CN104192107A - 前驱电动汽车再生制动与abs匹配控制方法 - Google Patents

前驱电动汽车再生制动与abs匹配控制方法 Download PDF

Info

Publication number
CN104192107A
CN104192107A CN201410401713.9A CN201410401713A CN104192107A CN 104192107 A CN104192107 A CN 104192107A CN 201410401713 A CN201410401713 A CN 201410401713A CN 104192107 A CN104192107 A CN 104192107A
Authority
CN
China
Prior art keywords
braking
abs
wheel
braking force
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410401713.9A
Other languages
English (en)
Inventor
李卫民
胡悦
徐回
程斌
潘云龙
相臣
张海宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jining Zhongke Advanced Technology Institute Co Ltd
Original Assignee
Jining Zhongke Advanced Technology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jining Zhongke Advanced Technology Institute Co Ltd filed Critical Jining Zhongke Advanced Technology Institute Co Ltd
Priority to CN201410401713.9A priority Critical patent/CN104192107A/zh
Publication of CN104192107A publication Critical patent/CN104192107A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明涉及电动汽车技术领域,具体涉及前驱电动汽车再生制动与ABS匹配控制方法,控制器确定制动强度,然后再根据电液复合制动控制策略判定此制动是否为紧急制动,若是紧急制动,直接进入ABS***;若不是,先确定汽车前后轴制动力,再结合最大再生制动力确定出前后轴的摩擦制动力及前轴再生制动力,当检测到前轮达到最佳滑移率时,ABS***开启,保持再生制动力不变,调节制动轮缸的压力,将车轮滑移率控制在最佳值,防止车轮抱死;当检测到后轮有趋于抱死的趋势时,采用传统的ABS控制后轮滑移率。本发明把再生制动***和ABS***结合起来,进行综合控制,不但可以回收部分制动能量,提高经济性,还可以使汽车获得更佳的制动性能。

Description

前驱电动汽车再生制动与ABS匹配控制方法
技术领域
本发明涉及电动汽车技术领域,具体涉及一种前驱电动汽车再生制动与ABS匹配控制方法。
背景技术
近年来,电动汽车以其低能耗、零排放的优势受到了各界的关注,一些企业和科研机构也在政府政策导向的驱使下大力研究电动汽车。
制动能量回收技术是电动汽车节能的重要手段,电机有两种工作状态:驱动电机状态和发电电机状态。当电机在发电状态运行时,既可对轴产生制动扭矩,实现汽车减速,又可以将汽车的部分制动能量转换为电能,给动力电池充电,从而提高汽车的续航里程。特别在城市工况中,汽车启动与制动过程发生频繁,电动汽车能回收更多的制动能。有关研究表明,在城市工作中,如果能将汽车的制动能量进行有效的回收,其续航里程将提高百分之十到百分之三十。再生制动技术对降低能源消耗、减少污染物的排放以及减少制动器制动片的磨损都有很好的作用。
车轮抱死是汽车在制动的过程中经常会遇到的一个问题,它一方面会加剧轮胎的磨损,另一方面又会导致汽车出现危险情况:前轮抱死时,汽车将丧失转向能力,无法避开人或者障碍物;后轮抱死则会使汽车发生侧滑、甩尾等危险工况。车轮抱死是比较危险的,为此,防抱死制动***(Anti-lock Braking System,简称ABS)被引入到汽车制动***中,并不断得到人们的认可,现已成为汽车出厂的标准配置之一。汽车引入ABS之后,即使发生紧急制动情况,车轮也处于非抱死状态,这样就避免了前轮抱死或者后轮抱死情况的发生,提高了汽车在制动过程中的安全性。ABS***主要采用的是电子控制技术,它由控制器、轮速传感器和电磁阀三部分组成。在制动过程中,当轮速传感器检测到车轮有抱死趋势时,控制器会控制电磁阀执行相应的操作,使制动轮缸内的压力在增压-保压-减压三个过程中反复切换,防止车轮抱死,且使车轮的滑移率控制在一个最佳的值附近,从而获得最大的制动减速度,减少制动距离,使汽车能尽快减速停车。
相比于传统的燃油汽车,电动汽车的制动***多了个再生制动***,且在制动的过程中,再生制动***将参与整个制动过程,它与ABS***共同起作用,因此,如何做好这二者之间的匹配与协调就显得尤为重要。
为了保证制动汽车的方向稳定性和足够的制动效率,***欧洲经济委员会制定的ECER13制动法规对双轴汽车前后轴制动器制动力提出了明确的要求。ECE R13制动法规《有关M、N和O类车辆制动认证的统一规定》中明确规定两轴汽车前、后轴制动力分配比应满足以下要求:
对于之间的各种车辆,要求制动强度
车辆在各种装载状态下,前轴利用附着系数曲线应该在后轴利用附着系数曲线之上。当制动强度在0.3~0.45之间时,如果后轴利用附着系数曲线超过直线则允许后轴利用附着系数曲线在前轴利用附着系数曲线的上方。ECE法规对于轿车的制动力分配的要求如图1所示。
纯电动汽车的制动***综合了再生制动***和传统液压制动***,因此,汽车所需的制动力矩由再生制动力矩和摩擦制动力矩共同提供。再生制动力矩的加入,必然改变了汽车前后轴制动器制动力分配比,改变后的值也应该满足法规的要求。
再生制动***可以回收制动能量,延长续航里程,因此,我们应尽可能多的使再生制动力参与制动过程。但是,由于再生制动力作用在驱动轮上,它的加入必然增大了制动力分配比β值,使前轮趋于抱死的可能性加大,后轮制动力应用不足。
基于提高能量利用率的角度考虑,在电动汽车制动时,应尽可能的让再生制动力***去提供制动时所需的制动力,当其不能满足时再由传统的摩擦制动力提供,但必须保证制动过程的安全性。因此,纯电动汽车的制动***应具备以下三项功能:
(1)满足总制动力的需求。无论控制器控制的复合制动***处于何种工作模式,都必须满足制动***所提供制动力等于总的制动力需求,使制动效果同驾驶员的预期一致。
(2)满足ECE制动法规的要求。为了防止制动过程中后轮提前抱死拖滑出现侧滑、甩尾等危险情况,同时提高前后轮的利用附着系数,要求汽车前、后轴制动器制动力的分配必须满足ECE法规要求。
(3)制动防抱死功能。为了提高制动性能,纯电动汽车的制动***也应该装载ABS***,防止制动时车轮发生抱死。同时,ABS***将汽车轮胎的滑移率控制在最佳值附近,从而能获得更大的制动减速度,减少制动距离。
在1015、NYCC、ECE-EUDC等典型循环工况下,汽车的最高车速以及平均车速较低,减速制动过程频繁,并且制动强度小于0.3的中低度制动情况较多,其中制动强度小于0.1的比例分别占96.2%,75.5%,90.3%。为此,研究再生制动与ABS匹配性控制策略对于纯电动车辆推广至雨水或降雪量较大的地区具有非常重要的意义。
