CN104894520A - 金属镁基uvc波段透明导电结构及其制备方法 - Google Patents

金属镁基uvc波段透明导电结构及其制备方法 Download PDF

Info

Publication number
CN104894520A
CN104894520A CN201510226430.XA CN201510226430A CN104894520A CN 104894520 A CN104894520 A CN 104894520A CN 201510226430 A CN201510226430 A CN 201510226430A CN 104894520 A CN104894520 A CN 104894520A
Authority
CN
China
Prior art keywords
wave band
transparent conducting
gas
based compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510226430.XA
Other languages
English (en)
Inventor
夏晓川
梁红伟
杜国同
柳阳
申人升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510226430.XA priority Critical patent/CN104894520A/zh
Publication of CN104894520A publication Critical patent/CN104894520A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种金属镁基UVC波段透明导电结构及其制备方法,所述金属镁基UVC波段透明导电结构包括两层Mg基化合物层,所述两层Mg基化合物层之间设置有金属Mg层。所述金属镁基UVC波段透明导电结构的制备方法包括以下步骤:选取衬底,清洗衬底;选择高纯镁为靶材,通过磁控溅射方法沉积Mg基化合物层和金属Mg层,得到Mg基化合物/Mg/Mg基化合物多层结构。本发明所述金属镁基UVC波段透明导电结构在UVC波段具有优良的透明导电性,其制备方法步骤科学、易行,有效的解决了目前UVC波段透明导电材料制备难题。

Description

金属镁基UVC波段透明导电结构及其制备方法
技术领域
本发明涉及透明导电材料制备技术领域,尤其涉及一种金属镁基UVC波段透明导电结构及其制备方法。
背景技术
传统的透明导电薄膜在近紫外和可见区具有较高的透过率,并兼具优良的导电性,已应用于平板液晶显示器、触摸屏、太阳能电池等领域。近年来,透明导电薄膜还被应用于低辐射玻璃、节能电致变色窗、除霜除雾玻璃、抗静电涂层、防电磁干扰透明窗和红外至雷达波段宽频谱隐身材料等诸多新兴领域。ITO(In2O3:Sn)、SnO2:F、ZAO(ZnO:Al)等传统单层透明导电膜应用较为广泛,它们具有高可见光透过率(85%-90%)、化学稳定性好、与各种基板(如玻璃、PVC、硅片等)附着力好等优点。
然而随着发光与光电探测器件向深紫外区域发展,上述传统透明导电薄膜由于带隙宽度的限制(一般小于4.0eV),难以透过波长小于300nm的深紫外光。目前,Si或者Sn掺杂Ga2O3薄膜具备深紫外透明导电性,但是由于材料的禁带宽度越大,将其掺杂成为导电材料的困难也越大,所以具有优良导电特性的单层Ga2O3基深紫外透明导电薄膜也较难制备。对于多层结构Ga2O3基深紫外透明导电薄膜而言,由于Ga2O3材料光学禁带宽度的限制,其很难透过波长小于250nm的UVC波段的紫外光。为此,研制电阻率低、UVC波段透射率高的新型材料或者新结构就显得尤为重要。
发明内容
本发明的目的在于,针对目前缺少导电性优良、UVC波段透明的电极材料的问题,提出一种金属镁基UVC波段透明导电结构,该结构在UVC波段(200nm至290nm)实现了良好的透明导电性。
为实现上述目的,本发明采用的技术方案是:一种金属镁基UVC波段透明导电结构,包括两层Mg基化合物层,所述两层Mg基化合物层之间设置有金属Mg层。
进一步地,所述Mg基化合物层厚度为1-500nm,优选为10-50nm;所述金属Mg层厚度为0.1-20nm,优选为2-10nm。
进一步地,所述Mg基化合物层的材质为光学带隙较宽的材料,优选所述Mg基化合物层的材质为:MgO、MgS、MgF2和MgCl2中的一种或者几种混合。
本发明的另一目的还提供了一种金属镁基UVC波段透明导电结构的制备方法,包括以下步骤:
(1)采用高纯靶材,将衬底放入反应室内,调节反应室内压强,调节衬底温度;
(2)通过磁控溅射方法在衬底上制备一层Mg基化合物层;
(3)通过磁控溅射方法,以高纯氩气为溅射气体,在Mg基化合物层上生长一层金属Mg层;
(4)通过磁控溅射方法继而在金属Mg层上再生长一层Mg基化合物层;获得金属镁基UVC波段透明导电结构。
进一步地,在步骤(1)之前,先清洗衬底,去除衬底表面杂质,吹干后待用。优选的所述衬底为单晶蓝宝石。
进一步地,步骤(1)所述高纯靶材为金属镁、MgO、MgS、MgF2和MgCl2中的一种或者几种,优选高纯金属镁靶材;反应室内压强范围为0.1Pa至20Pa,优选的所述反应室内压强范围为0.5-5Pa;所述衬底温度范围为0℃至1200℃,优选的所述衬底温度范围为25-500℃。
进一步地,步骤(2)和步骤(4)磁控溅射方法中的溅射气体为单一高纯气体或者混合气体。
进一步地,所述单一高纯气体或者混合气体为氧气、氟气、氯气、臭氧、一氧化碳、二氧化碳、二氧化硫、硫化氢、氟化氢、氯化氢、四氟化碳、氯化硼、氩气,以及含有氧元素、硫元素、氟元素和氯元素的气体中的一种或者多种。
进一步地,步骤(4)中,在金属Mg层上再生长一层Mg基化合物层后,进行后处理,所述后处理工艺包括对样品选择进行热退火、光辐射、磁辐射和核辐照中的一种或多种。
进一步地,所述退火温度范围为0℃至1500℃,优选为100-500℃;退火气氛为氧气、氮气、氟气、氯气、臭氧、一氧化碳、二氧化碳、二氧化硫、硫化氢、氟化氢、氯化氢、四氟化碳、氯化硼、氩气,以及含有氧元素、硫元素、氟元素和氯元素的气体中的一种或者多种;所述后处理工艺中反应室内压强范围为0.1Pa至150000Pa,优选为50000-120000Pa。
本发明金属镁基UVC波段透明导电结构(Mg基化合物/Mg/Mg基化合物)设计简单、合理,其制备方法步骤科学、易行,与现有技术相比较具有以下优点:
(1)本发明金属镁基UVC波段透明导电结构采用合适的Mg基化合物,公开了最佳的各层厚度,该结构在UVC波段(200nm至290nm)实现了优良的透明导电性,经检测其平均透射率可高于80%,表面电阻率小于100Ω/□。
(2)该方法采用磁控溅射的方法,以高纯金属镁为靶材,以高纯氩气或者相应高纯气体为溅射气体,制备得到一种具有优良UVC波段透明导电性的Mg基化合物/Mg/Mg基化合物多层膜结构,该方法简单、易行,便于实现工业化批量生产。
附图说明
图1为实施例1中金属镁基UVC波段透明导电结构在衬底上的结构示意图;
图2为实施例1中金属Mg膜在200nm至290nm波长范围内透射率曲线;
图3为实施例1中金属镁基UVC波段透明导电结构在200nm至290nm波长范围内透射率曲线;
图4为实施例2中300℃退火后金属镁基UVC波段透明导电结构在200nm至290nm波长范围内透射率曲线。
具体实施方式
以下结合具体实施例对本发明进一步说明:实施例1
图1为实施例1中金属镁基UVC波段透明导电结构在衬底上的结构示意图;图2为实施例1中金属Mg膜在200nm至300nm波长范围内透射率曲线;图3为实施例1中金属镁基UVC波段透明导电结构在200nm至290nm波长范围内透射率曲线;
本实施例公开了一种透明且导电性能优良的金属镁基UVC波段透明导电结构,该结构的示意图如图1所示,顺次包括第一Mg基化合物层2、金属Mg层3和第二Mg基化合物层4。所述第一Mg基化合物层2为MgO薄膜,厚度为40nm;所述金属Mg厚度为5nm;所述第二Mg基化合物层4为MgO,厚度为40nm。
本实施例金属镁基UVC波段透明导电结构的具体制备方法包含以下步骤:
步骤1:选择单晶蓝宝石1作为衬底,将衬底进行清洗处理、吹干后待用。
步骤2:正式开始沉积薄膜前,预溅射金属镁靶材20分钟,以去除靶材表面的杂质。
步骤3:通过磁控溅射方法制备第一层MgO薄膜时,氩气流量为20sccm,氧气流量为10sccm,反应室内压强为0.8Pa,射频功率为130W,托盘转速10r/min;
其中,衬底未进行加热,MgO厚度为40nm。
步骤4:溅射制备金属Mg膜时,氩气流量为20sccm,工作压强0.8Pa,射频功率130W,托盘转速10r/min。
其中,衬底未进行加热,金属Mg厚度为5nm。
步骤5:通过磁控溅射方法制备第二层MgO薄膜时,氩气流量为20sccm,氧气流量为10sccm,反应室内压强为0.8Pa,射频功率为130W,托盘转速10r/min;
其中,衬底未进行加热,MgO厚度为40nm。
MgO/Mg/MgO多层结构制备完毕后,不进行后续处理。
检测本实施例金属镁基UVC波段透明导电结构(MgO/Mg/MgO多层膜结构)的电学特性,采用霍尔测试***得到的数据为:表面电阻率为57.35Ω/□。MgO/Mg/MgO多层膜结构的光学特性,采用UV-3600型紫外可见分光光度计得到的数据如图3所示,为200nm至290nm波段(UVC波段)的透射率大于90%。通过对比图2曲线可见,本实施例制备得到的金属镁基UVC波段透明导电结构透射率与金属Mg膜在200nm至290nm波长范围内透射率基本相当。
实施例2
图4为实施例2中300℃退火后金属镁基UVC波段透明导电结构在200nm至290nm波长范围内透射率曲线。
本实施例公开了一种透明且导电性能优良的金属镁基UVC波段透明导电结构,顺次包括第一Mg基化合物层、金属Mg层和第二Mg基化合物层。所述第一Mg基化合物层为MgO薄膜,厚度为40nm;所述金属Mg厚度为5nm;所述第二Mg基化合物层为MgO,厚度为40nm。
上述金属镁基UVC波段透明导电结构具体制备方法步骤如下:
步骤1:选择单晶蓝宝石作为衬底。将衬底进行清洗处理、吹干后待用。
步骤2:正式开始沉积薄膜前,预溅射金属镁靶材20分钟,以去除靶材表面的杂质。
步骤3:通过磁控溅射方法制备第一层MgO薄膜时,氩气流量为20sccm,氧气流量为10sccm,反应室内压强为0.8Pa,射频功率为130W,托盘转速10r/min;
其中,衬底未进行加热,MgO厚度为40nm。
步骤4:溅射制备金属Mg膜时,氩气流量为20sccm,工作压强0.8Pa,射频功率130W,托盘转速10r/min。
其中,衬底未进行加热,金属Mg厚度为5nm。
步骤5:通过磁控溅射方法制备第二层MgO薄膜时,氩气流量为20sccm,氧气流量为10sccm,反应室内压强为0.8Pa,射频功率为130W,托盘转速10r/min;
其中,衬底未进行加热,MgO厚度为40nm。
多层结构制备完毕后,在氮气氛围300℃条件下进行热退火处理30min。
退火处理后,MgO/Mg/MgO多层膜结构的电学特性,采用霍尔测试***得到的数据为:表面电阻率为36.15Ω/□。MgO/Mg/MgO多层膜结构的光学特性如图4所示,采用UV-3600型紫外可见分光光度计得到的数据为200nm至290nm波段(UVC波段)的透射率大于80%。由此可见,该多层结构经适当热处理后,其电阻率可进一步下降,但透射率也随之稍有降低。因此可以根据实际应用的具体要求,利用热处理工艺对多层结构的光学和电学特性进行调控。同时,该测试数据也表明,此多层结构可稳定工作在300℃条件下。相较于具有同种厚度的传统金属电极,具有突出的高温稳定性。
实施例3
本实施例公开了一种透明且导电性能优良的金属镁基UVC波段透明导电结构,顺次包括第一Mg基化合物层、金属Mg层和第二Mg基化合物层。所述第一Mg基化合物层为MgS薄膜,厚度为30nm;所述金属Mg厚度为5nm;所述第二Mg基化合物层为MgO,厚度为30nm。
本实施例金属镁基UVC波段透明导电结构的具体制备方法包含以下步骤:
步骤1:选择单晶蓝宝石作为衬底,将衬底进行清洗处理、吹干后待用。
步骤2:正式开始沉积薄膜前,预溅射金属镁靶材20分钟,以去除靶材表面的杂质。
步骤3:通过磁控溅射方法制备MgS薄膜时,氩气流量为20sccm,硫化氢流量为10sccm,反应室内压强为1.0Pa,射频功率为180W,托盘转速10r/min;
其中,衬底未进行加热,MgS厚度为30nm。
步骤4:溅射制备金属Mg膜时,氩气流量为20sccm,工作压强0.8Pa,射频功率130W,托盘转速10r/min。
其中,衬底未进行加热,金属Mg厚度为5nm。
步骤5:通过磁控溅射方法制备MgO薄膜时,氩气流量为20sccm,氧气流量为10sccm,反应室内压强为0.8Pa,射频功率为130W,托盘转速10r/min;
其中,衬底未进行加热,MgO厚度为30nm。
多层结构制备完毕后,不进行后续处理。
检测本实施例金属镁基UVC波段透明导电结构(MgS/Mg/MgO多层膜结构)的电学特性,采用霍尔测试***得到的数据为:表面电阻率为52.65Ω/□。MgS/Mg/MgO多层膜结构的光学特性,采用UV-3600型紫外可见分光光度计得到,为200nm至290nm波段(UVC波段)的透射率大于80%。
实施例4
本实施例公开了一种透明且导电性能优良的金属镁基UVC波段透明导电结构,顺次包括第一Mg基化合物层、金属Mg层和第二Mg基化合物层。所述第一Mg基化合物层为MgF2薄膜,厚度为20nm;所述金属Mg厚度为6nm;所述第二Mg基化合物层为MgCl2,厚度为20nm。
本实施例金属镁基UVC波段透明导电结构的具体制备方法包含以下步骤:
步骤1:选择单晶蓝宝石作为衬底,将衬底进行清洗处理、吹干后待用。
步骤2:正式开始沉积薄膜前,预溅射金属镁靶材20分钟,以去除靶材表面的杂质。
步骤3:通过磁控溅射方法制备第一层MgF2薄膜时,氩气流量为20sccm,氟气流量为10sccm,反应室内压强为0.6Pa,射频功率为120W,托盘转速10r/min;
其中,衬底未进行加热,MgF2厚度为20nm。
步骤4:溅射制备金属Mg膜时,氩气流量为20sccm,工作压强0.8Pa,射频功率130W,托盘转速10r/min。
其中,衬底未进行加热,金属Mg厚度为6nm。
步骤5:通过磁控溅射方法制备第二层MgCl2薄膜时,氩气流量为20sccm,氯气流量为10sccm,反应室内压强为0.5Pa,射频功率为120W,托盘转速10r/min;
其中,衬底未进行加热,MgCl2厚度为20nm。
多层结构制备完毕后,不进行后续处理。
检测本实施例金属镁基UVC波段透明导电结构(MgF2/Mg/MgCl2多层膜结构)的电学特性,采用霍尔测试***得到的数据为:表面电阻率为为30.38Ω/□。MgF2/Mg/MgCl2多层膜结构的光学特性,采用UV-3600型紫外可见分光光度计得到,为200nm至290nm波段(UVC波段)的透射率大于85%。
本发明不局限于上述实施例所记载的金属镁基UVC波段透明导电结构及其制备方法,其中,衬底结构的改变、靶材材料的改变、Mg基化合物的改变、衬底温度的改变、溅射气体的改变或反应体系压力的改变均在本发明的保护范围之内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种金属镁基UVC波段透明导电结构,其特征在于,包括两层Mg基化合物层,所述两层Mg基化合物层之间设置有金属Mg层。
2.根据权利要求1所述金属镁基UVC波段透明导电结构,其特征在于,所述Mg基化合物层厚度为1-500nm;所述金属Mg层厚度为0.1-20nm。
3.根据权利要求1所述金属镁基UVC波段透明导电结构,其特征在于,所述Mg基化合物层的材质为光学带隙较宽的材料。
4.根据权利要求3所述金属镁基UVC波段透明导电结构,其特征在于,所述Mg基化合物层的材质为MgO、MgS、MgF2和MgCl2中的一种或者几种混合。
5.一种权利要求1-4任意一项所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,包括以下步骤:
(1)采用高纯靶材,将衬底放入反应室内,调节反应室内压强,调节衬底温度;
(2)通过磁控溅射方法在衬底上制备一层Mg基化合物层;
(3)通过磁控溅射方法,以高纯氩气为溅射气体,在Mg基化合物层上生长一层金属Mg层;
(4)通过磁控溅射方法继而在金属Mg层上再生长一层Mg基化合物层;获得金属镁基UVC波段透明导电结构。
6.根据权利要求5所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,步骤(1)所述高纯靶材为金属镁、MgO、MgS、MgF2和MgCl2中的一种或者几种;反应室内压强范围为0.1Pa至20Pa;所述衬底温度范围为0℃至1200℃。
7.根据权利要求5所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,步骤(2)和步骤(4)磁控溅射方法中的溅射气体为单一高纯气体或者混合气体。
8.根据权利要求7所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,所述单一高纯气体或者混合气体为氧气、氟气、氯气、臭氧、一氧化碳、二氧化碳、二氧化硫、硫化氢、氟化氢、氯化氢、四氟化碳、氯化硼、氩气,以及含有氧元素、硫元素、氟元素和氯元素的气体中的一种或者多种。
9.根据权利要求5所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,步骤(4)中,在金属Mg层上再生长一层Mg基化合物层后,进行后处理,所述后处理工艺包括对样品选择进行热退火、光辐射、磁辐射和核辐照中的一种或多种。
10.根据权利要求9所述金属镁基UVC波段透明导电结构的制备方法,其特征在于,所述退火温度范围为0℃至1500℃;退火气氛为氧气、氟气、氯气、臭氧、一氧化碳、二氧化碳、二氧化硫、硫化氢、氟化氢、氯化氢、四氟化碳、氯化硼、氩气,以及含有氧元素、硫元素、氟元素和氯元素的气体中的一种或者多种;所述后处理工艺中反应室内压强范围为0.1Pa至150000Pa。
CN201510226430.XA 2015-05-06 2015-05-06 金属镁基uvc波段透明导电结构及其制备方法 Pending CN104894520A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510226430.XA CN104894520A (zh) 2015-05-06 2015-05-06 金属镁基uvc波段透明导电结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510226430.XA CN104894520A (zh) 2015-05-06 2015-05-06 金属镁基uvc波段透明导电结构及其制备方法

Publications (1)

Publication Number Publication Date
CN104894520A true CN104894520A (zh) 2015-09-09

Family

ID=54027466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510226430.XA Pending CN104894520A (zh) 2015-05-06 2015-05-06 金属镁基uvc波段透明导电结构及其制备方法

Country Status (1)

Country Link
CN (1) CN104894520A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003390A (ja) * 2006-06-23 2008-01-10 Bridgestone Corp 反射防止膜及び光学フィルター
CN102134704A (zh) * 2011-02-24 2011-07-27 海洋王照明科技股份有限公司 一种多层透明导电薄膜的制备方法及其制备的薄膜和应用
CN103031556A (zh) * 2012-12-27 2013-04-10 沈阳工程学院 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法
CN103305792A (zh) * 2012-03-14 2013-09-18 江苏新源动力有限公司 掺杂氧化锌透明薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003390A (ja) * 2006-06-23 2008-01-10 Bridgestone Corp 反射防止膜及び光学フィルター
CN102134704A (zh) * 2011-02-24 2011-07-27 海洋王照明科技股份有限公司 一种多层透明导电薄膜的制备方法及其制备的薄膜和应用
CN103305792A (zh) * 2012-03-14 2013-09-18 江苏新源动力有限公司 掺杂氧化锌透明薄膜及其制备方法
CN103031556A (zh) * 2012-12-27 2013-04-10 沈阳工程学院 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
颜彦等: "MgO/Mg/MgO多层结构深紫外透明导电薄膜的制备", 《中国科技论文在线》 *

Similar Documents

Publication Publication Date Title
Tong et al. Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films
Guillén et al. Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature
Wang et al. Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films
Guillén et al. Polycrystalline growth and recrystallization processes in sputtered ITO thin films
Yu et al. Transparent conducting yttrium-doped ZnO thin films deposited by sol–gel method
JP5469107B2 (ja) 金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法
CN104178731A (zh) 一种电致变色wo3薄膜的可控制备方法
Tsai et al. Transparent conducting Al and Y codoped ZnO thin film deposited by DC sputtering
Xiao et al. Characteristics of indium zinc oxide thin films prepared by direct current magnetron sputtering for flexible solar cells
Li et al. Structure and physical properties evolution of ITO film during amorphous-crystalline transition using a highly effective annealing technique
Safeen et al. Influence of intrinsic defects on the electrical and optical properties of TiO2: Nb films sputtered at room temperature
CN103617831B (zh) 一种高迁移率的铝掺杂氧化锌透明导电薄膜及其制备方法
Sun et al. Effects of ambient high-temperature annealing on microstructure, elemental composition, optical and electrical properties of indium tin oxide films
Wang et al. Fabrication of AZO and FAZO films using low-cost spin-coating method
Adurodija et al. The electro-optical properties of amorphous indium tin oxide films prepared at room temperature by pulsed laser deposition
JP2015124117A (ja) 金属酸化物薄膜の製造方法
CN102719792A (zh) 一种运用磁控溅射法制备透明导电薄膜的方法
Yang et al. Improvement of high-temperature resistance of the Ag-based multilayer films deposited by magnetron sputtering
CN104894520A (zh) 金属镁基uvc波段透明导电结构及其制备方法
Chiba et al. Thermal stability of conductive and transparent V-doped ZnO thin films
CN105741916B (zh) 一种柔性透明电极及其制备方法
Park et al. Characteristics of aluminum-doped zinc oxide films with oxygen plasma treatment for solar cell applications
Yan et al. Influence of H2 flow ratio on the photoelectric properties of hydrogenated AZO thin films with embedded silver layer
He et al. Properties of ITO thin films prepared by APS-assisted EB evaporation
KR101264072B1 (ko) 박막태양전지용 투명성 전도박막 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150909

WD01 Invention patent application deemed withdrawn after publication