CN105188889B - 包含低压控制的渗透驱动隔膜***的发展 - Google Patents

包含低压控制的渗透驱动隔膜***的发展 Download PDF

Info

Publication number
CN105188889B
CN105188889B CN201480025277.8A CN201480025277A CN105188889B CN 105188889 B CN105188889 B CN 105188889B CN 201480025277 A CN201480025277 A CN 201480025277A CN 105188889 B CN105188889 B CN 105188889B
Authority
CN
China
Prior art keywords
stream
pressure
flow velocity
pump
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480025277.8A
Other languages
English (en)
Other versions
CN105188889A (zh
Inventor
查尔斯·本登
克里斯托弗·基思
卡尔·伦丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Porifera Inc
Original Assignee
Porifera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Porifera Inc filed Critical Porifera Inc
Publication of CN105188889A publication Critical patent/CN105188889A/zh
Application granted granted Critical
Publication of CN105188889B publication Critical patent/CN105188889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/029Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2521Recirculation of concentrate to permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/246Energy recovery means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种实例水净化***,其包含正向渗透模块、逆向渗透模块、由电动马达提供动力的泵及压力传感器。所述正向渗透模块可接收进料流及汲取流,且可产生中间产物流。所述中间产物流可由泵加压且被提供到所述逆向渗透模块。所述逆向渗透模块可产生产物流并将所述汲取流返回到所述正向渗透模块。所述压力传感器可监测所述中间产物流的压力,且所述压力可用于确定所述电动马达的速度。