发明内容
为解决上述技术中的不足,本发明的目的在于:提供一种前驱电动汽车再生制动与ABS匹配控制方法,把再生制动***和ABS***结合起来,进行综合控制,满足总制动力需求和ECE制动法规要求的同时,实现制动防抱死功能,不但可以回收部分制动能量,提高经济性,还可以使汽车获得更佳的制动性能。
为解决其技术问题,本发明所采取的技术方案为:
所述前驱电动汽车再生制动与ABS匹配控制方法,包括:
a.控制器根据制动踏板的开度确定电动汽车制动强度,然后再根据电、液复合制动控制策略判定此制动是否为紧急制动;
b.若是紧急制动,则直接进入ABS防抱死***,再生制动***不参与制动;若不是紧急制动,则首先根据ECE制动法规确定汽车前、后轴制动力,再结合电机所能提供的最大再生制动力,确定出前、后轴的摩擦制动力以及前轴的再生制动力;
c.针对电动汽车前、后轮进行分别控制,根据电动汽车前、后车轮角速度信号分别计算出前后轮的角减速度,当其小于参考值-X时,说明车轮趋于抱死的可能性较大,此时再根据电动汽车前、后轮转速和参考车速计算出前后轮的滑移率,以此判断轮胎是否趋于抱死;
d.若滑移率大于最佳滑移率,说明车轮趋于抱死,此时,针对前轮应保持其所能提供的最大再生制动力大小不变,通过调节摩擦制动力来控制车轮免于抱死;针对后轮,则直接通过调节摩擦制动力防止其发生抱死,若滑移率小于最佳滑移率,车轮不会发生抱死,不做处理。
本发明克服液压制动***短时间内不一定能填补再生制动***减小的制动力的缺陷,防止电动汽车出现抖动,保证总制动力满足驾驶员的制动需求;防止汽车在雨雪等低附着系数路面进行制动时,因为很小的制动强度导致车轮发生抱死现象,最大限度回收汽车减速制动过程中消耗的能量,提高了能量的利用率。
其中,所述电、液复合制动控制策略为:
当0<z<0.1时,ECE制动法规无要求,此时,制动过程所需的制动力较小,再生制动力完全可以提供,故由再生制动力单独提供制动力,摩擦制动力不参与制动过程,以尽可能多的回收制动能量;
当0.1<z<0.7时,采用复合制动模式,即再生制动力与摩擦制动力同时参与制动过程。优先采用再生制动力,当电机所能提供的最大力矩不能提供整车所需的制动力时,摩擦制动力再参与制动,提供剩余所需的制动力;
当z>0.7时,属于紧急制动工况,此时,为了保障制动的安全,退出再生制动***,由传统的液压制动***完全提供制动所需的制动力;
其中,z为制动强度。
结合ECE法规轿车的制动力分配图,及公式和公式计算得到制动力分配比β的取值范围。
&beta; &le; ( z + 0.07 ) ( b + zh g ) 0.85 zL ; &beta; &GreaterEqual; 1 - ( z + 0.07 ) ( a - zh g ) 0.85 zL - - - ( 2 )
&beta; &le; ( z + 0.05 ) ( b + zh g ) zL ; &beta; &GreaterEqual; 1 - ( z + 0.05 ) ( a - zh g ) zL - - - ( 3 )
上式中,a为电动汽车质心距离前轮的距离,b为电动汽车质心距离后轮的距离,hg为电动汽车质心高度,L为汽车的轴距,上述参量单位均为米(m)。
代入车子的各项参数,最后拟合的关系式可表示为:
β=0.85-0.1z     (4)
根据汽车行业现有公知技术计算电动汽车总的制动力,电动汽车总的制动力确定后,根据公式(4)所述的制动力分配比来计算电动汽车前、后轴制动力。电动汽车前、后轴制动力确定后,前驱电动汽车的后轴制动力全部由摩擦制动力来提供,前轴制动力由前轴的摩擦制动力和再生制动力两者共同提供,前轴再生制动力根据电动汽车所用电机的特性曲线即可唯一确定,前轴再生制动力确定后,前轴的总制动力减去再生制动力即为前轴摩擦制动力。
另外,所述参考值X取值范围为37-43,优选40;所述最佳滑移率取值范围为0.15-0.4,优选0.2。
与现有技术相比,本发明具有以下有益效果:
本发明把再生制动***和ABS***结合起来,进行综合控制,满足总制动力需求和ECE制动法规要求的同时,实现制动防抱死功能,不但可以回收部分制动能量,提高经济性,还可以使汽车获得更佳的制动性能,克服液压制动***短时间内不一定能填补再生制动***减小的制动力的缺陷,防止电动汽车出现抖动,保证总制动力满足驾驶员的制动需求;防止汽车在雨雪等低附着系数路面进行制动时,因为很小的制动强度导致车轮发生抱死现象,最大限度回收汽车减速制动过程中消耗的能量,提高了能量的利用率。
附图说明
图1ECE法规对于轿车制动力分配要求图。
图2本发明控制程序流程图。
具体实施方式
下面结合附图对本发明实施例做进一步描述:
如图1-2所示,所述前驱电动汽车再生制动与ABS匹配控制方法,包括:
a.控制器根据制动踏板的开度确定电动汽车制动强度,然后再根据电、液复合制动控制策略判定此制动是否为紧急制动;
b.若是紧急制动,则直接进入ABS防抱死***,再生制动***不参与制动;若不是紧急制动,则首先根据ECE制动法规确定汽车前、后轴制动力,再结合电机所能提供的最大再生制动力,确定出前、后轴的摩擦制动力以及前轴的再生制动力;
c.针对电动汽车前、后轮进行分别控制,根据电动汽车前、后车轮角速度信号分别计算出前后轮的角减速度,当其小于参考值-X时,说明车轮趋于抱死的可能性较大,此时再根据电动汽车前、后轮转速和参考车速计算出前后轮的滑移率,以此判断轮胎是否趋于抱死;
d.若滑移率大于最佳滑移率,说明车轮趋于抱死,此时,针对前轮应保持其所能提供的最大再生制动力大小不变,通过调节摩擦制动力来控制车轮免于抱死;针对后轮,则直接通过调节摩擦制动力防止其发生抱死,若滑移率小于最佳滑移率,车轮不会发生抱死,不做处理。
本发明克服液压制动***短时间内不一定能填补再生制动***减小的制动力的缺陷,防止电动汽车出现抖动,保证总制动力满足驾驶员的制动需求;防止汽车在雨雪等低附着系数路面进行制动时,因为很小的制动强度导致车轮发生抱死现象,最大限度回收汽车减速制动过程中消耗的能量,提高了能量的利用率。
本实施例中,参考值X取值范围为37-43,优选40;最佳滑移率取值范围为0.15-0.4,优选0.2,图2中最佳滑移率S以0.2为例;所述电、液复合制动控制策略为:
当0<z<0.1时,ECE制动法规无要求,此时,制动过程所需的制动力较小,再生制动力完全可以提供,故由再生制动力单独提供制动力,摩擦制动力不参与制动过程,以尽可能多的回收制动能量;
当0.1<z<0.7时,采用复合制动模式,即再生制动力与摩擦制动力同时参与制动过程。优先采用再生制动力,当电机所能提供的最大力矩不能提供整车所需的制动力时,摩擦制动力再参与制动,提供剩余所需的制动力;
当z>0.7时,属于紧急制动工况,此时,为了保障制动的安全,退出再生制动***,由传统的液压制动***完全提供制动所需的制动力;
其中,z为制动强度。
结合ECE法规轿车的制动力分配图,及公式和公式计算得到制动力分配比β的取值范围。
&beta; &le; ( z + 0.07 ) ( b + zh g ) 0.85 zL ; &beta; &GreaterEqual; 1 - ( z + 0.07 ) ( a - zh g ) 0.85 zL - - - ( 5 )
&beta; &le; ( z + 0.05 ) ( b + zh g ) zL ; &beta; &GreaterEqual; 1 - ( z + 0.05 ) ( a - zh g ) zL - - - ( 6 )
上式中,a为电动汽车质心距离前轮的距离,b为电动汽车质心距离后轮的距离,hg为电动汽车质心高度,L为汽车的轴距,上述参量单位均为米(m)。
代入车子的各项参数,最后拟合的关系式可表示为:
β=0.85-0.1z     (7)
根据汽车行业现有公知技术计算电动汽车总的制动力,电动汽车总的制动力确定后,根据公式(7)所述的制动力分配比来计算电动汽车前、后轴制动力。电动汽车前、后轴制动力确定后,前驱电动汽车的后轴制动力全部由摩擦制动力来提供,前轴制动力由前轴的摩擦制动力和再生制动力两者共同提供,前轴再生制动力根据电动汽车所用电机的特性曲线即可唯一确定,前轴再生制动力确定后,前轴的总制动力减去再生制动力即为前轴摩擦制动力。
本发明把再生制动***和ABS***结合起来,进行综合控制,满足总制动力需求和ECE制动法规要求的同时,实现制动防抱死功能,不但可以回收部分制动能量,提高经济性,还可以使汽车获得更佳的制动性能,克服液压制动***短时间内不一定能填补再生制动***减小的制动力的缺陷,防止电动汽车出现抖动,保证总制动力满足驾驶员的制动需求;防止汽车在雨雪等低附着系数路面进行制动时,因为很小的制动强度导致车轮发生抱死现象,最大限度回收汽车减速制动过程中消耗的能量,提高了能量的利用率。

Claims (6)

1.一种前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,包括:
a.控制器根据制动踏板的开度确定电动汽车制动强度,然后再根据电、液复合制动控制策略判定此制动是否为紧急制动;
b.若是紧急制动,则直接进入ABS防抱死***,再生制动***不参与制动;若不是紧急制动,则首先根据ECE制动法规确定汽车前、后轴制动力,再结合电机所能提供的最大再生制动力,确定出前、后轴的摩擦制动力以及前轴的再生制动力;
c.针对电动汽车前、后轮进行分别控制,根据电动汽车前、后车轮角速度信号分别计算出前后轮的角减速度,当其小于参考值-X时,说明车轮趋于抱死的可能性较大,此时再根据电动汽车前、后轮转速和参考车速计算出前后轮的滑移率,以此判断轮胎是否趋于抱死;
d.若滑移率大于最佳滑移率,说明车轮趋于抱死,此时,针对前轮应保持其所能提供的最大再生制动力大小不变,通过调节摩擦制动力来控制车轮免于抱死;针对后轮,则直接通过调节摩擦制动力防止其发生抱死,若滑移率小于最佳滑移率,车轮不会发生抱死,不做处理。
2.根据权利要求1所述的前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,所述制动强度与制动力分配比β的拟合关系式为:β=0.85-0.1z,其中z表示制动强度,β为制动力分配比。
3.根据权利要求1所述的前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,所述参考值X取值范围为37-43。
4.根据权利要求1或3所述的前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,所述参考值X为40。
5.根据权利要求1所述的前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,所述最佳滑移率取值范围为0.15-0.4。
6.根据权利要求1所述的前驱电动汽车再生制动与ABS匹配控制方法,其特征在于,所述最佳滑移率为0.2。
CN201410401713.9A 2014-08-14 2014-08-14 前驱电动汽车再生制动与abs匹配控制方法 Pending CN104192107A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410401713.9A CN104192107A (zh) 2014-08-14 2014-08-14 前驱电动汽车再生制动与abs匹配控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410401713.9A CN104192107A (zh) 2014-08-14 2014-08-14 前驱电动汽车再生制动与abs匹配控制方法

Publications (1)

Publication Number Publication Date
CN104192107A true CN104192107A (zh) 2014-12-10

Family

ID=52077541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410401713.9A Pending CN104192107A (zh) 2014-08-14 2014-08-14 前驱电动汽车再生制动与abs匹配控制方法

Country Status (1)

Country Link
CN (1) CN104192107A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648164A (zh) * 2015-02-04 2015-05-27 江苏大学 一种电动汽车用复合防抱死制动***及制动控制方法
CN105059125A (zh) * 2015-08-13 2015-11-18 奇瑞汽车股份有限公司 车辆的制动控制方法和装置
CN105523029A (zh) * 2015-12-29 2016-04-27 北京新能源汽车股份有限公司 电动汽车及其制动控制方法和***
CN107745639A (zh) * 2017-09-07 2018-03-02 宝沃汽车(中国)有限公司 能量回馈方法、能量回馈***和车辆
WO2018114091A1 (de) * 2016-12-21 2018-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs, kraftfahrzeug
CN108688474A (zh) * 2018-03-22 2018-10-23 刘清河 电动汽车制动能量回收控制算法
CN108725258A (zh) * 2018-05-29 2018-11-02 创驱(上海)新能源科技有限公司 一种电动汽车用汽车防抱死状态检测方法及其检测***
CN108725214A (zh) * 2018-05-31 2018-11-02 武汉理工大学 混合制动的四轮毂电机驱动车辆制动防滑控制方法
CN109398098A (zh) * 2018-11-14 2019-03-01 齐鲁工业大学 半挂汽车列车液压再生制动优化控制方法、装置及***
CN109421678A (zh) * 2017-08-28 2019-03-05 比亚迪股份有限公司 汽车的制动方法、装置、制动***和存储介质
CN109941245A (zh) * 2019-04-08 2019-06-28 哈尔滨理工大学 一种电动汽车制动力分配方法
CN110281947A (zh) * 2019-05-15 2019-09-27 南京航空航天大学 一种融合路面识别的电动汽车再生制动力分配方法
CN110641431A (zh) * 2019-09-11 2020-01-03 肇庆学院 一种商用车的电子制动***
CN111251904A (zh) * 2020-03-05 2020-06-09 中国第一汽车股份有限公司 一种电动汽车制动力分配方法及***
CN111469670A (zh) * 2020-04-14 2020-07-31 桂林电子科技大学 一种基于路面识别的电动汽车再生制动控制策略
CN111823873A (zh) * 2020-07-11 2020-10-27 的卢技术有限公司 一种并联能量回收电动汽车的制动防抱死控制方法
CN111907335A (zh) * 2020-08-10 2020-11-10 辽宁工程技术大学 一种基于无刷双馈电机驱动的电动汽车再生制动控制方法
CN112477610A (zh) * 2020-12-11 2021-03-12 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN112677771A (zh) * 2020-12-31 2021-04-20 吉林大学 一种基于模糊控制的前驱电动汽车的再生制动控制方法
CN112829600A (zh) * 2021-01-08 2021-05-25 南京金龙客车制造有限公司 一种非ebs平台新能源商用车复合制动策略
CN113561789A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种分布式驱动型电动汽车的控制方法、装置及电动汽车
CN113561951A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 电动汽车的制动防抱死控制方法、装置、设备及电动汽车
CN113561788A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种电动汽车的牵引力控制方法、装置、设备及电动汽车
CN116279353A (zh) * 2023-05-18 2023-06-23 厦门金龙汽车新能源科技有限公司 纯电动客车再生制动与刹车防抱死***相匹配的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295952A (zh) * 2000-11-03 2001-05-23 华南理工大学 汽车防抱制动***参考车速确定方法及其制动控制程序
CN101054065A (zh) * 2007-05-25 2007-10-17 吉林大学 混合动力轿车再生制动与防抱死集成控制***
CN101073992A (zh) * 2007-06-25 2007-11-21 江苏大学 基于abs的汽车再生与常规制动集成控制器及控制方法
CN102336142A (zh) * 2011-09-06 2012-02-01 上海中科深江电动车辆有限公司 一种用于电动汽车基于abs的再生制动控制方法
CN103204157A (zh) * 2013-04-16 2013-07-17 同济大学 一种具有整车控制功能的电子防抱死制动集成控制器
CN103332184A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 一种电动汽车用电液复合制动控制方法及其控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295952A (zh) * 2000-11-03 2001-05-23 华南理工大学 汽车防抱制动***参考车速确定方法及其制动控制程序
CN101054065A (zh) * 2007-05-25 2007-10-17 吉林大学 混合动力轿车再生制动与防抱死集成控制***
CN101073992A (zh) * 2007-06-25 2007-11-21 江苏大学 基于abs的汽车再生与常规制动集成控制器及控制方法
CN102336142A (zh) * 2011-09-06 2012-02-01 上海中科深江电动车辆有限公司 一种用于电动汽车基于abs的再生制动控制方法
CN103204157A (zh) * 2013-04-16 2013-07-17 同济大学 一种具有整车控制功能的电子防抱死制动集成控制器
CN103332184A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 一种电动汽车用电液复合制动控制方法及其控制装置

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648164B (zh) * 2015-02-04 2017-01-18 江苏大学 一种电动汽车用复合防抱死制动***及制动控制方法
CN104648164A (zh) * 2015-02-04 2015-05-27 江苏大学 一种电动汽车用复合防抱死制动***及制动控制方法
CN105059125A (zh) * 2015-08-13 2015-11-18 奇瑞汽车股份有限公司 车辆的制动控制方法和装置
CN105523029B (zh) * 2015-12-29 2018-04-06 北京新能源汽车股份有限公司 电动汽车及其制动控制方法和***
CN105523029A (zh) * 2015-12-29 2016-04-27 北京新能源汽车股份有限公司 电动汽车及其制动控制方法和***
WO2018114091A1 (de) * 2016-12-21 2018-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs, kraftfahrzeug
US11084477B2 (en) 2016-12-21 2021-08-10 Robert Bosch Gmbh Method and device for operating a motor vehicle, motor vehicle
CN109421678A (zh) * 2017-08-28 2019-03-05 比亚迪股份有限公司 汽车的制动方法、装置、制动***和存储介质
CN109421678B (zh) * 2017-08-28 2020-08-25 比亚迪股份有限公司 汽车的制动方法、装置、制动***和存储介质
CN107745639A (zh) * 2017-09-07 2018-03-02 宝沃汽车(中国)有限公司 能量回馈方法、能量回馈***和车辆
CN107745639B (zh) * 2017-09-07 2021-05-14 宝沃汽车(中国)有限公司 能量回馈方法、能量回馈***和车辆
CN108688474A (zh) * 2018-03-22 2018-10-23 刘清河 电动汽车制动能量回收控制算法
CN108688474B (zh) * 2018-03-22 2021-04-09 刘清河 电动汽车制动能量回收控制算法
CN108725258A (zh) * 2018-05-29 2018-11-02 创驱(上海)新能源科技有限公司 一种电动汽车用汽车防抱死状态检测方法及其检测***
CN108725214A (zh) * 2018-05-31 2018-11-02 武汉理工大学 混合制动的四轮毂电机驱动车辆制动防滑控制方法
CN109398098B (zh) * 2018-11-14 2020-07-28 齐鲁工业大学 半挂汽车列车液压再生制动优化控制方法、装置及***
CN109398098A (zh) * 2018-11-14 2019-03-01 齐鲁工业大学 半挂汽车列车液压再生制动优化控制方法、装置及***
CN109941245B (zh) * 2019-04-08 2022-02-01 哈尔滨理工大学 一种电动汽车制动力分配方法
CN109941245A (zh) * 2019-04-08 2019-06-28 哈尔滨理工大学 一种电动汽车制动力分配方法
CN110281947B (zh) * 2019-05-15 2020-10-20 南京航空航天大学 一种融合路面识别的电动汽车再生制动力分配方法
CN110281947A (zh) * 2019-05-15 2019-09-27 南京航空航天大学 一种融合路面识别的电动汽车再生制动力分配方法
CN110641431A (zh) * 2019-09-11 2020-01-03 肇庆学院 一种商用车的电子制动***
CN111251904A (zh) * 2020-03-05 2020-06-09 中国第一汽车股份有限公司 一种电动汽车制动力分配方法及***
CN111469670A (zh) * 2020-04-14 2020-07-31 桂林电子科技大学 一种基于路面识别的电动汽车再生制动控制策略
CN113561788A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种电动汽车的牵引力控制方法、装置、设备及电动汽车
CN113561951A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 电动汽车的制动防抱死控制方法、装置、设备及电动汽车
CN113561789A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种分布式驱动型电动汽车的控制方法、装置及电动汽车
CN111823873A (zh) * 2020-07-11 2020-10-27 的卢技术有限公司 一种并联能量回收电动汽车的制动防抱死控制方法
CN111907335A (zh) * 2020-08-10 2020-11-10 辽宁工程技术大学 一种基于无刷双馈电机驱动的电动汽车再生制动控制方法
CN112477610A (zh) * 2020-12-11 2021-03-12 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN112477610B (zh) * 2020-12-11 2022-05-17 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN112677771A (zh) * 2020-12-31 2021-04-20 吉林大学 一种基于模糊控制的前驱电动汽车的再生制动控制方法
CN112829600A (zh) * 2021-01-08 2021-05-25 南京金龙客车制造有限公司 一种非ebs平台新能源商用车复合制动策略
CN116279353A (zh) * 2023-05-18 2023-06-23 厦门金龙汽车新能源科技有限公司 纯电动客车再生制动与刹车防抱死***相匹配的控制方法
CN116279353B (zh) * 2023-05-18 2023-08-04 厦门金龙汽车新能源科技有限公司 纯电动客车再生制动与刹车防抱死***相匹配的控制方法

Similar Documents

Publication Publication Date Title
CN104192107A (zh) 前驱电动汽车再生制动与abs匹配控制方法
CN108099615B (zh) 控制电动车辆的制动的***和方法
CN110281947B (zh) 一种融合路面识别的电动汽车再生制动力分配方法
CN102826087B (zh) 一种汽车四驱***的扭矩控制方法
CN103373357B (zh) 用于全轮电驱动车辆的扭矩控制的***和方法
CN102490598B (zh) 一种机动车电子四驱***及其控制方法
CN102173293B (zh) 一种电动汽车驱动力矩的控制方法、装置及***
CN108025651A (zh) 具有制动***的电动车辆以及用于制动***的方法、控制器和计算机程序
CN101323300A (zh) 提高车辆转弯制动侧向稳定性的增强型汽车abs***
Tang et al. A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors
CN110614921B (zh) 一种电动商用车制动能量回收***及控制方法
CN103332184A (zh) 一种电动汽车用电液复合制动控制方法及其控制装置
CN101837773A (zh) 基于vdc/vsc/esp压力调节器的制动能量回收液压制动***
CN101088819B (zh) 混合动力汽车防滑控制***及方法
CN111976677B (zh) 一种纯电动汽车复合制动防抱死控制***及控制方法
CN110466358A (zh) 一种电动汽车防滑控制方法及其整车***
CN112659914A (zh) 四轮驱动电动车辆的牵引控制装置和方法
CN107364339A (zh) 双轴双电机四轮驱动纯电动车再生制动***的控制方法
CN2925986Y (zh) 中重型汽车稳定性电子控制***
CN105172617B (zh) 前后桥独立驱动装载机结构及转矩动态分配方法
CN110271425B (zh) 一种纯电动客车再生制动控制方法
CN108081960A (zh) 一种电动汽车制动能量回收方法及***
CN108116403A (zh) 车辆的控制方法、***及车辆
CN102616223B (zh) 车辆稳定控制方法及***
CN108656958A (zh) 一种基于道路信息的纯电动汽车制动能量回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141210

RJ01 Rejection of invention patent application after publication