CN106083117A - 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法 - Google Patents

具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN106083117A
CN106083117A CN201610460452.7A CN201610460452A CN106083117A CN 106083117 A CN106083117 A CN 106083117A CN 201610460452 A CN201610460452 A CN 201610460452A CN 106083117 A CN106083117 A CN 106083117A
Authority
CN
China
Prior art keywords
fiber
layer
max phase
ternary layered
matric composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610460452.7A
Other languages
English (en)
Inventor
黄庆
李勉
陈凡燕
司晓阳
都时禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201610460452.7A priority Critical patent/CN106083117A/zh
Publication of CN106083117A publication Critical patent/CN106083117A/zh
Pending legal-status Critical Current

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Abstract

本发明提出一种具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料。通过引入三元层状MAX相材料作为界面层,可以有效提升陶瓷基复合材料的耐辐照性能、导热性能和抗氧化性能;另外,MAX相材料具有的多种断裂能吸收机制可以有效吸收断裂能、阻碍裂纹在陶瓷基复合材料内部的扩展,提高陶瓷基复合材料的韧性和损伤容限;因此,有效拓展了该复合材料的应用领域,例如在航空航天热结构材料、核能结构材料等领域具有良好的应用前景。

Description

具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料及其 制备方法
技术领域
本发明属于纤维增韧陶瓷基复合材料技术领域,具体涉及一种具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料及其制备方法。
背景技术
纤维增韧陶瓷基复合材料具有高强度、耐高温、低密度、耐腐蚀等优良特性,在航空航天热结构材料、核能结构材料等领域具有重要的应用。纤维增韧陶瓷基复合材料中,陶瓷基体与纤维之间的界面层是其重要组成部分,对复合材料的力学性能、抗氧化性能、导热性能、耐辐照性能等都具有重要影响。
传统的复合材料界面层主要包括热解碳(Pyrolytic Carbon,PyC)、六方氮化硼(Hexagonal-BN)以及(PyC/SiC)n,(BN/SiC)n多层界面层。PyC在400℃以上即开始氧化,BN在850℃以上开始氧化,导致复合材料在高温下的性能严重下降,难以胜任例如航空航天等严苛的服役环境。复合材料在核能等领域的应用需面临辐照环境,而PyC在中子辐照作用下发生收缩-肿胀-无定型化的转变,BN界面层中的B元素在中子辐照下则会快速嬗变而失效。此外,传统界面层自身热导率较低,严重的降低了复合材料的整体热导率。因此,传统界面层已经越来越难以满足陶瓷基复合材料在各方面的应用需求。
以Ti3SiC2,Ti3AlC2为代表的三元层状MAX相陶瓷兼具金属和陶瓷的特性,MAX相从金属材料中继承了优良的导电性和导热性,良好的抗热震性和损伤容限,较低的硬度和较好的机械加工性;从陶瓷材料中继承了很高的弹性模量和高温强度,以及出色的抗氧化性和抗腐蚀性能等。微观分析表明MAX相陶瓷独特的层状结构和电子态密度分布造成了多种断裂能吸收机制,如裂纹偏转、层间撕裂、晶粒间滑移、晶粒内部位错形变、片状晶皱褶等。此外,MAX相陶瓷也表现出良好的耐辐照性能,在核能等领域具有重要的应用潜力。
发明内容
本发明提供一种陶瓷基复合材料,以陶瓷材料为基体,以纤维为增韧相,所述基体与增韧相之间的界面层包含三元层状MAX相材料。
即,本发明引入三元层状MAX相材料作为陶瓷基复合材料界面层材料,可以提升陶瓷基复合材料的耐辐照性能、导热性能和抗氧化性能;另外,MAX相材料所具有的裂纹偏转、层间撕裂、晶粒间滑移、晶粒内部位错形变、片状晶皱褶等多种断裂能吸收机制可以有效地吸收断裂能、阻碍裂纹在陶瓷基复合材料内部的扩展,提高陶瓷基复合材料的韧性和损伤容限。
所述陶瓷材料不限,包括碳化硅、碳化钛、碳化锆、氮化硅、氧化铝、莫来石、氧化锆等中的一种物质或者两种以上的混合物。
所述的纤维不限,可根据需要选取碳纤维、碳化硅纤维、氧化铝纤维、石英纤维、莫来石纤维等中的一种或者几种。
所述MAX相构型不限,包括211、312、413、514、615、716等构型。
所述MAX相材料不限,包括Ti3SiC2、Ti3AlC2、Ti2AlC、V3AlC2、V2AlC、Cr2AlC、Ti3SnC2等中的一种或者两种以上的混合物。
所述界面层可以同种类的三元层状MAX相构成的单层界面层,也可以是由不同种类的三元层状MAX相组成的多层结构界面层。
另外,所述界面层可以是掺杂相层与MAX相层交替构成的多层结构界面层,所述掺杂相层包括PyC、BN、SiC等,从而构成(PyC/MAX)n,(BN/MAX)n,(SiC/MAX)n等多层结构界面层。
所述陶瓷基复合材料,可通过控制界面层厚度而控制陶瓷基复合材料的弯曲强度、断裂韧性、热导率等性能。作为优选,所述界面层厚度为50nm-2μm,进一步优选为100nm-1μm。
作为优选,所述纤维在复合材料中的体积分数为5%-80%,更优选为30%-60%。
本发明还提供了一种制备上述具有连续三元层状MAX相界面层的陶瓷基复合材料的方法,包括如下步骤:
(1)纤维预制体制备
利用纤维缠绕机将纤维均匀缠绕至纤维缠绕机的预制件模具上,得到纤维预制体。或者,将纤维编织成纤维布,在纤维布表面制备界面层,然后将纤维布缝合为纤维预制体。
(2)界面层制备
在纤维预制体表面制备界面层。
所述界面层的制备方法不限,可以通过化学气相沉积、物理气相沉积、先驱体转化法、熔盐法等方法制备。
(3)陶瓷基体制备
在界面层表面制备基体。
所述基体的制备方法不限,可以通过化学气相渗透、先驱体转化法、熔体渗透法、溶胶凝胶法、纳米浸渍瞬时共晶相法等方法制备。
所述步骤(1)中,纤维的编织方式可根据需要选取2D编织、2.5D编织或者3D编织等。
所述步骤(1)中,纤维预制体中,纤维所占体积分数可控,优选为5%-80%,进一步优选为30%-60%。
所述步骤(2)中,可以预先在纤维表面化学气相沉积PyC或者SiC,然后再通过PyC或SiC与特定元素原位反应生成所需求的MAX相涂层。
所述步骤(2)可重复数次,并配合传统界面层制备方法,得到不同的(MAX/MAX)n,(PyC/MAX)n,(SiC/MAX)n,(BN/MAX)n等多层结构界面层。
本发明还提供了另一种制备上述具有连续三元层状MAX相界面层的陶瓷基复合材料的方法,包括如下步骤:
将纤维编织成纤维布,在纤维布表面制备界面层,然后将纤维布缝合为纤维预制体,最后在纤维预制体表面制备陶瓷基体。
所述纤维预制体中,纤维所占体积分数可控,优选为5%-80%,进一步优选为30%-60%。
可以预先在纤维布表面化学气相沉积PyC或者SiC,然后再通过PyC或SiC与特定元素原位反应生成所需求的MAX相涂层。
在纤维布表面制备界面层时,可配合传统界面层制备方法,得到不同的(MAX/MAX)n,(PyC/MAX)n,(SiC/MAX)n,(BN/MAX)n等多层结构界面层。
综上所述,本发明在纤维增韧陶瓷基复合材料中引入三元层状MAX相陶瓷作为界面层,有效提高了该复合材料的抗氧化性能、耐辐照性能和导热性能;同时,MAX相所具有的裂纹偏转、层间撕裂、晶粒间滑移、晶粒内部位错形变、片状晶皱褶等多种断裂能吸收机制有效阻碍了裂纹在陶瓷基复合材料内部的扩展,提升复合材料的韧性;因此,有效提升了该复合材料在航空航天热结构材料、核能结构材料等领域的应用前景。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,陶瓷基复合材料以碳化硅陶瓷为基体,以碳纤维为增韧相,所述基体与增韧相之间的界面层为三元层状MAX相材料Ti3SiC2
该陶瓷基复合材料的制备步骤如下:
(1)将1K的T300碳纤维编织成3D碳纤维预制体,碳纤维体积分数为45%。
(2)采用化学气相沉积法在碳纤维预制体表面沉积Ti3SiC2界面层,沉积条件为:以四氯化硅为硅源,以四氯化钛为钛源,以四氯化碳为碳源,以氢气为载气,沉积温度为1300℃。
(3)采用化学气相渗透法在界面层表面沉积SiC陶瓷基体,沉积条件为:三氯甲基硅烷为源物质,氩气为稀释气体,氢气为载气,沉积温度为1000℃-1100℃。
(4)采用化学气相沉积法在以上制得的C/SiC复合材料表面沉积SiC保护层。
实施例2:
本实施例中,陶瓷基复合材料以碳化硅陶瓷为基体,以碳纤维为增韧相,所述基体与增韧相之间的界面层为Ti3SiC2/PyC多层界面。
该陶瓷基复合材料的制备步骤如下:
(1)将1K的T300碳纤维编织成3D纤维预制体,纤维体积分数为45%。
(2)采用化学气相沉积法在碳纤维预制体表面沉积PyC界面层,沉积条件为:以丙烯为源物质,氩气为稀释气体,沉积温度为900-1000℃。然后,采用化学气相沉积法沉积Ti3SiC2界面层,沉积条件为:以四氯化硅为硅源,以四氯化钛为钛源,以四氯化碳为碳源,以氢气为载气,沉积温度为1300℃,得到Ti3SiC2/PyC多层界面。
(3)采用化学气相渗透法在Ti3SiC2/PyC多层界面层表面沉积SiC基体,沉积条件为:三氯甲基硅烷为源物质,氩气为稀释气体,氢气为载气,沉积温度为1000℃-1100℃。
(4)采用化学气相沉积法在以上制得的C/SiC复合材料表面沉积SiC保护层。
实施例3:
本实施例中,陶瓷基复合材料以碳化硅陶瓷为基体,以碳化硅纤维为增韧相,所述基体与增韧相之间的界面层为三元层状MAX相材料Ti3SiC2
该陶瓷基复合材料的制备步骤如下:
(1)将1K的Tyranno SA-3碳化硅纤维编织成3D碳化硅纤维预制体,碳化硅纤维体积分数为45%。
(2)采用化学气相沉积法在碳化硅纤维预制体表面沉积Ti3SiC2界面层,沉积条件为:以四氯化硅为硅源,以四氯化钛为钛源,以四氯化碳为碳源,以氢气为载气,沉积温度为1300℃。
(3)采用化学气相渗透法在界面层表面沉积SiC基体,沉积条件为:三氯甲基硅烷为源物质,氩气为稀释气体,氢气为载气,沉积温度为1000℃-1100℃。
(4)采用化学气相沉积法在以上制得的SiC/SiC复合材料表面沉积SiC保护层。
实施例4:
本实施例中,陶瓷基复合材料以碳化硅陶瓷为基体,以碳化硅纤维为增韧相,所述基体与增韧相之间的界面层为三元层状MAX相材料Ti2AlC。
该陶瓷基复合材料的制备步骤如下:
(1)将1K的Tyranno SA-3碳化硅纤维编织成二维平纹碳化硅纤维布。
(2)采用物理气相沉积法在碳化硅纤维布正反面制备Ti2AlC界面层,工艺参数为:采用反应阴极电弧沉积,以TiAl合金靶为钛源和铝源,以CH4为碳源,沉积温度为1300℃,沉积时间1h。
(3)将步骤(2)得到的碳化硅纤维布缝合为2D纤维预制体。
(4)采用化学气相渗透法沉积SiC基体,沉积条件为:三氯甲基硅烷为源物质,氩气为稀释气体,氢气为载气,沉积温度为1000℃-1100℃。
(5)采用化学气相沉积法在以上SiC/SiC复合材料表面沉积SiC保护层。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (10)

1.具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:以陶瓷材料为基体,以纤维为增韧相,所述基体与增韧相之间的界面层包含三元层状MAX相材料。
2.根据权利要求1所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:所述纤维包括碳纤维、碳化硅纤维、氧化铝纤维、石英纤维、莫来石纤维中的一种或者几种。
3.根据权利要求1所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:所述陶瓷材料包括碳化硅、碳化钛、碳化锆、氮化硅、氧化铝、莫来石、氧化锆中的一种或者两种以上的混合物。
4.根据权利要求1所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:所述MAX相包括211、312、413、514、615、716构型;
作为优选,所述MAX相材料包括Ti3SiC2、Ti3AlC2、Ti2AlC、V3AlC2、V2AlC、Cr2AlC、Ti3SnC2中的一种或者两种以上的混合物;
作为优选,所述界面层是同种类的三元层状MAX相构成的单层界面层,或者是由不同种类的三元层状MAX相交替组成的多层结构界面层;
作为优选,所述界面层是掺杂相层与MAX相层交替构成的多层结构界面层,所述掺杂相层包括PyC、BN、SiC中的一种或者几种。
5.根据权利要求1所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:通过控制界面层厚度而控制陶瓷基复合材料的弯曲强度、断裂韧性、热导率。
6.根据权利要求1所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料,其特征在于:所述界面层厚度为50nm-2μm,优选为100nm-1μm。
7.根据权利要求1至6中任一权利要求所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料的制备方法,其特征在于:包括如下步骤:
(1)利用纤维缠绕机将纤维均匀缠绕至纤维缠绕机的预制件模具上,得到纤维预制体;
(2)在纤维预制体表面制备界面层;
(3)在界面层表面制备基体。
8.根据权利要求7所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料的制备方法,其特征在于:通过化学气相沉积、物理气相沉积、先驱体转化法,或者熔盐法制备所述界面层;
通过化学气相渗透、先驱体转化法、熔体渗透法、溶胶凝胶法,或者纳米浸渍瞬时共晶相法制备所述基体;
所述步骤(1)中,纤维的编织方式选取2D编织、2.5D编织或者3D编织;
所述步骤(1)中,纤维预制体中,纤维所占体积分数可控,优选为5%-80%,进一步优选为30%-60%。
9.根据权利要求1至6中任一权利要求所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料的制备方法,其特征在于:包括如下步骤:
将纤维编织成纤维布,在纤维布表面制备界面层,然后将纤维布缝合为纤维预制体,最后在纤维预制体表面制备陶瓷基体。
10.根据权利要求9所述的具有三元层状MAX相界面层的纤维增韧陶瓷基复合材料的制备方法,其特征在于:所述纤维预制体中,纤维所占体积分数可控,优选为5%-80%,进一步优选为30%-60%。
CN201610460452.7A 2016-06-21 2016-06-21 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法 Pending CN106083117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610460452.7A CN106083117A (zh) 2016-06-21 2016-06-21 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610460452.7A CN106083117A (zh) 2016-06-21 2016-06-21 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106083117A true CN106083117A (zh) 2016-11-09

Family

ID=57253132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610460452.7A Pending CN106083117A (zh) 2016-06-21 2016-06-21 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106083117A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010985A (zh) * 2017-04-20 2017-08-04 湖南锴博新材料科技有限公司 一种含Ti3SiC2相的炭纤维增强陶瓷基体摩擦材料及其制备方法
CN107416830A (zh) * 2017-05-22 2017-12-01 哈尔滨工业大学 一种均匀纳米碳化钛的制备方法
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108164278A (zh) * 2018-01-12 2018-06-15 南京膜材料产业技术研究院有限公司 一种高气体渗透率碳化硅多孔陶瓷材料及其制备方法
CN108395223A (zh) * 2018-03-22 2018-08-14 中铭瓷(苏州)纳米粉体技术有限公司 一种max相裂纹自愈合陶瓷材料及其制备方法
CN108585907A (zh) * 2018-05-03 2018-09-28 中国航发北京航空材料研究院 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料及其制备方法
CN108840696A (zh) * 2018-08-09 2018-11-20 西安鑫垚陶瓷复合材料有限公司 一种含抗氧化弱化界面的氧化物纤维/氧化物陶瓷基复合材料的制备方法
CN108910884A (zh) * 2018-07-10 2018-11-30 中国科学院宁波材料技术与工程研究所 一种新型max相材料、其制备方法及应用
CN109400210A (zh) * 2018-11-30 2019-03-01 河北工业大学 一种Ti3SiC2-Al2O3-SiC-Al复合材料及其制备方法
CN109467450A (zh) * 2018-12-13 2019-03-15 湖南博翔新材料有限公司 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN109608217A (zh) * 2018-12-13 2019-04-12 湖南博翔新材料有限公司 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN110183229A (zh) * 2018-06-11 2019-08-30 中铭瓷(苏州)纳米粉体技术有限公司 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN110304922A (zh) * 2018-03-20 2019-10-08 中国科学院金属研究所 多元导电陶瓷材料的制备方法及其储能材料
CN110394449A (zh) * 2019-08-27 2019-11-01 西安交通大学 一种四元max相增强镍基高温抗氧化复合材料及其合成方法
CN110483099A (zh) * 2019-08-23 2019-11-22 山东大学 一种提高氧化锆连续纤维的强度和可缠绕性的方法
CN110759737A (zh) * 2019-11-19 2020-02-07 中国科学院兰州化学物理研究所 一种高性能氮化硅基复合陶瓷的制备方法
CN111592371A (zh) * 2020-06-06 2020-08-28 上海大学 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN112125680A (zh) * 2020-09-25 2020-12-25 扬州北方三山工业陶瓷有限公司 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
CN112195052A (zh) * 2020-10-16 2021-01-08 中国矿业大学 一种基于纤维增韧提高载氧体强度的方法
CN112479718A (zh) * 2020-11-20 2021-03-12 航天特种材料及工艺技术研究所 一种Ti3SiC2MAX相界面层改性SiC/SiC复合材料及其制备方法
CN113233909A (zh) * 2021-05-18 2021-08-10 中国科学院宁波材料技术与工程研究所 新型纤维增韧陶瓷基复合材料、其制备方法与应用
CN113416863A (zh) * 2021-06-25 2021-09-21 福建工程学院 一种熔盐法制备max相金属陶瓷材料的方法
CN113816746A (zh) * 2021-08-27 2021-12-21 合肥工业大学 一种max相高熵陶瓷基复合材料及其制备方法
CN114044679A (zh) * 2021-11-22 2022-02-15 湖南兴晟新材料科技有限公司 一种高强韧超高温陶瓷基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048530A (zh) * 2004-11-26 2007-10-03 山特维克知识产权股份有限公司 涂层产品及其制造方法
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN104947029A (zh) * 2015-06-26 2015-09-30 中国科学院宁波材料技术与工程研究所 一种热喷涂制备max相陶瓷涂层的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048530A (zh) * 2004-11-26 2007-10-03 山特维克知识产权股份有限公司 涂层产品及其制造方法
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN104947029A (zh) * 2015-06-26 2015-09-30 中国科学院宁波材料技术与工程研究所 一种热喷涂制备max相陶瓷涂层的方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010985B (zh) * 2017-04-20 2019-12-27 湖南中南智造新材料协同创新有限公司 一种含Ti3SiC2相的碳纤维增强陶瓷基体摩擦材料及其制备方法
CN107010985A (zh) * 2017-04-20 2017-08-04 湖南锴博新材料科技有限公司 一种含Ti3SiC2相的炭纤维增强陶瓷基体摩擦材料及其制备方法
CN107416830A (zh) * 2017-05-22 2017-12-01 哈尔滨工业大学 一种均匀纳米碳化钛的制备方法
CN107416830B (zh) * 2017-05-22 2019-10-22 哈尔滨工业大学 一种均匀纳米碳化钛的制备方法
WO2019114314A1 (zh) * 2017-12-13 2019-06-20 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108147828A (zh) * 2017-12-13 2018-06-12 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108147828B (zh) * 2017-12-13 2021-08-27 广东核电合营有限公司 Max相陶瓷管材及其制备方法、核燃料包壳管
CN108164278A (zh) * 2018-01-12 2018-06-15 南京膜材料产业技术研究院有限公司 一种高气体渗透率碳化硅多孔陶瓷材料及其制备方法
WO2019136828A1 (zh) * 2018-01-12 2019-07-18 南京膜材料产业技术研究院有限公司 一种高气体渗透率碳化硅多孔陶瓷材料及其制备方法
CN110304922A (zh) * 2018-03-20 2019-10-08 中国科学院金属研究所 多元导电陶瓷材料的制备方法及其储能材料
CN108395223A (zh) * 2018-03-22 2018-08-14 中铭瓷(苏州)纳米粉体技术有限公司 一种max相裂纹自愈合陶瓷材料及其制备方法
CN108585907A (zh) * 2018-05-03 2018-09-28 中国航发北京航空材料研究院 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料及其制备方法
CN108585907B (zh) * 2018-05-03 2021-09-14 中国航发北京航空材料研究院 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料的制备方法
CN110183229A (zh) * 2018-06-11 2019-08-30 中铭瓷(苏州)纳米粉体技术有限公司 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN108910884A (zh) * 2018-07-10 2018-11-30 中国科学院宁波材料技术与工程研究所 一种新型max相材料、其制备方法及应用
CN108910884B (zh) * 2018-07-10 2020-07-07 中国科学院宁波材料技术与工程研究所 一种max相材料、其制备方法及应用
CN108840696A (zh) * 2018-08-09 2018-11-20 西安鑫垚陶瓷复合材料有限公司 一种含抗氧化弱化界面的氧化物纤维/氧化物陶瓷基复合材料的制备方法
CN108840696B (zh) * 2018-08-09 2020-09-15 西安鑫垚陶瓷复合材料有限公司 一种含抗氧化弱化界面的氧化物纤维/氧化物陶瓷基复合材料的制备方法
CN109400210A (zh) * 2018-11-30 2019-03-01 河北工业大学 一种Ti3SiC2-Al2O3-SiC-Al复合材料及其制备方法
CN109400210B (zh) * 2018-11-30 2021-07-06 河北工业大学 一种Ti3SiC2-Al2O3-SiC-Al复合材料及其制备方法
CN109467450A (zh) * 2018-12-13 2019-03-15 湖南博翔新材料有限公司 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN109467450B (zh) * 2018-12-13 2021-09-24 湖南泽睿新材料有限公司 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN109608217B (zh) * 2018-12-13 2021-09-03 湖南泽睿新材料有限公司 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN109608217A (zh) * 2018-12-13 2019-04-12 湖南博翔新材料有限公司 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN110483099A (zh) * 2019-08-23 2019-11-22 山东大学 一种提高氧化锆连续纤维的强度和可缠绕性的方法
CN110483099B (zh) * 2019-08-23 2021-09-17 山东大学 一种提高氧化锆连续纤维的强度和可缠绕性的方法
CN110394449A (zh) * 2019-08-27 2019-11-01 西安交通大学 一种四元max相增强镍基高温抗氧化复合材料及其合成方法
CN110759737A (zh) * 2019-11-19 2020-02-07 中国科学院兰州化学物理研究所 一种高性能氮化硅基复合陶瓷的制备方法
CN111592371A (zh) * 2020-06-06 2020-08-28 上海大学 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN111592371B (zh) * 2020-06-06 2021-08-03 上海大学 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN112125680A (zh) * 2020-09-25 2020-12-25 扬州北方三山工业陶瓷有限公司 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
CN112195052A (zh) * 2020-10-16 2021-01-08 中国矿业大学 一种基于纤维增韧提高载氧体强度的方法
CN112195052B (zh) * 2020-10-16 2022-03-04 中国矿业大学 一种基于纤维增韧提高载氧体强度的方法
CN112479718A (zh) * 2020-11-20 2021-03-12 航天特种材料及工艺技术研究所 一种Ti3SiC2MAX相界面层改性SiC/SiC复合材料及其制备方法
CN112479718B (zh) * 2020-11-20 2022-10-04 航天特种材料及工艺技术研究所 一种Ti3SiC2 MAX相界面层改性SiC/SiC复合材料及其制备方法
CN113233909A (zh) * 2021-05-18 2021-08-10 中国科学院宁波材料技术与工程研究所 新型纤维增韧陶瓷基复合材料、其制备方法与应用
CN113416863A (zh) * 2021-06-25 2021-09-21 福建工程学院 一种熔盐法制备max相金属陶瓷材料的方法
CN113816746A (zh) * 2021-08-27 2021-12-21 合肥工业大学 一种max相高熵陶瓷基复合材料及其制备方法
CN114044679A (zh) * 2021-11-22 2022-02-15 湖南兴晟新材料科技有限公司 一种高强韧超高温陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106083117A (zh) 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法
Binner et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs–a review
CN103910532B (zh) 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN106977217B (zh) 一种高强高韧性碳化硅纤维增强碳化硅陶瓷基复合材料的制备方法
Zhao et al. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites
Naslain Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview
Shimoda et al. Influence of pyrolytic carbon interface thickness on microstructure and mechanical properties of SiC/SiC composites by NITE process
CN106342033B (zh) 碳纤维增强超高温陶瓷基复合材料的制备方法
Wang et al. KD-S SiC f/SiC composites with BN interface fabricated by polymer infiltration and pyrolysis process
Shimoda et al. Enchanced high-temperature performances of SiC/SiC composites by high densification and crystalline structure
JP2010076429A (ja) 熱構造複合材部品の製造方法およびそれによって得られる部品
CN113233909A (zh) 新型纤维增韧陶瓷基复合材料、其制备方法与应用
Chen et al. Interphase degradation of three‐dimensional Cf/SiC–ZrC–ZrB2 composites fabricated via reactive melt infiltration
US9604886B2 (en) Ceramic matrix composite material part
Cao et al. Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thicknesses
CN108117403A (zh) 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
JPH04316611A (ja) 炭化ケイ素強化炭素複合体
Zhou et al. Microstructure and mechanical properties of Si3N4f/Si3N4 composites with different coatings
Bai et al. Strong and tough ZrB2 materials using a heterogeneous ceramic–metal layered architecture
Wang et al. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment
Hatta et al. Carbon/carbons and their industrial applications
Zhou et al. Effect of ZrC amount and distribution on the thermomechanical properties of Cf/SiC‐ZrC composites
Wang et al. Microstructure evolution and high-temperature mechanical properties of SiCf/SiC composites in liquid fluoride salt environment
CN105565838B (zh) 一种煤化工领域陶瓷基复合材料烧嘴的制造方法
Gu et al. Microstructure and thermal shock performance of Y2Hf2O7 coating deposited on SiC coated C/C composite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109