CN104475021B - 富氮茶籽壳活性炭及其制备方法和应用 - Google Patents

富氮茶籽壳活性炭及其制备方法和应用 Download PDF

Info

Publication number
CN104475021B
CN104475021B CN201410684179.7A CN201410684179A CN104475021B CN 104475021 B CN104475021 B CN 104475021B CN 201410684179 A CN201410684179 A CN 201410684179A CN 104475021 B CN104475021 B CN 104475021B
Authority
CN
China
Prior art keywords
tea seed
seed episperm
activated carbon
nitrogen
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410684179.7A
Other languages
English (en)
Other versions
CN104475021A (zh
Inventor
翟云波
徐碧波
朱云
彭川
陈红梅
曾光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201410684179.7A priority Critical patent/CN104475021B/zh
Publication of CN104475021A publication Critical patent/CN104475021A/zh
Application granted granted Critical
Publication of CN104475021B publication Critical patent/CN104475021B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds

Abstract

本发明公开了一种富氮茶籽壳活性炭及其制备方法和应用。该富氮茶籽壳活性炭是以茶籽壳为原料,经碱液热处理、活化处理、热解处理、氧化处理和氨化处理制备得到,该富氮茶籽壳活性炭中氮的原子百分数为8.03%~9.52%,比表面积为990 m2/g~1005 m2/g。其制备方法包括碱液热处理、活化处理、热解处理、氧化处理和氨化处理五个步骤。本发明的富氮茶籽壳活性炭吸附容量高、可重复利用,大大降低了处理成本,制备方法简单易行、成本低廉,制得的富氮茶籽壳活性炭能够有效处理高浓度高氯酸盐废水、不会造成二次污染,实现了对农业废弃物的资源化利用。

Description

富氮茶籽壳活性炭及其制备方法和应用
技术领域
本发明涉及污水处理领域,具体涉及一种富氮茶籽壳活性炭及其制备方法和该富氮茶籽壳活性炭在处理高氯酸盐废水中的应用。
背景技术
高氯酸盐是高氯酸形成的盐类,含有四面体型的高氯酸根离子(ClO4 -),被广泛的应用于火箭推进剂、烟火制造、军工业、安全气囊、公路安全闪光板等领域,同时也作为添加剂被用于润滑油、织物固定剂、电镀液、燃料涂料、冶炼铝和镁电池等产品的生产中。由于人们在生产生活中广泛的使用高氯酸盐,导致大量的高氯酸盐进入自然水体之中,高氯酸盐具有溶解度高、扩散速度快、稳定性高难以降解的特点,因此成为一种新型的持久性污染物。水体中的高氯酸盐可以通过直接饮用或者食物链的方式进入人体。进入人体的高氯酸盐会干扰甲状腺对碘离子的吸收,影响甲状腺的正常功能,造成甲状腺激素合成量的减少,影响人体大脑组织的发育。由于甲状腺激素分泌不足,阻碍血红蛋白的合成,影响心肺功能和骨骼的发育、免疫力的维持、听觉器官的正常功能等。
美国国家研究中心研究表明,人体每天摄入的高氯酸盐量不能超过0.7μg/kg人体体重,饮用水中高氯酸盐的含量不能高于25μg/L,否则就会对人体健康造成影响。美国环保总署规定高氯酸盐在饮用水中的安全标准为18μg/L,并对一些污染比较严重的地区制定了更低的安全标准值。
目前,高氯酸盐的去除技术主要包括:微生物修复、物理吸附和化学还原三大类。利用微生物还原高氯酸盐虽然有效但是存在着诸多问题,比如还原条件要求高,存在病原微生物危害等。利用化学方法去除高氯酸盐处理成本高,工序繁琐,易造成二次污染,并且后续浓缩液处理困难。利用活性炭或者经过氮掺杂的活性炭材料吸附废水中的高氯酸盐,是一种简单、易于操作和应用广泛的方法。现有所用的商业活性炭对于高氯酸盐的吸附效果都不理想。目前,利用茶籽壳制备富氮活性炭吸附高氯酸盐的相关研究还比较少,没有找到有效吸附水中高氯酸盐富氮茶籽壳活性炭制备的方法。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种制备简单易行、成本低廉、能够有效处理高浓度高氯酸盐废水、不会造成二次污染、可重复利用的富氮茶籽壳活性炭及其制备方法和应用。
为解决上述技术问题,本发明采用的技术方案是:
一种富氮茶籽壳活性炭,所述富氮茶籽壳活性炭是以茶籽壳为原料,经碱液热处理、活化处理、热解处理、氧化处理和氨化处理制备得到;所述富氮茶籽壳活性炭中氮的原子百分数为8.03%~9.52%,比表面积为990 m2/g~1005 m2/g。
作为一个总的技术构思,本发明还提供一种上述的富氮茶籽壳活性炭的制备方法,包括以下步骤:
(1)碱液热处理:将茶籽壳置于碱液中进行水浴振荡,发生热解反应,反应后洗涤碱液并真空干燥,得到茶籽壳活化原料;
(2)活化处理:将上述茶籽壳活化原料加入到氯化锌溶液中搅拌,水浴加热,并进行真空干燥处理,得到茶籽壳活性原料;
(3)热解处理:将上述茶籽壳活性原料在氮气保护下进行加热,发生热解反应,反应后冷却、洗涤、真空干燥,得到茶籽壳活性炭炭粉原料;
(4)氧化处理:将上述茶籽壳活性炭炭粉原料加入硝酸和双氧水的混合溶液中,振荡氧化反应后,洗涤、真空干燥,得到茶籽壳活性炭氧化炭粉原料;
(5)氨化处理:将上述茶籽壳活性炭氧化炭粉原料置于加热装置中,先通入氮气排净加热装置中的空气,然后通入氨化气体进行氨化反应,再通入氮气冷却至室温,经洗涤和真空干燥后,得到富氮茶籽壳活性炭。
上述的制备方法中,优选的,所述步骤(1)中:所述碱液的浓度为1mol/L~2mol/L;所述茶籽壳的质量与所述碱液的体积之比为1g∶10ml~30ml;所述水浴振荡的条件为:水浴温度为95℃~100℃,转速为140r/min~160r/min,时间为2h~4h;所述真空干燥的温度为90℃~110℃,时间为12h~24h。
上述的制备方法中,优选的,所述步骤(1)中,所述碱液为氢氧化钠溶液或氢氧化钾溶液。
上述的制备方法中,优选的,所述步骤(2)中:所述氯化锌溶液的质量浓度为30%~50%,所述茶籽壳活化原料的质量与所述氯化锌溶液的体积之比为1g∶4ml~6ml;所述水浴加热的温度为95℃~100℃,时间为10h~12h;所述真空干燥的温度为105℃~110℃,时间为24h~48h。
上述的制备方法中,优选的,所述步骤(3)中:所述热解反应的步骤为,先以20℃/min~30℃/min的速率升温至200℃,停留5min~10min后,再以20℃/min~30℃/min的速率升温至最终反应温度600℃,停留90min~120min;所述洗涤采用盐酸溶液,所述盐酸溶液的摩尔浓度为1mol/L~2mol/L;所述真空干燥的温度为105℃~110℃,时间为8h~12h。
上述的制备方法中,优选的,所述步骤(4)中:所述茶籽壳活性炭炭粉原料的质量与所述硝酸和双氧水的混合溶液的体积之比为1g∶50ml~100ml;所述硝酸和双氧水的混合溶液中,硝酸与双氧水的体积比为1~4∶1;所述振荡氧化反应的温度为90℃~100℃,转速为140r/min~160r/min,时间为2h~4h;所述真空干燥的温度为105℃~110℃,时间为5h~8h。
上述的制备方法中,优选的,所述步骤(5)中:所述通入氮气排净加热装置中的空气的步骤为,以20mL/min~50mL/min的流速通入氮气5min~10min;所述氨化反应的步骤为,以20℃/min~30℃/min速率升温至200℃~300℃时停止通入所述氮气,以100mL/min~150mL/min的流速通入氨化气体,以20℃/min~30℃/min的速率升温至氨化反应温度500℃~900℃,并停留90min~120min;所述真空干燥的温度为105℃~110℃,时间为5h~8h。
作为一个总的技术构思,本发明还提供一种上述的富氮茶籽壳活性炭或上述的制备方法制得的富氮茶籽壳活性炭在处理高氯酸盐废水中的应用,包括以下步骤:将所述富氮茶籽壳活性炭和高氯酸盐废水加入到吸附***中进行吸附反应,测定富氮茶籽壳活性炭对废水中高氯酸盐的吸附能力。
上述的应用中,优选的,所述高氯酸盐废水的浓度为1mg/L~100mg/L;所述富氮茶籽壳活性炭的质量与所述高氯酸盐废水的体积之比为1g∶500ml~1000ml;所述高氯酸盐废水中的高氯酸盐为高氯酸钠和/或高氯酸钾;所述吸附***为常规容器,所述常规容器包括三角瓶。
本发明的制备方法中,所述步骤(1)中:所述茶籽壳为榨油厂的废弃茶籽壳;所述茶籽壳的干燥条件为:温度为70℃~80℃,干燥时间为24h~48h。
本发明的制备方法中,所述步骤(4)中:在所述茶籽壳活性炭炭粉原料加入混合溶液之前,可先将其磨碎,过80目筛;所述硝酸的摩尔浓度为1mol/L~2mol/L,所述双氧水的质量浓度为30%。
本发明的制备方法中,所述步骤(5)中,所述氨化气体为氨气。
本发明中,处理过高氯酸盐废水的富氮茶籽壳活性炭可通过微波再生,并可再次处理高氯酸盐废水。微波再生包括以下步骤:将处理过高氯酸盐废水的富氮茶籽壳活性炭于105℃~110℃干燥12h~24h后,置于微波炉中,在水蒸气和二氧化碳存在的条件下于800℃~1000℃加热60min~120min,得到再生富氮茶籽壳活性炭。利用再生富氮茶籽壳活性炭处理高氯酸盐废水,其处理条件与富氮茶籽壳活性炭的处理条件相同。
与现有技术相比,本发明的优点在于:
1、本发明的富氮茶籽壳活性炭具有吸附容量高、可重复利用、不会造成二次污染、制备简单易行、成本低廉等优点。相比于现有的活性炭,本发明的富氮茶籽壳活性炭更易于氮掺杂,能够显著提高氮含量;同时本发明的富氮茶籽壳活性炭对高氯酸盐吸附的效果更好,这使得本发明的富氮茶籽壳活性炭能够有效的吸附高氯酸盐废水。本发明的富氮茶籽壳活性炭是以茶籽炼油厂的废弃物茶籽壳为原料,通过将废弃的茶籽壳进行一系列处理后,得到了富氮茶籽壳活性炭,实现对农业废弃物的资源化利用。
2、本发明的制备方法简单易行,成本低廉,先采用碱液热处理可以溶解茶籽壳里的多聚糖和部分木质素,有利于茶籽壳软化和纤维素的释放;然后利用氯化锌溶液进行活化处理,有利于形成高比表面积的茶籽壳活性炭;再利用硝酸和双氧水混合溶液进行氧化处理,使茶籽壳活性炭表面形成大量的氧化功能团;最后通过氨化处理,氨气与茶籽壳活性炭表面氧化功能团发生反应,将氮原子掺杂到碳环上形成氮掺杂活性炭,制备得到富氮茶籽壳活性炭材料。
3、本发明的富氮茶籽壳活性炭能够有效吸附高氯酸盐废水,特别是浓度为1mg/L~100mg/L的高浓度高氯酸盐废水。本发明处理过高氯酸盐废水的富氮茶籽壳活性炭经微波再生,可再次处理高氯酸盐废水,即富氮茶籽壳活性炭可以重复使用,大大降低了处理成本。
附图说明
图1为本发明实施例1中茶籽壳活性炭的微观形貌图(放大800倍)。
图2为本发明实施例1中富氮茶籽壳活性炭的微观形貌图(放大800倍)。
图3为本发明实施例1中XPS对富氮茶籽壳活性炭表面各元素分析结果图。
图4为本发明实施例1中富氮茶籽壳活性炭表面含氮物质的XPS峰谱拟合图。
图5为本发明实施例2中富氮茶籽壳活性炭对高氯酸盐的等温吸附线。
图6为本发明实施例2中富氮茶籽壳活性炭的高氯酸盐吸附动力曲线。
图7为本发明不同实施例中制备的富氮茶籽壳活性炭氮含量的对比图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中所采用的材料和仪器均为市售。
实施例 1
一种本发明的富氮茶籽壳活性炭,该富氮茶籽壳活性炭是以茶籽壳为原料,经碱液热处理、活化处理、热解处理、氧化处理和氨化处理后制备得到,该富氮茶籽壳活性炭中氮的原子百分数为8.7%,富氮茶籽壳活性炭的比表面积为997 m2/g。
一种上述本实施例的富氮茶籽壳活性炭的制备方法,包括以下步骤:
(1)碱液热处理:将取自榨油厂的废弃茶籽壳洗净,于80℃下干燥24h。将干燥的茶籽壳研碎为黄豆粒大小,取10g研碎后的茶籽壳加入到100ml、浓度为1mol/L的氢氧化钠溶液中,于98℃、150r/min条件下水浴振荡2h,冷却至室温后过滤,用热的去离子水洗涤,最后于105℃温度下真空干燥24h,得到茶籽壳活化原料。
(2)活化处理:取10g茶籽壳活化原料加入至40ml质量浓度为30%的氯化锌溶液中,于98℃下水浴加热12h,这有利于氯化锌和茶籽壳活化原料的反应,并且脱去多余的水分,最后于105℃真空干燥24h,得到茶籽壳活性原料。
(3)热解处理:取2g茶籽壳活性原料放置于管式电阻炉中,以50mL/min的流速通入氮气5min以排除管内的空气。然后在氮气保护下以20℃/min的速率升温至200℃,停留5min,再以20℃/min速率升温至最终反应温度600℃,停留90min,停止加热持续通入氮气冷却至室温。用浓度为1mol/L的盐酸溶液振荡洗涤,再用去离子水冲洗多余的盐酸,最后于105℃下真空干燥10h,得到茶籽壳活性炭炭粉原料,如图1所示。
(4)氧化处理:将1g的茶籽壳活性炭炭粉原料磨碎,过80目筛,然后加入到150ml的三角瓶中,加入40ml浓度为1mol/L的硝酸溶液和10ml质量浓度为30%的双氧水溶液,于90℃、150r/min条件下振荡2h后,用去离子水反复洗涤至pH=6.5,最后于105℃下真空干燥8h,得到茶籽壳活性炭氧化炭粉原料。
(5)氨化处理:将2g茶籽壳活性炭氧化炭粉原料放置于管式电阻炉中,以50mL/min的流速通入氮气10min以排除管内的空气,再以20℃/min速率升温至200℃时停止通入氮气,此时,以100mL/min的流速通入氨气,并以20℃/min的速率升温至600℃并停留120min,停止通入氨气,然后以50mL/min的速率通入氮气,冷却至室温,用去离子水冲洗至pH=6.5,最后于105℃下真空干燥8h,得到富氮茶籽壳活性炭。
用反射场扫描电镜察看茶籽壳活性炭和富氮茶籽壳活性炭的微观形态,分别如图1和图2所示。由图1可知,茶籽壳活性炭表面平整并且有大量的孔存在。由图2可知,富氮茶籽壳活性炭的表面被氨气腐蚀的很严重,呈现凹凸不平的形态,说明大量的氨气在茶籽壳活性炭表面发生反应,氮原子掺杂到碳环当中。用X光电子能谱(XPS)对富氮茶籽壳活性炭的表面物质进行表征,结果如图3所示。结果表明,富氮茶籽壳活性炭表面氮的原子百分数为8.7%。通过对400eV附近的峰进行高倍分析得到了关于N的分谱,结果如图4所示。由图4可以得到N的峰谱图不是单纯的一种含氮物质(含氮官能团)的峰谱,而是由多种含氮物质的峰谱混合组成。
由于吡啶结构(N-6)、胺类物质(Amines)、吡咯结构(N-5)、季铵盐结构(N-Q)和氮氧化合物(N-Ox)的结合能分别为:398.7±0.3eV、399.4eV、400.3±0.3eV、401.4eV和402eV~405eV,并且吡啶结构和季铵盐能够和水溶液中的ClO4 -结合。对氮元素的峰谱进行上述含氮物质的拟合,结果如图4所示。由图4可知,本发明所制备的富氮茶籽壳活性炭表面的含氮物质主要有:吡啶结构、吡咯结构、季铵盐结构、胺类物质和氮氧化合物,并且本发明的富氮茶籽壳活性炭能够吸附水中的高氯酸盐。
实施例 2
一种本发明的富氮茶籽壳活性炭在处理高浓度高氯酸盐废水中的应用(即吸附与吸附动力测定),该富氮茶籽壳活性炭取自实施例1制备的富氮茶籽壳活性炭,应用方法包括以下步骤:
配置12个不同浓度的高氯酸盐溶液(具体为高氯酸钠溶液),其浓度分别为1mg/L、5 mg/L、10 mg/L、20 mg/L、30 mg/L、40 mg/L、50 mg/L、60 mg/L、70 mg/L、80 mg/L、90 mg/L、100 mg/L,各取50ml,放入250ml的三角瓶(即吸附***)中;取富氮茶籽壳活性炭0.1g加入到装有不同浓度高氯酸盐溶液的250ml的三角瓶中,在室温、150r/min条件下振荡24h,反应完成后,取样测定高氯酸盐的浓度,结果如图5所示。
吸附动力测定:取0.1g富氮茶籽壳活性炭加入到250ml的三角瓶中,加入50ml浓度为50mg/L的高氯酸盐溶液,在室温、150r/min条件下振荡24h,并在1min、5 min、10 min、20 min、30 min、60 min、90 min、120 min、150 min、180 min、1440 min,取水样测定不同时间点的高氯酸盐溶液浓度,结果如图6所示。
由图5和图6的结果表明,富氮茶籽壳活性炭对于高氯酸盐有较强的吸附效果。如图5所示富氮茶籽壳活性炭的吸附容量随着溶液中高氯酸盐浓度的增加而不断提高,当高氯酸盐溶液浓度达到100mg/L,吸附达到最大的饱和值。通过计算得到富氮茶籽壳活性炭对高氯酸盐的最大吸附容量为6.8mg/g。如图6所示的吸附动力测定结果表明,富氮茶籽壳活性炭对高氯酸盐溶液的吸附,在120min左右达到吸附饱和。
实施例 3
一种本发明的处理过高氯酸盐废水的富氮茶籽壳活性炭的再生及其应用,本实施例中的处理过高氯酸盐废水的富氮茶籽壳活性炭来源于实施例2。
再生:将实施例2中的处理过高氯酸盐废水的富氮茶籽壳活性炭于105℃干燥12h后,置于微波炉中,在水蒸气和二氧化碳存在的条件下于900℃加热90min,得再生富氮茶籽壳活性炭。
应用:利用再生富氮茶籽壳活性炭处理高氯酸盐废水,其处理条件与实施例2中的富氮茶籽壳活性炭的处理条件相同。
结果表明,经过微波再生使得富氮茶籽壳活性炭对高氯酸钠的吸附容量得到很大的恢复,恢复率为87.4%,经过计算再生富氮茶籽壳活性炭的最大吸附容量为5.9mg/g。
实施例 4
本实施例的富氮茶籽壳活性炭的制备方法及应用,包括以下步骤:
制备步骤与实施例1基本一致,不同之处为:步骤(1)中,氢氧化钠溶液的浓度为2 mol/L,茶籽壳的质量与碱液的体积之比为1g∶30ml;步骤(2)中,氯化锌溶液的质量浓度为50%;步骤(3)中,升温至最终反应温度为600℃时,热解反应的停留时间为120 min;步骤(4)中,硝酸和双氧水的混合溶液中,硝酸与双氧水的体积之比为3∶1;步骤(5)中,氨气的流速为120 ml/min,氨化反应温度为500℃。富氮茶籽壳活性炭中氮的原子百分数为8.03%,比表面积为990 m2/g。
将得到的富氮茶籽壳活性炭按照与实施例2相同的条件下对浓度为1~100 mg/L高氯酸钠水溶液进行吸附。结果表明,富氮茶籽壳活性炭对高氯酸钠的最大吸附容量为5.8 mg/g。
实施例 5
本实施例的富氮茶籽壳活性炭的制备方法及应用,包括以下步骤:
制备步骤与实施例1基本一致,不同之处为:步骤(1)中,茶籽壳的质量与碱液的体积之比为1g∶20ml;步骤(2)中,氯化锌溶液的质量浓度为40%,茶籽壳活化原料的质量与氯化锌溶液的体积之比为1g∶5ml;步骤(3)中,盐酸的浓度为2 mol/L;步骤(4)中,茶籽壳活性炭炭粉原料的质量与硝酸和双氧水的混合溶液的体积之比1g∶100ml,硝酸与双氧水的体积比为2∶1;步骤(5)中,氨化反应温度为700℃。富氮茶籽壳活性炭中氮的原子百分数为8.56%,比表面积为996 m2/g。
将得到的富氮茶籽壳活性炭按照与实施例2相同的条件下对浓度为1~100 mg/L高氯酸钠水溶液进行吸附。结果表明,富氮茶籽壳活性炭对高氯酸钠的最大吸附容量为6.4 mg/g。
实施例 6
本实施例的富氮茶籽壳活性炭的制备方法及应用,包括以下步骤:
制备步骤与实施例1基本一致,不同之处为:步骤(1)中,氢氧化钠溶液的浓度为2 mol/L,茶籽壳的质量与碱液的体积之比为1g∶30ml;步骤(2)中,氯化锌溶液的质量浓度为40%,茶籽壳活化原料的质量与氯化锌溶液的体积之比为1g∶6ml;步骤(3)中,升温至最终反应温度600℃时,热解反应的停留时间为120 min;步骤(4)中,硝酸和双氧水的混合溶液中,硝酸与双氧水的体积比为1∶1;步骤(5)中,氨气的流速为150 ml/min,氨化反应温度为800℃。富氮茶籽壳活性炭中氮的原子百分数为8.96%,比表面积为998 m2/g。
将得到的富氮茶籽壳活性炭按照与实施例2相同的条件下对浓度为1~100 mg/L高氯酸钠水溶液进行吸附。结果表明,富氮茶籽壳活性炭对高氯酸钠的最大吸附容量为6.7 mg/g。
实施例 7
本实施例的富氮茶籽壳活性炭的制备方法及应用,包括以下步骤:
制备步骤与实施例1基本一致,不同之处为:步骤(1)中,茶籽壳的质量与碱液的体积之比为1g∶20ml;步骤(2)中,氯化锌溶液的质量浓度为50%,茶籽壳活化原料的质量与氯化锌溶液的体积之比为1g∶5ml;步骤(3)中,升温至最终反应温度600℃时,热解反应的停留时间为120min;步骤(4)中,茶籽壳活性炭炭粉原料的质量与硝酸和双氧水的混合溶液的体积之比1g∶100ml;步骤(5)中,氨化反应温度为900℃。富氮茶籽壳活性炭中氮的原子百分数为9.52%,比表面积为1005 m2/g。
将得到的富氮茶籽壳活性炭按照与实施例2相同的条件下对浓度为1~100 mg/L高氯酸钠水溶液进行吸附。结果表明,富氮茶籽壳活性炭对高氯酸钠的最大吸附容量为7.1 mg/g。
如图7所示,是分别采用茶籽壳活性炭炭粉原料、实施例1、4、5、6、7制备的富氮茶籽壳活性炭中的氮含量(即氮的原子百分数)。通过对比可知,对茶籽壳活性炭进行氧化处理和氨化处理之后,能够有效的提高茶籽壳活性炭中的氮含量,形成富氮的茶籽壳活性炭,其氮的原子百分数可以达到8.03%~9.52%,并且能够有效的吸附水中高氯酸盐。
除以上实施例中所给出的高氯酸钠水溶液外,富氮茶籽壳活性炭还可处理高浓度高氯酸钾水溶液。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种富氮茶籽壳活性炭的制备方法,包括以下步骤:
(1)碱液热处理:将茶籽壳置于碱液中进行水浴振荡,发生热解反应,反应后洗涤碱液并真空干燥,得到茶籽壳活化原料;
(2)活化处理:将上述茶籽壳活化原料加入到氯化锌溶液中搅拌,水浴加热,并进行真空干燥处理,得到茶籽壳活性原料;
(3)热解处理:将上述茶籽壳活性原料在氮气保护下进行加热,发生热解反应,反应后冷却、洗涤、真空干燥,得到茶籽壳活性炭炭粉原料;所述热解反应的步骤为,先以20℃/min~30℃/min的速率升温至200℃,停留5min~10min后,再以20℃/min~30℃/min的速率升温至最终反应温度600℃,停留90min~120min;
(4)氧化处理:将上述茶籽壳活性炭炭粉原料加入硝酸和双氧水的混合溶液中,振荡氧化反应后,洗涤、真空干燥,得到茶籽壳活性炭氧化炭粉原料;
(5)氨化处理:将上述茶籽壳活性炭氧化炭粉原料置于加热装置中,先通入氮气排净加热装置中的空气,然后通入氨化气体进行氨化反应,再通入氮气冷却至室温,经洗涤和真空干燥后,得到富氮茶籽壳活性炭。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中:所述碱液的浓度为1mol/L~2mol/L;所述茶籽壳的质量与所述碱液的体积之比为1g∶10mL~30mL;所述水浴振荡的条件为:水浴温度为95℃~100℃,转速为140r/min~160r/min,时间为2h~4h;所述真空干燥的温度为90℃~110℃,时间为12h~24h。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤(1)中,所述碱液为氢氧化钠溶液或氢氧化钾溶液。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中:所述氯化锌溶液的质量浓度为30%~50%,所述茶籽壳活化原料的质量与所述氯化锌溶液的体积之比为1g∶4mL~6mL;所述水浴加热的温度为95℃~100℃,时间为10h~12h;所述真空干燥的温度为105℃~110℃,时间为24h~48h。
5.根据权利要求1~4中任一项所述的制备方法,其特征在于,所述步骤(3)中:所述洗涤采用盐酸溶液,所述盐酸溶液的摩尔浓度为1mol/L~2mol/L;所述真空干燥的温度为105℃~110℃,时间为8h~12h。
6.根据权利要求1~4中任一项所述的制备方法,其特征在于,所述步骤(4)中:所述茶籽壳活性炭炭粉原料的质量与所述硝酸和双氧水的混合溶液的体积之比为1g∶50mL~100mL;所述硝酸和双氧水的混合溶液中,硝酸与双氧水的体积比为1~4∶1;所述振荡氧化反应的温度为90℃~100℃,转速为140r/min~160r/min,时间为2h~4h;所述真空干燥的温度为105℃~110℃,时间为5h~8h。
7.根据权利要求1~4中任一项所述的制备方法,其特征在于,所述步骤(5)中:所述通入氮气排净加热装置中的空气的步骤为,以20mL/min~50mL/min的流速通入氮气5min~10min;所述氨化反应的步骤为,以20℃/min~30℃/min速率升温至200℃~300℃时停止通入所述氮气,以100mL/min~150mL/min的流速通入氨化气体,以20℃/min~30℃/min的速率升温至氨化反应温度500℃~900℃,并停留90min~120min;所述真空干燥的温度为105℃~110℃,时间为5h~8h。
8.一种如权利要求1~7中任一项所述的制备方法制得的富氮茶籽壳活性炭在处理高氯酸盐废水中的应用,包括以下步骤:将所述富氮茶籽壳活性炭和高氯酸盐废水加入到吸附***中进行吸附反应,测定富氮茶籽壳活性炭对废水中高氯酸盐的吸附能力。
9.根据权利要求8所述的应用,其特征在于,所述高氯酸盐废水的浓度为1mg/L~100mg/L;所述富氮茶籽壳活性炭的质量与所述高氯酸盐废水的体积之比为1g∶500mL~1000mL;所述高氯酸盐废水中的高氯酸盐为高氯酸钠和/或高氯酸钾;所述吸附***为常规容器,所述常规容器包括三角瓶。
CN201410684179.7A 2014-11-25 2014-11-25 富氮茶籽壳活性炭及其制备方法和应用 Expired - Fee Related CN104475021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410684179.7A CN104475021B (zh) 2014-11-25 2014-11-25 富氮茶籽壳活性炭及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410684179.7A CN104475021B (zh) 2014-11-25 2014-11-25 富氮茶籽壳活性炭及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104475021A CN104475021A (zh) 2015-04-01
CN104475021B true CN104475021B (zh) 2016-08-17

Family

ID=52749704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410684179.7A Expired - Fee Related CN104475021B (zh) 2014-11-25 2014-11-25 富氮茶籽壳活性炭及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104475021B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862084B (zh) * 2019-12-04 2021-06-08 安徽裕民生态农业有限公司 一种油茶籽壳活性炭及其制备工艺
CN112473621B (zh) * 2020-10-28 2022-04-19 湖南大学 一种短链季胺氮改性介孔生物炭及其制备方法和应用
CN115924871B (zh) * 2022-12-02 2023-09-15 上海太洋科技有限公司 一种光学级偏磷酸铜的制备方法
CN115893832B (zh) * 2022-12-16 2023-09-22 上海太洋科技有限公司 一种红外滤光玻璃及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275911A (zh) * 2011-06-03 2011-12-14 中国林业科学研究院林产化学工业研究所 微孔型活性炭及化学药剂孔径调控的制备方法
CN102513061A (zh) * 2011-12-29 2012-06-27 翟云波 一种改性活性炭及其制备方法和应用
CN103495399A (zh) * 2013-10-23 2014-01-08 湖南大学 污泥活性炭的制备方法和应用
CN103752273A (zh) * 2014-02-13 2014-04-30 河海大学 一种水环境修复材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255361A (ja) * 2003-02-28 2004-09-16 Babcock Hitachi Kk 廃棄物焼却設備のセメント固化処理システムおよびその洗浄方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275911A (zh) * 2011-06-03 2011-12-14 中国林业科学研究院林产化学工业研究所 微孔型活性炭及化学药剂孔径调控的制备方法
CN102513061A (zh) * 2011-12-29 2012-06-27 翟云波 一种改性活性炭及其制备方法和应用
CN103495399A (zh) * 2013-10-23 2014-01-08 湖南大学 污泥活性炭的制备方法和应用
CN103752273A (zh) * 2014-02-13 2014-04-30 河海大学 一种水环境修复材料及其制备方法和应用

Also Published As

Publication number Publication date
CN104475021A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2021082761A1 (zh) 一种碳酸镧修饰的共热解污泥生物炭及其制备方法和应用
CN104475021B (zh) 富氮茶籽壳活性炭及其制备方法和应用
CN109019597B (zh) 一种纤维素/氧化石墨烯碳气凝胶的制备方法及其应用
CN105056882A (zh) 一种脱除硫化氢的改性生物炭基吸附剂的制备方法
Chen et al. A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H2S removal at room temperature
CN101829545B (zh) 一种利用蛋壳膜作为基体的重金属生物吸附剂及其制备方法
CN104275149B (zh) 一种活性炭改性材料的制备方法及应用
CN104059167B (zh) 一种多胺化合物修饰磁性壳聚糖的制备方法及其应用
CN104815630A (zh) 一种选择性吸附苯并芘和苯酚的滤嘴纤维的制备方法
CN106861634A (zh) 金属‑有机骨架化合物@介孔材料复合材料及其制备方法与应用
CN106115698A (zh) 一种利用回收废炭制备含氮多孔炭的方法及其产品和应用
CN107902655A (zh) 一种利用废弃活性炭制备掺氮活性炭的方法
CN106861622A (zh) 一种处理富营养化水体的水处理剂
CN106964316A (zh) 一种沸石咪唑酯骨架‑功能化离子液体复合材料及其制备与应用
CN103495399B (zh) 污泥活性炭的制备方法和应用
CN102247823A (zh) 一种用于高效脱汞的载硫多孔纳米材料的制备方法
CN105056884B (zh) 一种用于饮用水净化的活性炭材料的制备方法
CN106215910A (zh) 一种酸性阳离子交换纤维的制备方法
CN107486151A (zh) 一种制备可再生含镁重金属吸附剂的方法及其所制备的吸附剂
CN109082880B (zh) 功能活性碳纤维、制备方法及其应用
CN105733016A (zh) 一种炭基-聚合物复合气凝胶、其制备方法及其在烟气分析中的应用
CN107814385A (zh) 一种利用生物质焦处理工业废水并制备石墨型多孔碳材料的方法
CN104368309B (zh) 负载表面活性剂茶籽壳活性炭及其制备方法和应用
CN113813927B (zh) 泡沫炭基固体胺吸附剂及其制备方法和应用
CN108144583A (zh) 一种新型除甲醛活性炭的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20171125

CF01 Termination of patent right due to non-payment of annual fee