CN106542567A - 一种锂离子电池负极材料用纳米ZnO的制备方法 - Google Patents

一种锂离子电池负极材料用纳米ZnO的制备方法 Download PDF

Info

Publication number
CN106542567A
CN106542567A CN201610902683.9A CN201610902683A CN106542567A CN 106542567 A CN106542567 A CN 106542567A CN 201610902683 A CN201610902683 A CN 201610902683A CN 106542567 A CN106542567 A CN 106542567A
Authority
CN
China
Prior art keywords
zno
lithium ion
ion battery
preparation
negative material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610902683.9A
Other languages
English (en)
Inventor
黄技军
宋宏芳
周鹏伟
戴涛
赵东辉
李冰蟾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xfh Battery Material Co Ltd
Original Assignee
Fujian Xfh Battery Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xfh Battery Material Co Ltd filed Critical Fujian Xfh Battery Material Co Ltd
Priority to CN201610902683.9A priority Critical patent/CN106542567A/zh
Publication of CN106542567A publication Critical patent/CN106542567A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂离子电池负极材料用纳米ZnO的制备方法,具体制备方法为将醋酸锌放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500‑800 ℃,升温速度为3‑5°/min,在预定温度500‑800℃保温2‑10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米ZnO。制备出ZnO具有优异的电化学循环稳定性,该锂离子电池负极材料用纳米ZnO的制备方法简单,反应条件易于达到,适合大批量制备。

Description

一种锂离子电池负极材料用纳米ZnO的制备方法
技术领域
本发明涉及锂离子电池负极材料的制备方法,具体是一种锂离子电池负极材料用纳米ZnO的制备方法,属于电化学电源领域。
背景技术
随着新兴经济的快速发展,全球能源消耗量急剧增长。锂离子电池以其高电压、高能量密度、循环寿命长、安全性能好、成本低廉等优点在电脑、相机和移动电话等便携式电子设备上已经得到了广泛的应用。近年来,世界各国都在积极开展锂离子电池运用于混合动力电动汽车(HEV)、纯电动汽车(PEV)等的研究,但锂离子电池作为车载动力电池的主要瓶颈是锂离子电池负极材料的性能。
石墨是目前应用最广泛的锂离子电池负极材料,然而,石墨的理论容量只有372mAh/g,无法满足动力能源的高比容量的需求。相比于石墨,ZnO具有较高的理论容量(978mAh/g),且廉价、易制取、性质稳定,被认为是一个具有前途的锂离子负极材料。但是,ZnO存在循环性差、衰减迅速等缺点。中国专利CN105336935A公开了一种ZnO-Graphene锂离子电池的制备方法与应用,其步骤包括氧化石墨的制备、ZnO的水热法制备、ZnO/RGO的水热合成法等,通过石墨烯的复合可以提升ZnO循环性能,但是以此方法做出的ZnO-Graphene负极材料在40mA/g的电流密度下,第40周只有307. 3mAh/g,容量偏低,而且该方法工艺步骤复杂,不适合大规模生产。
发明内容
本发明针对现有的技术问题,提供一种锂离子电池负极材料用纳米ZnO的制备方法,通过简单高效的熔盐燃烧合成法制备出具有优异电化学性能的纳米ZnO负极材料。
为实现上述目的,本发明提供如下技术方案:一种锂离子电池负极材料用纳米ZnO的制备方法,其特征在于,其包括以下步骤:
(1)将醋酸锌放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米ZnO。
进一步,作为优选方案,步骤(1)中所述的醋酸锌纯度>99.9%。
与现有技术相比,本发明的有益效果是:
(1)制备方法简单,易于操作;
(2)本发明采用的锌源为低熔点(237℃)醋酸锌,反应条件易于达到;
(3)所制备的纳米ZnO材料电化学性能优异, 在锂离子电池中有潜在应用。
附图说明
图 1 实施例1所制备样品的XRD图。
图 2 实施例1所制备样品的SEM图。
图 3 实施例1所制备样品的循环性能图。
具体实施方式
实施例1
一种锂离子电池负极材料用纳米ZnO的制备方法, 其包括以下步骤:
(1)将纯度为99.95%的醋酸锌放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米ZnO。
X-射线衍射测定表明制得的纳米ZnO为纤锌矿结构(附图1),由扫描电镜照片测定表明纳米ZnO颗粒尺寸为~40 nm(附图2)。
用本发明的纳米ZnO:SP:PVDF=8:1:1(重量比),加适量NMP混合调成浆状,涂布于铜箔上并于真空干燥箱内干燥12小时制成负极片,以金属锂片为对电极,Celgard膜为隔膜,电解液为1M liPF6/ EC+DEC+DMC=1:1:1,在氩气保护的手套箱中组装成CR2032型电池。电池组装完后静置8h,再用CT2001A电池测试***进行恒流充放电测试, 测试电压为 0.02~3V。图3为所制备的纳米ZnO作为锂离子电池负极的循环性能图,在0.5 A/g电流密度下首次放电比容量高达1099 mAh/g,40次循环之后放电比容量分别为328.3 mAh/g,显示了很好的循环稳定性能。

Claims (2)

1.一种锂离子电池负极材料用纳米ZnO的制备方法,其特征在于,其包括以下步骤:
(1)将醋酸锌放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米ZnO。
2.根据权利要求 1所述的制备方法,其特征在于,步骤 (1)中,所述的醋酸锌纯度>99.9%。
CN201610902683.9A 2016-10-18 2016-10-18 一种锂离子电池负极材料用纳米ZnO的制备方法 Pending CN106542567A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610902683.9A CN106542567A (zh) 2016-10-18 2016-10-18 一种锂离子电池负极材料用纳米ZnO的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610902683.9A CN106542567A (zh) 2016-10-18 2016-10-18 一种锂离子电池负极材料用纳米ZnO的制备方法

Publications (1)

Publication Number Publication Date
CN106542567A true CN106542567A (zh) 2017-03-29

Family

ID=58368684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610902683.9A Pending CN106542567A (zh) 2016-10-18 2016-10-18 一种锂离子电池负极材料用纳米ZnO的制备方法

Country Status (1)

Country Link
CN (1) CN106542567A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170961A (zh) * 2017-04-06 2017-09-15 华南师范大学 碳氮掺杂三元金属氧化物的制备方法及应用
CN107792890A (zh) * 2017-09-15 2018-03-13 福建翔丰华新能源材料有限公司 制备纳米NiO锂离子电池负极材料的方法
CN109647584A (zh) * 2018-12-10 2019-04-19 桂林理工大学 一种锂离子电池矿物负极材料的砂磨改性方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241764A (zh) * 2013-05-30 2013-08-14 中国科学院上海光学精密机械研究所 三维氧化锌花状结构的制备方法
CN103833067A (zh) * 2014-02-17 2014-06-04 西安工程大学 一种纳米氧化锌粉体的制备方法
CN104998633A (zh) * 2015-07-23 2015-10-28 陕西科技大学 基于一步煅烧法制备的烟花状纳米ZnO光催化剂及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241764A (zh) * 2013-05-30 2013-08-14 中国科学院上海光学精密机械研究所 三维氧化锌花状结构的制备方法
CN103833067A (zh) * 2014-02-17 2014-06-04 西安工程大学 一种纳米氧化锌粉体的制备方法
CN104998633A (zh) * 2015-07-23 2015-10-28 陕西科技大学 基于一步煅烧法制备的烟花状纳米ZnO光催化剂及其方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANIL VITHAL GHULE ET AL.: "In situ thermo-TOF-SIMS stdecomposition of zinc acetate dihydrateudy of thermal", 《JOURNAL OF MASS SPECTROMETRY》 *
ANIL VITHAL GHULE ET AL.: "Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dehydrate forming zinc oxide nanoparticles", 《CHEMICAL PHYSICS LETTERS》 *
SHEO K. MISHRA ET AL.: "(ZnO nanoparticles: Structural, optical and photoconductivity characteristics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
赵新宇等: "二水合醋酸锌热分解机理与动力学", 《华东理工大学学报》 *
赵新宇等: "喷雾热解合成ZnO超细粒子工艺及机理研究", 《无机材料学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170961A (zh) * 2017-04-06 2017-09-15 华南师范大学 碳氮掺杂三元金属氧化物的制备方法及应用
CN107792890A (zh) * 2017-09-15 2018-03-13 福建翔丰华新能源材料有限公司 制备纳米NiO锂离子电池负极材料的方法
CN109647584A (zh) * 2018-12-10 2019-04-19 桂林理工大学 一种锂离子电池矿物负极材料的砂磨改性方法

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN101609884B (zh) 一种锂离子电池负极材料SnS2的制备方法
CN104993125B (zh) 一种锂离子电池负极材料Fe3O4/Ni/C的制备方法
CN102496707A (zh) 一种纳米碳包覆尖晶石钛酸锂电池负极材料的制备方法
CN103390748B (zh) 一种氧化铝包覆钴酸锂正极材料的制备方法
CN104409715A (zh) 一种高性能氮掺杂碳包覆的钛酸锂复合锂离子电池负极材料的制备方法
WO2020098275A1 (zh) 一种SiO 2包覆三元正极材料及其制备方法
CN101807688A (zh) 一种掺杂铌元素的锂离子电池钛酸锂负极材料及其制备方法
CN102751489B (zh) 一种锂离子电池正极材料的制备方法
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN102838102B (zh) 一种磷酸铁锂单晶纳米棒的制备方法
CN103762354A (zh) 一种LiNi0.5Mn1.5O4材料、其制备方法及锂离子电池
CN104409712A (zh) 碳氮包覆钛酸锂材料的制备方法
CN105355892A (zh) 一种锂离子电池负极的制备方法
CN104852019A (zh) 一种锂离子电池用硅金属复合负极材料及其制备方法
CN104966814A (zh) 一种高安全性的金属锂负极及其制备方法
CN106938852A (zh) 一种锂离子电池负极材料用纳米CuO的制备方法
CN104803423A (zh) 一种多孔四氧化三钴材料的制备方法及其应用
CN102491410A (zh) 一种锂离子电池负极材料氧缺位钛酸锂的合成方法
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN106960947A (zh) 复合材料、其制备方法与应用
CN106542567A (zh) 一种锂离子电池负极材料用纳米ZnO的制备方法
CN105047870A (zh) 一种掺氮碳包覆硅复合材料及其制备方法
CN109921016A (zh) 一种卤素离子协助的硫化铜微米花材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170329