Description

包含低压控制的渗透驱动隔膜***的发展
交叉参考
本申请案主张2013年3月15日申请的第61/794,537号美国临时申请案的早期申请日期的优先权,所述申请案的全文出于任何目的以引用的方式并入本文中。
技术领域
本文中描述的实例涉及分离***、元件及方法,其可用于正向渗透(FO)或逆向渗透(RO)或通常任何分离过程。
政府赞助
本发明是根据美国国防部授予的第W911NF-09-C-0079号合约在美国政府的支持下实现。美国政府对本发明拥有特定权利。
背景技术
渗透驱动隔膜过程能够通过用两种溶液之间的化学能量梯度驱动水流动跨过隔膜来以节能方式处理高度污染的溶液。渗透预处理过程利用相对于进料溶液具有高渗透势或渗透压的汲取溶液以提供使水输送跨过隔膜的驱动力。随着相对纯净的水流过隔膜,其稀释汲取溶液。
在渗透驱动隔膜水净化***中,随后必须再浓缩汲取溶液,或以某种方式回收溶质以用于重复利用。典型***采用脱盐设备(例如逆向渗透、蒸馏或其它析盐技术)或用于汲取溶质回收的其它方法(例如热交换盐)。通常,此类***被作为两个单独的子***进行控制:渗透***及再浓缩***,在所述两个子***之间具有缓冲容积并具有两个单独的抽排***。单独的抽排***调整每一流的流速及压力。
渗透***中的总生产率是由跨渗透隔膜的水流量规定,所述流量大部分是由汲取溶液渗透压与进料溶液渗透压的差来确定。在传统的***中,汲取溶液浓度是通过用喷射泵及汲取溶液缓冲贮槽将溶质添加到汲取溶液而控制。
在所有情况中,汲取溶液渗透势必须高于要处理的进料。在一些情况中,高的进料水浓度可使得汲取溶液浓度必需高于在依较低能量脱盐技术(例如逆向渗透(RO))进行再浓缩时通常可处理的浓度。
常规的RO***中通常使用的能量回收泵还可以不同方式操作以用于压力延缓渗透(PRO)***。在PRO***中,高渗透势汲取溶液被低渗透势进料溶液稀释。由于对汲取溶液加压,渗透驱动力被部分抵消,但是水通量仍然在汲取溶液的方向上。通过能量产生装置(例如涡轮机)解除汲取溶液中的过量水。
发明内容
本文中揭示了用于净化的设备及方法的实例。例如,一种设备可包含:正向渗透模块,其经配置以接收进料流及汲取流,且产生废弃进料流及中间流;压力传感器,其可测量所述正向渗透模块的汲取侧上的第一压力;及隔膜模块,其可接收所述中间流并产生产物流。所述设备可进一步包含液压泵,其可使所述中间流循环并将所述中间流加压到第二压力。所述设备可进一步包含能量回收装置,其可将所述汲取流从所述第二压力降低到所述第一压力;计量泵,其可将浓缩的汲取溶液提供到所述汲取流;及流量计,其可测量所述产物流的流速。
一种实例方法可包含将进料流提供到正向渗透模块;将汲取流提供到所述正向渗透模块;使所述进料流浓缩且使所述汲取流循环通过所述正向渗透模块,这可产生中间流;监测所述正向渗透模块的汲取侧上的压力;将所述中间流抽排到另一过滤器模块;及用另一过滤器模块过滤所述中间流,这可产生所述汲取流及产物流。所述方法可进一步包含监测所述产物流的流速并以可至少部分基于所述产物流的所述流速的计量速率将溶质提供到所述汲取流。
附图说明
图1是根据本发明的实施例的净化***。
图2是根据本发明的另一实施例的净化***。
图3是根据本发明的实施例的能量回收装置。
具体实施方式
下文陈述特定细节以提供对本发明的实施例的足够理解。然而,所属领域的技术人员将明白,可在无此类特定细节中的各种细节的情况下实施本发明的实施例。在某些情况下,并未详细展示熟悉的化学结构、化学成分、分子、材料、制造组件、控制***、电子组件、时序协议及软件操作以避免不必要地混淆本发明的所描述实施例。
根据本发明的实施例的净化***100被说明为图1中的方框图。为了避免不必要地混淆本发明的实施例,考虑稳定状态的***。
净化***包含正向渗透(FO)模块4中的FO隔膜元件的阵列,所述FO模块4可包含串联、并联或以其某个组合组成管道的一或多个FO隔膜元件。FO模块4可具有四个端口-用于接收进料流3的一个端口、用于接收汲取流17的一个端口、用于产生废弃进料流5的一个端口及用于产生中间流6的一个端口。净化***100进一步包含另一隔膜模块13,其可为逆向渗透(RO)模块。隔膜模块13可包含串联、并联或以其某个组合组成管道的一或多个RO隔膜元件。隔膜模块13可包含三个端口-用于接收加压中间流12的一个端口、用于产生产物流15的一个端口及用于产生汲取流16的一个端口。
进料流1可由进料泵2加压,形成低压进料流3。通常,可使用需要净化的任何进料流,包含但不限于海水或废水。流3可沿管道进入FO模块4中,其中所述流的流速可随着纯净水以某个FO透过流速跨FO隔膜转移到汲取流17而下降。进料溶质可保持在进料流中且按流3的流速减去FO透过流速的速率在废弃进料流5(例如,废流)中排出***。
汲取流17可具有高于进料溶液流3的压力的某个渗透压及接近大气压的静水压力,且可沿管道进入FO模块4的阵列中,其中所述流可随着纯净水以某个FO透过流速从进料流3转移跨过FO隔膜而增加。汲取流退出元件,形成中间流6(例如,中间产物流),其中所述中间流6可由泵9(例如,由电动马达8提供动力的液压泵)加压到大于汲入流17的渗透压的静水压力,从而形成经加压中间产物流12。
流12随后可沿管道进入到隔膜模块13中的隔膜元件的阵列中,在一些实例中所述隔膜模块13可为RO模块,其中所述流的流速可随着纯净水以某个RO透过流速转移跨过RO模块而下降。此RO透过以某个RO透过流速形成产物流15,所述产物流15是***的产物水。RO模块13还可产生浓缩汲取,其退出RO模块13,从而形成具有等于流17的流速的加压汲取流16。流16经过液压马达10(也称作能量回收装置)降压,从而形成汲取流17,其可处于接近大气压的某个压力下,从而重复利用汲取溶液。在一些实例中,可使用多个能量回收装置。
随着***运行,汲取溶质可跨FO模块4及隔膜模块13缓慢地分别损失到废流5及产物流15中。包括浓缩汲取溶液18的计量溶液可由计量泵19缓慢地或定期地抽排到汲取回路中,这可允许***保持在稳定状态。汲取溶液的溶质可为氯化钠,但是也可使用其它溶质。
由于汲取溶液的体积是固定的(忽略浓缩汲取流18的输入),为使所述***在数分钟内保持稳定状态,平均FO透过流速及RO透过流速可彼此相等。在常规***中,汲取溶液缓冲贮槽(未描绘)被添加到中间产物流6,从而允许可变的汲取溶液体积。此汲取溶液缓冲贮槽允许FO透过流速及RO透过流速随时间相对于彼此浮动,从而提供简单的控制方案。可在不修改任一透过流速的情况下添加计量溶液。
常规***的汲取溶液缓冲贮槽允许净化***的更简单控制,但是具有若干缺点。注意,常规***的缺点及本文中描述的实例的优点是通过实例方式提供以促进理解。应理解,并非所有实例均可具有所有或甚至任何所描述优点,且并非所有实例均可解决所有或甚至任何所描述常规***缺点。常规缓冲贮槽***的一个缺点可为,缓冲贮槽显著地增加净化***的重量及容积。例如,如图1中说明的典型***可具有近似20加仑的容积,且缓冲贮槽可具有近似100加仑的容积。部分归因于大的容积,常规***的响应时间不能快速适应进料状况或所需透过速率的变化。缓冲贮槽的使用还增加了生物生长的风险。缓冲贮槽中的缓慢流动或不流动增加细菌或其它生物物质生长的可能性。此生物生长可污染***的剩余部分,且可能需要额外过滤器或净化元件来移除生物生长。
本文中描述的实例包含使用压力控制***,所述压力控制***可允许实现净化***而无需缓冲贮槽或降低对缓冲贮槽的需要。通过移除汲取溶液缓冲贮槽或降低汲取溶液缓冲贮槽的容积,汲取溶液体积可变为固定常数或更接近固定常数,从而使FO模块4、RO模块13、泵及管道组件的容积的小变化不起作用。所得FO透过流速及RO透过流速可变成彼此液力锁定(例如,相等或成某种其它固定关系)。
压力控制***的实例可具有优于常规技术发展水平的FO/RO***的以下优点:可由移除汲取溶液缓冲贮槽及降低汲取体积导致大小及重量降低。可由减小汲取溶液体积导致***响应时间降低,从而允许汲取溶液浓度更迅速地变化以适应进料状况或所需透过速率的变化。可由使整个汲取溶液体积保持在相对较高速度的管道内导致生物生长的风险降低。由于不使汲取溶液暴露于大气压力,FO汲取溶液压力的精确控制可成为可能。其还可允许精确地控制进料压力与汲取压力之间的压力差,从而产生较高通量并降低结垢的倾向。可由于汲取溶液从未暴露于大气压而使汲取溶液压力守恒导致液压效率增加。此类可能优点还可使生产及操作***的成本降低。
通常,使用压力控制的水净化***的实例包含FO模块与后续隔膜模块(例如,RO模块)之间的泵,所述泵将从FO模块提供的中间流加压成提供到隔膜模块的加压中间流。加压量(例如,泵的流速)与FO模块的汲取侧(例如,汲取回路的低压侧上的任意处)上的包含汲取流及中间流的压力有关。因此,压力传感器可经提供以测量FO模块的输出处提供的中间流的压力,或提供到FO模块的汲取流的压力或FO模块的元件之间的汲取侧上的压力或其组合。通过根据FO模块的汲取侧压力改变泵的流速,可改变到后续隔膜模块(例如,RO模块)的输入流的压力,这可改变通过所述后续隔膜模块的透过流速。以此方式,由隔膜模块提供的产物流的流速可维持与正向渗透模块的汲取侧上的压力成比例(例如,在一些实例中等于正向渗透模块的汲取侧上的压力)。因此,通过FO模块及后续隔膜模块的透过流速在一些实例中可保持相等。
再次参考图1中说明的***。为了本发明的此实例实施例,考虑压力控制***,其具有由电动马达8驱动的单个固定排量高压液压泵9且包含集成固定排量液压马达10使得RO产物流速是电动马达8速度的直接函数。此泵的实例是Spectra Watermakers,Inc.(光谱制水公司)的SP5Pearson Pump及Danfoss SWPE。具有单独能量装置的高压泵也可连同此类装置中的任一者的阵列一起应用。在其它实例中,可使用其它泵,包含使用除了电动马达之外的其它机构设置流速的泵。
所述***可包含压力传感器,或换能器7可经定位以测量流6的压力,或替代地或此外,可位于流17(未示出)上,或替代地或此外,位于介于FO模块4的汲取侧上的元件之间的位置处。流量计14此外在一些实例中可经定位以测量RO产物流15上的流速。在其它实例中,流量计14可用以某种其它方式计算流量的逻辑来代替。当电动马达8为恒定速度时,FO透过流速及RO透过流速两者均可液力锁定到特定值。流6、12、16及17中的汲取溶液的液压可由跨相应模块4及13的特定透过流速及渗透驱动力确定。
流12及16中的RO压力可达到克服汲取溶液的渗透压并产生显著的RO透过流速所需的任何压力。流17及6中的FO压力可达到延缓或辅助跨FO隔膜阵列4的渗透压差以产生特定FO透过流速所需的任何压力。归因于进料及汲取渗透压、流速、温度、pH的变化及/或隔膜性能性质的变化,FO透过流速可需要例如通过增加进料液压使其高于汲取液压的辅助;或例如通过增加汲取液压使其高于进料液压的延缓。
在稳定状态期间,***控制方案可用来自压力换能器7的反馈控制电动马达8的速度。所述***可包含泵控制器(例如,微控制器、处理器、电路或其组合),其可使用比例积分微分(PID)控制算法或其它方法动态地设置泵9的流速以维持压力换能器7处的所需压力。此压力可预定或实时地计算以实现进料液压与汲取液压之间的给定压力差。如果压力开始超过所需压力,那么其可为所述***应延缓FO透过流速的指示符,且控制算法可增加电动马达8的速度,因此增加FO透过流速(跨隔膜或流6减去流17的流速水)及RO透过流速15。此可缓和压力换能器7处的压力,因此移除FO透过流速的延缓。如果压力换能器7的压力开始下降到所需压力之下,那么其可为所述***应辅助FO透过流速的指示符,且控制算法可降低电动马达8的速度,因此降低FO透过流速及RO透过流速。此可将压力恢复到所需压力,从而移除FO透过流速的辅助。在一些实例中,控制算法可能能够将压力换能器7处的低压控制点控制在一些实例中的0.1psi内、在一些实例中的0.2psi内、在一些实例中的0.3psi内、在一些实例中的0.4psi内、在一些实例中的0.5psi内、在一些实例中的0.6psi内、在一些实例中的0.7psi内、在一些实例中的0.8psi内、在一些实例中的0.9psi内、在一些实例中的1.0psi内-在其它实例中可使用更大或更小公差。
当***处于稳定状态中时,溶质可从汲取溶液跨FO模块4及RO模块13缓慢地损失。此可造成可由流量计14监测的RO透过流速的逐渐降低。为了维持恒定的RO透过流速,由泵19从流18添加浓缩汲取溶液。泵19可为由浓度控制器(未示出)控制的计量泵。浓度控制器可使用一或多个处理器、电路等等(例如,微控制器)实施。浓度控制器可进一步耦合到测量产物流的流速的流量计。浓度控制器可基于产物流的流速控制计量泵19的速度。例如,浓度控制器可比较产物流的流速与所需流速,且可控制计量泵19以添加溶质来维持所需流速。添加溶质可增加压力换能器7处的压力,因此增加马达8的速度且增加透过流速,从而适应计量溶液的流入。类似地,浓度控制器可控制计量泵19以关闭(或减速),以减小溶质添加的速率来维持所需流速。当泵19关闭时,压力可下降到设置点之下且可降低马达8的速度并降低透过流速。因此,使用渗透流量计14作为反馈,计量流速及占空比可控制***的透过流速。计量点可在汲取***、流17、6、12、16中的任意处。位于如图1中说明的低压侧上的优点可为通过减少可能需要的高压组件的数目来降低成本。
表1含有图1中说明的***中的不同点的实例流速、静水压力及溶质浓度。表1中给定的值是示范性的且不应被解释为将本发明的实施例限于给定值。流速、静水压力及溶质溶度的其它值是可能的。
表1:水净化***100的示范性值
图1中的元件编号 流量(gpm) 静水压力(psi) 浓度(ppm)
进料 3 6.25 5.0 32,000
进料废弃 5 5.00 0.0 42,000
FO汲取废弃(设置点7) 6 6.25 0.5(设置点7) 44,900
RO汲取进料 12 6.25 700.0 44,900
***透过(控制点14) 15 1.25(设置点14) 0.0 350
RO汲取废弃 16 5.00 685.0 56,125
FO汲取进料 17 5.00 3.0 56,125
本文中还描述了无源连接的汲取溶质贮槽的实例。运用无源连接的汲取溶质贮槽,汲取溶液回路的压力的变化将溶质汲取到回路中或将溶质从回路中推出。控制的简化具有降低成本、重量及大小以及改善稳定性、性能及可靠性的优点。图2中说明根据本发明的实施例的实例无源连接的汲取溶质贮槽***200的方框图。正向渗透模块215或渗透预处理***可接收进料流240及汲取流235。FO模块215产生中间产物流250,其可由泵220加压到逆向渗透模块225或再浓缩***。RO模块可产生产物流230并将汲取流235返回到FO模块215。汲取溶质贮槽205可通过流210无源地连接到***。
无源汲取溶质贮槽***可通过平衡生产率与汲取溶液渗透势而操作。如果***的所需生产率大于***当前的生产率,那么再浓缩***可被加速,从而产生额外的水。随着产生此额外的水,通过渗透预处理***的产量增加却可能不相符,因为跨渗透隔膜的渗透压差可能仍然相同。由于质量平衡的差异,汲取溶液回路的体积可下降。浓缩汲取溶质接着可从汲取溶质贮槽汲取到汲取溶液回路中,从而增加汲取溶液的浓度,且因此增加通过渗透预处理的水产量。可发生此额外的流量直到通过渗透预处理***的流量等于通过再浓缩***的流量且***稳定为止。如果***的所需生产率小于***当前的生产率,那么再浓缩***可减速。由于再浓缩以较低速度运行,可产生更少的水。随着产生更少的水,通过渗透预处理***的产量降低可能不相符,因为跨渗透隔膜的渗透压差可能仍然相同。由于质量平衡的差异,汲取溶液回路的体积可增加。汲取溶质接着可从汲取溶液推到汲取溶质贮槽,从而有效地减小汲取溶液的浓度,且因此可降低通过渗透预处理的水产量。可发生从汲取溶液回路的此种溶质移除直到通过渗透预处理***的流量等于通过再浓缩***的流量且***稳定为止。被***排出的过量汲取溶质可被废弃或保持在汲取溶质贮槽中,并在需要增加汲取溶质的后续时间使用。
在例如可需要供应水来加压所述流并从高压水返回产生有用能量的压力延缓渗透(PRO)的过程中,可修改常规的能量回收泵以逆向操作,其中泵的高容积侧为隔膜废弃侧,而非如常规过程中正常进行的那样的供应侧。PRO泵将两种单独组件组合为单个组件。泵的低容积侧可汲入低液压的盐水(例如浓缩的氯化钠水溶液或海水),活塞可对所述流加压,且将盐水抽排到PRO隔膜元件。在PRO隔膜元件中,盐水被稀释,且体积增加。此可迫使盐水流出到泵的高容积侧,其中活塞的高容积侧上的高压力用于对低容积入口加压,以及在泵轴件上产生额外力。在从高压高体积流回收能量之后,低压高体积稀释盐水从泵排放。PRO泵的优点可为更紧凑设计、重量下降、液压及电气效率及简单性增加。
本文中还描述了能量回收泵的实例。根据本发明的实施例的能量回收泵300被说明为图3中的方框图。固定回收正排量能量回收泵可用于从PRO***产生动力。到***的盐水进料305可被馈进到泵310的低容积入口。泵可对此流入汲取流加压,且将加压流345抽排到PRO隔膜容器325。PRO隔膜容器还可接收低渗透压流330。在一些实例中,低渗透压流330可为淡水、河水或废水。来自PRO隔膜容器325的高压汲取流返回335被馈进到泵320的高容积入口,且然后以低压作为废水315从***排出。泵轴件340用于驱动发电设备(未示出)。
根据前文将明白,虽然本文中是为了说明目的描述了本发明的特定实施例,但是在不脱离本发明的精神及范围的情况下可作出各种修改。

Claims (20)

1.一种分离设备,其包括:
正向渗透模块,其经配置以接收进料流及汲取流,所述正向渗透模块经进一步配置以产生废弃进料流及中间流;
压力传感器,其经配置以测量所述正向渗透模块的汲取侧上的所述中间流、提供到所述正向渗透模块的汲取流或所述正向渗透模块的一或多个元件之间的汲取侧上的汲取流的一者或多者的第一压力;
液压泵,其经配置以使所述中间流循环从而提供具有第二压力的加压中间流;
隔膜模块,其经配置以接收所述加压中间流,所述隔膜模块经进一步配置以产生浓缩汲取流和产物流,其中所述产物流具有至少部分基于所述第一压力的流速;以及
泵控制器,其耦合到所述压力传感器及所述液压泵,其中所述泵控制器经配置以比较所述第一压力与所需压力,且经进一步配置以当所述第一压力高于所述所需压力时增加所述产物流的流速且当所述第一压力低于所述所需压力时降低所述产物流的流速。
2.根据权利要求1所述的设备,其进一步包括:
能量回收装置,所述能量回收装置经配置以将所述浓缩汲取流的压力降低到所述汲取流的压力;
计量泵,其经配置以将浓缩汲取溶液提供到所述汲取流;以及
流量计,其耦合到所述计量泵、经配置以测量所述产物流的所述流速,其中所述计量泵部分由所述流量计控制使得由所述计量泵提供的浓缩汲取溶液的量至少部分基于所述产物流的所述流速。
3.根据权利要求1所述的设备,其中所述中间流、所述汲取流、所述加压中间流和所述浓缩汲取流的体积是固定的。
4.根据权利要求1所述的设备,其中通过所述正向渗透模块的透过流速经配置成等于通过所述隔膜模块的透过流速。
5.根据权利要求1所述的设备,其中所述泵控制器经配置以将所述第一压力维持在与所述所需压力相差在1psi内。
6.根据权利要求1所述的设备,其中所述泵控制器包含经配置以执行比例积分控制算法的处理器。
7.根据权利要求2所述的设备,其进一步包括耦合到所述流量计及所述计量泵的浓度控制器,其中所述浓度控制器经配置以至少部分基于所述产物流的所述流速控制所述计量泵的速度。
8.根据权利要求7所述的设备,其中所述浓度控制器经配置以比较所述产物流的流速与所需流速,且经进一步配置以使用所述计量泵添加溶质以维持所述所需流速。
9.根据权利要求1所述的设备,其中所述泵是固定容积排量泵。
10.根据权利要求2所述的设备,其中所述能量回收装置是固定排量回收装置。
11.根据权利要求10所述的设备,其进一步包括多个能量回收装置。
12.根据权利要求1所述的设备,其进一步包括经配置以将所述进料流抽排到所述正向渗透模块的进料泵。
13.一种分离方法,其包括:
将进料流提供到正向渗透模块;
将汲取流提供到所述正向渗透模块;
使所述进料流浓缩且使所述汲取流循环通过所述正向渗透模块以产生中间流;
监测所述正向渗透模块的汲取侧上的所述中间流、提供到所述正向渗透模块的汲取流或所述正向渗透模块的一或多个元件之间的汲取侧中的汲取流的一者或多者的第一压力;
响应于所述第一压力,选择性地加压所述中间流以提供具有第二压力的加压中间流从而有效地产生所选择的产物流流速;
将所述加压中间流抽排到另一过滤器模块;
用所述另一过滤器模块过滤所述加压中间流以依至少部分基于所述第一压力的所选择的流速产生所述汲取流及产物流。
14.根据权利要求13所述的方法,其中所述另一过滤器模块包括逆向渗透模块。
15.根据权利要求13所述的方法,其进一步包括:
监测所述产物流的流速;
以至少部分基于所述产物流的所述流速的计量速率将溶质提供到所述汲取流。
16.根据权利要求13所述的方法,其中由进料泵将所述进料流提供到所述正向渗透过滤器。
17.根据权利要求13所述的方法,其进一步包括:
将所述第一压力提供到处理器;
使用所述处理器执行比例积分控制算法;以及
基于所述比例积分控制算法修改所述产物流的所述流速。
18.根据权利要求17所述的方法,其中当所述中间流的压力高于所需压力时增加所述产物流的所述流速,且当所述中间流的压力低于所述所需压力时降低抽排速率。
19.根据权利要求13所述的方法,其进一步包括:
将所述中间流、所述汲取流和所述加压中间流提供到固定容积回路。
20.根据权利要求15所述的方法,其中当所述产物流的流速低于所需速率时增加所述计量速率,且当所述产物流的流速高于所述所需速率时降低或停止所述计量速率。
CN201480025277.8A 2013-03-15 2014-03-14 包含低压控制的渗透驱动隔膜***的发展 Active CN105188889B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361794537P 2013-03-15 2013-03-15
US61/794,537 2013-03-15
PCT/US2014/029227 WO2014144704A1 (en) 2013-03-15 2014-03-14 Advancements in osmotically driven membrane systems including low pressure control

Publications (2)

Publication Number Publication Date
CN105188889A CN105188889A (zh) 2015-12-23
CN105188889B true CN105188889B (zh) 2018-01-19

Family

ID=51537764

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480025277.8A Active CN105188889B (zh) 2013-03-15 2014-03-14 包含低压控制的渗透驱动隔膜***的发展
CN201480022732.9A Active CN105142762B (zh) 2013-03-15 2014-03-14 包含多级净化的渗透驱动膜***的改进

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480022732.9A Active CN105142762B (zh) 2013-03-15 2014-03-14 包含多级净化的渗透驱动膜***的改进

Country Status (5)

Country Link
US (3) US9861937B2 (zh)
EP (1) EP2969145A4 (zh)
CN (2) CN105188889B (zh)
AU (1) AU2014228787B2 (zh)
WO (2) WO2014144778A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015014776B1 (pt) 2012-12-21 2021-10-13 Porifera, Inc Sistema e método de separação
EP2953707A4 (en) 2013-02-08 2018-01-17 Oasys Water, Inc. Osmotic separation systems and methods
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
US9969638B2 (en) 2013-08-05 2018-05-15 Gradiant Corporation Water treatment systems and associated methods
CA2925869A1 (en) 2013-09-23 2015-03-26 Gradiant Corporation Desalination systems and associated methods
WO2016057764A1 (en) * 2014-10-10 2016-04-14 Oasys Water, Inc. Osmotic separation systems and methods
WO2016070103A1 (en) 2014-10-31 2016-05-06 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
GB201501684D0 (en) * 2015-02-02 2015-03-18 Surrey Aquatechnology Ltd Brine Concentration
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
GB201503728D0 (en) * 2015-03-05 2015-04-22 Surrey Aquatechnology Ltd Purification of highly saline feeds
EP3313786B8 (en) * 2015-06-24 2020-06-17 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
CA2993007C (en) * 2015-07-29 2023-04-04 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
KR101838211B1 (ko) * 2015-10-16 2018-03-13 광주과학기술원 가압형 정삼투 및 역삼투 혼합형 해수 담수화 장치
ES2619113B1 (es) * 2015-12-22 2018-05-08 Acciona Agua, S.A. Procedimiento de control de sistema combinado de ósmosis directa y nanofiltración u ósmosis inversa
US10689264B2 (en) 2016-02-22 2020-06-23 Gradiant Corporation Hybrid desalination systems and associated methods
EP3426607A4 (en) * 2016-03-09 2019-10-16 Enrgistream Pty Ltd METHOD AND SYSTEM FOR TREATING WASTEWATER AND GENERATING ELECTRICITY
CN105800851A (zh) * 2016-05-23 2016-07-27 海博伦(苏州)环境科技股份有限公司 正渗透汲取液及其循环再生方法和应用
CN106082397B (zh) * 2016-06-12 2021-04-20 东华大学 一种同步污水再生和海水淡化的***及方法
MX2019001463A (es) * 2016-08-04 2019-05-30 Oasys Water LLC Sistemas y metodos para mejorar el desempeño de sistemas de osmosis directa.
IL247687B (en) * 2016-09-07 2018-06-28 Israel Aerospace Ind Ltd Method and system for liquid treatment
CN106422780B (zh) * 2016-11-02 2022-08-30 中国石油大学(华东) 一种可连续操作的循环式正渗透高盐有机废水处理***
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
EP3570965A4 (en) * 2017-01-20 2021-02-17 Trevi Systems Inc. REVERSE OSMOSIS MEMBRANE AND MODULE SUPPORTED BY OSMOTIC PRESSURE
US11326625B2 (en) 2017-02-09 2022-05-10 Natural Ocean Well Co. Brine dispersal system
CN107311353A (zh) * 2017-08-17 2017-11-03 苏州富特尼水务工程有限公司 一种高盐水零排放处理***
US10882765B2 (en) * 2017-09-25 2021-01-05 Fluid Equipment Development Company, Llc Method and system for operating a high recovery separation process
CN107698084B (zh) * 2017-10-17 2021-06-04 广州雅津水处理设备有限公司 一种降低废水浓盐量的过滤***
US11655547B2 (en) * 2018-04-19 2023-05-23 Sanza T. Kazadi Method for generating clean water, hydrogen, and oxygen from contaminated effluent
CN112566713A (zh) 2018-07-20 2021-03-26 波里费拉公司 具有再循环回路的渗透模块
SG11202101293TA (en) 2018-08-22 2021-03-30 Gradiant Corp Liquid solution concentration system comprising isolated subsystem and related methods
CN112805247B (zh) * 2018-10-05 2023-05-02 奥加诺株式会社 水处理装置、水处理方法、正渗透膜处理方法、正渗透膜处理***及水处理***
CN111346512B (zh) * 2018-12-20 2023-03-31 国家能源投资集团有限责任公司 含盐水的反渗透处理方法和反渗透***
CN111994999B (zh) * 2019-05-27 2022-09-27 国家能源投资集团有限责任公司 一种正渗透耦合反渗透的浓缩***及其使用方法
CN111233101A (zh) * 2020-02-27 2020-06-05 广东溢达纺织有限公司 一种印染废水的处理方法及处理装置
AU2021383601A1 (en) 2020-11-17 2023-06-08 Gradiant Corporaton Osmotic methods and systems involving energy recovery
CN112456687B (zh) * 2020-12-16 2024-03-12 北京城市排水集团有限责任公司 一种垃圾渗滤液浓缩液减量化方法及***
CN112723638A (zh) * 2020-12-29 2021-04-30 东莞市格美节能设备有限公司 一种高盐废水零排放处理的方法
US11534719B1 (en) 2021-07-02 2022-12-27 Gradiant Corporation Membranes with controlled porosity for serial filtration
WO2023147379A1 (en) * 2022-01-25 2023-08-03 Porifera, Inc. Alcohol removal by dilution and concentration of alcoholic solutions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674605A (zh) * 2011-03-07 2012-09-19 株式会社日立制作所 淡水制造***

