CN106629641B - 一种黑磷碳纳米管复合材料及其制备方法和应用 - Google Patents

一种黑磷碳纳米管复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN106629641B
CN106629641B CN201611023958.8A CN201611023958A CN106629641B CN 106629641 B CN106629641 B CN 106629641B CN 201611023958 A CN201611023958 A CN 201611023958A CN 106629641 B CN106629641 B CN 106629641B
Authority
CN
China
Prior art keywords
black phosphorus
nano tube
carbon nano
compound material
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611023958.8A
Other languages
English (en)
Other versions
CN106629641A (zh
Inventor
张晗
汤贤
张家宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201611023958.8A priority Critical patent/CN106629641B/zh
Publication of CN106629641A publication Critical patent/CN106629641A/zh
Application granted granted Critical
Publication of CN106629641B publication Critical patent/CN106629641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种黑磷碳纳米管复合材料,包括多根碳纳米管和沉积在所述碳纳米管表面的黑磷晶体颗粒。该复合材料兼具黑磷的可调直接带隙特性和碳纳米管的高导电、高稳定性,弥补了单独使用黑磷或碳纳米管时的局限,在光电器件等领域具有广阔的应用前景。本发明还提供了该黑磷碳纳米管复合材料的制备方法和应用。

Description

一种黑磷碳纳米管复合材料及其制备方法和应用
技术领域
本发明涉及合材料制备技术领域,特别是涉及一种黑磷碳纳米管复合材料及其制备方法和应用。
背景技术
黑磷是继石墨烯之后发现的另一种新奇的二维材料。不同于具有零带隙的石墨烯,黑磷是直接带隙半导体材料,带隙在0.3~2eV之间,能够显示较大的开关电流比(105)和高载流子迁移率(103cm2/Vs),同时具有近红外光响应特性。因此,黑磷在场效应晶体管中的通道材料、染料敏化太阳能电池等领域具有潜在的应用前景。然而,黑磷在空气等环境下易发生分解,阻碍了黑磷的大规模应用,如何提高黑磷的环境稳定性是目前需要重点考虑的问题。
碳纳米管已经被人们所熟知,其具有极佳的环境稳定性、导电性、极高的电子迁移率(104cm2/Vs)和一定的电催化活性,在光电器件以及燃料电池中具有重要的应用。然而,碳纳米管遭遇到跟石墨烯类似的零带隙或者带隙太窄的问题,使得其作为微电子开关时具有低的开关比。另外,碳纳米管的纳米管状结构和表面惰性使得其难以与其他部件紧密连接,进一步限制了碳纳米管的应用。因此,有必要结合黑磷和碳纳米管各自的优异性能,将双方的劣势进行弥补,开发出一种兼具黑磷的可调直接带隙特性,以及碳纳米管的高导电、高稳定性的复合材料,使二者在光电器件、电催化等领域的应用具有更光明的前景。
发明内容
鉴于此,本发明第一方面提供了一种黑磷碳纳米管复合材料,该复合材料兼具黑磷的可调直接带隙特性和碳纳米管的高导电、高稳定性,在光电器件、电催化等领域具有广阔的应用前景。
第一方面,本发明提供了一种黑磷碳纳米管复合材料,包括多根碳纳米管和沉积在所述碳纳米管表面的黑磷晶体颗粒。
其中,所述碳纳米管与所述黑磷晶体颗粒的质量比为1:(0.1~50)。两者的含量可根据具体应用需求来设定,可选地,碳纳米管与黑磷晶体颗粒的质量比可以为1:(0.1~1)或1:(2~30)或1:(40~50)。
本发明所述黑磷碳纳米管复合材料中,所述碳纳米管为单壁、双壁和多壁碳纳米管中的一种或几种,所述多根碳纳米管定向排列或相互交织形成多孔碳纳米管网状结构。因此,所述黑磷碳纳米管复合材料同样具有多孔结构。
所述黑磷晶体颗粒均匀分布在所述碳纳米管网状结构中。
所述黑磷晶体颗粒的尺寸为3nm~8μm。更具体地为5nm-100nm,200nm-800nm或1μm~5μm。
可选地,所述碳纳米管的直径为3~200nm,长度为0.1~100μm。适合的直径和长度有利于碳纳米管与红磷的均匀混合,有利于黑磷晶体颗粒的沉积。
本发明第一方面提供的黑磷碳纳米管复合材料,通过在碳纳米管表面沉积黑磷晶体颗粒,使其兼具黑磷的可调直接带隙特性和碳纳米管的高导电、高稳定性、电催化活性,弥补了单独使用黑磷或碳纳米管时的局限。
第二方面,本发明提供了一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
将碳纳米管和红磷按一定质量比添加至挥发性有机溶剂或去离子水中进行超声分散,得到混合分散液,再将所述混合分散液干燥,以去除所述挥发性有机溶剂或去离子水,得到碳纳米管和红磷混合物;
将所述碳纳米管和红磷混合物进行手工研磨或球磨后,置于反应室中,在保护气氛下先加热至450~1100℃,保温1~20h,随后降低至120~380℃,保温0.2~4h,保温结束后冷却,得到黑磷碳纳米管复合材料,所述黑磷碳纳米管复合材料包括碳纳米管和沉积在所述碳纳米管表面的黑磷晶体颗粒。
可选地,所述碳纳米管与所述红磷的质量比为1:(0.1~50),两者的含量可根据具体应用需求来设定,进一步地,碳纳米管与黑磷晶体颗粒的质量比可以为1:(0.1~1)或1:(2~30)或1:(40~50)。
可选地,每1L所述挥发性有机溶剂或去离子水中碳纳米管和红磷的总质量为1~100g。进一步地,每1L所述挥发性有机溶剂或去离子水中碳纳米管和红磷的总质量为1~50g或60-90g。
可选地,所述碳纳米管的直径为3~200nm,长度为0.1~100μm。适合的直径和长度有利于碳纳米管与红磷的均匀混合,有利于黑磷晶体颗粒的沉积。
可选地,所述挥发性有机溶剂包括无水乙醇、丙酮、正己烷、甲醇、甲苯、二甲苯、四氯甲烷、乙腈、醋酸乙酯中的一种或多种。
可选地,所述超声分散的时间为5~40min。进一步地,超声分散的时间为5-15min,或20-35min。所述干燥在烘箱中进行,可选地,所述干燥的温度为50~150℃。进一步地,干燥的温度为80-120℃。而干燥的时间视所述混合分散液的量而定,一般干燥至混合物结块、出现干裂且无润湿为止,具体地干燥的时间可为4~48h。通过超声分散和干燥,使得碳纳米管与红磷粉末得到均匀的混合。
本发明中,所述手工研磨在研钵中进行,研钵的材质可以是玻璃、不锈钢、玛瑙、氧化铝或氧化锆。可选地,所述手工研磨的时间为5~120min,研磨速度为10~60转/min。进一步地,手工研磨的时间为10~60min。
本发明中,所述球磨采用行星式球磨机进行,可选地,球磨机转速为30~720转/min,球磨时间为10~120min。进一步地,球磨机转速为100~600转/min,球磨时间为20~60min。所述行星式球磨机的球磨珠可为球形或圆柱形,直径为1~30mm,材质为不锈钢、氧化铝或氧化锆陶瓷。通过手工研磨或球磨,使烘干后结块的碳纳米管和红磷混合物捣碎、磨细,并使混合更加均匀。
本发明中,通过第一阶段450~1100℃的高温加热过程,使红磷分解挥发,挥发的磷原子中间产物传输到碳纳米管表面,进行吸附,并在碳纳米管表面成核、长大,随着磷原子的不断传输、吸附、扩散、成核和生长,黑磷晶体颗粒最终在碳纳米管表面形成,从而得到黑磷碳纳米管复合材料。而通过第二阶段120~380℃,保温0.2~4h的降温保温过程,避免了由于一步直接降温过程导致的结晶不完全,使沉积物出现裂纹、断层、晶粒细小、晶相不一致等现象。
可选地,所述的保护气氛为氩气或者氮气气氛,纯度为≥99.99%。
可选地,先加热至600~800℃,保温1~20h,随后降低至200~300℃,保温0.2~4h。
所述黑磷晶体颗粒的尺寸为3nm~8μm。更具体地为5nm-100nm,200nm-800nm或1μm~5μm。黑磷晶体颗粒的尺寸大小随第一阶段的高温保温时间的增长而增大。
本发明第二方面提供的黑磷碳纳米管复合材料的制备方法,该方法成本低、效率高、易规模化。
第三方面,本发明提供了一种本发明第一方面所述的黑磷碳纳米管复合材料在光电器件中的应用。例如,在场效应晶体管中作为通道材料的应用,在染料敏化太阳能电池中作为光阴极的应用,以及在燃料电池中作为催化剂载体或者非铂催化剂的应用。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为本发明实施例1制备得到的黑磷碳纳米管复合材料的SEM照片;
图2为本发明实施例1制备得到的黑磷碳纳米管复合材料的XRD照片;
图3为本发明实施例1制备得到的黑磷碳纳米管复合材料的高分辨透射电子显微镜照片。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
下面分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
(1)将2g碳纳米管和2g红磷添加至1L无水乙醇中进行超声分散20min,得到混合分散液,再将所述混合分散液干燥至结块、出现干裂且无润湿为止,以去除所述无水乙醇,得到碳纳米管和红磷混合物;
(2)将所述碳纳米管和红磷混合物放入玛瑙研钵,以30转/min的速度手工研磨30min后,采用氧化铝舟装入反应室,反应室中通入纯度为99.99%的氩气作为保护气氛,并加热至650℃保持6h,随后降至350℃并保持2h,再降至室温,取出样品,即得到黑磷碳纳米管复合材料。
对样品进行SEM表征发现,碳纳米管表面沉积有大量的黑磷晶体颗粒,且黑磷晶体颗粒均匀分布在碳纳米管网络结构中,颗粒尺寸位于0.1~5μm之间,如图1所示,图中10为黑磷晶体颗粒。对所制得的样品进行XRD表征,如图2所示,发现图谱中出现明显的碳纳米管和正交晶系黑磷的特征峰,证实了所合成的样品为黑磷碳纳米管复合材料。对所制得的样品进行高分辨透射电子显微镜表征,如图3所示,其中可以清晰看出碳纳米管(002)面的晶格面间距为0.336nm,以及黑磷(111)面的晶格面间距为0.25nm。
实施例2
一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
(1)将20g碳纳米管和2g红磷添加至1L无水乙醇中进行超声分散15min,得到混合分散液,再将所述混合分散液干燥至结块、出现干裂且无润湿为止,以去除所述无水乙醇,得到碳纳米管和红磷混合物;
(2)将所述碳纳米管和红磷混合物放入玛瑙研钵,以20转/min的速度手工研磨60min后,采用氧化铝舟装入反应室,反应室中通入纯度为99.99%的氩气作为保护气氛,并加热至800℃保持8h,随后降至250℃并保持3.5h,再降至室温,取出样品,即得到黑磷碳纳米管复合材料。
实施例3
一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
(1)将2g碳纳米管和80g红磷添加至1L丙酮中进行超声分散40min,得到混合分散液,再将所述混合分散液干燥至结块、出现干裂且无润湿为止,以去除所述丙酮,得到碳纳米管和红磷混合物;
(2)将所述碳纳米管和红磷混合物放入行星式球磨机中进行研磨,以300转/min的转速球磨60min后,采用氧化铝舟装入反应室,反应室中通入纯度为99.99%的氩气作为保护气氛,并加热至400℃保持18h,随后降至150℃并保持0.5h,再降至室温,取出样品,即得到黑磷碳纳米管复合材料。
实施例4
一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
(1)将2g碳纳米管和40g红磷添加至1L去离子水中进行超声分散30min,得到混合分散液,再将所述混合分散液干燥至结块、出现干裂且无润湿为止,以去除所述去离子水,得到碳纳米管和红磷混合物;
(2)将所述碳纳米管和红磷混合物放入行星式球磨机中进行研磨,以600转/min的转速球磨15min后,采用氧化铝舟装入反应室,反应室中通入纯度为99.99%的氩气作为保护气氛,并加热至1000℃保持2h,随后降至380℃并保持4h,再降至室温,取出样品,即得到黑磷碳纳米管复合材料。
实施例5
一种黑磷碳纳米管复合材料的制备方法,包括以下步骤:
(1)将2g碳纳米管和20g红磷添加至1L乙腈中进行超声分散20min,得到混合分散液,再将所述混合分散液干燥至结块、出现干裂且无润湿为止,以去除所述乙腈,得到碳纳米管和红磷混合物;
(2)将所述碳纳米管和红磷混合物放入行星式球磨机中进行研磨,以200转/min的转速球磨100min后,采用氧化铝舟装入反应室,反应室中通入纯度为99.99%的氩气作为保护气氛,并加热至600℃保持12h,随后降至200℃并保持3h,再降至室温,取出样品,即得到黑磷碳纳米管复合材料。
需要说明的是,根据上述说明书的揭示和和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围之内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种黑磷碳纳米管复合材料,其特征在于,包括多根碳纳米管和沉积在所述碳纳米管表面的黑磷晶体颗粒,所述黑磷碳纳米管复合材料采用如下制备方法制得,所述制备方法包括以下步骤:
将碳纳米管和红磷按质量比1:(0.1~50)添加至挥发性有机溶剂或者去离子水中进行超声分散,得到混合分散液,再将所述混合分散液干燥,以去除所述挥发性有机溶剂或去离子水,得到碳纳米管和红磷混合物;
将所述碳纳米管和红磷混合物进行手工研磨或球磨后,置于反应室中,在保护气氛下先加热至600~1100℃,保温1~20h,随后降低至120~380℃,保温0.2~4h,保温结束后冷却,得到所述黑磷碳纳米管复合材料。
2.如权利要求1所述的黑磷碳纳米管复合材料,其特征在于,所述碳纳米管与所述黑磷晶体颗粒的质量比为1:(0.1~50)。
3.如权利要求1所述的黑磷碳纳米管复合材料,其特征在于,所述多根碳纳米管定向排列或相互交织形成碳纳米管网状结构,所述黑磷晶体颗粒均匀分布在所述碳纳米管网状结构中。
4.如权利要求1所述的黑磷碳纳米管复合材料,其特征在于,所述黑磷晶体颗粒的尺寸为3nm~8μm;所述碳纳米管为单壁、双壁和多壁碳纳米管中的一种或几种,所述碳纳米管的直径为3~200nm,长度为0.1~100μm。
5.一种黑磷碳纳米管复合材料的制备方法,其特征在于,包括以下步骤:
将碳纳米管和红磷按质量比1:(0.1~50)添加至挥发性有机溶剂或者去离子水中进行超声分散,得到混合分散液,再将所述混合分散液干燥,以去除所述挥发性有机溶剂或去离子水,得到碳纳米管和红磷混合物;
将所述碳纳米管和红磷混合物进行手工研磨或球磨后,置于反应室中,在保护气氛下先加热至600~1100℃,保温1~20h,随后降低至120~380℃,保温0.2~4h,保温结束后冷却,得到黑磷碳纳米管复合材料,所述黑磷碳纳米管复合材料包括碳纳米管和沉积在所述碳纳米管表面的黑磷晶体颗粒。
6.如权利要求5所述的黑磷碳纳米管复合材料的制备方法,其特征在于,每1L所述挥发性有机溶剂或去离子水中碳纳米管和红磷的总质量为1~100g。
7.如权利要求5所述的黑磷碳纳米管复合材料的制备方法,其特征在于,所述挥发性有机溶剂包括无水乙醇、丙酮、正己烷、甲醇、甲苯、二甲苯、四氯甲烷、乙腈、醋酸乙酯中的一种或多种。
8.如权利要求5所述的黑磷碳纳米管复合材料的制备方法,其特征在于,所述超声分散的时间为5~40min,所述干燥的温度为50~150℃,干燥的时间为4~48h。
9.如权利要求5所述的黑磷碳纳米管复合材料的制备方法,其特征在于,所述手工研磨的时间为5~120min,研磨速度为10~60转/min;所述球磨采用行星式球磨机进行,球磨机转速为30~720转/min,球磨时间为10~120min。
10.一种如权利要求1-4任一项所述的黑磷碳纳米管复合材料在光电器件中的应用。
CN201611023958.8A 2016-11-14 2016-11-14 一种黑磷碳纳米管复合材料及其制备方法和应用 Active CN106629641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611023958.8A CN106629641B (zh) 2016-11-14 2016-11-14 一种黑磷碳纳米管复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611023958.8A CN106629641B (zh) 2016-11-14 2016-11-14 一种黑磷碳纳米管复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106629641A CN106629641A (zh) 2017-05-10
CN106629641B true CN106629641B (zh) 2019-04-16

Family

ID=58808376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611023958.8A Active CN106629641B (zh) 2016-11-14 2016-11-14 一种黑磷碳纳米管复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106629641B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301178A (zh) * 2018-08-17 2019-02-01 福建新峰二维材料科技有限公司 一种掺杂磷新型碳负极材料制备的钠双离子电池
CN110482529B (zh) * 2019-08-27 2021-03-09 深圳市德方纳米科技股份有限公司 黑磷碳纳米管复合材料及其制备方法
CN111969883B (zh) * 2020-08-24 2021-09-03 合肥工业大学 一种黑磷碳纳米管复合材料作为非接触式静电响应驱动器的应用
CN112018362B (zh) * 2020-08-31 2022-07-12 华中科技大学 一种磷碳材料及其原位合成方法和应用
CN114852995B (zh) * 2022-03-31 2024-03-22 海南师范大学 黑磷基复合材料构建辣根过氧化物酶传感器的电催化应用
CN114958062B (zh) * 2022-05-26 2024-02-13 苏州纳普乐思纳米材料有限公司 环保碳纳米管抗静电剂及膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244288A (zh) * 2011-06-02 2011-11-16 南开大学 锂磷二次电池
CN103296261A (zh) * 2012-02-24 2013-09-11 清华大学 锂离子电池负极材料的制备方法
CN105762406A (zh) * 2016-05-10 2016-07-13 北京石油化工学院 一种有机型锌离子二次电池
CN106025183A (zh) * 2016-05-19 2016-10-12 上海理工大学 一种锂离子电池碳基柔性薄膜电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244288A (zh) * 2011-06-02 2011-11-16 南开大学 锂磷二次电池
CN103296261A (zh) * 2012-02-24 2013-09-11 清华大学 锂离子电池负极材料的制备方法
CN105762406A (zh) * 2016-05-10 2016-07-13 北京石油化工学院 一种有机型锌离子二次电池
CN106025183A (zh) * 2016-05-19 2016-10-12 上海理工大学 一种锂离子电池碳基柔性薄膜电极的制备方法

Also Published As

Publication number Publication date
CN106629641A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106629641B (zh) 一种黑磷碳纳米管复合材料及其制备方法和应用
Zhao et al. In situ growth of graphdiyne on arbitrary substrates with a controlled-release method
Lu et al. Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor
Wang et al. Hierarchical flower-like WO3 nanostructures and their gas sensing properties
Fang et al. Direct observation of the growth process of MgO nanoflowers by a simple chemical route
CN102176338B (zh) 一种石墨烯/铜纳米线复合导电材料与制备方法
CN106517171B (zh) 一种石墨烯气凝胶的制备方法
CN104925794B (zh) 一种以纳米孔石墨烯为基底生长三维氮掺杂石墨烯的方法
Zhang et al. Facile design and hydrothermal synthesis of In2O3 nanocube polycrystals with superior triethylamine sensing properties
Wang et al. Low-temperature vapor–solid growth and excellent field emission performance of highly oriented SnO2 nanorod arrays
CN104894530A (zh) 一种二维过渡金属硫族化物薄膜及其制备方法和应用
CN102358938A (zh) 一种利用催化剂定域技术合成图案化单晶氧化钨纳米线阵列的新方法
Feng et al. Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation
Reddy et al. Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles
CN100488873C (zh) 一维SiC纳米线的制备方法
Wang et al. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors
Wang et al. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route
Li et al. The ethanol-sensitive property of hierarchical MoO3-mixed SnO2 aerogels via facile ambient pressure drying
Li et al. Synthesis of β-Ga2O3 nanorods
Li et al. Preparation of photoluminescent single crystalline MgO nanobelts by DC arc plasma jet CVD
CN105800602A (zh) 铜颗粒远程催化直接在绝缘衬底上生长石墨烯的方法
CN105293479A (zh) 一种三维有序方形孔介孔石墨烯骨架材料的制备方法
Jiao et al. Fabrication of new C/ZnO/ZnO composite material and their enhanced gas sensing properties
CN105399061B (zh) 一种一维硒化锡单晶纳米线的制备方法
Attolini et al. Synthesis and characterization of 3C–SiC nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Applicant after: Shenzhen University

Address before: 518000 South China Medical College, Nanhai Avenue, Guangdong, Shenzhen, 3688, China

Applicant before: Shenzhen University

GR01 Patent grant
GR01 Patent grant