮肤上的外部脉冲发生器(EPG)。可以调节刺激水平,以便向特定患者提供最优舒适水平。患者将监测他或她的***3到7天,以便查看是否存在任何症状改善。PNE的优点是:它是可以在内科医生诊室中使用局部麻醉来执行的无切口过程。缺点是:临时性引线未被牢固地锚定在位并且具有通过物理活动来迁移离开神经的倾向并且由此导致治疗失败。如果患者在此试验测试中失败,则内科医生仍可以推荐如以下所描述的阶段性试验。如果PNE试验为阳性,则移除临时性试验引线并且在全身麻醉下连同IPG植入永久性四极尖齿形引线。
阶段性试验涉及从一开始将永久性四极尖齿形刺激引线植入到患者体内。其还需要使用孔针来标识神经和最优刺激位置。引线被植入在S3骶神经附近并且经由引线延伸段被连接至EPG。在手术室中、在荧光镜检查指导以及在局部和全身麻醉下执行此过程。调节EPG以便向患者提供最优舒适水平,并且患者监测他的或她的***高达两周。如果患者获得有意义的症状改善,则他或她被考虑为在全身麻醉下进行IPG的永久性植入(通常在如图1和图3A中所示出的上臀部区域中)的适当人选。
表1:SNM在不同骶神经根处的运动反应和感觉反应
*夹紧:******的收缩;以及在男性中,***根部缩回。将臀部移到旁边并寻找***结构的前/后缩短。
**管:骨盆底的提升和下降。寻找臀沟的加深和压扁。
关于测量对***功能障碍的SNM治疗的疗效,通过唯一的主要***日记变量来评估***功能障碍适应症(例如,急迫性尿失禁、尿急-尿频、和非阻塞性尿潴留)。使用这些相同变量来测量治疗疗效。如果相比于基线,在主要***日记变量中的任何主要***日记变量中发生最少50%的改善,则认为SNM治疗成功。对于急迫性尿失禁患者,这些***日记变量可以包括:每天泄露事件的数量、每天严重泄露事件的数量、和每天使用的护垫的数量。对于患有尿急-尿频的患者,主要***日记变量可以包括:每天***次数、每次***排出的量以及在每次***之前经历的急迫性程度。对于患有潴留的患者,主要***日记变量可以包括:每次导尿的导尿量和每天导尿次数。对于大便失禁患者,***日记所捕获的疗效测量包括:每周泄露事件的数量、每周泄露天数、和每次泄露之前经历的急迫性程度。
SNM的运动机制是多因素的并且以若干不同的水平影响神经轴。对于患有OAB的患者,据信,***传入神经可以激活抑制反射,所述抑制反射通过抑制异常***反射的传入肢来促进膀胱存储。这阻塞了到脑桥排尿中枢的输入,由此在不妨碍正常***模式的情况下限制了无意识的逼尿肌收缩。对于患有尿潴留的患者,SNM被认为激活了源自盆腔器官到脊髓中的***传入神经。在脊髓级,***传入神经可以通过抑制过度保护反射来启动***反射,由此减轻患有尿潴留的患者的症状,从而可以促进正常***。对于患有大便失禁的患者,假设的是,SNM刺激了抑制结肠推进活动的***传入体纤维并激活了***内***,这进而改善了大便失禁患者的症状。
本发明涉及被适配成用于采用导致对目标神经纤维的部分或完全激活、引起对与膀胱和肠功能相关联的器官和结构进行控制的神经(有可能与刺激目标相同或不同)中的神经活动的增强或抑制的方式来向目标神经组织递送神经刺激的***。
B.EMG辅助的神经刺激引线放置和程控
虽然常规的骶神经刺激方式在对与膀胱和肠相关的功能障碍的治疗方面已经展现出了效果,但是需要改进对神经刺激引线的定位以及引线的试验植入位置与永久性植入位置之间的一致性,并且需要改进程控方法。神经刺激依赖于经由一个或多个神经刺激电极来将治疗刺激从脉冲发生器一致地递送至特定神经或目标区域。在可植入引线的可以通过患者组织中形成的隧道前进的远端上提供神经刺激电极。可植入神经刺激***向患者提供很大的自由和移动性,但是在通过手术来植入这种***的神经刺激电极之前,可能更容易对其进行调节。令人期望的是,在植入IPG之前,内科医生确认患者具有所期望的运动反应和/或感觉反应。对于至少一些治疗(包括对至少一些形式的泌尿功能障碍和/或大便功能障碍的治疗),展示适当的运动反应对准确且客观的引线放置而言可能非常有益,而可能不需要或不可获得感觉反应(例如,患者处于全身麻醉)。
将神经刺激电极和可植入引线放置和校准为足够靠近特定神经对治疗的效果而言可能是有益的。相应地,本公开的方面和实施例涉及帮助和改善神经刺激电极放置的准确度和精度。进一步地,本公开的方面和实施例针对帮助和改善用于对通过植入式神经刺激电极来实施的刺激程序设置治疗处理信号参数的方案。
在植入永久性设备之前,患者可能经受初始测试阶段,以便估计对治疗的潜在反应。如以上所描述的,PNE可以在局部麻醉下完成,根据患者的主观感觉反应、使用测试针来标识(多个)适当的骶神经。其他测试过程可以涉及二阶段手术过程,在所述二阶段手术过程中,针对测试阶段(第一阶段)而植入四极尖齿形引线,以便判定患者是否显示出充分的症状减轻频率,并且在适当情况下,继续对神经调节设备的永久性手术植入。对于测试阶段和永久性植入,确定引线放置的位置可能取决于患者或内科医生中的任一者或两者的主观定性分析。
在示例性实施例中,判定可植入引线和神经刺激电极是否位于所期望的或正确的位置中可以通过使用肌电图(“EMG”)(也被称为表面肌电图)来完成。EMG是使用EMG***或模块来评估和记录肌肉所产生的电活动的技术,产生被称为肌电图的记录。当肌肉细胞被电激活或神经激活时,EMG检测那些细胞生成的电位。可以对信号进行分析,以便检测激活水平或募集相。可以通过患者的皮肤表面、肌内地、或通过布置在患者体内靠近目标肌肉的电极、或使用外部或内部结构的组合来执行EMG。当肌肉或神经由电极刺激时,EMG可以用于响应于刺激而判定相关肌肉是否被激活(即,肌肉是否完全收缩、部分收缩、或不收缩)。相应地,肌肉的激活程度可以指示可植入引线或神经刺激电极是否位于患者身体上的期望或正确位置中。进一步地,肌肉的激活程度可以指示神经刺激电极是否正提供足够强度、振幅、频率或持续时间的刺激来在患者身体上实施治疗方案。由此,对EMG的使用提供了客观且定量的方式,通过所述方式来标准化对可植入引线和神经刺激电极的放置,减少了对患者感觉反应的主观评价。
在一些方式中,位置滴定过程可以可选地部分基于来自患者的感觉异常或基于疼痛的主观反应。相比而言,EMG触发了可测量且离散的肌肉反应。由于治疗效果通常依赖于神经刺激电极在目标组织位置处的精确放置以及对神经刺激治疗的恒定重复递送,所以使用客观EMG测量可以大大提高SNM治疗的效用性和成功性。根据对目标肌肉的刺激,可测量的肌肉反应可以是部分或完全肌肉收缩,包括如在表1中所示出的低于对可观察的运动反应的触发的反应。此外,通过利用允许神经刺激引线保持植入以供用于永久性植入式***的试验***,永久性植入式***的效果和疗效与试验期的结果更一致,这进而导致改善的患者疗效。
C.示例***实施例
图1根据本发明的各方面示意性地展示了示例神经刺激***设置,所述示例神经刺激***设置包括用于试验神经刺激***200的设置以及用于永久性植入式神经刺激***100的设置。EPG 80和IPG 50中的每一者都与临床医生程控器(CP)60和患者遥控器70兼容和无线地通信,所述临床医生程控器和所述患者遥控器用于对试验神经刺激***200和/或(在成功试验之后)永久性植入式***100进行定位和/或程控。如以上所讨论的,***在试验***设置100中利用成套电缆和EMG传感器贴片来促进引线放置和神经刺激程控。CP可以包括用于辅助引线放置、程控、重新程控、刺激控制和/或参数设置的专用软件、专用硬件和/或两者。此外,IPG和EPG中的每一者都允许患者对刺激具有至少一些控制(例如,启动预设程序、增大或减小刺激)和/或使用患者遥控器来监测电池状态。这种方式还允许试验***与永久性***之间的几乎无缝转换。
在一方面,在引线被植入在患者体内时,CP 60由内科医生用于调节EPG和/或IPG的设置。CP可以是临床医生用于对IPG进行程控或在试验期内控制EPG的平板计算机。CP还可以包括对刺激诱发肌电图进行记录以便促进引线放置和程控的能力。患者遥控器70可以允许患者接通或断开刺激,或者改变在被植入时来自IPG的或者在试验阶段来自EPG的刺激。
在另一方面,CP 60具有控制单元,所述控制单元可以包括微处理器和专用计算机代码指令,所述专用计算机代码指令用于实施临床内科医生用于部署治疗***和设置治疗参数的方法和***。CP通常包括图形用户界面、EMG模块、可以耦合至EMG输出刺激电缆的EMG输入端、EMG刺激信号发生器、和刺激电源。刺激电缆可以被进一步配置成耦合至进入设备(例如,孔针)、***的治疗引线等中的任何一项或所有项。EMG输入端可以被配置成与用于附接至患者的与肌肉(例如,由目标神经衰弱的肌肉)相邻的皮肤的一个或多个感觉贴片电极耦合。CP的其他连接器可以被配置成与电接地或接地贴片、电脉冲发生器(例如,EPG或IPG)等耦合。如以上所指出的,CP可以包括具有用于执行EMG分析的硬件或计算机代码的模块,其中,所述模块可以是控制单元微处理器的部件、耦合至刺激和/或感觉电缆或者与其连接的预处理单元等。
在其他方面,每当引线连接至EPG、IPG或CP时,CP 60允许临床医生读取每一个电极触点的阻抗,以便确保做出可靠连接并且引线完好。这可以用作对引线进行定位和对引线进行程控两者的初始步骤,以便确保电极适当运行。CP 60还能够保存和显示患者用于帮助促进冲程控的先前(例如,高达最后四个)程序。在一些实施例中,CP 60进一步包括用于将报告保存到USB驱动器的USB端口和充电端口。CP被配置成用于在将引线放置在患者身体内时结合EPG以及在程控期间结合IPG进行操作。在测试模拟期间可以通过专用成套电缆或通过无线通信来将CP电子地耦合至EPG,从而允许CP对连接至EPG的引线上的电极进行配置、修改或以其他方式程控。CP还可以包括用于接通和断开CP和/或用于接通和断开刺激的物理开/关按钮。
EPG和IPG生成的电脉冲经由一个或多个电极中的每一个电极的远端处或附近的一个或多个神经刺激电极被递送至一个或多个目标神经。引线可以具有各种各样的形状,可以是各种各样的大小,并且可由各种各样的材料制成,所述大小、形状和材料可以被定制成用于特定治疗应用。虽然在此实施例中,引线具有适合于从IPG延伸并穿过骶骨的孔之一到达目标骶神经的大小和长度,但是在各种其他应用中,引线可以例如被植入在患者身体的***部分中(比如,在手臂或腿中),并且可以被配置成用于向***神经递送如可以用于减轻慢性疼痛的电脉冲。应当理解的是,引线和/或刺激程序可能根据所定向的神经而变化。
图2A至图2C根据本发明的各方面示出了患者的可以用于神经刺激治疗的各种神经结构的图示。图2A示出了脊髓的不同区段以及每一个区段内的相应神经。脊髓是从脑干沿着颈髓延伸、穿过胸髓并到达腰髓中的第一与第二腰椎之间的空间的神经和支持细胞的细长束。离开脊髓后,神经纤维***成多个分支,所述分支对在脑与器官和肌肉之间传输感觉和控制脉冲的各种肌肉和器官进行支配。因为某些神经可以包括支配如膀胱等某些器官的分支以及支配腿和脚的某些肌肉的分支,所以对脊髓附近的神经根处或附近的神经的刺激可以刺激支配目标器官的神经分支,这也可能导致与对另一个神经分支的刺激相关联的肌肉反应。由此,通过在视觉上、通过使用如本文中所描述的EMG或两者来监测某些肌肉反应(比如,表1中的反应),内科医生可以判定目标神经是否被刺激。虽然某个水平的刺激可能引起肉眼可见的稳健肌肉反应,但是更低水平(例如,子阈值)的刺激仍可以在不引起任何相应肌肉反应或仅使用EMG可见的反应的同时提供对与目标器官相关联的器官的激活。在一些实施例中,这种低水平刺激也可以不引起任何感觉异常。因为其允许通过神经刺激来治疗病情而不会以其他方式引起患者不适、疼痛或不期望的肌肉反应,所以这是有利的。
图2B示出了与下腰髓区域中的下背部区段相关联的神经,在所述下腰髓区域中,神经束离开脊髓并行进穿过骶骨的骶孔。在一些实施例中,使神经刺激引线前进穿过孔,直到神经刺激电极被定位在前骶神经根部为止,而刺激电极近端的引线的锚定部分通常被布置在引线所穿过的骶孔的背侧,以便将引线锚定在位。图2C示出了腰骶干和骶丛的神经(具体地,下骶骨的S1至S5神经)的详细视图。对于膀胱相关功能障碍(并且特别是OAB)的治疗而言,S3骶神经是特别感兴趣的。
图3A示意性地展示了被适配成用于骶神经刺激的完全植入式神经刺激***100的示例。神经刺激***100包括IPG,所述IPG被植入在下背部区域中并且被连接至延伸穿过S3孔以便刺激S3骶神经的神经刺激引线。引线由尖齿形锚定部分30锚定(所述尖齿形锚定部分将一组神经刺激电极40的位置维持为沿着目标神经,在此示例中,所述目标神经是支配膀胱的前骶神经根S3),以便向各种膀胱相关功能障碍提供治疗。虽然此实施例被适配成用于骶神经刺激,但是应当理解的是,类似***可以用于治疗患有例如源自周围神经或的慢性、严重、难治的神经病理性疼痛或各种泌尿功能障碍或仍进一步其他适应症的患者。可植入神经刺激***可以用于刺激目标周围神经或脊柱的后硬膜外空间。
电脉冲的特性可以经由植入的脉冲发生器的控制器来进行控制。在一些实施例中,这些特性可以包括例如电脉冲的频率、振幅、模式、持续时间或其他方面。这些特性可以包括例如电压、电流等。对电脉冲的这种控制可以包括创建一个或多个电脉冲程序、计划或模式,并且在一些实施例中,这可以包括选择一个或多个已有的电脉冲程序、计划或模式。在图3A中所描绘的实施例中,可植入神经刺激***100包括IPG中具有可以按以上所讨论的方式来重新程控或创建的一个或多个脉冲程序、计划或模式的控制器。在一些实施例中,可以在植入所述永久性神经刺激***100之前使用的部分植入式试验***的EPG中使用与IPG相关联的这些相同的特性。
图3B示出了利用粘附至患者皮肤(具体地,附接至患者的腹部)的EPG贴片81的试验神经刺激***200的示意图,EPG 80被包裹在贴片内。在一方面,引线被硬接线至EPG,而在另一方面,引线通过柔性贴片81的顶表面中的端口或孔口被可移动地耦合至EPG。多余引线可以通过附加的粘附贴片来固定。在一方面,EPG贴片可布置成使得在不将引线的远端移动远离目标位置的情况下可以断开引线连接并在永久性植入式***中使用所述引线。可替代地,整个***是可布置的并且可以使用永久性引线和IPG来对其进行替换。如之前所讨论的,当植入了实验***的引线时,使用一个或多个传感器贴片、经由CP来获得的EMG可以用于确保引线被放置在接近目标神经或肌肉的位置处。
在一些实施例中,试验神经刺激***利用粘附至患者皮肤并且通过引线延伸段22耦合至植入式神经刺激引线20的EPG贴片81内的EPG 80,所述引线延伸段通过连接器21与引线20耦合。此延伸段和连接器结构允许对引线进行延伸,从而使得EPG贴片可以放置在腹部上,并且如果试验证明成功,则允许使用具有适合于永久性植入的长度的引线。此方式可以利用两个经皮切口,在第一切口中提供连接器并且引线延伸段延伸穿过第二经皮切口,在其之间存在短的穿隧距离(例如,约10cm)。这种技术还可以在将实验***转换为永久性植入式***期间使所植入的引线的移动最小化。
在一方面,通过患者遥控器和/或CP、采用与永久性植入式***的IPG相似或完全相同的方式来无线地控制EPG单元。内科医生或患者可以通过使用这种便携式遥控器或程控器来改变EPG所提供的治疗,并且所递送的治疗被记录在程控器的存储器上,以供用于确定适合于在永久性植入式***中使用的治疗。在试验神经刺激***和永久性神经刺激***中的每一者中,CP可以用于引线放置、程控和/或刺激控制。此外,每一个神经刺激***允许患者使用患者遥控器来控制刺激或监测电池状态。由于这种配置允许试验***与永久性***之间的几乎无缝转换,所以其是有利的。从患者的角度来看,***将以相同的方式进行操作并且将以相同的方式来控制所述***,从而使得患者使用试验***的主观体验与将在使用永久性植入式***时体验的东西更紧密地匹配。由此,这种配置减小了患者可能具有的关于***将如何进行操作和如何对其进行控制的任何不确定性,从而使得患者将更有可能接纳实验***或永久***。
如在图3B的详细视图中所示出的,EPG 80被包裹在柔性分层贴片81内,所述柔性分层贴片包括EPG 80通过其来连接至引线延伸段22的孔口或端口。所述贴片可以进一步包括具有模塑的触觉细部的用于允许患者通过粘附贴片81的外表面来接通和/或断开EPG的“开/关”按钮83。贴片81的下侧覆盖有与皮肤相容的粘附剂82,以供连续附接至患者试验期的持续时间。例如,具有与皮肤相容的粘附剂82的透气性条带将允许EPG 80在试验期间保持连续附接至患者,所述试验可能持续超过一周(通常两周到四周)或甚至更长的时间。
虽然以上所描述的***在定位引线的最优位置和微调引线放置方面提供了相当大的改进并且确定了最优神经刺激程序,但是当务之急是,在成功放置引线之后,确保在整个治疗过程内维持引线位置。如果神经刺激引线迁移,甚至很小的轴向距离,则电极可能从目标神经处移动,从而使得在不对引线进行重编程或重定位的情况下,神经刺激治疗可能不递送一致的结果或者不再提供治疗效果。
在可完全植入***中,脉冲发生器被植入在患者体内大小足够于舒适地包含脉冲发生器的区域中,通常在下背部区域或下腹部区域中。因为电极可能需要被定位成离可植入脉冲发生器相当远的距离,但是根据所递送的治疗或疗法,神经刺激引线用于将电脉冲从植入脉冲发生器递送到电极。虽然许多这种***已经证明有效,但是研究表明神经刺激引线可能随着时间移动,特别是当引线延伸穿过经受移动的区域时。这种移动可能使电极与目标位置错开,从而使得神经刺激治疗变得无效,需要对引线进行调整或替换。因此,期望的是,在这种***中的刺激引线上提供锚定设备以便抑制引线的移动和电极的错位。虽然常规神经刺激已经发展了各种锚定机制,但是这种机制通常使植入程序复杂化、不期望地增大引线的递送轮廓、难以替换或移除、或者证明无效。
图4展示了完全可植入的且被适配成用于骶神经刺激治疗的示例神经刺激***100。可植入***100包括IPG 90,所述IPG耦合至神经刺激引线20,所述神经刺激引线包括处于引线远端的一组神经刺激电极40。引线包括具有一系列尖齿的引线锚定部分30,所述尖齿放射状地向外延伸,以便在植入之后锚定引线并维持神经刺激引线20的位置。引线20可以进一步包括用于辅助使用如荧光镜检查等可视化技术来安置和定位引线的一个或多个不透射线标记(例如,硅标记)25。在一些实施例中,IPG提供通过一个或多个神经刺激电极来向目标神经递送的单极或双极电脉冲。在骶神经刺激时,通常通过如在本文中所描述的S3孔来植入引线。
如在图4中可以看到的,神经刺激引线20包括引线的远端处的多个神经刺激电极30,并且锚定件10被布置在电极30的近端。通常,锚定件被布置在所述多个电极的附近和近端,以便提供将引线锚定成相对靠近电极。因为这种配置允许在植入期间、在展开锚定件之前(如以下所描述的)对神经刺激电极进行测试(这允许在引线被锚定在位之前确定神经刺激电极的最优位置),所以所述配置也是有利的。如所示出的,锚定件10包括绕引线主体螺旋状扫过的锚定件主体12以及从螺旋主体12处横向地向外延伸的多个尖齿14。因为这种构型提供了在从共同锚定件主体处延伸的同时围绕引线既圆周地也轴向地分布的多个尖齿(由此简化了对锚定尖齿的附接和替换),所以所述构型是有利的。此外,因为锚定件主体在引线主体周围螺旋状地延伸,所以这允许在尖齿形区域中保留引线主体的柔韧性。在一方面,锚定件由与形成引线主体的且柔性到足以在不损伤组织的情况下提供相对组织的锚定力的材料生物相容和相容的适当材料构造。
在一方面,可以利用充电设备50(CD)、通过电导耦合来对IPG进行无线再充电,所述充电设备是由可再充电电池供电的便携式设备,以便在充电的同时允许患者移动性。CD用于通过RF感应来对IPG进行经皮充电。可以使用粘附剂来将CD贴在患者皮肤上或者可以使用如图1的示意图中所示出的带53或粘附剂贴片52来将其固定在位。可以通过将CD直接***到插座中或通过将CD放置在连接至AC壁式插座或其他电源的充电座或充电站51中从而对CD进行充电
图5A至图5C示出了IPG及其内部部件的详细视图。在一些实施例中,脉冲发生器可以生成向神经递送的以便控制疼痛或引起一些其他期望的效果(例如,以便抑制、阻止或中断神经活动)的一个或多个非消融性电脉冲,从而治疗OAB或膀胱相关功能异常。在一些应用中,可以使用脉冲振幅范围在0mA与1,000mA之间、0mA与100mA之间、0mA与50mA之间、0mA与25mA之间、和/或任何其他或中间振幅范围的脉冲。脉冲发生器中的一个或多个脉冲发生器可以包括被适配成用于向可植入神经刺激***的其他部件提供指令并从其中接收信息的处理器和/或存储器。处理器可以包括如来自 等的可商购获得的微处理器等微处理器。IPG可以包括如一个或多个电容器或电池、一个或多个电池等能量存储特征,并且通常包括无线充电单元。
电脉冲的一个或多个特性可以经由IPG或EPG的控制器来进行控制。在一些实施例中,这些特性可以包括例如电脉冲的频率、振幅、模式、持续时间或其他定时和幅度方面。这些特性可以进一步包括例如电压、电流等。对电脉冲的这种控制可以包括创建一个或多个电脉冲程序、计划或模式,并且在一些实施例中,这可以包括选择一个或多个已有的电脉冲程序、计划或模式。在一方面,IPG 90包括具有可以创建和/或重新程控的一个或多个脉冲程序、计划或模式的控制器。在一些实施例中,IPG可以被程控成用于改变刺激参数(包括在从0mA到10mA范围内的脉冲幅度、在从50μs到500μs范围内的脉冲宽度、在从5Hz到250Hz范围内的脉冲频率、刺激模式(例如,连续的或循环的)、以及电极配置(例如,阳极、阴极或关闭)),以便实现特定于患者的最优治疗疗效。具体地,这允许对每一位患者而确定最优设置(即使每一个参数可能因人而异)。
如在图5A和图5B中所示出的,IPG可以包括处于一端的头部部分11以及处于相对端的陶瓷部分14。头部部分11容纳馈通组件12和连接器栈13,而陶瓷壳部分14容纳用于促进与临床医生程序、患者遥控器和/或用于促进使用CD来进行的无线充电的充电线圈的无线通信的天线组件16。IPG的剩余部分被钛壳部分17覆盖,所述钛壳部分包裹促进以上所描述的电脉冲程序的印刷电路板、存储器和控制器部件。在图5C中所示出的示例中,IPG的头部部分包括与连接器栈13耦合的四引脚馈通组件12,在所述连接器栈中,耦合了引线的近端。四个引脚与神经刺激引线的四个电极相对应。在一些实施例中,连接块被电连接至四个铂/铱合金馈通引脚,所述引脚连同钛合金凸缘被钎焊至氧化铝陶瓷绝缘体板。此馈通组件被激光缝焊接至钛-陶瓷钎焊的壳以便形成用于电子器件的完整的气密外壳。
在图5A中所示出的IPG中,在IPG的一端上利用陶瓷和钛钎焊的壳,铁氧体线圈和PCB天线组件被定位在所述一端处。经由陶瓷到金属(Ceramic-to-Metal)钎焊技术来提供可靠的气密密封。氧化锆陶瓷可以包括3Y-TZP(3mol%氧化钇稳定的四方氧化锆多晶体)陶瓷,其具有高弯曲强度和抗冲击性并且已经在许多可植入医疗技术中对其进行商业使用。然而,将理解的是,其他陶瓷或其他适当的材料可以用于构造IPG。
由于通信天线被容纳在气密陶瓷壳之内,所以对陶瓷材料的利用提供了用于与外部患者遥控器和临床医生的程控器进行无线通信的有效的射频透明窗。在维护用于IPG与外部控制器(比如,患者遥控器和CP)之间的长期且可靠的无线通信的有效的射频透明窗的同时,此陶瓷窗已经进一步促进了对植入物的微型化。不像现有技术产品(在现有技术产品中,通信天线被放置在气密壳之外的头部中),IPG的无线通信在设备的使用期内通常是稳定的。这种现有技术设备的通信可靠性由于人体中的头部材料的介电常数随着时间的变化而趋于降级。铁氧体磁心是图5B中所示出的被定位在陶瓷壳94之内的充电线圈组件95的一部分。铁氧体磁心通过与金属壳部分97相反的陶瓷壳来聚集磁场通量。这种配置将耦合效率最大化,这降低了所需要的磁场并进而降低了充电期间的设备发热。具体地,因为磁场通量被取向为在垂直于最小金属横截面区域的方向上,所以最小化了充电期间的发热。应当理解的是,仅出于说明性目的而描述这些IPG结构和神经刺激引线,并且本文中所描述的锚定结构可以与根据本发明的原理的各种其他神经刺激引线和IPG一起使用。
所述引线的近端包括多个导体,所述多个导体与在远端处与头部部分91内的连接器栈93内的相应触点电耦合(由此将IPG触点与引线20的神经刺激电极40连接,以便递送神经刺激治疗)的多个电极相对应。尽管限制了在IPG所定位的后背部区域中的移动,但是引线仍然可能由于各种原因而经受力量和轻微移动,例如,由于组织容量的改变、***所植入的组织区域的创伤、或者常规肌肉运动。当这些力量和运动随着时间而重复时,引线近端部分与IPG之间的连接可能由于柔性引线和IPG头部部分91的结点处存在的刚度失配的点处的重复应力和应变所引起的疲劳而变得受损。在一些实施例中,包括了沿着引线离开头部部分91的引线近端部分延伸的应变消除元件,以便在引线的近端部分与所述IPG的结点处提供应变消除,从而维持电连接的完整性并延长引线的使用寿命。
在一些实施例中,***包括沿着相邻IPG的头部部分的引线近端部分延伸的应变消除元件。应变消除元件可以布置在引线近端部分周围或者可以整合到引线自身中。应力消除元件可以包括与IPG的头部部分附接或对接的近端基部。在一些实施例中,应变消除元件是在引线的近端部分周围延伸的螺旋元件。应变消除元件可由金属(例如,不锈钢)、聚合物或任何其他适当材料形成。引线的近端部分可以包括应变消除元件所存在的凹陷部分,从而使得应变消除元件的外表面与引线的外表面基本上齐平或大约齐平。可替代地,应变消除元件可以根据需要而应用于沿着引线的任何位置的非凹陷部分或标准尺寸部分。通常,应变消除元件长度在约1英寸到约6英寸的范围内,以便减少IPG附近的引线近端部分的弯折或弯曲,这可能随着时间而损害电连接。在一方面,应变消除元件被形成为以便沿着纵向轴线具有增大的刚度,从而抑制引线的近端部分的横向弯曲。本文中关于螺旋锚定件主体的结构和设计而描述的方面中的任何方面可适用于应变消除元件。
在一些实施例中,如在图6C中所示出的,应变消除元件27包括螺旋结构,所述螺旋结构沿着引线20的与引线20被***到IPG 90的头部部分91的位置相邻的近端部分延伸。应变消除元件27可以包括被配置成用于牢固地附接至头部部分91的近端基部28和环绕引线的近端部分的螺旋部分29。通常,螺旋部分29抑制如相比于引线的增大的刚度,从而使得螺旋部分29经受在近端区域中施加到引线上的任何应力或力量。此外,螺旋结构限制了所述区域中的最小弯曲半径,这阻止了可能损坏应变消除位置处的引线的突然弯曲。应变消除元件可由任何适当的生物相容材料(包括聚合物或各种金属(例如,不锈钢、镍钛诺)形成。应变消除构件可以在制造时附接至引线,或者可替代地,在植入或附接至IPG连接器的时间装载到引线上。
在一方面,应变消除元件足够薄,从而使得其低轮廓不会大幅度增大穿过护套的引线的最大横截面轮廓或横断轮廓。在一些实施例中,引线的近端部分可以具有减小的直径和尺寸,以便适配地接纳应变消除构件,从而使得应变消除构件与应变消除构件远端的引线外表面基本上齐平。
图6A和图6B分别展示了示例应变消除构件27和27’的详细视图,每一个示例应变消除构件包括用于固定至IPG头部部分的近端基部28以及用于卷绕在引线20的近端部分上的螺旋应变消除部分29。可以根据特定IPG头部部分来对近端基部部分28进行大小设定和尺寸设定。在一方面,螺旋部分29可以被配置成用于沿着引线的近端部分的长度提供可变刚度。例如,沿着应变消除的长度,螺旋部分29可以具有可变厚度,以便在所述区域中提供逐渐刚度转变和/或沿着应变消除的长度,螺旋部分的节距和/或宽度可以发生变化,以便在所述区域中提供渐变刚度并限制弯曲半径。在另一方面,应变消除元件27可以包括类似于本文中所描述的锚定件的一个或多个尖齿(未示出),以便向应变消除部分提供组织固定并进一步抑制引线的近端部分的移动或迁移。
III.通过螺旋锚定件来进行引线附着
图7展示了神经刺激引线20的详细视图,所述神经刺激引线类似于图4中的神经刺激引线,具有安装在引线的锚定部分22上被示出为处于展开构型的锚定主体10。如可以看到的,螺旋主体12绕中央纵向轴线螺旋状地扫过以便放置在引线主体上,并且所述多个尖齿14沿着螺旋主体12分布,从中央轴处横向地向外延伸并在近端方向上成一定角度。如在图8对10的详细视图中所示出的,锚定主体的所述多个尖齿14分布成以便以间隔范围(比如,在10°与90°之间)内的规律间隔(例如,30°、45°、90°)放射状地彼此偏移,从而使得多个尖齿围绕中央轴在不同方向上圆周地向外延伸。这围绕引线主体分布了任何锚定力,以便改善对引线的锚定。
在一方面,锚定体10包括嵌入在螺旋主体12内的不透射线条带16,以便允许通过可视化技术来进行对锚定件10的定位。不透射线条带可由如铂合金(例如,Pt/lr)等任何不透射线材料制作,以便使用标准可视化技术可见。因为这种条带促进将引线定位在目标位置处,所以它是有利的。在其他实施例中,螺旋主体可由不透射线材料形成,例如,可以将不透射线材料混合到形成锚定体的聚合物材料中。
图9A和图9B分别展示了具有递送构型和展开构型中的附接锚定件的神经刺激引线。在图9A中,所述多个尖齿14折叠抵靠引线20体(而不彼此重叠)或螺旋主体的相邻区段。通常,当引线前进穿过组织中的隧道到达目标位置时,尖齿在递送构型中受外护套(未示出)约束。螺旋主体以一定的节距掠过,以允许螺旋主体的相邻匝之间具有供标签向内折叠抵靠引线主体的充分空间,这允许减小的递送轮廓。在一方面,锚定体的横截面小于2.0mm,小到足以被递送穿过5Fr护套。在一方面,引线主体包括具有减小的外径的凹陷部分22,螺旋主体12被附接在所述凹陷部分中。因为锚定体的近端和远端紧靠凹陷部分的近端和远端并且允许引线的锚定体部分的减小的横截面轮廓或横断轮廓,所以这种特征促进了锚定件10与引线主体20之间的耦合。一旦确认了电极被递送至目标位置,就可以向近端抽回护套,由此允许所述多个尖齿弹性地回到如图9B中所示出的展开构型(尖齿被偏置朝向展开构型)。
图10A和图10B展示了在图9B中被示出为在展开构型中的锚定体10的详细视图。在此实施例中,尖齿14全部向近端倾斜。然而,应当理解的是,在其他实施例中,锚定体10可以被配置成使得尖齿向远端或向近端成一定角度、垂直于螺旋主体的纵向轴线延伸、或者在如期望用于特定应用的多个不同方向上延伸。
在一方面,锚定体坚硬到足以施加充足的锚定力来将引线维持在位且柔性到足以向内折叠抵靠引线且避免损伤组织(如果将引线从组织处移除)的材料制作。在一些实施例中,锚定件由肖氏硬度在50A与80D之间(优选地,约70D)的范围内的的模制聚氨酯制作。螺旋主体的宽度可以在1.0mm与3.0mm之间(优选地,约2.0mm)并且总长度可以在10mm与30mm之间(优选地,约20mm)。锚定件被配置成使得横断轮廓小于2.0mm(优选地,1.7mm或更小),从而使得在其上附接有锚定件的引线可以通过标准护套(比如,5Fr护套)来递送。在某些实施例中,尖齿的长度在1mm与3mm之间(优选地,约1.8mm);宽度在0.5mm与2.0mm之间(优选地,约0.8mm);厚度在约0.2mm与0.5mm之间(优选地,约0.3mm)。在某些实施例中,锚定件包括10到20个尖齿(优选地,12到16个尖齿),所述尖齿沿着螺旋主体的长度被间隔开,以便围绕引线在不同方向上圆周地延伸。在一些实施例中,所有尖齿具有相同的长度并且在相同方向上成一定角度,而在其他实施例中,尖齿可以具有变化的长度和宽度,并且可以在远端方向和近端方向两者上成一定角度。虽然根据以上所描述的配置来将本文中所描述的锚定件中的任何锚定件尺寸设计成用于促进通过5Fr护套来递送锚定件是有利地,但是应当理解的是,可以根据如期望用于特定应用或神经刺激引线的各种其他尺寸(长度、尖齿数量等)来配置锚定件。
图10A和图10B以及图11A和图11B展示了类似于图8中所示出的锚定件的示例锚定件,除了尖齿14以不同形状形成以外。例如,在一方面,如图8中所示出的,尖齿可以被形成为使得端面是有角度的或者尖的。在另一方面,如在图10A和图10B中所示出的,尖齿可以被形成为基本上矩形的形状。在另一方面,如在图11A和图11B中所示出的,尖齿可以被形成为使得角和/或边缘是弯曲的、倒圆的或倒角的。在锚定引线期间当尖齿与组织接合时,这种特征可以帮助减小尖齿的角或边缘对相邻组织造成的创伤的可能性。
图12A和图12B展示了类似于图8中的锚定件的示例锚定件,除了所述多个尖齿在近端方向和远端方向上成一定角度以外。如可以看到的,最近端尖齿在远端方向上成一定角度,而其余尖齿在近端方向上成一定角度。这个方面可以用于在引线倾向于在近端方向和远端方向两者上经历力的应用中。例如,虽然研究表明通过骶孔植入的神经刺激引线主要经历了在近端方向上引导的力,但是如手臂或腿中的***植入的引线等各种其他应用可能在近端方向和远端方向上经历显著的力。
图13A和图13B展示了包括多个锚定件区段10’的锚定件10。如所示出的,锚定件由连接在一起的两个区段组成。锚定件区段10’可以是模块化的,允许在引线上使用如特定引线或应用所需要的一个或多个锚定件区段。锚定件区段可以包括用于将所述区段彼此附接或耦合的装置,或者可以通过本领域的技术人员熟知的各种方法(比如,通过使用粘附剂、机械或化学耦合、或氧化结合方法)来结合一起。这种特征可以允许用户根据期望、根据不同尖齿的不同长度以及不同尺寸和/或方向来定制锚定部分。
图14A和图14B展示了具有螺旋拔塞器型形状的锚定件10。锚定件包括连续螺旋阀瓣,所述连续螺旋阀瓣具有多个区段,所述多个区段通过将螺旋阀瓣切割成可以朝着引线主体折叠而不彼此重叠的多个区段来限定。在一方面,锚定件10由单个整体部件单片地形成。例如,锚定件10可由螺旋拔塞器型结构形成,在所述螺旋拔塞器型结构中,螺旋阀瓣由在螺旋阀瓣中切割以便对可以向下折叠抵靠引线(以便通过约束***护套来递送锚定件)的多个尖齿14进行限定的楔形凹口15分成尖齿。
在另一方面,本文中所描述的锚定件中的任何锚定件可以包括一个或多个各种其他特征,包括:可生物降解尖齿、药物洗脱尖齿、以及在达到某个弯曲角度之后打开或折叠以便允许容易的***或缩回的柔性碟状尖齿。在另一方面,锚定件可以包括屏蔽或中断由MRI引起的发热的条带或嵌入式材料。
在一方面,锚定件10包括在植入之后的某个时间段内释放一个或多个治疗混合物的一个或多个药物洗脱部件。这种药物洗脱部件可以包括锚定件的一部分、沿着锚定件的长度缠绕的条带、形成锚定件的材料、或者在锚定件或其一部分上沉积的涂层。例如,可以将药物或治疗混合物喷洒在锚定件上,锚定件可以浸泡在药物或混合物中,或者药物或混合物可以混合到形成锚定件的聚合物中。在一些实施例中,锚定件可由生物可吸收或不可吸收聚合物材料或涂覆有一层药物洗脱聚合物的不可吸收基部的组合来形成。在一方面,可以应用药物或治疗混合物,以便促进在特定方向上释放药物,例如,可以应用药物或混合物来促进沿着尖齿的轴线而各向同性地或各向异性地释放药物。可以选择洗脱药物以便促进和缩短治愈时间从而使引线迁移的风险最小化。可替代地或另外地,锚定件可以被配置成用于洗脱各种其他药物,从而提供各种其他治疗效益。例如,锚定件10可以被形成为用于洗脱用于促进组织内的固定的混合物,比如,用于在植入之后促进组织形成从而进一步使引线迁移的风险最小化的生物粘附剂或混合物。
虽然在所示出的实施例中的许多实施例中,尖齿被配置成沿着平行于纵向轴线(螺旋部分沿着所述纵向轴线延伸)的轴线突出和折叠,但是在一些实施例中,锚定件可以被设计成使得尖齿沿着螺旋或倾斜轴线向内折叠。这种构型可以允许通过在一个方向上扭转引线来缩回尖齿从而促进移除引线,和/或允许通过在相对方向上扭转引线来进一步展开尖齿。在其他实施例(比如,尖齿沿着平行于纵向轴线的轴线折叠的实施例)中,尖齿可能柔性和/或脆弱到足以允许通过仅利用足够的力来缩回引线从而移除引线。
在一方面,可以通过在整块材料(例如,如镍钛诺等形状记忆金属)中切割图案来形成锚定件。例如,可以通过在一根管子或一块圆柱形材料中激光切割螺旋图案来形成锚定件,所述图案与如图15B的示例中所示出的处于约束构型的锚定件相对应。然后,可以通过各种其他方式来在模具上支撑尖齿或者将尖齿撑住,从而使得可以在锚定件处于如在图15A中所示出的展开构型中时对材料进行热定形。通常,如在图15C中所示出的,将图案限定成使得尖齿沿着螺旋主体的长度均匀分布,尖齿在多辐射方向上沿着螺旋的范围向外延伸,以便在所有方向上提供均匀分布的组织固定。
在一方面,可以将螺旋基部热定形成具有比引线主体更小的内径,以便提供过盈配合,之后可以扭转螺旋基部以便打开并且之后装载到引线主体上。在释放之后,螺旋基部自动地缩紧在引线主体上,提供与引线的牢固附接。螺旋设计被配置成使得当尖齿向下折叠时,尖齿不会彼此重叠或不会与锚定件的螺旋主体重叠。
在另一方面,如在图15A中所示出的,锚定件设计可以分别包括近端和远端处的一个或多个保持特征11、13,所述保持特征使得能够将锚定件精确地锚定在设备上。在此实施例中,近端和远端保持特征11、13被设计成紧靠引线的减小直径的锚定部分22的相应近端和远端,在所述减小直径的锚定部分中接纳锚定件10以便将锚定件10附着到引线20体上并在递送引线和展开锚定体10之前、期间和/或之后阻止锚定体10的轴向运动。在另一方面,近端和远端保持特征11、13可以沿着近端和远端饰面边缘而被设计成各种形状(例如,锯齿形的、弯曲的、有角的)以便与沿着引线在锚定部分22的近端和远端处的相应形状互锁。这种配置可用于阻止锚定件10相对于引线主体20的自由旋转移动或用于辅助在引线旋转之后将旋转移动平移至锚定件。
在一方面,锚定件10可由任何类型的可植入生物相容聚合物形成。可以将如硫酸钡、铋和钨等不透射线填料添加到聚合物中,以便使尖齿在x射线下是不透射线的。可替代地或另外地,可以将由如金或铂等不透射线金属制成的带嵌入到螺旋主体中,以便将射线不透性添加到尖齿中。在另一种方法中,锚定体可以包括一个或多个可以与可视化技术一起用于对锚定体进行定位或者可以用于确定尖齿何时展开的一个或多个离散不透射线标记。例如,通过将一对标记中的一个标记放置在尖齿端部并将另一个标记放置在螺旋主体上直接与尖齿的端部相邻,当锚定件处于约束构型时,一对标记的分离可以指示尖齿何时展开以及它们在组织内展开的程度。
图16A展示了另一种方法,可以通过所述方法来形成锚定体10。如在图16A中所示出的,可以从一段挤压聚合物管上切除锚定体,例如,通过激光切割。随后可以通过热定形或回流过程来将尖齿定形成具有向外突出的偏置。例如,锚定体10可以安装在内部模具(未示出)上,所述内部模具在与展开的锚定体配置相对应的向外突出的配置中支撑尖齿,并且对聚合物进行加热或者允许对聚合物进行定形。在定形之后,锚定体10的尖齿14被偏置朝向如图16B中所展示的展开构型。在一方面,这种加热和回流过程还可以用于并入一个或多个不透射线标记,比如,以与螺旋相同的节距卷绕的Pt/Ir线或带。在另一方面,聚合物管挤压可以并入带或线圈(例如,镍钛诺或金)带,以便向锚定体尖齿提供自展开或自关闭形状记忆元件。激光切割可以被编程成用于在嵌入式带线周围进行切割,以便将线包括在螺旋主体中。
图17A和图17B展示了又另一种方法,可以通过所述方法来形成锚定体10。可以使用多件式模具设计、通过注塑成型来形成如本文中所描述的螺旋锚定体中的任何螺旋锚定体等螺旋锚定体。例如,两片式模具设计、三片式模具设计或四片式模具设计可以用于将锚定件模制成单个完整部件。在一方面,模具可以被配置成以便以特定于锚定件的设计的角度释放锚定件。如在图17A中所示出的,三片式模具17用于通过注塑成型过程来形成锚定件10。核心销18连同模具一起用于形成锚定件的开放腔。图17B展示了也被配置成与核心销18一起用于允许通过注塑成型过程来形成锚定件10的四件式模具设计17’。使用注塑成型过程来形成锚定件的一个优点是模制的锚定件沿着部件的长度可以具有变化的厚度。例如,这种锚定件可以被形成为使得基部更薄以便提高横断轮廓,并且突出尖齿更厚以便在植入之后提供保持强度。在另一方面,为了射线不透性,可以沿着整个长度在尖齿的位置处或在远端和近端并入金属元件。
在图18和图19的示例中示出了根据本发明的以上所描述的方面的形成锚定体的方法。图18的示例方法包括以下方法步骤:将螺旋图案激光切割到材料的管状区段中,所述图案与具有处于约束构型的多个尖齿的神经刺激引线锚定件相对应180;将所述管状区段的所述尖齿支撑在与所述锚定件的展开构型相对应的向外突出位置中182;以及在所述尖齿被支撑的同时对所述管状区段进行热定形,由此在所述锚定件处于所述展开构型时对所述材料进行定形184。在一方面,材料是镍钛诺(优选地,在超弹性相中并且具有从约15℃到约35℃的奥氏体结束温度),从而使得在身体内发热时,锚定体将返回展开构型。在另一方面,材料可由聚合物材料形成,在展开构型中可以通过加热和回流来对聚合物材料进行定形。可以向用户提供所述方法以便应用到引线中,或者可以在向用户运输之前通过将锚定件卷绕在锚定部分上从而附着至引线上186。图19的示例方法包括以下步骤:组装对螺旋锚定件的外表面进行限定的多件式模具,所述螺旋锚定件具有多个向外延伸的尖齿,所述多件式模具具有对锚定件的中央管腔进行限定的中央心销190;将可流动材料注入到所述组装的模具中并且允许材料至少部分地定形194;以及移除模具以便释放锚定件196。在一些实施例中,模具被配置成使得模具的外部片沿着尖齿延伸的方向移除,这减小了移除期间施加到尖齿上的应力和力。在一些实施例中,在组装期间将不透射线带添加到模具内和/或将不透射线材料添加到用于形成锚定体的可流动材料中192。再次,可以向用户提供锚定体以便与引线组装,或者可以将锚定体应用到引线上198以及可以向用户提供与引线组装的锚定件。在另一方面,在准备好用于根据本文中所描述的植入方法来***到患者中的约束护套内,锚定件可以提供有引线。
在图20和图21的示例中示出了根据本发明的各方面的使用锚定体来附着植入的神经刺激引线的方法。图20的示例方法包括以下步骤:提供神经刺激引线,所述神经刺激引线具有一个或多个神经刺激电极以及在所述一个或多个电极近端的锚定件,所述锚定件包括沿着引线的长度卷绕的螺旋主体以及附接至所述螺旋主体向内折叠抵靠引线主体的一个或多个尖齿,螺旋主体受护套约束210;在所述一个或多个尖齿向内折叠抵靠受护套约束的引线主体时使引线前进穿过患者的组织到达目标位置212;通过抽回护套来使所述一个或多个尖齿弹性地展开成从螺旋主体横向地向外延伸的展开构型214;以及通过将处于展开构型的所述一个或多个尖齿与相邻组织接合由此抑制引线的轴向运动来将神经刺激引线锚定在目标位置处216。可以通过以下方式来实现引线移除:向近端抽回引线,直到克服了柔性尖齿提供的锚定力为止。由此,尖齿由刚度足以提供所期望的锚定力但柔韧到足以避免在被抽回时避免组织损伤的材料制作。
在前述说明书中,参照其特定实施例描述了本发明,但是本领域的技术人员将会认识到,本发明并不局限于此。上述发明的不同特征和方面可以单独使用或者共同使用。此外,在不脱离本说明书的更广泛的精神和范围的情况下,可以在超出本文中所描述的环境和应用的任何数量的环境和应用中利用本发明。因此,本说明书和附图应被视为说明性的而不是限制性的。将认识到,如本文中所使用的术语“包括(comprising)”、“包括(including)”以及“具有”具体旨在被理解为本领域的开放性术语。

Claims (46)

1.一种可植入神经刺激***,包括:
可植入引线,所述可植入引线具有布置在引线主体内的一个或多个导体,所述一个或多个导体从所述引线的近端延伸到布置在所述引线的远端处或附近的一个或多个神经刺激电极;
脉冲发生器,所述脉冲发生器可耦合至所述可植入引线的所述近端,当所述脉冲发生器耦合至所述可植入引线时,所述脉冲发生器与所述一个或多个神经刺激电极电耦合,其中,所述脉冲发生器被配置成用于当被植入在目标位置处时生成多个电脉冲以便通过所述一个或多个神经刺激电极来向患者递送神经刺激治疗;
锚定件,所述锚定件与所述引线主体耦合,其中,所述锚定件包括:
螺旋主体,所述螺旋主体在所述引线主体的外侧沿着纵向轴线螺旋状地延伸;以及
多个尖齿,所述多个尖齿从所述螺旋主体延伸,其中,所述多个尖齿中的每一个尖齿被偏置朝向展开构型,其中,在所述展开构型中,所述多个尖齿横向地延伸远离所述纵向轴线,并且所述多个尖齿可弹性偏转朝向递送构型,在所述递送构型中,所述多个尖齿朝向所述纵向轴线向内折叠以便促进在植入期间递送所述神经刺激引线。
2.如权利要求1所述的***,其中,所述锚定件被配置成使得在所述递送构型中,所述多个尖齿中的每一个尖齿折叠成抵靠所述引线主体。
3.如权利要求1所述的***,其中,所述锚定件的尺寸被设定成使得,在所述递送构型中,所述锚定件具有与直径为5Fr或更大的护套相兼容的横截面轮廓。
4.如权利要求1所述的***,其中,所述螺旋主体和所述多个尖齿整体地形成。
5.如权利要求1所述的***,其中,所述锚定件由具有足够刚度的材料形成,从而使得,当所述锚定件被植入在所述患者的组织内所述目标位置处时,组织与所述多个尖齿的接合抑制所述引线的轴向运动。
6.如权利要求5所述的***,其中,所述锚定件由肖氏硬度在50A与80D之间的范围内的基于聚氨酯的材料模制而成。
7.如权利要求1所述的***,其中,所述锚定件的尺寸被设定成使得,当所述螺旋主体耦合在所述引线主体上时,所述螺旋主体沿着所述引线主体的远端部分延伸10mm与30mm之间的长度。
8.如权利要求7所述的***,其中,所述锚定件的尺寸被设定成使得所述螺旋主体延伸约20mm的长度。
9.如权利要求1所述的***,其中,在展开位置中,所述多个尖齿中的每一个尖齿从所述纵向轴线横向地向外延伸1mm与4mm之间的距离。
10.如权利要求1所述的***,其中,所述多个尖齿中的每一个尖齿的长度在1.5mm与3mm之间。
11.如权利要求10所述的***,其中,所述多个尖齿中的每一个尖齿的宽度在0.5mm与2.0mm之间。
12.如权利要求10所述的***,其中,所述多个尖齿包括具有变化长度或宽度的尖齿。
13.如权利要求10所述的***,其中,所述多个尖齿中的每一个尖齿具有矩形或细长标签形状。
14.如权利要求13所述的***,其中所述多个尖齿中的每一个尖齿具有带有倒圆或倒角的角和/或边缘的矩形形状,从而抑制在所述角和/或边缘处的组织损伤。
15.如权利要求1所述的***,其中,在展开位置中,所述多个尖齿中的每一个尖齿从所述纵向轴线以与所述纵向轴线成30与80度之间的角度横向地向外延伸。
16.如权利要求1所述的***,其中,在展开位置中,所述多个尖齿中的每一个尖齿在近端方向上成角度。
17.如权利要求1所述的***,其中,在展开位置中,所述多个尖齿在近端方向和远端方向两者上成角度。
18.如权利要求1所述的***,其中,所述螺旋主体附接至所述引线主体上凹陷部分中,从而使得当处于所述递送构型中时,所述锚定件具有2mm或更少的横截面轮廓。
19.如权利要求1所述的***,其中,所述锚定件包括多个区段。
20.如权利要求1所述的***,其中,所述锚定件进一步包括不透射线元件或标记,所述不透射线元件或标记沿着所述螺旋主体的实长延伸以便促进使用可视化技术来对所述引线进行定位。
21.如权利要求1所述的***,其中,所述锚定件包括适合于屏蔽由磁共振成像引起的发热的嵌入式屏蔽材料。
22.如权利要求1的***,其中,所述多个尖齿是可生物降解的。
23.如权利要求1的***,其中,所述多个尖齿包括药物洗脱材料。
24.如权利要求1的***,其中,所述螺旋主体是连续螺旋阀瓣,并且所述多个尖齿包括所述连续螺旋阀瓣的多个区段,所述多个区段由沿着所述连续螺旋阀瓣的长度的多个切口限定,以便允许所述多个区段向内折叠而不会彼此重叠。
25.如权利要求1所述的***,其中,所述引线包括在所述一个或多个电极近端的具有减小的直径的锚定部分,所述锚定部分的尺寸被设定成适配地接纳所述锚定件。
26.如权利要求25所述的***,其中,所述锚定部分的所述减小的直径以及长度被配置成使得,当所述锚定件在所述约束构型中被布置在所述锚定部分中时,所述锚定件与所述引线在所述锚定件近端和远端的外表面基本上齐平。
27.如权利要求1所述的***,进一步包括:
应变消除构件,所述应变消除构件沿着所述引线的与所述引线和所述脉冲发生器的结点相邻的近端部分延伸。
28.如权利要求27所述的***,其中,所述应变消除构件包括卷绕在所述引线的与所述结点相邻的所述近端部分上的螺旋部分,其中,所述螺旋部分包括相对于所述引线的所述近端部分具有增大的刚度的材料。
29.如权利要求28所述的***,其中,所述应变消除构件被配置成用于根据所述螺旋部分的可变厚度和/或可变节距中的一者或两者沿着所述引线的近端部分提供可变刚度。
30.一种用于将植入神经刺激引线锚定在患者的身体内的目标组织位置处的锚定件,所述锚定件包括:
螺旋主体,所述螺旋主体沿着其纵向轴线螺旋状地延伸;以及
多个尖齿,所述多个尖齿从所述螺旋主体延伸,其中,所述多个尖齿中的每一个尖齿被偏置朝向展开构型并且可弹性偏转以用于递送构型;
其中,在所述展开构型中,所述多个尖齿横向地延伸远离所述螺旋主体的纵向轴线,并且在所述递送构型中,所述多个尖齿朝向所述螺旋主体的所述纵向轴线向内折叠以便促进在植入期间递送所述神经刺激引线。
31.如权利要求30所述的锚定件,其中,所述锚定件被配置成使得当所述锚定件在所述递送构型中附接至引线主体时,所述多个尖齿中的每一个尖齿折叠成抵靠所述引线主体。
32.如权利要求30所述的锚定件,其中,所述锚定件的尺寸被设定成使得,当所述锚定件附接至引线主体且处于所述递送构型中时,所述锚定件具有充分小的横截面轮廓以便促进通过5Fr护套来进行递送。
33.如权利要求30所述的锚定件,其中,所述螺旋主体和所述多个尖齿由共同材料整体地形成。
34.如权利要求30所述的锚定件,其中,所述锚定件由具有足够刚度的材料形成,从而使得,当所述锚定件附接至植入式引线且处于所述展开构型时,当所述锚定件被植入在所述患者的组织内所述目标位置处时,组织与所述多个尖齿的接合抑制所述引线的轴向运动。
35.如权利要求30所述的锚定件,其中,所述锚定件由肖氏硬度在50A与80D之间的范围内的基于聚氨酯的材料模制而成。
36.一种形成用于将植入神经刺激引线锚定在患者的身体内的目标组织位置处的锚定件的方法,所述方法包括:
将螺旋图案激光切割到材料的管状区段中,所述图案与带有具有处于约束构型的多个尖齿的螺旋主体的神经刺激引线锚定件相对应;
将所述管状区段的尖齿支撑在与所述锚定件的展开构型相对应的向外突出位置中;以及
在所述尖齿被支撑的同时对所述管状区段进行热定形,由此在所述锚定件处于所述展开构型时对所述材料进行定形。
37.如权利要求36所述的方法,其中,所述材料是形状记忆金属合金,从而使得,在植入之后,在所述身体内发热时,所述金属合金弹性地返回到所述展开构型。
38.如权利要求36所述的方法,其中,所述材料是通过回流来定形并且在被定形时保持足够柔性的基于聚合物的材料,从而使得,当所述多个尖齿被约束在护套内时,所述多个尖齿可以向内折叠成抵靠引线以便促进当所述锚定件附着在所述引线上时对所述锚定件进行植入。
39.如权利要求36所述的方法,进一步包括:
通过在所述引线的锚定部分上卷绕所述螺旋主体来将所述锚定件附着到神经刺激引线的锚定部分。
40.一种形成用于将植入神经刺激引线锚定在患者的身体内的目标组织位置处的锚定件的方法,所述方法包括:
组装对锚定件的外表面进行限定的多件式模具,所述锚定件包括具有多个向外延伸的尖齿的螺旋主体,所述多件式模具具有对所述螺旋主体的中央管腔进行限定的中央心销;
将可流动材料注入到所组装的模具中并且允许所述材料至少部分地定形;以及
移除所述模具以便释放所述锚定件。
41.如权利要求40所述的方法,进一步包括:
在组装期间将不透射线带添加到所述模具内和/或在注入到所组装的模具之前将不透射线材料添加到所述可流动材料中。
42.如权利要求40所述的方法,其中,移除所述多件式模具包括沿着所述尖齿延伸所沿着的一条或多条轴线抽回所述多件式模具的外部件。
43.如权利要求40所述的方法,进一步包括:
通过在引线的锚定部分上卷绕所述螺旋主体来将所述锚定件附着到神经刺激引线的锚定部分。
44.一种在患者体内锚定神经刺激***的植入神经刺激引线的方法,所述方法包括:
提供神经刺激引线,所述神经刺激引线具有一个或多个神经刺激电极以及在所述一个或多个电极近端的锚定件,其中,所述锚定件包括沿着所述引线的长度卷绕的螺旋主体以及附接至所述螺旋主体向内折叠成抵靠引线主体的多个尖齿,所述螺旋主体受护套约束;
在所述多个尖齿向内折叠成抵靠受所述护套约束的所述引线主体时,使所述引线前进穿过患者的组织到达目标位置;
通过抽回所述护套来使所述一个或多个尖齿弹性地展开至从所述螺旋主体处横向地向外延伸的展开构型;以及
通过在将处于所述展开构型的所述多个尖齿与相邻组织接合由此抑制所述植入式引线的轴向运动来将所述神经刺激引线锚定在所述目标位置处。
45.如权利要求44所述的方法,其中,所述目标位置包括用于对OAB进行神经刺激治疗的骶神经,从而使得,使所述引线前进穿过所述组织包括使所述引线前进穿过S3孔直到所述一个或多个神经刺激电极被定位在所述骶神经处为止。
46.如权利要求45所述的方法,其中,通过将所述多个时间与相邻组织接合来锚定所述神经刺激引线包括接合在所述S3孔内和/或与其相邻的组织。
CN201580043876.7A 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构 Pending CN106659882A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011496654.XA CN112657054A (zh) 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462038122P 2014-08-15 2014-08-15
US62/038,122 2014-08-15
US201562110274P 2015-01-30 2015-01-30
US62/110,274 2015-01-30
PCT/US2015/045401 WO2016025910A1 (en) 2014-08-15 2015-08-14 Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011496654.XA Division CN112657054A (zh) 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构

Publications (1)

Publication Number Publication Date
CN106659882A true CN106659882A (zh) 2017-05-10

Family

ID=55301369

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011496654.XA Pending CN112657054A (zh) 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构
CN201580043876.7A Pending CN106659882A (zh) 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011496654.XA Pending CN112657054A (zh) 2014-08-15 2015-08-14 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构

Country Status (8)

Country Link
US (5) US9802038B2 (zh)
EP (1) EP3180070B1 (zh)
JP (1) JP6795491B2 (zh)
CN (2) CN112657054A (zh)
AU (1) AU2015301398B2 (zh)
CA (2) CA2957962C (zh)
ES (1) ES2867298T3 (zh)
WO (1) WO2016025910A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839705A (zh) * 2018-08-16 2021-05-25 Spr治疗股份有限公司 用于外周刺激的电刺激器
CN114209980A (zh) * 2022-02-23 2022-03-22 杭州神络医疗科技有限公司 神经刺激电极及其制造方法、神经刺激装置
CN116159244A (zh) * 2023-03-17 2023-05-26 上海杉翎医疗科技有限公司 一种注射式微型神经刺激器及神经刺激***

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
US9399130B2 (en) 2007-04-25 2016-07-26 Medtronic, Inc. Cannula configured to deliver test stimulation
US20150112231A1 (en) 2011-11-28 2015-04-23 Remendium Labs Llc Treatment of fecal incontinence
WO2013111137A2 (en) 2012-01-26 2013-08-01 Rainbow Medical Ltd. Wireless neurqstimulatqrs
US9861812B2 (en) 2012-12-06 2018-01-09 Blue Wind Medical Ltd. Delivery of implantable neurostimulators
AU2015203940A1 (en) 2014-01-06 2016-07-21 Remendium Labs Llc System and method for Kegel training
US9802038B2 (en) * 2014-08-15 2017-10-31 Axonics Modulation Technologies, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
WO2016025915A1 (en) 2014-08-15 2016-02-18 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
EP3180073B1 (en) 2014-08-15 2020-03-11 Axonics Modulation Technologies, Inc. System for neurostimulation electrode configurations based on neural localization
US9700731B2 (en) 2014-08-15 2017-07-11 Axonics Modulation Technologies, Inc. Antenna and methods of use for an implantable nerve stimulator
CN107073257B (zh) 2014-08-15 2020-04-10 艾克索尼克斯调制技术股份有限公司 在用于治疗膀胱过度活动症的神经刺激***中的肌电图引线定位和刺激滴定
US9802037B2 (en) * 2015-03-05 2017-10-31 Bradley D. Vilims Tension loop for a spinal cord stimulator
US10478618B2 (en) 2015-03-05 2019-11-19 Bradley D. Vilims Adjustable length tension sleeve for electrical or thermal stimulation device
KR101656723B1 (ko) * 2015-06-30 2016-09-12 재단법인 오송첨단의료산업진흥재단 피드스루 제조방법
US11413450B2 (en) * 2015-10-15 2022-08-16 Spr Therapeutics, Inc. Apparatus and method for positioning, implanting and using a stimulation lead
AU2016340161B2 (en) 2015-10-15 2021-07-15 Spr Therapeutics, Inc. Apparatus and method for positioning, implanting and using a stimulation lead
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US10328271B2 (en) * 2015-11-12 2019-06-25 Medtronic, Inc. Implantable electrical stimulator with deflecting tip lead
CA3032139A1 (en) 2016-07-29 2018-02-01 Renovia Inc. Devices, systems, and methods for training pelvic floor muscles
WO2018039670A1 (en) * 2016-08-26 2018-03-01 Spr Therapeutics, Llc Devices and methods for delivery of electrical current for pain relief
US11571575B2 (en) 2016-10-28 2023-02-07 Medtronic, Inc. Autotitration of therapy using detected electrical activity
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
US10315030B2 (en) * 2017-01-17 2019-06-11 Veressa Medical, Inc. Devices, systems, and methods for improving pelvic floor dysfunction
US10220214B2 (en) 2017-01-17 2019-03-05 Veressa Medical, Inc. Devices, systems, and methods for improving pelvic floor dysfunction
US10966754B2 (en) 2017-01-17 2021-04-06 Avation Medical, Inc. Devices, systems, and methods for delivery of electrical microstimulators
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
EP3444007B1 (en) 2017-08-16 2020-08-26 BIOTRONIK SE & Co. KG X-ray marker for implantable medical devices
WO2019046231A1 (en) 2017-08-29 2019-03-07 Medtronic, Inc. CONSTRUCTION OF IMPLANTABLE MEDICAL ELECTRIC WIRE AND ASSOCIATED IMPLANT SYSTEMS
US10589089B2 (en) 2017-10-25 2020-03-17 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
WO2019084182A1 (en) 2017-10-25 2019-05-02 Epineuron Technologies Inc. SYSTEMS AND METHODS FOR ADMINISTERING NEURODEGENERATIVE THERAPY
WO2019165108A1 (en) * 2018-02-22 2019-08-29 Axonics Modulation Technologies, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
WO2019210204A1 (en) * 2018-04-27 2019-10-31 Renovia Inc. Devices, systems, and methods for treating urinary and fecal incontinence
CN109523548B (zh) * 2018-12-21 2023-05-05 哈尔滨工业大学 一种基于临界阈值的窄间隙焊缝特征点提取方法
EP3673951B1 (en) 2018-12-28 2022-05-04 Heraeus Medical Components, LLC Overmolded segmented electrode
USD888948S1 (en) 2019-04-02 2020-06-30 Renovia Inc. Intravaginal device
USD898911S1 (en) 2019-04-03 2020-10-13 Renovia Inc. Intravaginal device assembly
USD889649S1 (en) 2019-04-05 2020-07-07 Renovia Inc. Intravaginal device
USD896958S1 (en) 2019-04-11 2020-09-22 Renovia Inc. Intravaginal device
USD899593S1 (en) 2019-04-12 2020-10-20 Renovia Inc. Intravaginal device
USD897530S1 (en) 2019-04-23 2020-09-29 Renovia Inc. Intravaginal device
USD896959S1 (en) 2019-04-23 2020-09-22 Renovia Inc. Intravaginal device
US11446485B2 (en) * 2019-04-26 2022-09-20 Nextern Innovation, Llc Lead for the temporary stimulation of a peripheral nerve
US20200338241A1 (en) * 2019-04-26 2020-10-29 Cairdac Implantable medical device comprising a metal/ceramics composite housing
WO2020242900A1 (en) 2019-05-24 2020-12-03 Axonics Modulation Technologies, Inc. Trainer device for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
JP2022540836A (ja) * 2019-07-12 2022-09-20 ニューラリンク コーポレーション ハーメチックシールされた電子機器および製造する方法のためのモノリシックな生体適合性フィードスルー
US11712569B2 (en) 2019-09-25 2023-08-01 Medtronic, Inc. System and methods of decreasing the directional sensitivity of axially aligned rechargeable implant
US11247043B2 (en) 2019-10-01 2022-02-15 Epineuron Technologies Inc. Electrode interface devices for delivery of neuroregenerative therapy
US11575236B2 (en) * 2019-10-04 2023-02-07 Medtronic, Inc. Implantable pulse generator carrier used to interface with multiple lead sizes
US11679256B2 (en) 2019-10-04 2023-06-20 Medtronic, Inc. Method of replacing an implanted neuromodulation device
US11596789B2 (en) 2019-10-04 2023-03-07 Medtronic, Inc. Adaptor
USD922575S1 (en) 2019-10-25 2021-06-15 Renovia Inc. Intravaginal device
IL295567A (en) * 2020-02-13 2022-10-01 Quantum Nanostim Llc Apparatus and method for neuromodulation with closed circuit micromagnetic hybrid waveforms to relieve pain
US11666768B2 (en) 2020-03-04 2023-06-06 Medtronic, Inc. Electrically isolated connector for implantable medical devices
US11571572B2 (en) 2020-12-15 2023-02-07 Advanced Neuromodulation Systems, Inc. Implantable peripheral nerve stimulation lead
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
CN117885291A (zh) * 2024-03-15 2024-04-16 四川省安利康医疗用品有限公司 导尿管加工用模具组件及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255368A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead with distal fixation and method
US20090012592A1 (en) * 2006-07-10 2009-01-08 Ams Research Corporation Tissue anchor
CN101678203A (zh) * 2007-01-29 2010-03-24 脊髓调制公司 无缝合线引线保持构造
CN102065947A (zh) * 2008-04-15 2011-05-18 心脏起搏器公司 希氏束刺激***
CN103702713A (zh) * 2011-11-04 2014-04-02 上海微创医疗器械(集团)有限公司 可植入主动医用导线

Family Cites Families (458)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057356A (en) 1960-07-22 1962-10-09 Wilson Greatbatch Inc Medical cardiac pacemaker
US3348548A (en) 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3646940A (en) 1969-07-15 1972-03-07 Univ Minnesota Implantable electronic stimulator electrode and method
US3888260A (en) 1972-06-28 1975-06-10 Univ Johns Hopkins Rechargeable demand inhibited cardiac pacer and tissue stimulator
US3825015A (en) 1972-12-14 1974-07-23 American Optical Corp Single catheter for atrial and ventricular stimulation
US3824129A (en) 1973-03-14 1974-07-16 Mallory & Co Inc P R Heart pacer rechargeable cell and protective control system
US3902501A (en) 1973-06-21 1975-09-02 Medtronic Inc Endocardial electrode
US3970912A (en) 1973-08-28 1976-07-20 Hoffman Philip A Battery charging circuit
US3942535A (en) 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
US3939843A (en) 1974-03-04 1976-02-24 Medtronic, Inc. Transvenous electrode
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
US4019518A (en) 1975-08-11 1977-04-26 Medtronic, Inc. Electrical stimulation system
US4044774A (en) 1976-02-23 1977-08-30 Medtronic, Inc. Percutaneously inserted spinal cord stimulation lead
US4082097A (en) 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4166469A (en) 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode
US4340062A (en) 1978-11-06 1982-07-20 Medtronic, Inc. Body stimulator having selectable stimulation energy levels
US4285347A (en) 1979-07-25 1981-08-25 Cordis Corporation Stabilized directional neural electrode lead
US4269198A (en) 1979-12-26 1981-05-26 Medtronic, Inc. Body implantable lead
DE3015260A1 (de) 1980-04-21 1981-10-22 Siemens AG, 1000 Berlin und 8000 München Endocard-elektrodenanordnung
US4379462A (en) 1980-10-29 1983-04-12 Neuromed, Inc. Multi-electrode catheter assembly for spinal cord stimulation
US4721118A (en) 1981-04-20 1988-01-26 Cordis Leads, Inc. Pervenous electrical pacing lead with foldable fins
US4437475A (en) 1981-08-28 1984-03-20 Medtronic, Inc. Transvenous cardiovascular integrated lead anchoring sleeve, protector, and permanent lead introducer stop gap
DE3146182C2 (de) 1981-11-21 1984-03-29 Peter Dr. 7889 Grenzach-Wyhlen Osypka Transvenös ins Herz einführbare Elektrodenanordnung für einen Herzschrittmacher
US4512351A (en) 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US4558702A (en) 1983-01-21 1985-12-17 Cordis Corporation Cardiac pacer having input/output circuit programmable for use with unipolar and bipolar pacer leads
AU577519B2 (en) 1983-01-21 1988-09-29 Jose A. Marchosky Implantable hyperthermia device and system
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4800898A (en) 1983-10-07 1989-01-31 Cordis Corporation Neural stimulator electrode element and lead
US4654880A (en) 1983-12-09 1987-03-31 Minnesota Mining And Manufacturing Company Signal transmission system
US4550731A (en) 1984-03-07 1985-11-05 Cordis Corporation Acquisition circuit for cardiac pacer
US4662382A (en) 1985-01-16 1987-05-05 Intermedics, Inc. Pacemaker lead with enhanced sensitivity
US4722353A (en) 1985-09-16 1988-02-02 Intermedics, Inc. Stabilizer for implantable electrode
US4848352A (en) 1987-02-13 1989-07-18 Telectronics, N.V. Method for cardiac pacing and sensing using combination of electrodes
US4744371A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Multi-conductor lead assembly for temporary use
US4957118A (en) 1988-01-15 1990-09-18 Jay Erlebacher Electrode lead
US4860446A (en) 1988-02-16 1989-08-29 Medtronic, Inc. Medical electrical lead and method of manufacture
US5052407A (en) 1988-04-14 1991-10-01 Mieczyslaw Mirowski Cardiac defibrillation/cardioversion spiral patch electrode
US4989617A (en) 1989-07-14 1991-02-05 Case Western Reserve University Intramuscular electrode for neuromuscular stimulation system
US5012176A (en) 1990-04-03 1991-04-30 Baxter International, Inc. Apparatus and method for calorimetrically determining battery charge state
JPH04125357A (ja) 1990-09-18 1992-04-24 Aisin Aw Co Ltd 自動変速機
US5366493A (en) 1991-02-04 1994-11-22 Case Western Reserve University Double helix functional stimulation electrode
CA2038160C (en) 1991-03-13 1996-10-22 Jiri K. Nor Charging circuits for rechargeable batteries and cells
US5255691A (en) 1991-11-13 1993-10-26 Medtronic, Inc. Percutaneous epidural lead introducing system and method
GB9211085D0 (en) 1992-05-23 1992-07-08 Tippey Keith E Electrical stimulation
US5257634A (en) 1992-07-16 1993-11-02 Angeion Corporation Low impedence defibrillation catheter electrode
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5342408A (en) 1993-01-07 1994-08-30 Incontrol, Inc. Telemetry system for an implantable cardiac device
JP3384027B2 (ja) 1993-05-14 2003-03-10 ソニー株式会社 充電方法および充電器
US5864220A (en) 1993-09-16 1999-01-26 Chartec Laboratories A/S Method and apparatus for controlling the charging of a rechargeable battery to ensure that full charge is achieved without damaging the battery
US5439485A (en) 1993-09-24 1995-08-08 Ventritex, Inc. Flexible defibrillation electrode of improved construction
US5484445A (en) 1993-10-12 1996-01-16 Medtronic, Inc. Sacral lead anchoring system
SE9304031D0 (sv) 1993-12-03 1993-12-03 Siemens Elema Ab Elektrodsystem
JPH07222370A (ja) 1994-01-28 1995-08-18 Sanyo Electric Co Ltd 温度センサーを有する充電器
US6249703B1 (en) 1994-07-08 2001-06-19 Medtronic, Inc. Handheld patient programmer for implantable human tissue stimulator
US5571148A (en) 1994-08-10 1996-11-05 Loeb; Gerald E. Implantable multichannel stimulator
US6035237A (en) 1995-05-23 2000-03-07 Alfred E. Mann Foundation Implantable stimulator that prevents DC current flow without the use of discrete output coupling capacitors
US5702431A (en) 1995-06-07 1997-12-30 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
US5690693A (en) 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device
US5712795A (en) 1995-10-02 1998-01-27 Alaris Medical Systems, Inc. Power management system
US6898454B2 (en) 1996-04-25 2005-05-24 The Johns Hopkins University Systems and methods for evaluating the urethra and the periurethral tissues
DE19623788A1 (de) 1996-06-04 1997-12-11 Biotronik Mess & Therapieg Implantierbares Stimulationsgerät
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
US5733313A (en) 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5713939A (en) 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
SE9604143D0 (sv) 1996-11-13 1996-11-13 Pacesetter Ab Implanterbar elektrodkabel
US5741316A (en) 1996-12-02 1998-04-21 Light Sciences Limited Partnership Electromagnetic coil configurations for power transmission through tissue
US5735887A (en) 1996-12-10 1998-04-07 Exonix Corporation Closed-loop, RF-coupled implanted medical device
JP3954177B2 (ja) 1997-01-29 2007-08-08 日本碍子株式会社 金属部材とセラミックス部材との接合構造およびその製造方法
US8684009B2 (en) 1997-02-26 2014-04-01 Alfred E. Mann Foundation For Scientific Research System for determining relative distance(s) and/or angle(s) between at least two points
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US8555894B2 (en) 1997-02-26 2013-10-15 Alfred E. Mann Foundation For Scientific Research System for monitoring temperature
US7460911B2 (en) 1997-02-26 2008-12-02 Alfred E. Mann Foundation For Scientific Research System and method suitable for treatment of a patient with a neurological deficit by sequentially stimulating neural pathways using a system of discrete implantable medical devices
US5957965A (en) 1997-03-03 1999-09-28 Medtronic, Inc. Sacral medical electrical lead
CA2230930A1 (en) 1997-04-25 1998-10-25 Dale Gathergood Exterior rear view mirror integral warning light
US5871513A (en) 1997-04-30 1999-02-16 Medtronic Inc. Centerless ground feedthrough pin for an electrical power source in an implantable medical device
US6191365B1 (en) 1997-05-02 2001-02-20 General Science And Technology Corp Medical devices incorporating at least one element made from a plurality of twisted and drawn wires
US5871532A (en) 1997-05-22 1999-02-16 Sulzer Intermedics Inc. Epicardial lead for minimally invasive implantation
IT1292016B1 (it) 1997-05-28 1999-01-25 Valerio Cigaina Dispositivo di impianto particolarmente per elettrostimolazione e/o elettroregistrazione di visceri endoaddominali
DE69840306D1 (de) 1997-08-01 2009-01-15 Mann Alfred E Found Scient Res Implantierbare Einrichtung mit verbesserter Anordnung zur Ladung der Batterie und zur Energiezufuhr
US5991665A (en) 1997-09-18 1999-11-23 Sulzer Intermedics Inc. Self-cooling transcutaneous energy transfer system for battery powered implantable device
US6138681A (en) 1997-10-13 2000-10-31 Light Sciences Limited Partnership Alignment of external medical device relative to implanted medical device
JP3887828B2 (ja) 1997-11-20 2007-02-28 セイコーエプソン株式会社 電子機器
US6306100B1 (en) 1997-12-16 2001-10-23 Richard L. Prass Intraoperative neurophysiological monitoring system
US6169387B1 (en) 1997-12-22 2001-01-02 Lifecor, Inc. Battery management apparatus for portable electronic devices
DE19800416C2 (de) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Vorrichtung zur Behandlung von Körpergewebe, insbesondere von oberflächennahem Weichgewebe, mittels Ultraschall
US6081097A (en) 1998-01-19 2000-06-27 Matsushita Electric Industrial Co., Ltd. Method for charging lithium secondary battery
US6305381B1 (en) 1998-02-02 2001-10-23 Medtronic Inc. System for locating implantable medical device
EP1056510B1 (en) 1998-02-23 2005-05-11 Medtronic, Inc. Rf coupled, implantable medical device with rechargeable back-up power source
US5902331A (en) 1998-03-10 1999-05-11 Medtronic, Inc. Arrangement for implanting an endocardial cardiac lead
US6316909B1 (en) 1998-03-24 2001-11-13 Seiko Epson Corporation Electronic device, control method for electronic device, recharge-rate estimating method for secondary battery, and charging control method for secondary battery
US6221513B1 (en) 1998-05-12 2001-04-24 Pacific Coast Technologies, Inc. Methods for hermetically sealing ceramic to metallic surfaces and assemblies incorporating such seals
US6243608B1 (en) 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US6941171B2 (en) 1998-07-06 2005-09-06 Advanced Bionics Corporation Implantable stimulator methods for treatment of incontinence and pain
US6735474B1 (en) 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
US6104960A (en) 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
US6178353B1 (en) 1998-07-27 2001-01-23 Advanced Bionics Corporation Laminated magnet keeper for implant device
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US6083247A (en) 1998-08-10 2000-07-04 Medtronic, Inc. Perpendicular atrial fixation/stimulation loop
DE19838137A1 (de) 1998-08-21 2000-03-02 Implex Hear Tech Ag Vorrichtung und Verfahren zum Laden von wiederaufladbaren Akkumulatoren von Implantaten
US6104957A (en) 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6212431B1 (en) 1998-09-08 2001-04-03 Advanced Bionics Corporation Power transfer circuit for implanted devices
US7142925B1 (en) 1998-09-16 2006-11-28 Axon Engineering, Inc. Combined stimulation of ventral and dorsal sacral roots for control of bladder function
DE69935727T2 (de) 1998-10-06 2007-12-27 Bio Control Medical, Ltd. Vorrichtung zur behandlung von inkontinenz
IL127481A (en) 1998-10-06 2004-05-12 Bio Control Medical Ltd Urine excretion prevention device
US5948006A (en) 1998-10-14 1999-09-07 Advanced Bionics Corporation Transcutaneous transmission patch
US6275737B1 (en) 1998-10-14 2001-08-14 Advanced Bionics Corporation Transcutaneous transmission pouch
US20030212440A1 (en) 2002-05-09 2003-11-13 Boveja Birinder R. Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US7076307B2 (en) 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US6836684B1 (en) 1998-10-30 2004-12-28 Neurocon Aps Method to control an overactive bladder
WO2000027469A2 (en) 1998-11-09 2000-05-18 Medtronic, Inc. Extractable implantable medical lead
US5949632A (en) 1998-12-01 1999-09-07 Exonix Corporation Power supply having means for extending the operating time of an implantable medical device
US6052624A (en) 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US7555346B1 (en) 1999-01-07 2009-06-30 Boston Scientific Neuromodulation Corporation Implantable pulse generator having current steering means
US6321118B1 (en) 1999-01-28 2001-11-20 Advanced Bionics Corporation Method and apparatus for power link detection with implantable medical devices
AU772100B2 (en) 1999-02-08 2004-04-08 Cochlear Limited Offset coils for radio frequency transcutaneous links
US6172556B1 (en) 1999-03-04 2001-01-09 Intersil Corporation, Inc. Feedback-controlled low voltage current sink/source
US7131996B2 (en) 1999-03-18 2006-11-07 Helmut Wasserman Artificial urinary diversion device
EP2275166A3 (en) 1999-03-24 2014-05-21 Second Sight Medical Products, Inc. Visual prosthesis
AU4020300A (en) 1999-03-24 2000-10-09 Advanced Bionics, Inc. Method and apparatus of a strong metal-ceramic braze bond
US6181105B1 (en) 1999-04-26 2001-01-30 Exonix Corporation Self contained transportable power source maintenance and charge
US6166518A (en) 1999-04-26 2000-12-26 Exonix Corporation Implantable power management system
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US6505075B1 (en) 1999-05-29 2003-01-07 Richard L. Weiner Peripheral nerve stimulation method
US7177690B2 (en) 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US7295878B1 (en) 1999-07-30 2007-11-13 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
US6654642B2 (en) 1999-09-29 2003-11-25 Medtronic, Inc. Patient interactive neurostimulation system and method
US6381496B1 (en) 1999-10-01 2002-04-30 Advanced Bionics Corporation Parameter context switching for an implanted device
US6442434B1 (en) 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
JP4854900B2 (ja) 1999-11-24 2012-01-18 ヌバシブ, インコーポレイテッド 筋電計測法
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6473652B1 (en) 2000-03-22 2002-10-29 Nac Technologies Inc. Method and apparatus for locating implanted receiver and feedback regulation between subcutaneous and external coils
US6662051B1 (en) 2000-03-31 2003-12-09 Stephen A. Eraker Programmable pain reduction device
EP1294329A4 (en) 2000-04-20 2004-03-31 Cochlear Ltd TRANSCUTANEOUS ENERGY OPTIMIZATION CIRCUIT FOR COCHLEAR IMPLANT
US7167756B1 (en) 2000-04-28 2007-01-23 Medtronic, Inc. Battery recharge management for an implantable medical device
US6453198B1 (en) 2000-04-28 2002-09-17 Medtronic, Inc. Power management for an implantable medical device
US6327504B1 (en) 2000-05-10 2001-12-04 Thoratec Corporation Transcutaneous energy transfer with circuitry arranged to avoid overheating
US6505077B1 (en) 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
EP2002861B1 (en) 2000-07-26 2014-05-21 Boston Scientific Neuromodulation Corporation Rechargeable stimulator system
IT1316598B1 (it) 2000-08-07 2003-04-24 Caen Microelettronica E Sistem Manufatto tessile con fibre illuminate, capo di abbigliamento daquesto ottenuto e metodo di produzione del manufatto.
US6510347B2 (en) 2000-08-17 2003-01-21 William N. Borkan Spinal cord stimulation leads
US7054689B1 (en) 2000-08-18 2006-05-30 Advanced Bionics Corporation Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
DE10041728A1 (de) 2000-08-25 2002-03-21 Implex Hear Tech Ag Implantierbare medizinische Vorrichtung mit einem hermetisch dichten Gehäuse
DE10041727C2 (de) 2000-08-25 2003-04-10 Cochlear Ltd Implantierbares hermetisch dichtes Gehäuse für eine implantierbare medizinische Vorrichtung
US6745077B1 (en) 2000-10-11 2004-06-01 Advanced Bionics Corporation Electronic impedance transformer for inductively-coupled load stabilization
US6542846B1 (en) 2000-11-09 2003-04-01 Koninklijke Philips Electronics N.V. Thermal management system for a portable ultrasound imaging device
US6847849B2 (en) * 2000-11-15 2005-01-25 Medtronic, Inc. Minimally invasive apparatus for implanting a sacral stimulation lead
US6971393B1 (en) 2000-11-15 2005-12-06 George Mamo Minimally invasive method for implanting a sacral stimulation lead
US6600954B2 (en) 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
US7069081B2 (en) 2001-02-08 2006-06-27 Wilson Greatbatch Ltd. One piece header assembly for an implantable medical device
US6609945B2 (en) 2001-02-08 2003-08-26 Plexus, Inc. Radio-controlled toy blimp with infrared beam weapons for staging a gun battle
US6901287B2 (en) 2001-02-09 2005-05-31 Medtronic, Inc. Implantable therapy delivery element adjustable anchor
US6708065B2 (en) 2001-03-02 2004-03-16 Cardiac Pacemakers, Inc. Antenna for an implantable medical device
WO2002078592A2 (en) 2001-03-30 2002-10-10 Case Western Reserve University Systems and methods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US6584355B2 (en) 2001-04-10 2003-06-24 Cardiac Pacemakers, Inc. System and method for measuring battery current
US8989870B2 (en) * 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US20070088416A1 (en) 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US8145324B1 (en) 2001-04-13 2012-03-27 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US8195295B2 (en) 2008-03-20 2012-06-05 Greatbatch Ltd. Shielded three-terminal flat-through EMI/energy dissipating filter
US6892098B2 (en) 2001-04-26 2005-05-10 Biocontrol Medical Ltd. Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
KR100606307B1 (ko) 2001-05-23 2006-07-28 안태영 인체 이식 기구용 무접촉식 동력 전달 장치
US6792314B2 (en) 2001-06-18 2004-09-14 Alfred E. Mann Foundation For Scientific Research Miniature implantable array and stimulation system suitable for eyelid stimulation
WO2003005887A2 (en) 2001-07-11 2003-01-23 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20030028231A1 (en) * 2001-08-01 2003-02-06 Cardiac Pacemakers, Inc. Radiopaque drug collar for implantable endocardial leads
US6456256B1 (en) 2001-08-03 2002-09-24 Cardiac Pacemakers, Inc. Circumferential antenna for an implantable medical device
US7151914B2 (en) 2001-08-21 2006-12-19 Medtronic, Inc. Transmitter system for wireless communication with implanted devices
US20140046407A1 (en) * 2001-08-31 2014-02-13 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US7734355B2 (en) 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US6999819B2 (en) 2001-08-31 2006-02-14 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
WO2003026482A2 (en) 2001-09-25 2003-04-03 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US7187978B2 (en) 2001-11-01 2007-03-06 Medtronic, Inc. Method and apparatus for programming an implantable medical device
US6894456B2 (en) 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US20030199961A1 (en) 2002-04-03 2003-10-23 Bjorklund Vicki L. Method and apparatus for fixating a pacing lead of an implantable medical device
JP3731881B2 (ja) 2002-05-23 2006-01-05 有限会社ティーエム 人工臓器用非侵襲式充電システム、並びにこのシステムに用いる蓄電装置、および給電装置
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US8386048B2 (en) 2002-06-28 2013-02-26 Boston Scientific Neuromodulation Corporation Systems and methods for communicating with or providing power to an implantable stimulator
ES2426255T3 (es) 2002-06-28 2013-10-22 Boston Scientific Neuromodulation Corporation Microestimulador que tiene incorporado una fuente de energía y un sistema de telemetría bidireccional
AU2002951217A0 (en) 2002-09-04 2002-09-19 Cochlear Limited Method and apparatus for measurement of transmitter/receiver separation
US7351247B2 (en) * 2002-09-04 2008-04-01 Bioconnect Systems, Inc. Devices and methods for interconnecting body conduits
US7369894B2 (en) 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7328068B2 (en) 2003-03-31 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
US20040055610A1 (en) 2002-09-25 2004-03-25 Peter Forsell Detection of implanted wireless energy receiving device
AU2002951734A0 (en) 2002-09-30 2002-10-17 Cochlear Limited Feedthrough with conductive pathways of varing configurations
US7127298B1 (en) 2002-10-18 2006-10-24 Advanced Bionics Corporation Switched-matrix output for multi-channel implantable stimulator
WO2004041351A1 (en) 2002-10-31 2004-05-21 Medtronic, Inc. Method and device for applying filter information to identify combinations of electrodes
WO2004041352A1 (en) 2002-10-31 2004-05-21 Medtronic, Inc. Distributed system for neurostimulation therapy programming
US7933655B2 (en) 2002-10-31 2011-04-26 Medtronic, Inc. Neurostimulation therapy manipulation
EP1417986A1 (en) 2002-11-05 2004-05-12 Wilson Greatbatch Technologies, Inc. One piece header assembly for an implantable medical device
US6990376B2 (en) 2002-12-06 2006-01-24 The Regents Of The University Of California Methods and systems for selective control of bladder function
US7952349B2 (en) 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
TR200202651A2 (tr) 2002-12-12 2004-07-21 Met�N�Tulgar VücutÁdışındanÁdirekÁtedaviÁsinyaliÁtransferliÁÁbeyinÁpili
CN1756576A (zh) * 2002-12-16 2006-04-05 米根医疗公司 将经皮器具联接到病人身上
US6685638B1 (en) 2002-12-23 2004-02-03 Codman & Shurtleff, Inc. Acoustic monitoring system
US7742821B1 (en) 2003-06-11 2010-06-22 Boston Scientific Neutomodulation Corporation Remote control for implantable medical device
US9446229B2 (en) 2003-04-08 2016-09-20 Omar Omar-Pasha Catheter
US20040230282A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Acute and chronic fixation for subcutaneous electrodes
US7463928B2 (en) 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US20050187590A1 (en) 2003-05-11 2005-08-25 Boveja Birinder R. Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s)
US7444184B2 (en) 2003-05-11 2008-10-28 Neuro And Cardial Technologies, Llc Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US7317947B2 (en) 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US20040267137A1 (en) 2003-06-27 2004-12-30 Michael Peszynski Apparatus and method for IC-based ultrasound transducer temperature sensing
US7617002B2 (en) 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
US7515967B2 (en) 2003-10-02 2009-04-07 Medtronic, Inc. Ambulatory energy transfer system for an implantable medical device and method therefore
US8265770B2 (en) 2003-10-02 2012-09-11 Medtronic, Inc. Driver circuitry switchable between energy transfer and telemetry for an implantable medical device
US7286880B2 (en) 2003-10-02 2007-10-23 Medtronic, Inc. System and method for transcutaneous energy transfer achieving high efficiency
US7225032B2 (en) 2003-10-02 2007-05-29 Medtronic Inc. External power source, charger and system for an implantable medical device having thermal characteristics and method therefore
US7286881B2 (en) 2003-10-02 2007-10-23 Medtronic, Inc. External power source having an adjustable magnetic core and method of use
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
US8140168B2 (en) 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US6989200B2 (en) 2003-10-30 2006-01-24 Alfred E. Mann Foundation For Scientific Research Ceramic to noble metal braze and method of manufacture
US20080161874A1 (en) 2004-02-12 2008-07-03 Ndi Medical, Inc. Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
ATE520440T1 (de) 2004-02-12 2011-09-15 Ndi Medical Llc Tragbare anordnungen und systeme für die funktionale oder therapeutische neuromuskuläre stimulation
US8086318B2 (en) 2004-02-12 2011-12-27 Ndi Medical, Llc Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US20080132969A1 (en) 2004-02-12 2008-06-05 Ndi Medical, Inc. Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat urologic dysfunctions
US7120499B2 (en) 2004-02-12 2006-10-10 Ndi Medical, Llc Portable percutaneous assemblies, systems and methods for providing highly selective functional or therapeutic neuromuscular stimulation
WO2005082453A1 (en) 2004-02-25 2005-09-09 Advanced Neuromodulation Systems, Inc. System and method for neurological stimulation of peripheral nerves to treat low back pain
US7738963B2 (en) 2004-03-04 2010-06-15 Advanced Neuromodulation Systems, Inc. System and method for programming an implantable pulse generator
US7844343B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US7212110B1 (en) 2004-04-19 2007-05-01 Advanced Neuromodulation Systems, Inc. Implantable device and system and method for wireless communication
US7532936B2 (en) 2004-04-20 2009-05-12 Advanced Neuromodulation Systems, Inc. Programmable switching device for implantable device
US7245972B2 (en) 2004-04-29 2007-07-17 Alfred E. Mann Foundation For Scientific Research Electrical treatment to treat shoulder subluxation
US7359751B1 (en) 2004-05-05 2008-04-15 Advanced Neuromodulation Systems, Inc. Clinician programmer for use with trial stimulator
US7539538B2 (en) 2004-05-28 2009-05-26 Boston Science Neuromodulation Corporation Low power loss current digital-to-analog converter used in an implantable pulse generator
US7450991B2 (en) 2004-05-28 2008-11-11 Advanced Neuromodulation Systems, Inc. Systems and methods used to reserve a constant battery capacity
US7225028B2 (en) 2004-05-28 2007-05-29 Advanced Bionics Corporation Dual cochlear/vestibular stimulator with control signals derived from motion and speech signals
WO2008153726A2 (en) 2007-05-22 2008-12-18 Ndi Medical, Inc. Systems and methods for the treatment of bladder dysfunctions using neuromodulation stimulation
WO2006022993A2 (en) 2004-06-10 2006-03-02 Ndi Medical, Llc Implantable generator for muscle and nerve stimulation
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
WO2006012426A2 (en) 2004-07-20 2006-02-02 Medtronic, Inc. Locating an implanted object based on external antenna loading
US20060041295A1 (en) * 2004-08-17 2006-02-23 Osypka Thomas P Positive fixation percutaneous epidural neurostimulation lead
US7458971B2 (en) 2004-09-24 2008-12-02 Boston Scientific Scimed, Inc. RF ablation probe with unibody electrode element
US7771838B1 (en) 2004-10-12 2010-08-10 Boston Scientific Neuromodulation Corporation Hermetically bonding ceramic and titanium with a Ti-Pd braze interface
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US8489189B2 (en) 2004-10-29 2013-07-16 Medtronic, Inc. Expandable fixation mechanism
US7580752B2 (en) 2005-02-23 2009-08-25 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US8774912B2 (en) 2005-02-23 2014-07-08 Medtronic, Inc. Implantable neurostimulator supporting trial and chronic modes
US8768452B2 (en) 2005-02-23 2014-07-01 Medtronic, Inc. Implantable neurostimulator supporting trial and chronic modes
US20060200205A1 (en) 2005-03-01 2006-09-07 Haller Matthew I Systems and methods for treating a patient with multiple stimulation therapies
US7330765B2 (en) 2005-04-25 2008-02-12 Cardiac Pacemakers, Inc. Cardiac lead having self-expanding fixation features
US7979119B2 (en) 2005-04-26 2011-07-12 Boston Scientific Neuromodulation Corporation Display graphics for use in stimulation therapies
US7406351B2 (en) 2005-04-28 2008-07-29 Medtronic, Inc. Activity sensing for stimulator control
US7774069B2 (en) 2005-04-29 2010-08-10 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US7676275B1 (en) * 2005-05-02 2010-03-09 Pacesetter, Inc. Endovascular lead for chronic nerve stimulation
CA2608017C (en) 2005-05-13 2014-07-29 Ndi Medical, Llc Systems for electrical stimulation of nerves in adipose tissue regions
US8244360B2 (en) 2005-06-09 2012-08-14 Medtronic, Inc. Regional therapies for treatment of pain
KR100792311B1 (ko) 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
DE602005011124D1 (de) * 2005-08-05 2009-01-02 Biedermann Motech Gmbh Knochenverankerungselement
US20070043414A1 (en) 2005-08-15 2007-02-22 Fifer Daniel W Lead fixation and extraction
US8175717B2 (en) 2005-09-06 2012-05-08 Boston Scientific Neuromodulation Corporation Ultracapacitor powered implantable pulse generator with dedicated power supply
US7640059B2 (en) 2005-09-08 2009-12-29 Medtronic, Inc. External presentation of electrical stimulation parameters
US7551960B2 (en) 2005-09-08 2009-06-23 Medtronic, Inc. External presentation of electrical stimulation parameters
US7650192B2 (en) 2005-12-02 2010-01-19 Medtronic, Inc. Passive charge of implantable medical device utilizing external power source and method
US7444181B2 (en) 2005-12-14 2008-10-28 Boston Scientific Neuromodulation Corporation Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device
US7720547B2 (en) 2006-01-04 2010-05-18 Kenergy, Inc. Extracorporeal power supply with a wireless feedback system for an implanted medical device
US7809443B2 (en) 2006-01-31 2010-10-05 Medtronic, Inc. Electrical stimulation to alleviate chronic pelvic pain
US8019423B2 (en) 2006-02-17 2011-09-13 Marc Possover Laparoscopic implantation of neurostimulators
US7747330B2 (en) 2006-03-09 2010-06-29 Medtronic, Inc. Global parameter adjustment for multiple stimulation programs
US8447402B1 (en) 2006-03-31 2013-05-21 Alfred E. Mann Foundation For Scientific Research Zirconia to platinum assembly using a titanium connector
US7761166B2 (en) 2006-04-28 2010-07-20 Medtronic, Inc. Electrical stimulation of iliohypogastric nerve to alleviate chronic pelvic pain
US7738965B2 (en) 2006-04-28 2010-06-15 Medtronic, Inc. Holster for charging pectorally implanted medical devices
US8219202B2 (en) 2006-04-28 2012-07-10 Medtronic, Inc. Electrical stimulation of ilioinguinal nerve to alleviate chronic pelvic pain
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US7881783B2 (en) 2006-04-28 2011-02-01 Medtronics, Inc. Implantable medical electrical stimulation lead, such as a PNE lead, and method of use
US8892214B2 (en) 2006-04-28 2014-11-18 Medtronic, Inc. Multi-electrode peripheral nerve evaluation lead and related system and method of use
US20070265675A1 (en) 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
KR101379640B1 (ko) 2006-06-05 2014-04-11 에이엠에스 리서치 코포레이션 변실금 및/또는 골반 탈수를 치료하기 위한 전기적 근육 자극
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US8116862B2 (en) 2006-06-08 2012-02-14 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
WO2008021524A2 (en) 2006-08-18 2008-02-21 Second Sight Medical Products, Inc. Package for an implantable neural stimulation device
US7979126B2 (en) 2006-10-18 2011-07-12 Boston Scientific Neuromodulation Corporation Orientation-independent implantable pulse generator
US20100076534A1 (en) 2006-10-25 2010-03-25 William Alan Mock Malleable needle having a plurality of electrodes for facilitating implantation of stimulation lead and method of implanting an electrical stimulation lead
US9643004B2 (en) 2006-10-31 2017-05-09 Medtronic, Inc. Implantable medical elongated member with adhesive elements
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
US9713706B2 (en) * 2006-10-31 2017-07-25 Medtronic, Inc. Implantable medical elongated member including intermediate fixation
US9827415B2 (en) 2006-11-09 2017-11-28 Greatbatch Ltd. Implantable lead having multi-planar spiral inductor filter
US7391257B1 (en) 2007-01-31 2008-06-24 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for impedance measurement
US9615744B2 (en) 2007-01-31 2017-04-11 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for impedance measurement
US8549015B2 (en) 2007-05-01 2013-10-01 Giancarlo Barolat Method and system for distinguishing nociceptive pain from neuropathic pain
US7932696B2 (en) 2007-05-14 2011-04-26 Boston Scientific Neuromodulation Corporation Charger alignment indicator with adjustable threshold
US9427573B2 (en) 2007-07-10 2016-08-30 Astora Women's Health, Llc Deployable electrode lead anchor
US20100049289A1 (en) 2007-07-10 2010-02-25 Ams Research Corporation Tissue anchor
CA2733081C (en) 2007-08-06 2015-12-15 Great Lakes Biosciences, Llc Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance
EP2207589A2 (en) 2007-09-13 2010-07-21 Medtronic, Inc. Medical electrical lead with jacketed conductive elements
US8362742B2 (en) 2007-10-26 2013-01-29 Medtronic, Inc. Method and apparatus for dynamic adjustment of recharge parameters
US9199075B1 (en) 2008-02-07 2015-12-01 Respicardia, Inc. Transvascular medical lead
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US8332040B1 (en) 2008-03-10 2012-12-11 Advanced Neuromodulation Systems, Inc. External charging device for charging an implantable medical device and methods of regulating duty of cycle of an external charging device
US8019443B2 (en) 2008-04-01 2011-09-13 Boston Scientific Neuromodulation Corporation Anchoring units for leads of implantable electric stimulation systems and methods of making and using
US8215013B2 (en) 2008-04-11 2012-07-10 Bal Seal Engineering, Inc. Method for making a free standing axially compressed connector stack
US9238135B2 (en) 2008-04-30 2016-01-19 Medtronic, Inc. Flagging of electrodes of an implantable medical device, controller, system and method therefore
US8314594B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method
EP2310077A1 (en) 2008-04-30 2011-04-20 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8103360B2 (en) 2008-05-09 2012-01-24 Foster Arthur J Medical lead coil conductor with spacer element
US7890182B2 (en) 2008-05-15 2011-02-15 Boston Scientific Neuromodulation Corporation Current steering for an implantable stimulator device involving fractionalized stimulation pulses
EP2138203B1 (en) 2008-06-26 2013-01-30 Greatbatch Ltd. Stimulation lead design
WO2010011721A1 (en) 2008-07-24 2010-01-28 Boston Scientific Neuromodulation Corporation System and method for maintaining a distribution of currents in an electrode array using independent voltage sources
US9987493B2 (en) 2008-10-28 2018-06-05 Medtronic, Inc. Medical devices and methods for delivery of current-based electrical stimulation therapy
US8219196B2 (en) 2008-10-31 2012-07-10 Medtronic, Inc. Determination of stimulation output capabilities throughout power source voltage range
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US8311639B2 (en) 2009-07-08 2012-11-13 Nevro Corporation Systems and methods for adjusting electrical therapy based on impedance changes
US8538530B1 (en) 2008-11-19 2013-09-17 Advanced Bionics Hermetically sealed feedthrough case
US20100137946A1 (en) 2008-11-26 2010-06-03 Medtronic, Inc. Patient-centric data collection for automated mri compatibility verification
WO2010093720A1 (en) 2009-02-10 2010-08-19 Nevro Corporation Systems and methods for delivering neural therapy correlated with patient status
AU2010216210B2 (en) 2009-02-18 2013-01-31 Boston Scientific Scimed, Inc. Treatment of a pelvic condition through indirect electrical stimulation
JP5350016B2 (ja) 2009-02-27 2013-11-27 国立大学法人 東京医科歯科大学 顎運動測定システム
US9561366B2 (en) 2009-03-27 2017-02-07 Medtronic, Inc. Conditional electrical stimulation
US20100256696A1 (en) 2009-04-07 2010-10-07 Boston Scientific Neuromodulation Corporation Anchoring Units For Implantable Electrical Stimulation Systems And Methods Of Making And Using
WO2010123704A2 (en) 2009-04-24 2010-10-28 Medtronic, Inc. Incontinence therapy
US9764147B2 (en) 2009-04-24 2017-09-19 Medtronic, Inc. Charge-based stimulation intensity programming with pulse amplitude and width adjusted according to a function
US8214042B2 (en) 2009-05-26 2012-07-03 Boston Scientific Neuromodulation Corporation Techniques for controlling charging of batteries in an external charger and an implantable medical device
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US9468755B2 (en) 2009-09-30 2016-10-18 Respicardia, Inc. Medical lead with preformed bias
US8571677B2 (en) 2009-10-21 2013-10-29 Medtronic, Inc. Programming techniques for stimulation with utilization of case electrode
US8457756B2 (en) 2009-11-11 2013-06-04 Boston Scientific Neuromodulation Corporation Using the case of an implantable medical device to broaden communication bandwidth
US8577474B2 (en) 2009-11-11 2013-11-05 Boston Scientific Neuromodulation Corporation Minimizing interference between charging and telemetry coils in an implantable medical device
WO2011079309A2 (en) 2009-12-23 2011-06-30 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
WO2011091176A1 (en) 2010-01-24 2011-07-28 Medtronic, Inc. Method of making a battery including applying a cathode material slurry to a current collector
US8478431B2 (en) 2010-04-13 2013-07-02 Medtronic, Inc. Slidable fixation device for securing a medical implant
US9314616B2 (en) 2010-04-14 2016-04-19 Medtronic, Inc. Temporary implantable medical electrical leads
US9901284B2 (en) 2010-04-16 2018-02-27 Medtronic, Inc. Coordination of functional MRI scanning and electrical stimulation therapy
US9020589B2 (en) 2010-04-27 2015-04-28 Medtronic, Inc. Electrical stimulator with voltage mode emulation using regulated current
US9242104B2 (en) 2010-05-11 2016-01-26 Cardiac Pacemakers, Inc. Systems for patient control of implantable medical device therapy
WO2011156286A2 (en) 2010-06-07 2011-12-15 Medtronic, Inc. Stimulation therapy for bladder dysfunction
US8948882B2 (en) 2010-08-25 2015-02-03 Medtronic, Inc. Fixation components for implantable medical devices and associated device construction
US9293741B1 (en) 2010-12-29 2016-03-22 Greatbatch Ltd. Mechanical conditioning by bead blasting lithium iodine cell case
US8942829B2 (en) * 2011-01-20 2015-01-27 Medtronic, Inc. Trans-septal lead anchoring
MX340144B (es) 2011-01-28 2016-06-15 Stimwave Tech Inc Sistema estimulador neural.
US9168374B2 (en) 2011-01-28 2015-10-27 Medtronic, Inc. Intra-burst pulse variation for stimulation therapy
CA2826036A1 (en) * 2011-02-08 2012-08-16 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US9757558B2 (en) 2011-03-01 2017-09-12 Greatbatch Ltd. RF filter for an active medical device (AMD) for handling high RF power induced in an associated implanted lead from an external RF field
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US20120232563A1 (en) * 2011-03-08 2012-09-13 Medtronic, Inc. Implant catheters for physiological pacing
US8543223B2 (en) 2011-03-11 2013-09-24 Greatbach Ltd. Implantable lead with braided conductors
US9166321B2 (en) 2011-03-22 2015-10-20 Greatbatch Ltd. Thin profile stacked layer contact
US9931513B2 (en) 2011-03-29 2018-04-03 Nuvectra Corporation Feed-through connector assembly for implantable pulse generator and method of use
US8738141B2 (en) 2011-04-07 2014-05-27 Greatbatch, Ltd. Contact assembly for implantable pulse generator and method of use
US8996117B2 (en) 2011-04-07 2015-03-31 Greatbatch, Ltd. Arbitrary waveform generator and neural stimulation application with scalable waveform feature
US9656076B2 (en) 2011-04-07 2017-05-23 Nuvectra Corporation Arbitrary waveform generator and neural stimulation application with scalable waveform feature and charge balancing
US9623257B2 (en) 2011-04-18 2017-04-18 Medtronic, Inc. Recharge tuning techniques for an implantable device
US9259582B2 (en) 2011-04-29 2016-02-16 Cyberonics, Inc. Slot antenna for an implantable device
US9089712B2 (en) 2011-04-29 2015-07-28 Cyberonics, Inc. Implantable medical device without antenna feedthrough
US10448889B2 (en) 2011-04-29 2019-10-22 Medtronic, Inc. Determining nerve location relative to electrodes
US9240630B2 (en) 2011-04-29 2016-01-19 Cyberonics, Inc. Antenna shield for an implantable medical device
US9265958B2 (en) 2011-04-29 2016-02-23 Cyberonics, Inc. Implantable medical device antenna
US8515545B2 (en) 2011-04-29 2013-08-20 Greatbatch Ltd. Current steering neurostimulator device with unidirectional current sources
US9789307B2 (en) 2011-04-29 2017-10-17 Medtronic, Inc. Dual prophylactic and abortive electrical stimulation
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
US9375574B2 (en) 2011-05-31 2016-06-28 Nuvectra Corporation System and method of providing computer assisted stimulation programming (CASP)
US9144680B2 (en) 2011-05-31 2015-09-29 Greatbatch Ltd. System and method of establishing a protocol for providing electrical stimulation with a stimulation system to treat a patient
US8676341B2 (en) * 2011-06-21 2014-03-18 Greatbatch Ltd. Multi durometer reinforced suture sleeve
US20130006330A1 (en) 2011-06-28 2013-01-03 Greatbatch, Ltd. Dual patient controllers
US8954148B2 (en) 2011-06-28 2015-02-10 Greatbatch, Ltd. Key fob controller for an implantable neurostimulator
US8571667B2 (en) 2011-07-01 2013-10-29 Greatbatch Ltd. Active current control using the enclosure of an implanted pulse generator
EP2545958B1 (fr) 2011-07-12 2014-05-14 Sorin CRM SAS Sonde pour prothèse cardiaque implantable, comprenant des moyens de protection contre les effets thermiques des champs IRM
US9399135B2 (en) 2011-07-12 2016-07-26 Astora Women's Health, Llc Electronic stimulator device pulse generator circuit
US9675809B2 (en) 2011-07-14 2017-06-13 Cyberonics, Inc. Circuit, system and method for far-field radiative powering of an implantable medical device
US9492678B2 (en) 2011-07-14 2016-11-15 Cyberonics, Inc. Far field radiative powering of implantable medical therapy delivery devices
US8700175B2 (en) 2011-07-19 2014-04-15 Greatbatch Ltd. Devices and methods for visually indicating the alignment of a transcutaneous energy transfer device over an implanted medical device
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9414903B2 (en) * 2011-07-22 2016-08-16 Astora Women's Health, Llc Pelvic implant system and method
AU2012290152B2 (en) 2011-08-02 2016-08-11 Mainstay Medical Limited Apparatus for anchoring electrode leads for use with implantable neuromuscular electrical stimulator
US9517333B2 (en) 2011-08-31 2016-12-13 Nuvectra Corporation Lead identification system
WO2013067538A1 (en) 2011-11-04 2013-05-10 Nevro Corporation Medical device communication and charding assemblies for use with implantable signal generators
US9814884B2 (en) 2011-11-04 2017-11-14 Nevro Corp. Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes
CN103702712B (zh) 2011-11-04 2015-09-09 上海微创医疗器械(集团)有限公司 可植入被动医用导线
US10206710B2 (en) 2011-11-10 2019-02-19 Medtronic, Inc. Introduction and anchoring tool for an implantable medical device element
US10328253B2 (en) 2011-11-30 2019-06-25 Medtronic, Inc. Medical electrical stimulation lead including expandable coiled fixation element
JP2013123484A (ja) 2011-12-13 2013-06-24 Olympus Corp 神経刺激装置および神経刺激システム
EP3366348B1 (en) 2012-01-16 2023-08-23 Greatbatch Ltd. Emi filtered co-connected hermetic feedthrough, feedthrough capacitor and leadwire assembly for an active implantable medical device
US9889306B2 (en) 2012-01-16 2018-02-13 Greatbatch Ltd. Hermetically sealed feedthrough with co-fired filled via and conductive insert for an active implantable medical device
US8571654B2 (en) * 2012-01-17 2013-10-29 Cyberonics, Inc. Vagus nerve neurostimulator with multiple patient-selectable modes for treating chronic cardiac dysfunction
US9270134B2 (en) 2012-01-27 2016-02-23 Medtronic, Inc. Adaptive rate recharging system
US9981137B2 (en) 2012-01-27 2018-05-29 Nuvectra Corporation Heat dispersion for implantable medical devices
US9974108B2 (en) 2012-02-06 2018-05-15 Nuvectra Corporation Paired communication between an implanted medical device and an external control device
US9522282B2 (en) 2012-03-29 2016-12-20 Cyberonics, Inc. Powering multiple implantable medical therapy delivery devices using far field radiative powering at multiple frequencies
US10086191B2 (en) 2012-04-19 2018-10-02 Medtronic, Inc. Medical leads having a distal body and an openly coiled filar
EP2841008B1 (en) 2012-04-20 2017-09-06 Neurodan A/S Implantable medical device
US9653935B2 (en) 2012-04-20 2017-05-16 Medtronic, Inc. Sensing temperature within medical devices
US9436481B2 (en) 2012-04-23 2016-09-06 Medtronic, Inc. Restoration of medical device programming
US10369370B2 (en) 2012-04-26 2019-08-06 Medtronic, Inc. Trial stimulation systems
WO2013162706A1 (en) 2012-04-26 2013-10-31 Medtronic, Inc. Trial stimulation systems
EP2841151B1 (en) 2012-04-26 2019-11-20 Medtronic, Inc. Trial stimulation systems
US9149635B2 (en) 2012-04-27 2015-10-06 Medtronic, Inc. Stimulation waveform generator for an implantable medical device
US9358039B2 (en) 2012-05-08 2016-06-07 Greatbatch Ltd. Transseptal needle apparatus
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US9833614B1 (en) 2012-06-22 2017-12-05 Nevro Corp. Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods
US9427571B2 (en) 2012-06-29 2016-08-30 Nuvectra Corporation Dynamic coil for implantable stimulation leads
US9089693B2 (en) 2012-06-29 2015-07-28 Greatbatch Ltd. Lead positioning and finned fixation system
WO2014036079A2 (en) 2012-08-28 2014-03-06 Boston Scientific Neuromodulation Corporation Parameter visualization, selection, and annotation interface
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US9209634B2 (en) 2012-09-07 2015-12-08 Greatbatch Ltd. Method of improving battery recharge efficiency by statistical analysis
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
US9861812B2 (en) 2012-12-06 2018-01-09 Blue Wind Medical Ltd. Delivery of implantable neurostimulators
EP2928558B1 (en) 2012-12-07 2017-09-06 Medtronic Inc. Minimally invasive implantable neurostimulation system
US9308022B2 (en) 2012-12-10 2016-04-12 Nevro Corporation Lead insertion devices and associated systems and methods
WO2014093178A2 (en) 2012-12-14 2014-06-19 Boston Scientific Neuromodulation Corporation Method for automation of therapy-based programming in a tissue stimulator user interface
US9352148B2 (en) 2013-02-27 2016-05-31 Greatbatch Ltd. Header block for an AIMD with an abandoned lead connector cavity
US20140275968A1 (en) 2013-03-13 2014-09-18 Greatbatch Ltd. Surrogate implanted medical device for energy dissipation of existing implanted leads during mri scans
US9472916B2 (en) 2013-03-14 2016-10-18 Medtronic, Inc. Distal connector assemblies for medical lead extensions
US9002447B2 (en) 2013-03-14 2015-04-07 Medtronic, Inc. Implantable medical device having power supply for generating a regulated power supply
EP2991723A4 (en) 2013-05-03 2017-02-01 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US9662503B2 (en) 2013-05-16 2017-05-30 Nuvectra Corporation System and method of displaying stimulation map and pain map overlap coverage representation
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
US20150018911A1 (en) 2013-07-02 2015-01-15 Greatbatch Ltd. Apparatus, system, and method for minimized energy in peripheral field stimulation
US9068587B2 (en) 2013-09-20 2015-06-30 Greatbach Ltd. Set screw apparatus
US9205258B2 (en) 2013-11-04 2015-12-08 ElectroCore, LLC Nerve stimulator system
US9511230B2 (en) 2013-11-08 2016-12-06 Nuvectra Corporation Implantable medical lead for stimulation of multiple nerves
US9502754B2 (en) 2014-01-24 2016-11-22 Medtronic, Inc. Implantable medical devices having cofire ceramic modules and methods of fabricating the same
US9457188B2 (en) 2014-03-03 2016-10-04 Medtronic, Inc. Therapeutic window determination
WO2015134327A2 (en) 2014-03-03 2015-09-11 Boston Scientific Neuromodulation Corporation Electrical stimulation leads with multiple anchoring units and methods of making and using
US9757555B2 (en) 2014-04-24 2017-09-12 Medtronic, Inc. Pre-molded sub-assemblies for implantable medical leads
US9981121B2 (en) 2014-04-28 2018-05-29 Medtronic, Inc. Implantable medical devices, systems and components thereof
EP3137162A4 (en) 2014-05-02 2018-01-24 Nevro Corporation Mri compatible medical devices
CN106794339B (zh) 2014-05-12 2019-08-27 米克伦设备有限责任公司 具有小尺寸发射天线的远程rf功率***
AU2015264561B2 (en) 2014-05-20 2020-02-20 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9775984B2 (en) 2014-08-01 2017-10-03 Nuvectra Corporation Apparatus with unencapsulated reinforcement
US9802038B2 (en) 2014-08-15 2017-10-31 Axonics Modulation Technologies, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
US9924904B2 (en) 2014-09-02 2018-03-27 Medtronic, Inc. Power-efficient chopper amplifier
EP3191176B1 (en) 2014-10-22 2024-04-10 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9597507B2 (en) 2014-10-31 2017-03-21 Medtronic, Inc. Paired stimulation pulses based on sensed compound action potential
US9498628B2 (en) 2014-11-21 2016-11-22 Medtronic, Inc. Electrode selection for electrical stimulation therapy
US10095837B2 (en) 2014-11-21 2018-10-09 Medtronic, Inc. Real-time phase detection of frequency band
US9907955B2 (en) 2014-11-25 2018-03-06 Medtronic Bakken Research Center B.V. Disturbing magnetic resonance imaging (MRI) images using implantable medical device
US10183162B2 (en) 2015-01-02 2019-01-22 Greatbatch Ltd. Coiled, closed-loop RF current attenuator configured to be placed about an implantable lead conductor
EP3136544A1 (en) 2015-02-26 2017-03-01 Electrochem Solutions, Inc. Battery wireless charging system
EP3285867B1 (en) 2015-04-24 2019-02-27 Medtronic Inc. Managing recharge power for implantable medical devices
US9872988B2 (en) 2015-06-09 2018-01-23 Nuvectra Corporation Systems, methods, and devices for evaluating lead placement based on patient physiological responses
US10076667B2 (en) 2015-06-09 2018-09-18 Nuvectra Corporation System and method of performing computer assisted stimulation programming (CASP) with a non-zero starting value customized to a patient
US10052490B2 (en) 2015-06-09 2018-08-21 Nuvectra Corporation Systems, methods, and devices for performing electronically controlled test stimulation
US9974949B2 (en) 2015-10-16 2018-05-22 Cyberonics, Inc. MRI-safe implantable lead assembly
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
AU2017207016B2 (en) 2016-01-15 2021-09-16 Curonix Llc An implantable relay module
US10244956B2 (en) 2016-02-12 2019-04-02 Nuvectra Corporation Stimulation needle apparatus and method
US10236709B2 (en) 2016-05-05 2019-03-19 Greatbatch Ltd. Apparatus, system, and method for wireless charging of a device within a sterilizable vessel
US10109844B2 (en) 2016-11-02 2018-10-23 Greatbatch Ltd. Dual weld plug for an electrochemical cell
US10493287B2 (en) 2017-02-27 2019-12-03 Medtronic, Inc. Facilitating trusted pairing of an implantable device and an external device
AT520440B1 (de) 2018-01-31 2019-04-15 Ing Josef Scharmueller Niederhalter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255368A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead with distal fixation and method
US20090012592A1 (en) * 2006-07-10 2009-01-08 Ams Research Corporation Tissue anchor
CN101678203A (zh) * 2007-01-29 2010-03-24 脊髓调制公司 无缝合线引线保持构造
CN102065947A (zh) * 2008-04-15 2011-05-18 心脏起搏器公司 希氏束刺激***
CN103702713A (zh) * 2011-11-04 2014-04-02 上海微创医疗器械(集团)有限公司 可植入主动医用导线

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839705A (zh) * 2018-08-16 2021-05-25 Spr治疗股份有限公司 用于外周刺激的电刺激器
CN112839705B (zh) * 2018-08-16 2024-01-16 Spr治疗股份有限公司 用于外周刺激的电刺激器
CN114209980A (zh) * 2022-02-23 2022-03-22 杭州神络医疗科技有限公司 神经刺激电极及其制造方法、神经刺激装置
CN116159244A (zh) * 2023-03-17 2023-05-26 上海杉翎医疗科技有限公司 一种注射式微型神经刺激器及神经刺激***
CN116159244B (zh) * 2023-03-17 2024-02-20 上海杉翎医疗科技有限公司 一种注射式微型神经刺激器及神经刺激***

Also Published As

Publication number Publication date
CN112657054A (zh) 2021-04-16
AU2015301398B2 (en) 2020-05-21
JP6795491B2 (ja) 2020-12-02
AU2015301398A1 (en) 2017-03-02
CA2982572A1 (en) 2016-02-18
EP3180070A1 (en) 2017-06-21
ES2867298T3 (es) 2021-10-20
US20160045724A1 (en) 2016-02-18
US9802038B2 (en) 2017-10-31
US20200038652A1 (en) 2020-02-06
US11213675B2 (en) 2022-01-04
EP3180070B1 (en) 2021-04-14
US20160121105A1 (en) 2016-05-05
JP2017523870A (ja) 2017-08-24
US10478619B2 (en) 2019-11-19
US20180078760A1 (en) 2018-03-22
US20220096823A1 (en) 2022-03-31
CA2957962A1 (en) 2016-02-18
WO2016025910A1 (en) 2016-02-18
CA2957962C (en) 2018-05-01
US9427574B2 (en) 2016-08-30
EP3180070A4 (en) 2018-02-07
CA2982572C (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN106659882A (zh) 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构
US11389659B2 (en) External pulse generator device and associated methods for trial nerve stimulation
CN107847731B (zh) 具有无asic的内部电子设备的可植入神经刺激器以及使用方法
CN107427683B (zh) 用于可植入神经刺激器的改进天线和使用方法
EP1986734B1 (en) Transobturator lead implantation system for pelvic floor stimulation
US20100274310A1 (en) Systems and methods for the treatment of bladder dysfunctions using neuromodulation
CN106999709A (zh) 用于与可植入神经刺激器一起使用的集成肌电图临床医生程控器
CN107073258A (zh) 用于基于神经定位来进行神经刺激电极配置的***和方法
CN107073257A (zh) 在用于治疗膀胱过度活动症的神经刺激***中的肌电图引线定位和刺激滴定
CN107427685A (zh) 与神经刺激充电设备一起使用的附接设备及相关联方法
US8200343B2 (en) Implantable medical electrical stimulation lead fixation method and apparatus
EP3755418B1 (en) Neurostimulation leads for trial nerve stimulation
WO2008153726A2 (en) Systems and methods for the treatment of bladder dysfunctions using neuromodulation stimulation
US20070255367A1 (en) Implantable Medical Electrical Stimulation Lead Fixation Method and Apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication