CN106938852A - 一种锂离子电池负极材料用纳米CuO的制备方法 - Google Patents

一种锂离子电池负极材料用纳米CuO的制备方法 Download PDF

Info

Publication number
CN106938852A
CN106938852A CN201710039267.5A CN201710039267A CN106938852A CN 106938852 A CN106938852 A CN 106938852A CN 201710039267 A CN201710039267 A CN 201710039267A CN 106938852 A CN106938852 A CN 106938852A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
negative material
battery negative
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710039267.5A
Other languages
English (en)
Inventor
黄技军
李海
周鹏伟
戴涛
赵东辉
李冰蟾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xfh Battery Material Co Ltd
Original Assignee
Fujian Xfh Battery Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xfh Battery Material Co Ltd filed Critical Fujian Xfh Battery Material Co Ltd
Priority to CN201710039267.5A priority Critical patent/CN106938852A/zh
Publication of CN106938852A publication Critical patent/CN106938852A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种锂离子电池负极材料用纳米CuO的制备方法,具体制备方法为将一水醋酸铜放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500‑800℃,升温速度为3‑5°/min,在预定温度500‑800℃保温2‑10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米CuO。制备出CuO具有优异的电化学循环稳定性,该锂离子电池负极材料用纳米CuO的制备方法简单,反应条件易于达到,适合大批量制备。

Description

一种锂离子电池负极材料用纳米CuO的制备方法
技术领域
本发明涉及锂离子电池负极材料的制备方法,具体是一种锂离子电池负极材料用纳米CuO的制备方法,属于电化学电源领域。
背景技术
随着新兴经济的快速发展,全球能源消耗量急剧增长。锂离子电池以其高电压、高能量密度、循环寿命长、安全性能好、成本低廉等优点在电脑、相机和移动电话等便携式电子设备上已经得到了广泛的应用。近年来,世界各国都在积极开展锂离子电池运用于混合动力电动汽车(HEV)、纯电动汽车(PEV)等的研究,但锂离子电池作为车载动力电池的主要瓶颈是锂离子电池负极材料的性能。
石墨是目前应用最广泛的锂离子电池负极材料,然而,石墨的理论容量只有372mAh/g,无法满足动力能源的高比容量的需求,过渡金属氧化物以其优秀的电化学储锂性能备受关注。作为典型代表的CuO由于具有较高的理论容量(672mAh/g)、广泛的资源储量、价格的适度性以及环境友好型等优点受到关注。但是,CuO电极由于其低的导电性会影响电荷在电极中的传输,进而影响电化学储锂性能。此外,CuO电极材料由于在充放电过程中将经受比较大的体积膨胀而造成明显的结构破损粉化,继而导致循环容量的快速下降。
发明内容
本发明针对现有的技术问题,提供一种锂离子电池负极材料用纳米CuO的制备方法,通过简单高效的熔盐燃烧合成法制备出具有优异电化学性能的纳米CuO负极材料。
为实现上述目的,本发明提供如下技术方案:一种锂离子电池负极材料用纳米CuO的制备方法,其特征在于,其包括以下步骤:
(1)将一水醋酸铜放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米CuO。
进一步,作为优选方案,步骤(1)中所述的一水醋酸铜纯度>99.9%。
与现有技术相比,本发明的有益效果是:
(1)本发明方法具有反应时间短,工艺简单,易实现工业化大规模生产;
(2)所制备的纳米CuO材料电化学性能优异, 在锂离子电池中有潜在应用。
附图说明
图 1 实施例1所制备样品的XRD图。
图 2 实施例1所制备样品的SEM图。
图 3 实施例1所制备样品的循环性能图。
具体实施方式
实施例1
一种锂离子电池负极材料用纳米CuO的制备方法, 其包括以下步骤:
(1)将纯度为99.95%的一水醋酸铜放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米CuO。
X-射线衍射测定表明制得的纳米CuO为单斜晶体结构(附图1),由扫描电镜照片测定表明纳米CuO颗粒尺寸为~300 nm(附图2)。
用本发明的纳米CuO:SP:PVDF=8:1:1(重量比),加适量NMP混合调成浆状,涂布于铜箔上并于真空干燥箱内干燥12小时制成负极片,以金属锂片为对电极,Celgard膜为隔膜,电解液为1M liPF6/ EC+DEC+DMC=1:1:1,在氩气保护的手套箱中组装成CR2032型电池。电池组装完后静置8h,再用CT2001A电池测试***进行恒流充放电测试, 测试电压为 0.02~3V。图3为所制备的纳米CuO作为锂离子电池负极的循环性能图,在0.5 A/g电流密度下首次放电比容量高达1058 mAh/g,40次循环之后放电比容量分别为342.4 mAh/g,显示了很好的循环稳定性能。

Claims (2)

1.一种锂离子电池负极材料用纳米CuO的制备方法,其特征在于,其包括以下步骤:
(1)将一水醋酸铜放入带有升温程序的马弗炉中,开启马弗炉,从室温升到预定温度500-800 ℃,升温速度为3-5°/min,在预定温度500-800℃保温2-10小时,然后取出,冷却至室温,得到锂离子电池负极材料用纳米CuO。
2. 根据权利要求 1所述的制备方法,其特征在于,步骤 (1)中,所述的一水醋酸铜纯度>99.9%。
CN201710039267.5A 2017-01-19 2017-01-19 一种锂离子电池负极材料用纳米CuO的制备方法 Pending CN106938852A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710039267.5A CN106938852A (zh) 2017-01-19 2017-01-19 一种锂离子电池负极材料用纳米CuO的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710039267.5A CN106938852A (zh) 2017-01-19 2017-01-19 一种锂离子电池负极材料用纳米CuO的制备方法

Publications (1)

Publication Number Publication Date
CN106938852A true CN106938852A (zh) 2017-07-11

Family

ID=59469517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710039267.5A Pending CN106938852A (zh) 2017-01-19 2017-01-19 一种锂离子电池负极材料用纳米CuO的制备方法

Country Status (1)

Country Link
CN (1) CN106938852A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732224A (zh) * 2017-09-15 2018-02-23 福建翔丰华新能源材料有限公司 提高负极材料CuO循环稳定性的方法
CN107792890A (zh) * 2017-09-15 2018-03-13 福建翔丰华新能源材料有限公司 制备纳米NiO锂离子电池负极材料的方法
CN108862364A (zh) * 2018-09-21 2018-11-23 东北大学 一种熔盐溶剂化法制备纳米Cu2O颗粒的方法
CN108987703A (zh) * 2018-07-17 2018-12-11 澳洋集团有限公司 一种基于氧化铜复合锂电池负极材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172506A (zh) * 2013-03-21 2013-06-26 常州大学 一种以纳米氧化铜为催化剂制备克酮酸的方法
CN103979600A (zh) * 2014-05-30 2014-08-13 上海沃凯生物技术有限公司 一种超细氧化铜粉的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172506A (zh) * 2013-03-21 2013-06-26 常州大学 一种以纳米氧化铜为催化剂制备克酮酸的方法
CN103979600A (zh) * 2014-05-30 2014-08-13 上海沃凯生物技术有限公司 一种超细氧化铜粉的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELI ZHANG等: "The kinetics of thermal dehydration of copper(II) acetate monohydrate in air", 《THERMOCHIMICA ACTA 》 *
ZHENKUN LIN等: "Study on thermal decomposition of copper(II) acetate monohydrate in air", 《J THERM ANAL CALORIM》 *
吕军军等: "草酸铜及纳米氧化铜的制备与表征", 《火***学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732224A (zh) * 2017-09-15 2018-02-23 福建翔丰华新能源材料有限公司 提高负极材料CuO循环稳定性的方法
CN107792890A (zh) * 2017-09-15 2018-03-13 福建翔丰华新能源材料有限公司 制备纳米NiO锂离子电池负极材料的方法
CN108987703A (zh) * 2018-07-17 2018-12-11 澳洋集团有限公司 一种基于氧化铜复合锂电池负极材料的制备方法
CN108862364A (zh) * 2018-09-21 2018-11-23 东北大学 一种熔盐溶剂化法制备纳米Cu2O颗粒的方法

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN101609884B (zh) 一种锂离子电池负极材料SnS2的制备方法
CN103904321B (zh) 锂离子电池负极材料锰酸锂的高温固相制备方法
CN104868098B (zh) 一种碳复合Cu3P‑Cu锂离子电池负极及其制备方法
CN110783568B (zh) 一种中空碳包覆硒化钼纳米结构的制备方法及应用
WO2020098275A1 (zh) 一种SiO 2包覆三元正极材料及其制备方法
CN106099095A (zh) 氟氮共掺杂碳包覆钛酸锂纳米片的制备方法
CN105845924A (zh) 氟掺杂的钛酸锂纳米片的制备方法
CN106938852A (zh) 一种锂离子电池负极材料用纳米CuO的制备方法
CN108807912B (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN102838102A (zh) 一种磷酸铁锂单晶纳米棒的制备方法
CN108862238A (zh) 一种生物质废料菱角壳基硬炭及其制备方法和应用
CN104292100A (zh) 对苯二甲酸钙的制备方法及在锂离子电池中的应用
CN103811741B (zh) 钒氧化物纳米线围绕而成的栗子花状中空微球及其制备方法和应用
CN109004233B (zh) 一种负载层状双金属氢氧化物的金属锂负极复合铜箔集流体的制备方法及应用
CN110993971A (zh) 一种NiS2/ZnIn2S4复合材料及其制备方法和应用
CN107720822B (zh) 一种海胆状锂离子电池正极材料的制备方法
CN106542567A (zh) 一种锂离子电池负极材料用纳米ZnO的制备方法
CN104934577A (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用
CN108134075B (zh) 一种钛酸钠微球及其在钠离子电池中的应用
CN110233251A (zh) 一种多孔硅/碳复合材料的制备方法及其应用
CN114094063B (zh) 一种利用空腔前驱体与zif衍生物相结合制备电池负极材料的方法
CN103303968B (zh) 一种CdSnO3纳米材料及其制备方法和应用
CN102299375B (zh) 锂离子动力电池及锂离子动力电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170711

RJ01 Rejection of invention patent application after publication