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2116920A (en) 1934-01-11 1938-05-10 Beau May Process Corp Concentration of liquid food material
US3216930A (en) 1963-01-04 1965-11-09 Dow Chemical Co Process for liquid recovery and solution concentration
GB1128181A (en) 1965-01-20 1968-09-25 Goran Heden An apparatus for dialysis, heat exchange or gas exchange
US3721621A (en) 1969-12-02 1973-03-20 W Hough Forward-osmosis solvent extraction
FR2189091A1 (en) 1972-06-16 1974-01-25 Srti Soc Rech Tech Ind Compact exchange device for elements - contained in one of two fluids
DE2851105A1 (de) 1978-11-25 1980-05-29 Knut Stache Osmotisches meerwasserentsalzungsgeraet fuer seenotfaelle
JPS5588767A (en) 1978-12-27 1980-07-04 Tokyo Eizai Lab Composition for thermal plastic fixing bandage that can be manufactured in solventless shape and preparation of fixing bandage
US4900443A (en) 1980-03-14 1990-02-13 Memtec North America Corporation Porous aramid membranes and emulsions useful for the casting thereof
US4428720A (en) 1980-04-22 1984-01-31 Signode Corporation Apparatus for producing polypropylene sheet
US4454176A (en) 1981-10-21 1984-06-12 E. I. Du Pont De Nemours And Company Supported reverse osmosis membranes
JPS5959213A (ja) 1982-09-28 1984-04-05 Teijin Ltd 多孔質支持膜及びそれを用いた複合膜
GB8303611D0 (en) 1983-02-09 1983-03-16 Ag Patents Ltd Concentration of alcoholic beverages
US4618533A (en) 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
JPS62140620A (ja) 1985-12-16 1987-06-24 Toray Ind Inc 薄膜の製造方法
US4756835A (en) 1986-08-29 1988-07-12 Advanced Polymer Technology, Inc. Permeable membranes having high flux-density and low fouling-propensity
DK641887D0 (da) 1987-12-07 1987-12-07 Danske Sukkerfab Apparat til fraktionering af en vaeske i to fraktioner ved membranfiltrering
US4959237A (en) * 1989-06-07 1990-09-25 E. I. Du Pont De Nemours And Company Reverse osmosis concentration of juice products with improved flavor
US5100556A (en) 1989-07-21 1992-03-31 The Standard Oil Company Transverse sheet membrane separation module, components thereof and related methods
US5192434A (en) 1990-06-07 1993-03-09 Dow Danmark A/S Membrane filtration apparatus and method of making a membrane filtration unit
US5238574A (en) * 1990-06-25 1993-08-24 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus having reverse osmosis membrane for concentrating solution
CA2124200A1 (en) 1991-11-25 1993-06-10 Damoder Reddy Spirally wound membrane device having three separate channels
US5281430A (en) 1992-12-08 1994-01-25 Osmotek, Inc. Osmotic concentration apparatus and method for direct osmotic concentration of fruit juices
KR960014337B1 (ko) 1993-12-20 1996-10-15 제일합섬 주식회사 복합반투막의 제조방법
US5635071A (en) 1995-01-20 1997-06-03 Zenon Airport Enviromental, Inc. Recovery of carboxylic acids from chemical plant effluents
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6264044B1 (en) 1997-04-11 2001-07-24 Cuno, Inc. Reinforced, three zone microporous membrane
US6413070B1 (en) 1997-04-11 2002-07-02 Cuno Incorporated System for manufacturing reinforced three-zone microporous membrane
US6132804A (en) 1997-06-06 2000-10-17 Koch Membrane Systems, Inc. High performance composite membrane
US6536605B2 (en) 1997-06-06 2003-03-25 Koch Membrane Systems, Inc. High performance composite membrane
US6037808A (en) 1997-12-24 2000-03-14 Texas Instruments Incorporated Differential SOI amplifiers having tied floating body connections
US6162360A (en) 1997-12-29 2000-12-19 Monsanto Company Membrane process for making enhanced flavor fluids
CA2335886C (en) 1998-06-29 2004-04-13 Microban Products Company Antimicrobial semi-permeable membranes
EP1064986B1 (en) 1999-01-14 2004-09-22 Toray Industries, Inc. Composite semipermeable membrane, process for producing the same, and method of purifying water with the same
US6755970B1 (en) 1999-06-22 2004-06-29 Trisep Corporation Back-flushable spiral wound filter and methods of making and using same
KR100673367B1 (ko) 1999-10-27 2007-01-24 윌리엄 마쉬 라이스 유니버시티 탄소 나노튜브의 거시적 정돈 어셈블리
DE10022259A1 (de) 2000-05-08 2001-11-15 Sartorius Gmbh Crossflow-Filterkassetten in Form von verbesserten Weitspaltmodulen
US7229665B2 (en) 2001-05-22 2007-06-12 Millipore Corporation Process of forming multilayered structures
NO314575B1 (no) 2000-08-04 2003-04-14 Statkraft Sf Semipermeabel membran og fremgangsmate for tilveiebringelse av elektrisk kraft samt en anordning
US20110203994A1 (en) 2008-06-20 2011-08-25 Yale University Forward Osmosis Separation Processes
US20020148769A1 (en) 2001-04-13 2002-10-17 Andreas Deuschle Spacer for membrane stacks
US6849184B1 (en) 2001-12-12 2005-02-01 Hydration Technologies Inc. Forward osmosis pressurized device and process for generating potable water
WO2003053348A2 (en) 2001-12-12 2003-07-03 Hydration Technologies, Inc. Direct osmotic hydration devices
EP1329425A1 (en) * 2002-01-18 2003-07-23 Toray Industries, Inc. Desalination method and desalination apparatus
US6811696B2 (en) 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
US7144511B2 (en) * 2002-05-02 2006-12-05 City Of Long Beach Two stage nanofiltration seawater desalination system
US7177978B2 (en) 2002-08-10 2007-02-13 Cisco Technology, Inc. Generating and merging lookup results to apply multiple features
US20040071951A1 (en) 2002-09-30 2004-04-15 Sungho Jin Ultra-high-density information storage media and methods for making the same
US20070181473A1 (en) 2003-01-22 2007-08-09 Thomas Manth Water desalination installation
US20050016922A1 (en) * 2003-03-24 2005-01-27 Enzweiler Ronald J. Preferential precipitation membrane system and method
GB0317839D0 (en) 2003-07-30 2003-09-03 Univ Surrey Solvent removal process
US6992051B2 (en) 2003-08-28 2006-01-31 Anderson Leslie C Combination cleaning and waxing composition and method
US7306735B2 (en) 2003-09-12 2007-12-11 General Electric Company Process for the removal of contaminants from water
JP4450602B2 (ja) 2003-11-06 2010-04-14 財団法人ファインセラミックスセンター カーボンナノチューブを用いたガス分離材及びその製造方法
EP1547670B1 (de) 2003-12-17 2007-09-26 KSB Aktiengesellschaft Drucktauschersystem
EP1758671B9 (en) 2004-04-08 2014-02-19 Natrix Separations Inc. Membrane stacks
US7611628B1 (en) 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
GB0416310D0 (en) 2004-07-21 2004-08-25 Bp Exploration Operating Method
US7627938B2 (en) 2004-10-15 2009-12-08 Board Of Regents, The Univeristy Of Texas System Tapered hollow metallic microneedle array assembly and method of making and using the same
WO2006040175A1 (en) 2004-10-15 2006-04-20 Pall Corporation Spacer for filter modules
US8083942B2 (en) * 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
US9169579B2 (en) 2005-03-11 2015-10-27 New Jersey Institute Of Technology Carbon nanotube mediated membrane extraction
US7445712B2 (en) 2005-04-07 2008-11-04 Hydration Technologies Inc. Asymmetric forward osmosis membranes
US7989349B2 (en) 2005-04-15 2011-08-02 Micron Technology, Inc. Methods of manufacturing nanotubes having controlled characteristics
JP2008540070A (ja) 2005-04-29 2008-11-20 ユニバーシティー オブ ロチェスター 超薄多孔質ナノスケール膜、その製造方法および使用
KR20070017740A (ko) 2005-08-08 2007-02-13 주식회사 코오롱 방향족 폴리아미드 복합막의 제조방법
CN101296743B (zh) 2005-08-24 2013-04-10 加利福尼亚大学董事会 用于纳米级物质快速传输的膜
JP4374456B2 (ja) 2006-01-05 2009-12-02 国立大学法人 東京大学 カーボンナノチューブ自立膜及びその製造方法、並びにカーボンナノチューブ膜を有する構成体及びその製造方法
US8318020B2 (en) * 2006-03-16 2012-11-27 Metawater Co., Ltd. Washing method and apparatus of separation membrane
US8246791B2 (en) 2006-06-08 2012-08-21 Yale University Multi-stage column distillation (MSCD) method for osmotic solute recovery
WO2007147013A1 (en) 2006-06-13 2007-12-21 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Combined membrane-distillation-forward-osmosis systems and methods of use
US7931838B2 (en) 2006-08-31 2011-04-26 Virginia Tech Intellectual Properties, Inc. Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes
NL1032403C2 (nl) 2006-09-01 2008-03-04 Vitens Fryslon N V Werkwijze en inrichting voor het door middel van een membraanfiltratie-eenheid zuiveren van water.
CA2666815C (en) 2006-10-17 2013-05-28 Purdue Research Foundation Electrothermal interface material enhancer
GB0621247D0 (en) 2006-10-25 2006-12-06 Univ Surrey Separation process
WO2008057842A2 (en) 2006-10-27 2008-05-15 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
US8231013B2 (en) 2006-12-05 2012-07-31 The Research Foundation Of State University Of New York Articles comprising a fibrous support
WO2008137082A1 (en) 2007-05-02 2008-11-13 Yale University Method for designing membranes for osmotically driven membrane processes
US9010547B2 (en) 2007-05-26 2015-04-21 The Research Foundation Of State University Of New York High flux fluid separation membranes comprising a cellulose or cellulose derivative layer
US8236178B2 (en) 2007-08-20 2012-08-07 Earth Renaissance Technologies, Llc Reverse osmosis water recover method
WO2009035415A1 (en) 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes
WO2009037515A2 (en) * 2007-09-20 2009-03-26 Abdulsalam Al-Mayahi Process and systems
JP2010540215A (ja) 2007-09-21 2010-12-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ナノ複合膜ならびにその作製および使用方法
US8021549B2 (en) 2007-10-02 2011-09-20 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing potable water from seawater using forward osmosis
US20090098359A1 (en) 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
AU2008337099A1 (en) 2007-12-17 2009-06-25 Ben Gurion University Of The Negev Research & Development Authority Apparatus and system for deionization
US7799221B1 (en) 2008-01-15 2010-09-21 Macharg John P Combined axial piston liquid pump and energy recovery pressure exchanger
ITRM20080086A1 (it) 2008-02-18 2009-08-19 Iniziativa Centro Sud S R L Gruppo di depurazione o desalinizzatore ad osmosi inversa con recupero di energia e dosatura dell'acqua depurata
MX2010010163A (es) 2008-03-20 2010-12-06 Univ Yale Modulo de membrana enrollada helicoidal para uso en osmosis forzada.
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
CA2720673C (en) 2008-04-15 2017-08-08 Nanoh2O, Inc. Hybrid thin film composite reverse osmosis membranes
US7901578B2 (en) 2008-04-17 2011-03-08 Chevron U.S.A. Inc. Method and system for treating an aqueous stream in the production of hydrocarbon
US8940173B2 (en) 2008-05-29 2015-01-27 Lawrence Livermore National Security, Llc Membranes with functionalized carbon nanotube pores for selective transport
US8216473B2 (en) 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis
KR100877384B1 (ko) * 2008-06-30 2009-01-07 바이오원 (주) 필터링 기술을 이용한 조 글리세린의 정제방법
US20090321355A1 (en) 2008-06-30 2009-12-31 NANOASIS TECHNOLOGIES, INC., a corporation of the state of Delaware Membranes with embedded nanotubes for selective permeability
US7993524B2 (en) 2008-06-30 2011-08-09 Nanoasis Technologies, Inc. Membranes with embedded nanotubes for selective permeability
JP5463355B2 (ja) 2008-07-10 2014-04-09 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 改善された汚染耐性を有する浄水膜
US8889201B2 (en) 2008-08-21 2014-11-18 Pat's Backcountry Beverages, Inc. Method of making alcohol concentrate
JP2010094641A (ja) 2008-10-20 2010-04-30 Toray Ind Inc 複合半透膜の処理方法
US20100140162A1 (en) 2008-10-24 2010-06-10 Juzer Jangbarwala Osmosis membrane with improved flux rate and uses thereof
WO2010050421A1 (ja) 2008-10-31 2010-05-06 東レ株式会社 複合半透膜およびその製造方法
US8252350B1 (en) 2008-11-24 2012-08-28 Cadwalader Robert E Ethanol recovery from fermentation broth
GB0822362D0 (en) 2008-12-08 2009-01-14 Surrey Aquatechnology Ltd Improved solvent removal
GB0822359D0 (en) 2008-12-08 2009-01-14 Univ Surrey Solvent separation
JP2012512118A (ja) 2008-12-11 2012-05-31 ウィリアム・マーシュ・ライス・ユニバーシティ 基材上に直接成長させた強固に結合されたカーボンナノチューブアレイ及びその製造法
US20100155333A1 (en) 2008-12-18 2010-06-24 Chevron U.S.A., Inc. Process for dewatering an aqueous organic solution
US8021553B2 (en) 2008-12-18 2011-09-20 Nrgtek, Inc. Systems and methods for forward osmosis fluid purification using cloud point extraction
US20120160753A1 (en) * 2008-12-30 2012-06-28 Nishith Vora Water desalination plant and system for the production of pure water and salt
WO2010082194A2 (en) 2009-01-13 2010-07-22 B.P.T. Bio Pure Technology Ltd. Solvent and acid stable membranes, methods of manufacture thereof and methods of use thereof inter alia for separating metal ions from liquid process streams
US20100224561A1 (en) 2009-02-10 2010-09-09 Marcin Mark A Process for minimizing produced water brines using forward osmosis
AU2010215116A1 (en) 2009-02-19 2011-10-13 Ben-Gurion University Of The Negev Research And Development Authority Chemically resistant membranes, coatings and films and methods for their preparation
US20100212319A1 (en) 2009-02-24 2010-08-26 Mark Donovan Method and apparatus for generating power utilizing forward osmosis
WO2010104895A2 (en) 2009-03-09 2010-09-16 Herron John R Center tube configuration for a multiple spiral wound forward osmosis element
US8580341B2 (en) 2009-05-22 2013-11-12 General Electric Company Method of making composite membrane
WO2010144057A1 (en) 2009-06-10 2010-12-16 National University Of Singapore Double selective-layer membranes
US8286803B2 (en) 2009-06-18 2012-10-16 The Boeing Company Methods and systems for incorporating carbon nanotubes into thin film composite reverse osmosis membranes
JP5745512B2 (ja) 2009-06-29 2015-07-08 ナノエイチツーオー・インコーポレーテッド 窒素添加剤を含む改良された混成tfcro膜
BR112012000444A2 (pt) 2009-07-09 2017-10-31 Ide Technologies Ltd sistema de dessalinização e método de dessalinização
EP2470292A4 (en) 2009-08-24 2014-07-16 Oasys Water Inc FORWARD OSMOSIS MEMBRANES
JP2011061026A (ja) 2009-09-10 2011-03-24 Toshiba Corp カーボンナノチューブ配線及びその製造方法
BR112012003292A2 (pt) * 2009-09-18 2016-03-01 Tmci Padovan S P A aparelho e método para filtrar produtos líquidos.
KR101144316B1 (ko) * 2009-10-28 2012-05-11 한국건설기술연구원 정삼투와 역삼투 조합형 막분리 하폐수 고도처리장치와, 상기 하폐수 고도처리를 위한 막분리공정 제어장치 및 제어방법
EA023086B1 (ru) 2009-10-30 2016-04-29 Оасис Уотер, Инк. Система и способ осмотического разделения
US9023210B2 (en) * 2009-12-07 2015-05-05 Fluid Equipment Development Company, Llc Method and apparatus for osmotic power generation
US20110155666A1 (en) * 2009-12-30 2011-06-30 Chevron U.S.A. Inc. Method and system using hybrid forward osmosis-nanofiltration (h-fonf) employing polyvalent ions in a draw solution for treating produced water
US9045351B2 (en) * 2010-02-17 2015-06-02 Hl Seawater Holdings, Llc Zero discharge water desalination plant with minerals extraction integrated with natural gas combined cycle power generation
US8196756B2 (en) 2010-04-02 2012-06-12 NanOasis Asymmetric nanotube containing membranes
WO2011136465A2 (ko) 2010-04-30 2011-11-03 웅진케미칼 주식회사 해수담수용 정삼투막 및 그 제조방법
WO2011146936A2 (en) 2010-05-21 2011-11-24 Adrian Brozell Self-assembled surfactant structures
US8294810B2 (en) 2010-07-09 2012-10-23 Altek Corporation Assisting focusing method for face block
KR101200838B1 (ko) 2010-07-14 2012-11-13 한국기계연구원 염도차를 이용한 삼투발전 및 해수의 담수화를 위한 장치 및 방법
US20130264285A1 (en) * 2010-08-13 2013-10-10 Hatch Ltd. Process and facility to treat contaminated process water
JP6276590B2 (ja) 2010-09-30 2018-02-07 ポリフェラ・インコーポレイテッド 正浸透用の薄膜複合膜及びその作製方法
US20120080381A1 (en) 2010-09-30 2012-04-05 General Electric Company Thin film composite membranes incorporating carbon nanotubes
US20120103892A1 (en) 2010-10-28 2012-05-03 General Electric Company Separation module
KR101272868B1 (ko) 2010-11-11 2013-06-11 한국과학기술원 정삼투압을 이용한 저농도 발효액의 농축 방법
TW201235306A (en) 2010-11-12 2012-09-01 Siemens Pte Ltd Electrical purification apparatus
DK177307B1 (en) 2010-12-17 2012-11-12 Aquaporin As A liquid membrane
WO2012084960A1 (en) 2010-12-21 2012-06-28 Statkraft Development As Membrane system for pressure retarded osmosis (pro)
WO2012095506A1 (en) 2011-01-13 2012-07-19 Jurag Separation A/S An electro-membrane separation system
WO2012102677A1 (en) 2011-01-24 2012-08-02 Nano-Mem Pte. Ltd. Method and apparatus for recovering water from a source water
US9375595B2 (en) 2011-01-27 2016-06-28 Jeremy Taylor Self-testing and self-calibrating fire sprinkler system, method of installation and method of use
US20120231535A1 (en) 2011-02-18 2012-09-13 Hydration Systems Llc Organic Forward Osmosis System
US9399193B2 (en) 2011-02-18 2016-07-26 Samsung Electronics Co., Ltd. Draw solute for forward osmosis, draw solution including the same, forward osmosis water treatment device using the same, and forward osmosis method for water treatment using the same
US9022227B2 (en) 2011-03-21 2015-05-05 International Business Machines Corporation Composite membranes and methods of preparation thereof
WO2012135065A2 (en) 2011-03-25 2012-10-04 Porifera, Inc. Membranes having aligned 1-d nanoparticles in a matrix layer for improved fluid separation
FR2973397B1 (fr) 2011-03-29 2015-04-24 Commissariat Energie Atomique Reseau de nanotubes metalliques
US9663734B2 (en) 2011-04-02 2017-05-30 Bcr Science Pllc Solutions of allotropes of carbon and methods of making and using the same
US9393525B2 (en) 2011-04-08 2016-07-19 The United States of America, as represented by the Department of the Interior Forward osmosis: recyclable driving solutes
US20120261321A1 (en) 2011-04-18 2012-10-18 Samsung Electronics Co., Ltd. Separation membrane, method for manufacturing the same, and forward osmosis device including the same
US20130001162A1 (en) 2011-06-28 2013-01-03 Victor Yangali-Quintanilla Apparatus, System, and Method for Forward Osmosis in Water Reuse
CN103874537B (zh) 2011-08-10 2017-06-20 Oasys水有限公司 用于热质传递的板、框及螺旋缠绕式膜模块
US10363336B2 (en) 2011-08-26 2019-07-30 Battelle Energy Alliance, Llc Methods and systems for treating liquids using switchable solvents
FR2980982B1 (fr) 2011-10-07 2014-10-24 Commissariat Energie Atomique Dispositif comprenant un materiau composite presentant des nanotubes soumis a un champ electrique et ses utilisations
JP2013081922A (ja) 2011-10-12 2013-05-09 Kayaba System Machinery Kk 海水淡水化装置
WO2013059314A1 (en) 2011-10-17 2013-04-25 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US20130105383A1 (en) 2011-10-27 2013-05-02 Nanyang Technological University Nanofiltration-type thin film composite forward osmosis membrane and a method of synthesizing the same
WO2013065293A1 (ja) 2011-10-31 2013-05-10 Jfeエンジニアリング株式会社 淡水製造方法および装置
US9524483B2 (en) * 2011-11-23 2016-12-20 Advanced Aqua Group Water conversion system
JP5912506B2 (ja) 2011-12-20 2016-04-27 カヤバ システム マシナリー株式会社 海水淡水化装置
US20130220581A1 (en) 2012-02-23 2013-08-29 Hydration Systems, Llc Forward osmosis with an organic osmolyte for cooling towers
KR101229482B1 (ko) 2012-07-12 2013-02-04 한국기계연구원 하이브리드형 해수 담수화 장치 및 방법
CN104798208B (zh) 2012-10-19 2018-07-10 佐治亚科技研究公司 在碳纳米管的定向阵列上形成的多层涂层
WO2014071238A1 (en) 2012-11-02 2014-05-08 Porifera, Inc. Systems and methods for fabrication of forward osmosis membranes using roll-to-roll processing
BR112015014776B1 (pt) 2012-12-21 2021-10-13 Porifera, Inc Sistema e método de separação
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
WO2015009554A1 (en) * 2013-07-15 2015-01-22 Hydration Systems, Llc Method and system for generating strong brines
JP5900527B2 (ja) 2014-03-31 2016-04-06 栗田工業株式会社 低分子量有機物含有水の処理方法
US20170232392A1 (en) 2014-08-08 2017-08-17 Porifera, Inc. Systems and methods for offshore desalination and/or oil recovery
TWI595920B (zh) 2014-08-13 2017-08-21 Asahi Chemical Ind Positive osmosis membrane and positive osmosis treatment system
WO2016070103A1 (en) 2014-10-31 2016-05-06 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
WO2016081409A1 (en) 2014-11-17 2016-05-26 Massachussetts Institute Of Technology Flow control in multi-step filtration, and associated systems
WO2016081418A1 (en) 2014-11-17 2016-05-26 Massachusetts Institute Of Technology Minor component ratio balancing in filtration systems, and associated methods
MX2017006379A (es) 2014-11-17 2017-08-21 Massachusetts Inst Technology Control de concentracion en sistemas de filtracion y metodos asociados.
EP3400282B1 (en) 2015-02-11 2024-04-17 Bedford Systems LLC Alcoholic beverage concentrate process
EP3313786B8 (en) 2015-06-24 2020-06-17 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
KR20180100361A (ko) 2015-12-31 2018-09-10 비피 코포레이션 노쓰 아메리카 인코포레이티드 수성 스트림으로부터 아세트산을 회수하기 위한 방법
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674605A (zh) * 2011-03-07 2012-09-19 株式会社日立制作所 淡水制造***

Also Published As

Publication number Publication date
US20160002074A1 (en) 2016-01-07
CN105188889A (zh) 2015-12-23
EP2969145A1 (en) 2016-01-20
AU2014228787A1 (en) 2015-10-08
WO2014144778A1 (en) 2014-09-18
US10500544B2 (en) 2019-12-10
CN105142762B (zh) 2019-05-31
AU2014228787B2 (en) 2018-05-10
US20160038880A1 (en) 2016-02-11
EP2969145A4 (en) 2017-01-25
US20200086274A1 (en) 2020-03-19
WO2014144704A1 (en) 2014-09-18
US12005396B2 (en) 2024-06-11
US9861937B2 (en) 2018-01-09
CN105142762A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN105188889B (zh) 包含低压控制的渗透驱动隔膜***的发展
RU2363663C2 (ru) Установка для непрерывного обессоливания воды в замкнутом контуре при переменном давлении в одном контейнере
US7563375B2 (en) Direct osmosis cleaning
US9695064B2 (en) Reverse osmosis system with energy recovery devices
CN205252907U (zh) 渗透分离***
JP5361928B2 (ja) 海水淡水化装置およびその制御方法
CA2899176A1 (en) Osmotic separation systems and methods
EP1993956A1 (en) System for energy recovery and reduction of deposits on the membrane surfaces in (variable power and variable production) reverse osmosis desalination systems
Barello et al. Operation and modeling of RO desalination process in batch mode
EP3130391A1 (en) Fluid purification by forward osmosis, ion exchange and re-concentration
US20170216774A1 (en) Batch Pressure-Driven Membrane Liquid Separation Using A Pressure Exchanger for Efficiency
CN101720249A (zh) 采用中压膜的液体净化***
US11045766B2 (en) Reverse osmosis system
KR101817685B1 (ko) 압력지연삼투 기술을 이용한 해수담수화 시스템
US20180243694A1 (en) Apparatus and method for reverse osmosis
KR20210133631A (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
US20170334747A1 (en) System and method for flexible low-energy membrane-based liquid purification
Sagiv et al. Modeling of backwash cleaning methods for RO membranes
Das et al. Temporally multi-staged batch counterflow reverse osmosis
US20220340453A1 (en) Double-acting piston batch reverse osmosis desalination assembly and method
CN105948186A (zh) 盐差能发电耦合超低压反渗透海水淡化***及方法
US20230192521A1 (en) Metal Surface Treatment Liquid Recycling System and Operation Method Thereof
CN103547360B (zh) 最大程度降低反渗透单元运行时的能耗的方法和***
TW202302472A (zh) 水處理方法及水處理裝置
US11878270B2 (en) Osmosis modules having recirculation loops

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant