CN106198760A - 一种基于双阵列探头的钢轨焊缝超声成像检测方法及*** - Google Patents

一种基于双阵列探头的钢轨焊缝超声成像检测方法及*** Download PDF

Info

Publication number
CN106198760A
CN106198760A CN201610750416.4A CN201610750416A CN106198760A CN 106198760 A CN106198760 A CN 106198760A CN 201610750416 A CN201610750416 A CN 201610750416A CN 106198760 A CN106198760 A CN 106198760A
Authority
CN
China
Prior art keywords
probe
array
array probe
rail
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610750416.4A
Other languages
English (en)
Inventor
付汝龙
詹红庆
陈伟
陈建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG SHANTOU GOWORLD CO Ltd
Original Assignee
GUANGDONG SHANTOU GOWORLD CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG SHANTOU GOWORLD CO Ltd filed Critical GUANGDONG SHANTOU GOWORLD CO Ltd
Priority to CN201610750416.4A priority Critical patent/CN106198760A/zh
Priority to PCT/CN2016/098192 priority patent/WO2018040117A1/zh
Publication of CN106198760A publication Critical patent/CN106198760A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明实施例公开了一种基于双阵列探头的钢轨焊缝超声成像检测方法,在被测钢轨上布置一发射阵列探头与一接收阵列探头;将所述接收阵列探头固定吸附于所述被测钢轨上,所述发射阵列探头前后移动或是依次放置于若干固定位置点上,使超声波覆盖所述被测钢轨的焊缝;所述接收阵列探头接收所述发射阵列探头发射的超声波经所述焊缝的缺陷表面反射后的超声回波;通过确定所述接收阵列探头上的阵列晶片接收焊缝缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。本发明实施例还公开了一种基于双阵列探头的钢轨焊缝超声成像检测的***。采用本发明,能够快速、有效、全面地对钢轨焊缝中存在的各种平面状缺陷进行检测,有效提高检测效率和检测结果可靠性。

Description

一种基于双阵列探头的钢轨焊缝超声成像检测方法及***
技术领域
本发明涉及一种超声无损检测技术,尤其涉及基于双阵列探头的钢轨焊缝超声成像检测方法及***。
背景技术
对于钢轨焊缝的检测,尤其是涉及钢轨焊缝中存在的平面状缺陷,如光斑、灰斑、裂纹、未焊透及疲劳裂纹等,这些缺陷的存在不仅减小了钢轨的有效截面,而且还可能造成应力集中,使钢轨焊缝直接拉开或使钢轨折断,因而是最危险的缺陷。这些平面状的缺陷,采用超声波进行检测时,其反射波按照反射定律在其他方向传播而无法沿入射路径返回,因而采用单个探头难以实现检测,因此一般采用双探头进行检测。常规检测方法是采用两只单晶片的探头进行K型扫查或者串列式扫查。K型扫查时,两只单晶片探头分别放置在相对的两个探测面上,一只探头发射超声波,另一只探头接收超声波,扫查时,两只探头需要相对或相背等速移动,当焊缝中存在平面状缺陷时,缺陷的反射波会被接收阵列探头接收;串列式扫查时,两只单晶片探头一前一后同时放置在一个探测面上,距离焊缝近侧的一只探头发射超声波,距离焊缝远侧的一只探头接收超声波,两只探头也需要相对或相背等速移动,当焊缝中存在平面状缺陷时,发射阵列探头发出的超声波经缺陷和钢轨底面两次反射后被接收阵列探头接收。采用K型扫查或串列式扫查时,由于采用单晶片探头,为了实现焊缝整个高度的扫查,两只探头必须相对或相背等速移动,因而采用手工操作很难完成,一般都需要配备专业的扫查装置。然而钢轨焊缝需要检测的部位包括轨头K型扫查、轨底K型扫查以及轨腰串列式扫查,且由于钢轨结构的特殊性,要保证探头的耦合效果对扫查装置的要求非常苛刻,而且由于检测工作量大,扫查装置的调节安装也比较费时费力,并且工作时需要检测人员操作扫查装置实现相对或相背等速移动探头,因而检测人员劳动强度大,检测结果易受检测人员的操作经验及疲劳程度影响。
发明内容
本发明实施例所要解决的技术问题在于,提供一种基于双阵列探头的钢轨焊缝超声成像检测方法。可无需设计复杂的扫查装置就能够快速、有效、全面地对钢轨焊缝中存在的光斑、灰斑、裂纹、未焊透及疲劳裂纹等平面状缺陷进行有效检测,能够明显降低检测人员的劳动强度,提高检测效率和检测结果可靠性。
为了解决上述技术问题,本发明实施例提供了一种基于双阵列探头的钢轨焊缝超声成像检测方法,包括以下步骤:
在被测钢轨上布置一发射阵列探头与一接收阵列探头进行串列式扫查或K型扫查;
使所述发射阵列探头工作于单声束或扇形或线形扫描方式;
将所述接收阵列探头固定吸附于所述被测钢轨上,所述发射阵列探头前后移动或是依次放置于的若干固定位置点上,使声波覆盖所述被测钢轨的焊缝;
所述接收阵列探头接收的所述发射阵列探头发射的超声波经所述焊缝的缺陷表面反射的超声回波;
通过确定所述接收阵列探头上阵列晶片接收到的所述焊缝的缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。
进一步地,使用的所述接收阵列探头具有带状的探头本体、设置于所述探头本体下端的软接触薄膜套;所述探头本体上具有磁吸棒,边沿具有刻度标尺带,所述探头本体底面并排设置有若干垂直其长度方向的阵列晶片,所述刻度标尺带用于指示阵列晶片的位置信息,所述软接触薄膜套使所述探头本体水平或具有倾角。
更进一步地,当所述发射阵列探头工作于单声束扫描方式时,所述发射阵列探头在指定区域范围内前后移动,当所述发射阵列探头工作于扇形扫描方式时,所述发射阵列探头依次放置于的若干固定位置点上。
更进一步地,所述若干固定位置点的确定方式为:首先根据发射阵列探头的扇形扫描角度范围,移动发射阵列探头调节发射阵列探头入射点与所述焊缝中心线的距离,使扇形扫描最大角度的声束位于所述焊缝检测区域上端点从而确定第一个固定位置,接着继续在钢轨上直线移动发射阵列探头,使发射阵列探头扇形扫描最大角度声束位于第一个固定位置时的最小角度声束的宽度位置,从而确定第二个固定点,以所述第二个固定点作为新起点以同样的方式确定其他位置点,直到所有位置点的扇形扫描声束覆盖整个钢轨焊缝需要检测的区域。
更进一步地,所述扇形扫描是激发所述发射阵列探头中的全部或部分晶片,使激发晶片形成的声束在设定的角度范围内以一定的步进值变换角度扫过扇形区域。
更进一步地,所述发射阵列探头可在双阵列探头工作方式和单阵列探头工作方式中切换,当所述发射阵列探头工作于单阵列探头工作方式时,其工作于自发自收模式。
更进一步地,所述接收阵列探头以相控阵线形扫描方式工作,将其阵列晶片分成不同的晶片组,所述晶片组可以是一个或多个晶片,每组激活晶片组接收某一特定角度的声束,通过循环改变起始激活晶片的位置,使接收声束沿晶片阵列方向循环前后移动。
相应地,本发明实施例还提供了一种用于双阵列探头的钢轨焊缝超声波成像检测的***,包括一发射阵列探头、一接收阵列探头以及相控阵超声检测设备;
所述发射阵列探头、接收阵列探头在被测钢轨上进行串列式扫查或K型扫查;所述发射阵列探头具有相控阵超声楔块以及安装于所述相控阵超声楔块的相控阵超声探头,所述相控阵超声探头包括探头本体以及多个条状矩形晶片;
所述接收阵列探头包括带状的探头本体、设置于所述探头本体下端的软接触薄膜套;所述探头本体上具有磁吸棒,边沿具有刻度标尺带,所述探头本体底面设置有阵列晶片,所述阵列晶片包括多个条状矩形晶片,阵列晶片依次排列在所述探头本体上,所述刻度标尺带用于指示阵列晶片的位置信息,所述软接触薄膜套使所述探头本体水平或具有倾角;
所述相控阵超声检测设备使所述发射阵列探头、接收阵列探头工作于双阵列探头工作方式或单阵列探头工作方式,工作于单阵列探头工作方式时,所述发射阵列探头工作于自发自收方式;
所述相控阵超声检测设备获取所述接收阵列探头上阵列晶片接收到的所述焊缝缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。
其中,所述发射阵列探头工作于单声束或扇形或线形扫描方式。
其中,所述发射阵列探头、接收阵列探头均还具有单总线器件,所述相控阵超声检测设备通过所述单总线器件进行识别与交换数据。
实施本发明实施例,具有如下有益效果:本发明无需设计复杂的扫查装置就能够快速、有效、全面地对钢轨焊缝中存在的光斑、灰斑、裂纹、未焊透及疲劳裂纹等平面状缺陷进行检测,能够明显降低检测人员的劳动强度,提高检测效率和检测结果可靠性。
附图说明
图1是钢轨焊缝轨腰串列式扫查的示意图;
图2是钢轨焊缝轨头K型扫查的示意图;
图3是钢轨焊缝轨底K型扫查的示意图;
图4是发射阵列探头的结构示意图;
图5是接收阵列探头的结构示意图;
图6是相控阵扇形扫描原理的示意图;
图7是相控阵单声束扫描原理的示意图;
图8是相控阵线形扫描原理的示意图;
图9是轨腰串列式扇形扫描原理的示意图;
图10是轨腰串列式单声束扫描原理的示意图;
图11是轨头K型扇形扫描原理的示意图;
图12是轨头K型单声束扫描原理的示意图;
图13是轨底K型扇形扫查原理的示意图;
图14是轨头K型单声束扫描原理的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明实施例的一种基于双阵列探头的钢轨焊缝超声成像检测方法,首先,进行钢轨焊缝轨腰串列式扫查时,如图1所示,在钢轨1的焊缝2一侧的钢轨踏面8上一前一后布置两个阵列探头,距离焊缝近侧的阵列探头作为发射阵列探头3,距离焊缝远侧的阵列探头作为接收阵列探头4,发射阵列探头和接收阵列探头通过耦合剂均贴在钢轨踏面上;进行钢轨焊缝轨头K型扫查时,如图2所示,在钢轨焊缝一侧的钢轨轨头两个侧面7各布置一个阵列探头,其中一个阵列探头作为发射阵列探头3,另一个阵列探头作为接收阵列探头4,发射阵列探头和接收阵列探头通过耦合剂均贴在钢轨轨头的两侧的侧面上;进行钢轨焊缝轨底K型扫查时,如图3所示,在钢轨焊缝一侧的钢轨轨底两个侧面6各布置一个阵列探头,其中一个阵列探头作为发射阵列探头3,另一个阵列探头作为接收阵列探头4,发射阵列探头和接收阵列探头通过耦合剂均贴在钢轨轨底两侧的侧面上。其次,发射阵列探头和接收阵列探头分别与相控阵超声检测设备5相应的端口相连接。然后,启动相控阵超声检测设备对钢轨焊缝进行检测,发射阵列探头沿着钢轨轴向方向进行前后移动或者放置在某几个固定的位置点,接收阵列探头采用不可移动的方式紧贴吸附固定在钢轨指定位置上,发射阵列探头发射超声波的同时,接收阵列探头同步进行超声波的接收,相控阵超声检测设备根据接收阵列探头接收到的信号进行图像化显示,检测人员根据检测图像显示判定钢轨焊缝中的缺陷信息。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有双阵列探头工作方式和单阵列探头工作方式,并且两种工作方式可自动进行切换。双阵列探头工作方式时:两个阵列探头配套组合使用,一个阵列探头工作在发射模式,另一个阵列探头工作在接收模式,发射模式的阵列探头只发射超声波,接收模式的阵列探头只接收超声波,发射模式可以设置为相控阵扇形扫描方式、相控阵线形扫描方式或相控阵单声束扫描方式,接收模式可以设置为相控阵线形扫描方式;单阵列探头工作方式时:接到相控阵超声检测设备的阵列探头均工作在自发自收模式,即阵列探头发射超声波的同时进行接收超声波,自发自收模式的阵列探头可设置为相控阵扇形扫描方式、相控阵线形扫描方式或相控阵单声束扫描方式,并且自发自收时发射与接收的扫描方式一样。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有利用单总线(1-wire)工作原理来实现阵列探头的自动识别和参数的设置。相控阵超声检测设备识别阵列探头的方法为:相控阵超声检测设备启动时,对接到设备上的阵列探头中的1-wire器件进行初始化、对1-wire器件进行识别和交换数据,以此实现阵列探头的自动识别和参数设置。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有探头耦合监控的功能,接到相控阵超声检测设备的阵列探头工作在自发自收模式,根据接收到超声波信号的情况自动判别探头的耦合情况,提供失耦报警功能。在进行钢轨焊缝检测的过程中,相控阵超声检测设备自动间隔一定时间进行耦合监控扫描并提供耦合情况显示和报警。
如图4所示,作为发射阵列探头3的阵列探头,其包括相控阵超声探头31和相控阵超声楔块32。相控阵超声探头31包括探头本体、阵列晶片33和1-wire器件34,阵列晶片33包括多个条状矩形晶片,1-wire器件34通过相控阵超声检测设备的访问从而识别探头的类型和参数;相控阵超声楔块具有底面、与底面相对的斜面,以及与底面、斜面相邻的竖直侧面,相控阵超声探头安装在相控阵超声楔块的斜面上,相控阵超声探头与相控阵楔块之间通过耦合剂紧密结合。
如图5所示,作为接收阵列探头4的阵列探头,其包括探头本体41、阵列晶片42、1-wire器件43、磁吸附带44、刻度标尺带45及软接触薄膜套46。探头本体41由柔韧性材料制成带状,阵列晶片42包括多个条状矩形晶片,阵列晶片依次排列在探头本体41上,阵列晶片42与1-wire器件43布置于探头本体的底面;磁吸附带44位于探头本体的上表面,每间隔一定距离布置有磁吸棒,磁吸棒的排列方式与阵列探头的长度方向垂直,磁吸附带具有对铁磁性材料吸附的功能,实现阵列探头吸附在钢轨表面上;刻度标尺带45位于探头本体的上表面的磁吸附带的一侧,具有标尺刻度值,指示阵列晶片的位置信息,同时可作为尺子的测量功能;1-wire器件为该阵列探头的身份识别器件,通过相控阵超声检测设备的访问从而识别该阵列探头的类型和参数;软接触薄膜套46位于探头本体底部,薄膜套内充满液体,薄膜套具有一定倾斜角度,有利于超声波的接收。
发射模式中使用的相控阵扇形扫描方式,是激发所述发射阵列探头中的全部或部分晶片,使激发晶片形成的声束在设定的角度范围内以一定的步进值变换角度扫过扇形区域,如图6所示。
发射模式中使用的相控阵单声束扫描方式,是激发所述发射阵列探头中的全部或部分晶片,使激发晶片形成只有一条特定角度的超声波声束,如图7所示。
接收模式中使用的相控阵线形扫描方式,是指以相同的聚集法则施加在阵列探头中的不同晶片组,晶片组可以是一个或多个晶片,每组激活晶片组接收某一特定角度的声束,通过循环改变起始激活晶片的位置,使接收声束沿晶片阵列方向循环前后移动,实现类似常规手动超声波检测探头前后移动的检测效果,如图8所示。
进行钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵扇形扫描,如图9所示,通过发射阵列探头固定在某一个位置实现钢轨焊缝轨腰一定高度区域的检测,通过将发射阵列探头依次放置在某几个固定的位置点上,实现钢轨焊缝轨腰整个高度全覆盖检测,当钢轨焊缝轨腰区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面和钢轨底面二次反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头扇形扫描声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
进行钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵单声束扫描,如图10所示,通过发射阵列探头在轨头踏面指定区域前后移动实现钢轨焊缝轨腰特定高度区域的检测,当钢轨焊缝轨腰区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面和钢轨底面二次反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头单声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
进行钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵扇形扫描,如图11所示,通过发射阵列探头固定在某一个位置实现钢轨焊缝轨头一定宽度区域的检测,通过将发射阵列探头依次放置在某几个固定的位置点上实现钢轨焊缝轨头整个宽度全覆盖检测,当钢轨焊缝轨头区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头扇形扫描声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
进行钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵单声束扫描,如图12所示,通过发射阵列探头在轨头侧面指定位置区域前后移动探头实现钢轨焊缝轨头一定宽度区域的检测,当钢轨焊缝轨头区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头单声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
进行钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵扇形扫描,如图13所示,将发射阵列探头固定在某一个位置实现钢轨焊缝轨底一定宽度区域的检测,通过将发射阵列探头依次放置在某几个固定的位置点上实现钢轨焊缝轨底区域整个宽度全覆盖检测,当钢轨焊缝轨底区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头扇形扫描声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
进行钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵单声束扫描,如图14所示,通过将发射阵列探头在轨底侧面指定位置区域前后移动探头实现钢轨焊缝轨底一定宽度区域的检测,当钢轨焊缝轨底区域存在平面状缺陷时,发射阵列探头发出的超声波经缺陷表面反射后被接收阵列探头接收,相控阵超声检测设备根据发射阵列探头单声束确定接收阵列探头阵列晶片长度,同时将接收阵列探头接收到的信号进行显示。
以下将对发射阵列探头与接收阵形探头的工作步骤进行详细说明。
进行钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵扇形扫描方式时,发射阵列探头位置固定点的确定方法为:首先根据发射阵列探头的扇形扫描角度范围,移动发射阵列探头调节发射阵列探头入射点与钢轨焊缝中心线的距离,使扇形扫描最大角度的声束位于钢轨焊缝轨腰高度检测的上端点从而确定第1个固定位置,接着继续在钢轨踏面上移动发射阵列探头,使发射阵列探头扇形扫描最大角度声束位于第1个固定位置时的最小角度声束的高度位置,从而确定第2个固定点,以第2个固定点作为起点,以同样的方式确定其他位置点,直到所有位置点的扇形扫描声束覆盖整个轨腰需要检测的高度区域。
进行钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵扇形扫描方式时,接收阵列探头阵列晶片长度的确定方法为:首先根据设定发射阵列探头的扇形扫描角度范围,将扇形扫描角度范围的最大角度声束位于钢轨焊缝轨腰检测高度范围的上端点,根据上端点反射波经钢轨底面反射后与钢轨踏面的交点作为接收阵列探头阵列晶片的接收声束起点;其次,在踏面上移动发射阵列探头将扇形扫描角度范围的最小角度声束位于轨腰检测高度范围的下端点,根据下端点反射波经钢轨底面反射与钢轨踏面的交点作为接收阵列探头阵列晶片的接收声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度和位置。
进行钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵单声束扫描方式时,发射阵列探头移动范围和接收阵列探头的阵列晶片长度的确定方法为:首先移动发射阵列探头调节发射阵列探头入射点与钢轨焊缝中心线的距离,将发射阵列探头声束位于轨腰检测高度范围的上端点,此时发射阵列探头的位置为可移动范围的起点,根据上端点反射波经钢轨底面反射后与钢轨踏面的交点作为接收阵列晶片的声束起点;其次,将发射阵列探头声束位于轨腰检测高度范围的下端点,此时发射阵列探头的位置为可移动范围的终点,根据下端点反射波经钢轨底面反射与钢轨踏面的交点作为接收阵列探头阵列晶片的声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度及位置。
进行钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵扇形扫描方式时,发射阵列探头位置固定点的确定方法为:首先根据发射阵列探头的扇形扫描角度范围,移动发射阵列探头调节发射阵列探头入射点与钢轨焊缝中心线的距离,使扇形扫描最大角度的声束位于钢轨轨头宽度检测的上端点从而确定第1个固定位置,接着继续在钢轨轨头侧面上移动发射阵列探头,使发射阵列探头扇形扫描最大角度声束位于第1个固定位置时的最小角度声束的宽度位置,从而确定第2个固定点,同样的方式确定其他位置点,直到所有位置点的扇形扫描声束覆盖整个轨头需要检测的宽度区域。
进行钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵扇形扫描方式时,接收阵列探头中的阵列晶片长度的确定方法为:首先根据设定发射阵列探头的扇形扫描角度范围,将扇形扫描角度范围的最大角度声束位于轨头检测宽度范围的上端点,根据上端点反射波与钢轨轨头侧面的交点作为接收阵列探头阵列晶片的接收声束起点;其次,移动发射阵列探头,将扇形扫描角度范围的最小角度声束位于轨头检测宽度范围的下端点,根据下端点反射波与钢轨轨头侧面的交点作为接收阵列探头阵列晶片的接收声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度和位置。
进行钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵单声束扫描方式时,发射阵列探头移动范围和接收阵列探头中的阵列晶片长度的确定方法为:首先移动发射阵列探头调节发射阵列探头入射点与钢轨焊缝中心线的距离,将声束位于轨头检测宽度范围的上端点,此时发射阵列探头的位置为可移动范围的起点,根据上端点反射波与钢轨轨头侧面的交点作为接收阵列晶片的声束起点;其次,将发射阵列探头声束位于轨头检测宽度范围的下端点,此时发射阵列探头的位置为可移动范围的终点,根据下端点反射波与钢轨轨头侧面的交点作为接收阵列探头阵列晶片的声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度及位置。
进行钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵扇形扫描方式时,发射阵列探头位置固定点的确定方法为:首先根据发射阵列探头的扇形扫描角度范围,移动发射阵列探头调节发射阵列探头入射点距离钢轨焊缝中心线的距离,使扇形扫描最大角度的声束位于钢轨轨底宽度检测的上端点从而确定第1个固定位置,接着继续在钢轨轨底侧面上移动发射阵列探头,使发射阵列探头扇形扫描最大角度声束位于第1个固定位置时的最小角度声束的宽度位置,从而确定第2个固定点,同样的方式确定其他位置点,直到所有位置点的扇形扫描声束覆盖整个轨底需要检测的宽度区域。
进行钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵扇形扫描方式时,接收阵列探头中的阵列晶片长度的确定方法为:首先根据设定发射阵列探头的扇形扫描角度范围,将扇形扫描角度范围的最大角度声束位于轨底检测宽度范围的上端点,根据上端点反射波与钢轨轨底侧面的交点作为接收阵列探头阵列晶片的接收声束起点;其次,将扇形扫描角度范围的最小角度声束位于轨底检测宽度范围的下端点,根据下端点反射波与钢轨轨底侧面的交点作为接收阵列探头阵列晶片的接收声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度和位置。
进行钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵单声束扫描方式时,发射阵列探头移动范围和接收阵列探头的阵列晶片长度的确定方法为:首先移动发射阵列探头调节发射阵列探头入射点距离钢轨焊缝中心线的距离,将声束位于轨底检测宽度范围的上端点,此时发射阵列探头的位置为可移动范围的起点,根据上端点反射波与钢轨轨底侧面的交点作为接收阵列晶片的声束起点;其次,将发射阵列探头声束位于轨底检测宽度范围的下端点,此时发射阵列探头的位置为可移动范围的终点,根据下端点反射波与钢轨轨底侧面的交点作为接收阵列探头阵列晶片的声束终点;最后根据确定的声束起点和声束终点确定晶片阵列的长度及位置。
作为钢轨焊缝检测使用的相控阵超声检测设备中图像显示方法为:相控阵检测设备根据接收阵列探头中使用线形扫描参数设置,将检测结果显示为线形扫描图像,当发射阵列探头工作在相控阵扇形扫描方式时,仪器显示的线形扫描图像与发射阵列探头位置对应的实时图像,当发射阵列探头工作在相控阵单声束扫描方式时,仪器显示的线形扫描图像中的每一条声束具有幅度峰值记忆保持的功能,即图像刷新时,线形扫描图像的每一条声束的超声波信号只保留最大幅度峰值信息。
作为钢轨焊缝检测使用的相控阵检测设备中缺陷信息识别方法为:根据相控阵检测设备中显示的线形扫描图像,当线形扫描图像中的某个声束接收到缺陷的反射回波,即可确定该回波是由钢轨焊缝中的哪个反射点反射的超声波。
钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵扇形扫描方式,缺陷位置的确定公式为:
(1)
公式(1)中:d gy (n)为轨腰检测线形扫描图像中第n条声束表示的钢轨焊缝轨腰中缺陷反射点的深度;d1表示钢轨焊缝轨腰检测扇形扫描覆盖的上端点深度,d2表示钢轨焊缝轨腰检测扇形扫描覆盖的下端点深度;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gy (n2) - d gy (n1)即可算出轨腰平面状缺陷的高度值。
钢轨焊缝轨腰串列式扫查,发射阵列探头工作在相控阵单声束扫描方式,缺陷位置的确定公式为:
(2)
公式(2)中:d gy (n)为轨腰检测线形扫描图像中第n条声束表示的钢轨焊缝轨腰中缺陷反射点的深度;d1表示钢轨焊缝轨腰检测需要覆盖的上端点深度,d2表示钢轨焊缝轨腰检测需要覆盖的下端点深度;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gy (n2) - d gy (n1)即可算出轨腰平面状缺陷的高度值。
钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵扇形扫描方式,缺陷位置的确定公式为:
(3)
公式(3)中:d gt (n)为轨头检测线形扫描图像中第n条声束表示钢轨焊缝轨头中缺陷反射点的宽度位置;d3表示钢轨焊缝轨头检测扇形扫描覆盖宽度区域的上端点位置,d4表示钢轨焊缝轨头检测扇形扫描覆盖宽度区域的下端点位置;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gt (n2) -d gt (n1)即可算出轨头平面状缺陷的宽度值。
钢轨焊缝轨头K型扫查,发射阵列探头工作在相控阵单声束扫描方式,缺陷位置的确定公式为:
(4)
公式(4)中:d gt (n)为轨头检测线形扫描图像中第n条声束表示钢轨焊缝轨头中缺陷反射点的宽度位置;d3表示钢轨焊缝轨头检测宽度区域的上端点位置,d4表示钢轨焊缝轨头检测宽度区域的下端点位置;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gt (n2) - d gt (n1)即可算出轨头平面状缺陷的宽度值。
钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵扇形扫描方式,缺陷位置的确定公式为:
(5)
公式(5)中:d gd (n)表示轨底检测线形扫描图像中第n条声束表示钢轨焊缝中轨底缺陷反射点的宽度位置;d5表示钢轨焊缝轨底检测扇形扫描覆盖宽度区域的上端点位置,d6表示钢轨焊缝轨底检测扇形扫描覆盖宽度区域的下端点位置;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gd (n2)-d gd (n1)即可算出轨底平面状缺陷的宽度值。
钢轨焊缝轨底K型扫查,发射阵列探头工作在相控阵单声束扫描方式,缺陷位置的确定公式为:
(6)
公式(6)中:d gd (n)表示轨底检测线形扫描图像中第n条声束表示钢轨焊缝中轨底缺陷反射点的宽度位置;d5表示钢轨焊缝轨底检测宽度区域的上端点位置,d6表示钢轨焊缝轨底检测宽度区域的下端点位置;N表示线形扫描图像中的超声波声束总数;n表示线形扫描图像中的某一条声束,其中1≤n≤N。因此当线形扫描图像中出现连续的声束均有缺陷反射回波,根据连续有反射回波的边缘声束n1和n2,利用d gd (n2)- d gd (n1)即可算出轨底平面状缺陷的宽度值。
本发明实施例对应还提供了一种用于双阵列探头的钢轨焊缝超声波成像检测的***,包括一发射阵列探头、一接收阵列探头以及相控阵超声检测设备。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有双阵列探头工作方式和单阵列探头工作方式,并且两种工作方式可自动进行切换。双阵列探头工作方式时:两个阵列探头配套组合使用,一个阵列探头工作在发射模式,另一个阵列探头工作在接收模式,发射模式的阵列探头只发射超声波,接收模式的阵列探头只接收超声波,发射模式可以设置为相控阵扇形扫描方式、相控阵线形扫描方式或相控阵单声束扫描方式,接收模式可以设置为相控阵线形扫描方式;单阵列探头工作方式时:接到相控阵超声检测设备的阵列探头均工作在自发自收模式,即阵列探头发射超声波的同时进行接收超声波,自发自收模式的阵列探头可设置为相控阵扇形扫描方式、相控阵线形扫描方式或相控阵单声束扫描方式,并且自发自收时发射与接收的扫描方式一样。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有利用单总线(1-wire)工作原理来实现阵列探头的自动识别和参数的设置。相控阵超声检测设备识别阵列探头的方法为:相控阵超声检测设备启动时,对接到设备上的阵列探头中的1-wire器件进行初始化、对1-wire器件进行识别和交换数据,以此实现阵列探头的自动识别和参数设置。
作为钢轨焊缝检测使用的相控阵超声检测设备,具有探头耦合监控的功能,接到相控阵超声检测设备的阵列探头工作在自发自收模式,根据接收到超声波信号的情况自动判别探头的耦合情况,提供失耦报警功能。在进行钢轨焊缝检测的过程中,相控阵超声检测设备自动间隔一定时间进行耦合监控扫描并提供耦合情况显示和报警。
如图4所示,作为发射阵列探头3的阵列探头,其包括相控阵超声探头31和相控阵超声楔块32。相控阵超声探头31包括探头本体、阵列晶片33和1-wire器件34,阵列晶片33包括多个条状矩形晶片,1-wire器件34通过相控阵超声检测设备的访问从而识别探头的类型和参数;相控阵超声楔块具有底面、与底面相对的斜面,以及与底面、斜面相邻的竖直侧面,相控阵超声探头安装在相控阵超声楔块的斜面上,相控阵超声探头与相控阵楔块之间通过耦合剂紧密结合。
如图5所示,作为接收阵列探头4的阵列探头,其包括探头本体41、阵列晶片42、1-wire器件43、磁吸附带44、刻度标尺带45及软接触薄膜套46。探头本体41由柔韧性材料制成带状,阵列晶片42包括多个条状矩形晶片,阵列晶片依次排列在探头本体41上,阵列晶片42与1-wire器件43布置于探头本体的底面;磁吸附带44位于探头本体的上表面,每间隔一定距离布置有磁吸棒,磁吸棒的排列方式与阵列探头的长度方向垂直,磁吸附带具有对铁磁性材料吸附的功能,实现阵列探头吸附在钢轨表面上;刻度标尺带45位于探头本体的上表面的磁吸附带的一侧,具有标尺刻度值,指示阵列晶片的位置信息,同时可作为尺子的测量功能;1-wire器件为该阵列探头的身份识别器件,通过相控阵超声检测设备的访问从而识别该阵列探头的类型和参数;软接触薄膜套46位于探头本体底部,薄膜套内充满液体。
软接触薄膜套使探头本体41水平或是具有一定倾斜角度,有利于超声波的接收。
相控阵超声检测设通过上述方法,获得接收阵列探头上阵列晶片接收焊缝缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种基于双阵列探头的钢轨焊缝超声成像检测方法,其特征在于,包括以下步骤:
在被测钢轨上布置一发射阵列探头与一接收阵列探头进行串列式扫查或K型扫查;
使所述发射阵列探头工作于单声束或扇形或线形扫描方式;
将所述接收阵列探头固定吸附于所述被测钢轨上,所述发射阵列探头前后移动或是依次放置于若干固定位置点上,使超声波覆盖所述被测钢轨的焊缝;
所述接收阵列探头接收所述发射阵列探头发射的超声波经所述焊缝的缺陷表面反射的超声波回波;
通过确定所述接收阵列探头上的阵列晶片接收到的所述焊缝的缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。
2.据权利要求1所述的方法,其特征在于,使用的所述接收阵列探头具有带状的探头本体、设置于所述探头本体下端的软接触薄膜套;所述探头本体上具有磁吸棒,边沿具有刻度标尺带,所述探头本体底面并排设置有若干垂直其长度方向的阵列晶片,所述刻度标尺带用于指示阵列晶片的位置信息,所述软接触薄膜套使所述探头本体水平或具有倾角。
3.据权利要求2所述的方法,其特征在于,当所述发射阵列探头工作于单声束扫描方式时,所述发射阵列探头在指定区域范围内前后移动,当所述发射阵列探头工作于扇形扫描方式时,所述发射阵列探头依次放置于若干固定位置点上。
4.据权利要求3所述的方法,其特征在于,所述若干固定位置点的确定方式为:首先根据发射阵列探头的扇形扫描角度范围,移动发射阵列探头调节发射阵列探头入射点与所述焊缝中心线的距离,使扇形扫描最大角度的声束位于所述焊缝检测区域上端点从而确定第一个固定位置,接着继续在钢轨上直线移动发射阵列探头,使发射阵列探头扇形扫描最大角度声束位于第一个固定位置时的最小角度声束的宽度位置,从而确定第二个固定点,以所述第二个固定点作为新起点以同样的方式确定其他位置点,直到所有位置点的扇形扫描声束覆盖整个钢轨焊缝需要检测的区域。
5.据权利要求4所述的方法,其特征在于,所述扇形扫描是激发所述发射阵列探头中的全部或部分晶片,使激发晶片形成的声束在设定的角度范围内以一定的步进值变换角度扫过扇形区域。
6.根据权利要求1所述的方法,其特征在于,所述发射阵列探头可在双阵列探头工作方式和单阵列探头工作方式中切换,当所述发射阵列探头工作于单阵列探头工作方式时,其工作于自发自收模式。
7.根据权利要求1-6任一项所述的方法,其特征在于,所述接收阵列探头以相控阵线形扫描方式工作,将其阵列晶片分成不同的晶片组,所述晶片组可以是一个或多个晶片,每组激活晶片组接收某一特定角度的声束,通过循环改变起始激活晶片的位置,使接收声束沿晶片阵列方向循环前后移动。
8.一种权利要求1所使用的***,其特征在于,包括一发射阵列探头、一接收阵列探头以及相控阵超声检测设备;
所述发射阵列探头、接收阵列探头在被测钢轨上进行串列式扫查或K型扫查;所述发射阵列探头具有相控阵超声楔块以及安装于所述相控阵超声楔块的相控阵超声探头,所述相控阵超声探头包括探头本体以及多个条状矩形晶片;
所述接收阵列探头包括带状的探头本体、设置于所述探头本体下端的软接触薄膜套;所述探头本体上具有磁吸棒,边沿具有刻度标尺带,所述探头本体底面设置有阵列晶片,所述阵列晶片包括多个条状矩形晶片,阵列晶片依次排列在所述探头本体上,所述刻度标尺带用于指示阵列晶片的位置信息,所述软接触薄膜套使所述探头本体水平或具有倾角;
所述相控阵超声检测设备使所述发射阵列探头、接收阵列探头工作于双阵列探头工作方式或单阵列探头工作方式,工作于单阵列探头工作方式时,所述发射阵列探头工作于自发自收方式;
所述相控阵超声检测设备获取所述接收阵列探头上阵列晶片接收到的所述焊缝缺陷反射的超声波回波声束的起始和终点位置,计算所述缺陷的高度值。
9.根据权利要求8所述的***,其特征在于,所述发射阵列探头工作于单声束或扇形或线形扫描方式。
10.根据权利要求9所述的***,其特征在于,所述发射阵列探头、接收阵列探头均还具有单总线器件,所述相控阵超声检测设备通过所述单总线器件进行识别与交换数据。
CN201610750416.4A 2016-08-30 2016-08-30 一种基于双阵列探头的钢轨焊缝超声成像检测方法及*** Pending CN106198760A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610750416.4A CN106198760A (zh) 2016-08-30 2016-08-30 一种基于双阵列探头的钢轨焊缝超声成像检测方法及***
PCT/CN2016/098192 WO2018040117A1 (zh) 2016-08-30 2016-09-06 一种基于双阵列探头的钢轨焊缝超声波成像检测方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610750416.4A CN106198760A (zh) 2016-08-30 2016-08-30 一种基于双阵列探头的钢轨焊缝超声成像检测方法及***

Publications (1)

Publication Number Publication Date
CN106198760A true CN106198760A (zh) 2016-12-07

Family

ID=57526615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610750416.4A Pending CN106198760A (zh) 2016-08-30 2016-08-30 一种基于双阵列探头的钢轨焊缝超声成像检测方法及***

Country Status (2)

Country Link
CN (1) CN106198760A (zh)
WO (1) WO2018040117A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976250A (zh) * 2019-04-30 2019-07-05 北京弘燕高新技术有限公司 一种钢轨焊缝定位装置
CN110702790A (zh) * 2019-11-11 2020-01-17 成都主导科技有限责任公司 一种用于远声程检测的超声波探头
CN112595775A (zh) * 2020-11-07 2021-04-02 西南交通大学 道岔钢轨伤损辨识方法
CN114428118A (zh) * 2022-01-11 2022-05-03 中国科学院声学研究所 一种双阵列超声成像检测方法及检测装置
CN115436478A (zh) * 2022-09-29 2022-12-06 汕头问源科技有限公司 一种焊管超声相控阵检测方法及装置
CN115656343A (zh) * 2022-12-07 2023-01-31 汕头市超声检测科技有限公司 一种基于串列式矩阵扫查的钢轨焊缝缺陷定位方法
CN116465967A (zh) * 2023-06-20 2023-07-21 汕头市超声检测科技有限公司 一种基于k型超声扫查的钢轨焊缝缺陷定位方法
CN116754643A (zh) * 2023-05-22 2023-09-15 天津诚信达金属检测技术有限公司 一种异种钢焊缝缺陷超声相控阵检测方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843301B (zh) * 2018-07-04 2024-03-29 中国石油集团川庆钻探工程有限公司 一种采油气井口装置在线检测相控阵扫查器
CN111351865A (zh) * 2018-12-20 2020-06-30 核动力运行研究所 一种用于高温紧固螺栓中心孔内侧超声检测的相控阵探头
CN111351855A (zh) * 2018-12-21 2020-06-30 核动力运行研究所 一种带防松销螺栓的超声检验探头结构
CN109507050B (zh) * 2019-01-02 2021-11-02 攀钢集团攀枝花钢铁研究院有限公司 钢轨接头轨头偏心加载-轨腰疲劳试验装置及试验方法
CN111307946B (zh) * 2019-11-20 2022-06-03 中国化学工程第三建设有限公司 奥氏体不锈钢对接焊接接头的超声检测方法
CN111220713B (zh) * 2020-04-07 2024-03-29 国家能源集团科学技术研究院有限公司 在役风电螺栓的缺陷和应力智能监督检测***及方法
CN111611778B (zh) * 2020-05-26 2023-07-21 苏州无损检测协会 适用于平面波超声成像***演示的验证试块及其设计方法
CN114200013A (zh) * 2020-09-17 2022-03-18 云南缔邦检测有限公司 一种接触网作业车轮对轮轴相控阵检测方法
CN114199998B (zh) * 2020-09-18 2024-03-08 宝山钢铁股份有限公司 用于焊管坡口未熔合和夹渣缺陷的手动检测方法及装置
CN112255310A (zh) * 2020-10-12 2021-01-22 利派普(北京)检测技术有限公司 一种俯仰自适应的扫查器
CN112229908B (zh) * 2020-10-12 2024-06-18 阿塔米智能装备(北京)有限公司 一种扫查器耦合供水***
CN112285200B (zh) * 2020-11-20 2024-06-04 西安热工研究院有限公司 一种阵列涡流与相控阵超声复合的检测探头
CN112525996B (zh) * 2020-12-08 2022-04-12 中国科学院金属研究所 一种各向同性热解石墨超声成像检测方法
CN112972914A (zh) * 2021-02-22 2021-06-18 郑州工业应用技术学院 一种基于超声波治疗的产妇术后康复装置
CN113075293B (zh) * 2021-03-09 2022-11-04 中国石油天然气集团有限公司 一种b型套筒搭接焊缝相控阵超声检测方法及***
CN113533518B (zh) * 2021-07-14 2024-04-26 北京信泰智合科技发展有限公司 一种大角度纵波探头及制备方法
CN113607813B (zh) * 2021-07-30 2023-08-18 南昌航空大学 激光焊t型焊缝缺陷的超声自动检测装置及其定量方法
CN113640386B (zh) * 2021-08-11 2023-09-08 中国兵器科学研究院宁波分院 一种考虑结构变形的t形焊接接头超声相控阵自动检测方法
CN113899810A (zh) * 2021-08-26 2022-01-07 中国人民解放军空军工程大学航空机务士官学校 一种铝基隐身涂层损伤的超声波检测方法
CN113791034B (zh) * 2021-09-30 2022-09-06 合肥德泰轨交数据有限公司 一种用于钢轨探伤的样本采集分类监管***
CN113848375B (zh) * 2021-10-20 2023-11-28 国网湖南省电力有限公司 一种油绝缘变压器内部器件带电检测装置及其应用方法
CN114152667B (zh) * 2021-10-28 2023-12-29 芜湖中铁科吉富轨道有限公司 一种辙叉上三种材料焊接处焊缝的超声波探伤方法
CN114113321B (zh) * 2021-11-12 2024-01-19 西安热工研究院有限公司 一种燃气轮机压气机叶轮叶根槽相控阵超声检测***及方法
CN115015391A (zh) * 2022-06-23 2022-09-06 西安热工研究院有限公司 一种螺栓孔裂纹相控阵超声检测装置及方法
CN117517455B (zh) * 2023-10-26 2024-05-10 安徽大华检测技术有限公司 一种棒材超声无损探伤仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219287A (ja) * 2003-01-16 2004-08-05 Kawasaki Heavy Ind Ltd 超音波探傷方法とその装置
US20100101326A1 (en) * 2007-02-28 2010-04-29 Jfe Steel Corporation Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for pipe
CN103267801A (zh) * 2013-04-22 2013-08-28 北京隆盛泰科石油管科技有限公司 用于油气输送钢管制造的埋弧焊焊缝自动超声波检测方法
CN204832115U (zh) * 2015-08-18 2015-12-02 广深铁路股份有限公司广州工务段 钢轨探伤装置
CN204855454U (zh) * 2015-07-30 2015-12-09 龙源(北京)风电工程技术有限公司 一种高强螺栓缺陷检测装置
CN105203642A (zh) * 2015-10-27 2015-12-30 保定天威电气设备结构有限公司 一种用于超声波双探头扫查的方法及装置
CN105300578A (zh) * 2015-11-20 2016-02-03 西南交通大学 一种可调节声束角及测试区域的超声波应力检测设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193349A (ja) * 1983-04-19 1984-11-01 Mitsubishi Electric Corp 溶接位置検出装置
JPS62151748A (ja) * 1985-12-26 1987-07-06 Mitsubishi Heavy Ind Ltd 可変角超音波探傷法
CN201392327Y (zh) * 2009-03-27 2010-01-27 四川兴天源材料检测技术有限公司 用于轨道焊缝探伤的扫查装置
CN102507734A (zh) * 2011-10-26 2012-06-20 河北省电力建设调整试验所 一种焊缝的超声波时差衍射检测方法
CN105699492B (zh) * 2014-11-27 2018-11-13 中国科学院声学研究所 一种用于焊缝检测的超声成像方法
CN204389449U (zh) * 2015-01-13 2015-06-10 广东汕头超声电子股份有限公司 相控阵超声导波探头
CN205982178U (zh) * 2016-08-30 2017-02-22 广东汕头超声电子股份有限公司 一种基于双阵列探头的钢轨焊缝超声波成像检测***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219287A (ja) * 2003-01-16 2004-08-05 Kawasaki Heavy Ind Ltd 超音波探傷方法とその装置
US20100101326A1 (en) * 2007-02-28 2010-04-29 Jfe Steel Corporation Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for pipe
CN103267801A (zh) * 2013-04-22 2013-08-28 北京隆盛泰科石油管科技有限公司 用于油气输送钢管制造的埋弧焊焊缝自动超声波检测方法
CN204855454U (zh) * 2015-07-30 2015-12-09 龙源(北京)风电工程技术有限公司 一种高强螺栓缺陷检测装置
CN204832115U (zh) * 2015-08-18 2015-12-02 广深铁路股份有限公司广州工务段 钢轨探伤装置
CN105203642A (zh) * 2015-10-27 2015-12-30 保定天威电气设备结构有限公司 一种用于超声波双探头扫查的方法及装置
CN105300578A (zh) * 2015-11-20 2016-02-03 西南交通大学 一种可调节声束角及测试区域的超声波应力检测设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李衍: "焊缝超声相控阵扇形扫查的覆盖范围(续)", 《中国特种设备安全》 *
郑中兴 等: "软接触可变角表面波探头研制及应用", 《北方交通大学学报》 *
陈春生: "《钢轨探伤史话》", 31 May 2013 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976250A (zh) * 2019-04-30 2019-07-05 北京弘燕高新技术有限公司 一种钢轨焊缝定位装置
CN110702790A (zh) * 2019-11-11 2020-01-17 成都主导科技有限责任公司 一种用于远声程检测的超声波探头
CN112595775A (zh) * 2020-11-07 2021-04-02 西南交通大学 道岔钢轨伤损辨识方法
CN114428118A (zh) * 2022-01-11 2022-05-03 中国科学院声学研究所 一种双阵列超声成像检测方法及检测装置
CN114428118B (zh) * 2022-01-11 2023-11-14 中国科学院声学研究所 一种双阵列超声成像检测方法及检测装置
CN115436478A (zh) * 2022-09-29 2022-12-06 汕头问源科技有限公司 一种焊管超声相控阵检测方法及装置
CN115656343A (zh) * 2022-12-07 2023-01-31 汕头市超声检测科技有限公司 一种基于串列式矩阵扫查的钢轨焊缝缺陷定位方法
CN116754643A (zh) * 2023-05-22 2023-09-15 天津诚信达金属检测技术有限公司 一种异种钢焊缝缺陷超声相控阵检测方法
CN116465967A (zh) * 2023-06-20 2023-07-21 汕头市超声检测科技有限公司 一种基于k型超声扫查的钢轨焊缝缺陷定位方法
CN116465967B (zh) * 2023-06-20 2023-09-26 汕头市超声检测科技有限公司 一种基于k型超声扫查的钢轨焊缝缺陷定位方法

Also Published As

Publication number Publication date
WO2018040117A1 (zh) 2018-03-08

Similar Documents

Publication Publication Date Title
CN106198760A (zh) 一种基于双阵列探头的钢轨焊缝超声成像检测方法及***
CN105699492B (zh) 一种用于焊缝检测的超声成像方法
WO2016155403A1 (zh) 一种基于tofd和相控阵的超声波检测定位方法、装置
CN109828028B (zh) 一种超声检测缺陷定性***和定性方法
JP4694576B2 (ja) タービン部品の欠陥検出方法および装置
CN110007003B (zh) 用于声速非均匀金属厚板焊缝相控阵超声检测的分区方法
JPH0352908B2 (zh)
CN108956761A (zh) 钢板全覆盖超声波检测装置及方法
CN110045019A (zh) 一种薄板空气耦合超声兰姆波全聚焦成像检测方法
JP2017049232A (ja) 製造物の表面に設置した可撓性の二次元アレイを用いた超音波検査
CN107102065A (zh) 一种多种耦合方式的超声波检测***
CN101441198A (zh) 一种风洞洞体结构对接焊缝超声波检测的方法
CN105353035A (zh) 一种利用相控阵对tky管节点的检测方法
JP2019504311A (ja) 亀裂測定装置及び方法
EP3194955B1 (en) Device, method and system for ultrasonic signal transducer
CN205982178U (zh) 一种基于双阵列探头的钢轨焊缝超声波成像检测***
CN103512953B (zh) 采用多探头的超声波检验方法
US4628737A (en) Method and device for locating and characterizing flaws in a known, submerged metal structure
RU2433397C1 (ru) Способ сплошного ультразвукового контроля подошвы рельсов
CN111307945B (zh) 一种基于超声阵列检测无砟轨道近表面缺陷的成像方法及装置
KR100975330B1 (ko) 초음파 탐상 장치 시스템 및 그 제어 방법
CN112924557A (zh) 基于直射纵波和双线阵的焊缝全聚焦探头装置及检测方法
CN107655974A (zh) 一种tofd自动扫查装置
CN113340992B (zh) 一种混凝土内埋裂纹监测传感器及监测方法
CN214622466U (zh) 基于直射纵波和双线阵的焊缝全聚焦探头装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication