CN104701034A - 一种光波还原石墨烯膜电极的制备方法 - Google Patents

一种光波还原石墨烯膜电极的制备方法 Download PDF

Info

Publication number
CN104701034A
CN104701034A CN201510120775.7A CN201510120775A CN104701034A CN 104701034 A CN104701034 A CN 104701034A CN 201510120775 A CN201510120775 A CN 201510120775A CN 104701034 A CN104701034 A CN 104701034A
Authority
CN
China
Prior art keywords
preparation
membrane electrode
light wave
light
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510120775.7A
Other languages
English (en)
Inventor
杨震宇
胡金火
谢宇
向枫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201510120775.7A priority Critical patent/CN104701034A/zh
Publication of CN104701034A publication Critical patent/CN104701034A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种光波还原石墨烯膜电极的制备方法,其制备方法如下:按配比称取氧化石墨烯及溶剂,超声分散制成氧化石墨烯胶体溶液;利用高压静电喷雾装置在集流体上喷涂氧化石墨烯薄;在光波装置中还原为石墨烯薄膜;即得到本发明的光波还原石墨烯膜电极。本发明的优点是:本发明的光波还原石墨烯膜电极具有良好的导电性和三维结构,C/O比为6,而且无须添加任何导电剂和粘结剂,有利于提高超级电容和锂离子电池的克容量,而且没有牺牲其良好的倍率性能和循环性能。

Description

一种光波还原石墨烯膜电极的制备方法
技术领域
本发明涉及电化学新能源领域,具体涉及一种光波还原石墨烯膜电极的制备方法。
背景技术
石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜。石墨烯是已知的世上最薄、最坚硬的纳米材料,导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体高,而电阻率只约10-8 Ωm,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。
目前,石墨烯的主要生产方法主要有撕胶带法、轻微摩擦法、碳化硅表面外延生长、金属表面生长、氧化减薄石墨片法、肼还原法、切割碳纳米管法等。不断寻求简单有效的制备石墨烯并应用超级电容及电池中,一直是电化学新能源领域的研究工作者持续努力的方向。
发明内容
本发明提供了一种具有采用光波还原的石墨烯膜电极,该电极的制作过程无须添加任何导电剂和粘结剂,在锂离子电池及超级电容中应用具有良好的克容量、倍率性能及循环性能。
本发明采取的技术方案是:一种光波还原石墨烯膜电极的制备方法,其特征在于制备方法如下:
(1)按配比称取氧化石墨烯及溶剂,超声分散制成氧化石墨烯胶体溶液;
(2)利用高压静电喷雾装置在集流体上喷涂氧化石墨烯薄;
(3)在光波装置中还原为石墨烯薄膜;即得到本发明的光波还原石墨烯膜电极。
进一步,所述制成氧化石墨烯胶体溶液所用的溶剂是水或乙醇或二者混合溶液等环保溶剂。
进一步,所述高压电喷成膜的条件是:电压8-12KV,恒温温度40-60摄氏度。
进一步,所述光波还原石墨烯的光波生成装置可以是普通厨具的光波炉或卤素管加热装置;功率300-600W,加热时间3-10分钟。
进一步,所述电极的集流体是金属箔片或薄片。
优选:氧化石墨烯浓度6-10mg/ml,喷涂电压8-10KV,恒温60摄氏度,光波炉功率400W,加热时间6-9分钟。
更优选:氧化石墨烯浓度8 mg/ml,喷涂电压10KV,恒温60摄氏度,光波炉功率400W,加热时间7分钟。
本发明的积极效果如下:本发明的光波还原石墨烯膜电极具有良好的导电性和三维结构,C/O比为6,而且无须添加任何导电剂和粘结剂,有利于提高超级电容和锂离子电池的克容量,而且没有牺牲其良好的倍率性能和循环性能。
具体实施方式
下面的实施例是对本发明的进一步详细描述。
实施例1
制备方法具体如下:首先按配比称取氧化石墨烯及溶剂超声分散制成氧化石墨烯胶体溶液(水溶剂,6 mg/ml),然后利用高压静电喷雾装置(喷涂电压8KV,恒温40摄氏度)在集流体上喷涂氧化石墨烯薄,最后在光波装置中(光波炉,功率300W,加热6分钟)还原为石墨烯薄膜。即得到本发明的光波还原石墨烯膜电极。
实施例2
制备方法具体如下:首先按配比称取氧化石墨烯及溶剂超声分散制成氧化石墨烯胶体溶液(水溶剂,8 mg/ml),然后利用高压静电喷雾装置(喷涂电压10KV,恒温60摄氏度)在集流体上喷涂氧化石墨烯薄,最后在光波装置中(光波炉,功率600W,加热4分钟)还原为石墨烯薄膜。即得到本发明的光波还原石墨烯膜电极。
实施例3
制备方法具体如下:首先按配比称取氧化石墨烯及溶剂超声分散制成氧化石墨烯胶体溶液(水溶剂,8 mg/ml),然后利用高压静电喷雾装置(喷涂电压10KV,恒温60摄氏度)在集流体上喷涂氧化石墨烯薄,最后在光波装置中(光波炉,功率400W,加热10分钟)还原为石墨烯薄膜。即得到本发明的光波还原石墨烯膜电极。
实施例4
制备方法具体如下:首先按配比称取氧化石墨烯及溶剂超声分散制成氧化石墨烯胶体溶液(乙醇,6 mg/ml),然后利用高压静电喷雾装置(喷涂电压12KV,恒温50摄氏度)在集流体上喷涂氧化石墨烯薄,最后在光波装置中(光波炉,功率500W,加热8分钟)还原为石墨烯薄膜。即得到本发明的光波还原石墨烯膜电极。
实施例5
制备方法具体如下:首先按配比称取氧化石墨烯及溶剂超声分散制成氧化石墨烯胶体溶液(乙醇和水二者混合液,8 mg/ml),然后利用高压静电喷雾装置(喷涂电压9KV,恒温40摄氏度)在集流体上喷涂氧化石墨烯薄,最后在光波装置中(卤素管加热装置,功率300W,加热3分钟)还原为石墨烯薄膜。即得到本发明的光波还原石墨烯膜电极。
经测试,本发明实施例1-5所制备的光波还原石墨烯膜电极,研制的超级电容器以电流密度0.2A/g充放电,材料比容量可达到320F/g, 以1A/g充放电10000次,容量保持94%以上;以该电极研制的锂离子电池以0.2C充放电,材料比容量可达到1460mAh/g, 以1C倍率充放电1000次,容量保持90%以上。而且在制作的过程中无须添加任何导电剂和粘合剂,与化学法还原的石墨烯膜电极相比,具有一定的优势。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种光波还原石墨烯膜电极的制备方法,所述电极的集流体是金属箔片或薄片,其特征在于制备方法如下:
(1)按配比称取氧化石墨烯及溶剂,超声分散制成氧化石墨烯胶体溶液;
(2)利用高压静电喷雾装置在集流体上喷涂氧化石墨烯薄;
(3)在光波装置中还原为石墨烯薄膜;即得到光波为还原石墨烯膜电极。
2.根据权利要求1所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述制成氧化石墨烯胶体溶液所用的溶剂是水或乙醇或二者混合溶液。
3.根据权利要求1所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述高压电喷成膜的条件是:喷涂电压8-12KV,恒温温度40-60摄氏度。
4.根据权利要求1所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述光波还原石墨烯的光波生成装置为普通厨具的光波炉或卤素管加热装置;其功率为300-600W,加热时间3-10分钟。
5.根据权利要求1所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述氧化石墨烯浓度6-10mg/ml。
6.根据权利要求3所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述喷涂电压8-10KV,恒温60摄氏度。
7.根据权利要求4所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述光波炉功率400W,加热时间6-9分钟。
8.根据权利要求5所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述氧化石墨烯浓度8 mg/ml。
9.根据权利要求6所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述喷涂电压10KV。
10.根据权利要求7所述的一种光波还原石墨烯膜电极的制备方法,其特征在于:所述加热时间7分钟。
CN201510120775.7A 2015-03-19 2015-03-19 一种光波还原石墨烯膜电极的制备方法 Pending CN104701034A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510120775.7A CN104701034A (zh) 2015-03-19 2015-03-19 一种光波还原石墨烯膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510120775.7A CN104701034A (zh) 2015-03-19 2015-03-19 一种光波还原石墨烯膜电极的制备方法

Publications (1)

Publication Number Publication Date
CN104701034A true CN104701034A (zh) 2015-06-10

Family

ID=53348054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510120775.7A Pending CN104701034A (zh) 2015-03-19 2015-03-19 一种光波还原石墨烯膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN104701034A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684315A (zh) * 2017-01-05 2017-05-17 戴雪青 一种石墨烯电池负极的制备方法
CN108963186A (zh) * 2018-04-11 2018-12-07 浙江湖州中科新伏能源科技有限公司 一种石墨烯滤膜的制备方法及其在电池中的应用
CN110311110A (zh) * 2019-06-30 2019-10-08 东莞理工学院 一种基于石墨烯的柔性锂离子电池负极材料及其测试方法
CN111725477A (zh) * 2020-06-16 2020-09-29 深圳市信宇人科技股份有限公司 一种锂离子电池的干法电极材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881907A (zh) * 2012-10-16 2013-01-16 湖南大学 一种锂离子电池用石墨烯基电极材料的制备方法
CN103508447A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 石墨烯的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508447A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 石墨烯的制备方法
CN102881907A (zh) * 2012-10-16 2013-01-16 湖南大学 一种锂离子电池用石墨烯基电极材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684315A (zh) * 2017-01-05 2017-05-17 戴雪青 一种石墨烯电池负极的制备方法
CN108963186A (zh) * 2018-04-11 2018-12-07 浙江湖州中科新伏能源科技有限公司 一种石墨烯滤膜的制备方法及其在电池中的应用
CN110311110A (zh) * 2019-06-30 2019-10-08 东莞理工学院 一种基于石墨烯的柔性锂离子电池负极材料及其测试方法
CN111725477A (zh) * 2020-06-16 2020-09-29 深圳市信宇人科技股份有限公司 一种锂离子电池的干法电极材料的制备方法

Similar Documents

Publication Publication Date Title
Liu et al. Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries
Luo et al. Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors
Yan et al. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density
Tao et al. Supercapacitor electrode with a homogeneously Co 3 O 4-coated multiwalled carbon nanotube for a high capacitance
CN102306757B (zh) 锂离子电池硅石墨烯复合负极材料及其制备方法
CN103326007B (zh) 三维石墨烯基二氧化锡复合材料的制备方法及其应用
CN106517171B (zh) 一种石墨烯气凝胶的制备方法
Wang et al. Layered g-C3N4@ reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries
Ye et al. In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance
CN102745678B (zh) 一种利用等离子溅射制作掺氮石墨烯的方法
CN103440995A (zh) 一种用于超级电容器的电极材料及其制备方法
CN103390509B (zh) 一种超级电容器电极材料及其制备方法
CN102568853A (zh) 一种基于垂直取向石墨烯的超级电容器电极及其制作方法
CN107317033A (zh) 一种石墨烯/碳纳米管复合导电浆料及其制备方法
CN104464893A (zh) 负载小尺寸阻隔剂的石墨烯导电浆料、其制备方法及应用
CN107293719A (zh) 一种用于锂离子电池负极的硅‑碳复合材料制备方法
CN104701034A (zh) 一种光波还原石墨烯膜电极的制备方法
CN109181654B (zh) 一种石墨烯基复合导热膜及其制备方法及其应用
Wu et al. Conductive carbon spheres-supported nickel-cobalt selenide nanoparticles as a high-performance and long-life electrode for supercapacitors
Yue et al. Fabrication of flexible nanoporous nitrogen-doped graphene film for high-performance supercapacitors
Zhao et al. Electrostatic‐Assembled MXene@ NiAl‐LDHs Electrodes with 3D interconnected networks architectures for high‐performance pseudocapacitor storage
Sun et al. Synthesis and enhanced supercapacitor performance of carbon self‐doping graphitic carbon nitride/NiS electrode material
CN103107023A (zh) 一种石墨烯/锌铝氧化物复合材料的制备方法及在超级电容器中的应用
Wang et al. Hierarchical Cu0. 92Co2. 08O4@ NiCo-layered double hydroxide nanoarchitecture for asymmetric flexible storage device
CN106206051B (zh) 一种石墨烯改性活性炭及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150610

RJ01 Rejection of invention patent application after publication