CN104150897A - 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法 - Google Patents

高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法 Download PDF

Info

Publication number
CN104150897A
CN104150897A CN201410446361.9A CN201410446361A CN104150897A CN 104150897 A CN104150897 A CN 104150897A CN 201410446361 A CN201410446361 A CN 201410446361A CN 104150897 A CN104150897 A CN 104150897A
Authority
CN
China
Prior art keywords
powder
tindioxide
titanium dioxide
mixture
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410446361.9A
Other languages
English (en)
Other versions
CN104150897B (zh
Inventor
徐金宝
张家齐
边亮
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201410446361.9A priority Critical patent/CN104150897B/zh
Publication of CN104150897A publication Critical patent/CN104150897A/zh
Application granted granted Critical
Publication of CN104150897B publication Critical patent/CN104150897B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法,该复合材料各组分是由SnO2,Co2O3,TiO2,Sb2O5,Nb2O5,Pr6O11,Y2O3制成,采用在亚微米级的二氧化锡粉末中掺入二氧化钛、五氧化二锑、三氧化二钴、五氧化二铌、十一氧化六镨、三氧化二钇,其中,十一氧化六镨和三氧化二钇作为电位梯度增强剂,二氧化钛和五氧化二锑均为单分散的纳米级颗粒,纳米五氧化二锑在烧结过程中可与二氧化锡反应转变为尖晶石相并均匀分布于晶界中,通过晶界扎钉效应抑制二氧化锡晶粒异向生长。五氧化二锑的加入还可用来控制晶粒的平均粒径,使单位体积内的晶粒和晶界密度增强,使得最终产品具有能量密度大、电位梯度高、漏电流小、批量生产一致性较好等特点。该制备方法简单,可控,可用于大批量工业化生产。

Description

高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法
技术领域
本发明涉及一种高能,高电位梯度型二氧化锡压敏电阻复合粉体及其制备方法,属于电子陶瓷制备及应用技术领域。
背景技术
压敏电阻粉体是用于制作压敏电阻器的原材料材料。压敏电阻器是一种具有非线性伏安特性的限压型保护器件电阻器件,主要用于在电路承受过压时进行电压嵌位,吸收多余的电流以保护敏感器件。利用压敏电阻材料的非线性伏安特性,当过电压出现在压敏电阻器的两极间,压敏电阻器可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。在一定的温度和特定的电压范围内,压敏电阻器的电流随电压的上升而急剧的升高,其电阻值随电压的升高而急剧下降,具有非线性伏安特性。压敏电阻器通过对脉冲电压、浪涌电压、感应雷电压、操作过电压的吸收,从而有效地保护电子器件、电子线路、电子设备、用电设备免受异常电压的冲击。
氧化锌为传统的压敏电阻材料,氧化锌压敏电阻器具有非线性系数大、漏电流小、通流能力强、响应时间快等特点,被广泛应用于用电领域。氧化锌系压敏电阻又分为低压型压敏电阻和高能型压敏电阻。现在通用的高能型氧化锌压敏材料的电压梯度一般在120~200V/mm,难以满足高电位应用环境的使用要求。因此,提高高能型压敏电阻的电压梯度和非线性系数(降低残压比),即开发新型高压,高能型压敏电阻,成为压敏电阻开发的方向。
现有技术中,用于烧结高能,高电位梯度型氧化锌压敏电阻的复合粉体是在氧化锌粉体基料中按一定的摩尔百分比掺入少量的Bi203、Ti02、Co203、Ni203、Sn02、Y2O3等添加剂,再将此粉料经混合球磨、造粒、成型、烧结等工艺制成。传统工艺是使用预球磨法将添加剂混合粉碎,减小它们的粒径,然后再将预磨好的添加剂与主基料混合。但若添加不均会导致晶粒的普遍异向生长,产生微观结构缺陷,从而使得压敏电阻在电性能上表现出电位梯度和能量密度的下降。压敏电阻片破坏主要是由于电阻片内部微观结构的不均匀性导致电流分布不均匀,电阻片内部产生热应力,使其炸裂和击穿,因此提高微观均匀性是提高电阻片能量耐受密度的根本。但即使采用目前最先进的高速搅拌球磨机或砂磨机,也只能将添加剂的粒度减小到0.20μm左右。这个粒度范围与主基料氧化锌的粒度相差不大,因此使用此方法已不能继续改善添加剂的掺杂均匀性,压敏电阻的电性能也不可能有大幅度的提高。因此,采用新的材料配方、制备方法研制性能优异的高能,高电位梯度的氧化锌材料,或者新型的非氧化锌压敏电阻材料具有重要的意义。
发明内容:
本发明目的在于,提供一种高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法,该复合材料各组分是由SnO2,Co2O3,TiO2,Sb2O5,Nb2O5,Pr6O11,Y2O3制成,采用在亚微米级的二氧化锡粉末中掺入二氧化钛、五氧化二锑、三氧化二钴、五氧化二铌、十一氧化六镨、三氧化二钇,其中,十一氧化六镨和三氧化二钇作为电位梯度增强剂,二氧化钛和五氧化二锑均为单分散的纳米级颗粒,纳米五氧化二锑在烧结过程中可与二氧化锡反应转变为尖晶石相并均匀分布于晶界中,通过晶界扎钉效应抑制二氧化锡晶粒异向生长。五氧化二锑的加入还可用来控制晶粒的平均粒径,使单位体积内的晶粒和晶界密度增强,使得最终产品具有能量密度大、电位梯度高、漏电流小、批量生产一致性较好等特点。该制备方法简单,可控,可用于大批量工业化生产。
本发明所述的一种高能高电位梯度型二氧化锡压敏电阻复合粉体,该复合粉体各组分是由摩尔百分比SnO295.6-97.85mol%,Co2O30.9-1.5mol%,TiO20.1-1mol%,Sb2O50.05-0.5%,Nb2O50.1-0.4mol%,Pr6O110.5mol%,Y2O30.5mol%制成。
所述的高能高电位梯度型二氧化锡压敏电阻复合粉体的制备方法,按下列步骤进行:
a、在球磨机中,将纳米二氧化钛颗粒0.1%-1mol%、三氧化二钴0.9%-1.5mol%粉末、五氧化二铌0.1%-0.4mol%粉末、十一氧化六镨0.5mol%和三氧化二钇0.5mol%混合,球磨3-6小时,制成混合物;
b、将步骤a得到的混合物中加入亚微米级的二氧化锡95.6-97.85mol%粉末和纳米五氧化二锑颗粒0.05%-0.5mol%,再经球磨1-3小时,制成混合物;
c、将步骤b得到的混合物烘干,过筛,得到混合物的粉体;
d、将步骤c得到的混合物粉体中放置于温度800-1300℃下烧结3-6小时,即得纳米氧化锌压敏电阻复合粉体材料;
步骤a中的二氧化钛颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中。
步骤a中的纳米二氧化钛水溶胶中的二氧化钛含量为10wt%-30wt%。
步骤b中的五氧化二锑颗粒为单分散的纳米级颗粒,以含有五氧化二锑颗粒的水溶胶的形式掺入复合粉体中。
步骤b中的纳米五氧化二锑水溶胶中的五氧化二锑含量为10wt%-30wt%。
本发明所述的一种高能高电位梯度型二氧化锡压敏电阻复合粉体,它是以二氧化锡为主相,添加若干其它稀土氧化物改性后的烧结粉体材料,二氧化锡压敏电阻材料具有掺杂量少、掺杂损失小以及热导率高等优点,在电子、电力***中应用前景很好。
本发明所述的一种高能高电位梯度型二氧化锡压敏电阻复合粉体,在配方中增加了纳米五氧化二锑,在烧结过程中可与二氧化锡反应生成尖晶石相,该尖晶石相可均匀分布于晶界中,通过晶界钉扎效应抑制二氧化锡晶粒生长,增加材料中的晶界密度,使晶粒生长更加均匀。五氧化二锑和二氧化钛是抑制二氧化锡晶粒生长的关键添加剂,而且添加比例很小。将其纳米粒子以水溶胶的形式加入,不会形成团聚体,保证了纳米其颗粒的单分散状态,从而保证所生成的尖晶石相在晶界中分布均勻,此工艺是保证稀土氧化物发挥最大改性效应的必要条件。
本发明所述的一种高能高电位梯度型二氧化锡压敏电阻复合粉体,在配方中还增加了高效电位梯度增强剂氧化镨和氧化钇,其能够显著细化二氧化锡材料的晶粒尺寸,提高材料中的晶粒和晶界密度,提高材料的电位梯度。
与现有技术相比,本发明稀土改性的高能高电位梯度型二氧化锡压敏电阻复合粉体,组分简单,掺杂稀土元素易精确可控,通过水溶胶纳米粒子的方式添加五氧化二锑和二氧化钛,通过粉体的方式添加电位梯度增强剂氧化镨和氧化钇,优化材料配比,提高了二氧化锡压敏电阻材料的能力密度和电位梯度,明显改善了其电学性能,对于压敏电阻产品的小型化有着非常积极的意义。
通过本发明所述方法获得的二氧化锡压敏电阻复合粉体经压制、烧结制成的压敏电阻产品具有能量密度大、电位梯度高、漏电流小、电压梯度调节范围大和批量生产一致性好的优点。
附图说明
图1为本发明实施例1所制得二氧化锡压敏电阻的扫描电镜(SEM)照片;
图2为本发明实施例1所制得二氧化锡压敏电阻复合粉体材料的X射线衍射(XRD)图谱;
具体实施方式
实施例1
在球磨机中,将纳米二氧化钛颗粒0.1mol%、三氧化二钴粉末0.9mol%、五氧化二铌粉末0.1mol%、十一氧化六镨粉末0.5mol%、三氧化二钇粉末0.5mol%混合,球磨4小时,制成混合物,其中二氧化钛颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的二氧化钛含量为10w%;
将得到的混合物中加入亚微米级的二氧化锡粉末97.85mol%和纳米五氧化二锑颗粒0.05mol%,再经球磨2小时,制成混合物,其中纳米五氧化二锑颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的五氧化二锑含量为10w%;
将得到的混合物烘干,过筛,得到的混合物的粉体;
再将得到的混合物的粉体放置于温度800℃下烧结6小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例2
在球磨机中,将纳米二氧化钛颗粒1mol%、三氧化二钴粉末1.5mol%、五氧化二铌粉末0.4mol%、十一氧化六镨粉末0.5mol%和三氧化二钇粉末0.5mol%混合,球磨3小时,
制成混合物,其中二氧化钛颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的二氧化钛含量为30w%;
将得到的混合物中加入亚微米级的二氧化锡粉末95.6mol%和纳米五氧化二锑颗粒0.5mol%,再经球磨1小时,制成混合物,其中五氧化二锑颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的五氧化二锑含量为30w%;
将得到的混合物烘干,过筛,得到混合物的粉体;
再将得到的混合物的粉体放置于温度1300℃下烧结3小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例3
在球磨机中,将纳米二氧化钛颗粒0.1mol%、三氧化二钴粉末1.5mol%、五氧化二铌粉末0.4mol%、十一氧化六镨粉末0.5mol%和三氧化二钇粉末0.5mol%混合,球磨6小时,制成混合物,其中二氧化钛颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的二氧化钛含量为15w%;
将得到的混合物中加入亚微米级的二氧化锡96.5mol%粉末和纳米五氧化二锑颗粒0.5mol%,再经球磨3小时,制成混合物,其中五氧化二锑颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的五氧化二锑含量为20w%;
将得到的混合物烘干,过筛,得到混合物的粉体;
再将得到的混合物的粉体放置于温度1100℃下烧结4小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例4
在球磨机中,将纳米二氧化钛颗粒0.5mol%、三氧化二钴粉末1.2mol%、五氧化二铌粉末0.3mol%、十一氧化六镨粉末0.2mol%和三氧化二钇粉末0.1mol%混合,球磨5小时,制成混合物,其中二氧化钛颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的二氧化钛含量为20w%;
将得到的混合物中加入亚微米级的二氧化锡97.6mol%粉末和纳米五氧化二锑颗粒0.1mol%水溶胶,再经球磨2小时,制成混合物,其中五氧化二锑颗粒为单分散的纳米级颗粒,以水溶胶的形式掺入复合粉体中,水溶胶中的五氧化二锑含量为15w%;
将得到的混合物烘干,过筛,得到混合物的粉体;
再将得到混合物的粉体放置于温度900℃下烧结5小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例5(对比1)
在球磨机中,将纳米级二氧化钛粉末0.1mol%、三氧化二钴粉末0.9mol%、五氧化二铌粉末0.1mol%、十一氧化六镨粉末0.5mol%、三氧化二钇粉末0.5mol%粉末混合,球磨4小时,制成混合物;
将得到的混合物中加入亚微米级的二氧化锡97.85mol%粉末和纳米级五氧化二锑粉末0.05mol%,再经球磨2小时,制成混合物;
将得到的混合物烘干,过筛,得到混合物的粉体;
将得到混合物的粉体放置于温度800℃下烧结6小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例6(对比2)
在球磨机中,将AR微米级二氧化钛粉体0.1mol%、三氧化二钴粉末0.9mol%、五氧化二铌粉末0.1mol%、十一氧化六镨粉末0.5mol%、三氧化二钇粉末0.5mol%粉末混合,球磨4小时,制成混合物;
将得到的混合物中加入亚微米级的二氧化锡97.85mol%粉末和AR微米级五氧化二锑0.05mol%粉体,再经球磨2小时,制成混合物;
将得到的混合物烘干,过筛,得到混合物的粉体;
将得到混合物的粉体放置于温度800℃下烧结6小时,即得二氧化锡压敏电阻复合粉体材料;
将制备的二氧化锡压敏电阻复合粉体按常规方法压制成陶瓷坯体,再将陶瓷坯体在温度1150℃下烧结5小时,即得二氧化锡压敏电阻。
实施例7
将实施例1和实施例5、实施例6制备的压敏电阻采用压敏电阻测试仪对其进行性能测试,测试结果如表1所示:
表1:
编号 电位梯度(V/mm) 压敏电压离散度% 漏电流密度μA/cm2 能量密度(J/cm3)
实施例1 732 3.4 0.82 1022
实施例5 403 9.8 1.432 685
实施例6 256 20.1 2.3 483
从表1中的测试结果可以看出,实施例1所制成的高能,高电位二氧化锡压敏电阻,其在电压梯度、能量密度、漏电流、产品一致性的方面,均优于采用传统方法添加纳米级或者微米级五氧化二锑、二氧化钛粉末所生产的压敏电阻产品。说明以纳米水溶胶的形式添加改性氧化物是制备高性能二氧化锡压敏电阻粉体一种切实有效的方法。

Claims (6)

1.一种高能高电位梯度型二氧化锡压敏电阻复合粉体,其特征在于该复合粉体各组分是由摩尔百分比SnO2  95.6-97.85mol%,Co2O3  0.9-1.5mol%,TiO2  0.1-1mol%,Sb2O0.05-0.5%,Nb2O0.1-0.4mol%,Pr6O11 0.5mol%,Y2O0.5mol%制成。
2.一种如权利要求1中所述的高能高电位梯度型二氧化锡压敏电阻复合粉体的制备方法,其特征在于按下列步骤进行:
a、在球磨机中,将纳米二氧化钛颗粒0.1%-1mol%、三氧化二钴粉末0.9%-1.5mol%、五氧化二铌粉末0.1%-0.4mol%、十一氧化六镨粉末0.5mol%和三氧化二钇粉末0.5mol%混合,球磨 3-6小时,制成混合物;
b、将步骤a得到的混合物中加入亚微米级的二氧化锡粉末95.6-97.85mol%和纳米五氧化二锑颗粒0. 05%-0.5mol%,再经球磨 1-3小时,制成混合物;
c、将步骤b得到的混合物烘干,过筛,得到混合物的粉体;
d、将步骤c得到的混合物粉体放置于温度800-1300℃下烧结3-6小时,即得高能高电位梯度型二氧化锡压敏电阻复合粉体。
3.根据权利要求2所述的制备方法,其特征在于步骤a中的二氧化钛颗粒为单分散的纳米级颗粒,以纳米二氧化钛水溶胶的形式掺入复合粉体中。
4.根据权利要求3所述的纳米二氧化钛水溶胶,其特征在于纳米二氧化钛水溶胶中的二氧化钛含量为10wt%-30wt%。
5.根据权利要求2所述的制备方法,其特征在于步骤b中的五氧化二锑颗粒为单分散的纳米级颗粒,以含有五氧化二锑颗粒的水溶胶的形式掺入复合粉体中。
6.根据权利要求2所述的纳米五氧化二锑水溶胶,其特征在于纳米五氧化二锑水溶胶中的五氧化二锑含量量为10wt%-30wt%。
CN201410446361.9A 2014-09-03 2014-09-03 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法 Expired - Fee Related CN104150897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410446361.9A CN104150897B (zh) 2014-09-03 2014-09-03 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410446361.9A CN104150897B (zh) 2014-09-03 2014-09-03 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法

Publications (2)

Publication Number Publication Date
CN104150897A true CN104150897A (zh) 2014-11-19
CN104150897B CN104150897B (zh) 2016-01-06

Family

ID=51876562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410446361.9A Expired - Fee Related CN104150897B (zh) 2014-09-03 2014-09-03 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法

Country Status (1)

Country Link
CN (1) CN104150897B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104462733A (zh) * 2015-01-10 2015-03-25 中国科学院新疆理化技术研究所 模拟ntc尖晶石内电子态密度微观变化的数据处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129107A (ja) * 1991-10-31 1993-05-25 Taiyo Yuden Co Ltd 半導体磁器物質
CN101197203A (zh) * 2007-11-30 2008-06-11 华南理工大学 一种氧化锡压敏电阻材料及其制备方法
CN103880411A (zh) * 2014-02-26 2014-06-25 江苏世星电子科技有限公司 稀土改性高梯度的二氧化锡压敏电阻材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129107B2 (ja) * 2008-05-16 2013-01-23 旭化成イーマテリアルズ株式会社 ポリアミド酸ワニス組成物、ポリイミド樹脂および金属−ポリイミド複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129107A (ja) * 1991-10-31 1993-05-25 Taiyo Yuden Co Ltd 半導体磁器物質
CN101197203A (zh) * 2007-11-30 2008-06-11 华南理工大学 一种氧化锡压敏电阻材料及其制备方法
CN103880411A (zh) * 2014-02-26 2014-06-25 江苏世星电子科技有限公司 稀土改性高梯度的二氧化锡压敏电阻材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IMAN SAFAEE ET AL.: "Microstructural characteristics and grain growth kinetics of Pr6O11 Doped SnO2-based varistors", 《SOLID STATE IONICS》 *
IMAN SAFAEE ET AL.: "Microstructural characteristics and grain growth kinetics of Pr6O11 Doped SnO2-based varistors", 《SOLID STATE IONICS》, vol. 189, 25 March 2011 (2011-03-25), pages 13 - 18 *
R. PARRA ET AL.: "The influence of yttrium on a typical SnO2 varistor system: Microstructural and electrical features", 《MATERIALS CHEMISTRY AND PHYSICS》 *
R. PARRA ET AL.: "The influence of yttrium on a typical SnO2 varistor system: Microstructural and electrical features", 《MATERIALS CHEMISTRY AND PHYSICS》, vol. 94, 31 December 2005 (2005-12-31), XP005095036, DOI: doi:10.1016/j.matchemphys.2005.05.014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104462733A (zh) * 2015-01-10 2015-03-25 中国科学院新疆理化技术研究所 模拟ntc尖晶石内电子态密度微观变化的数据处理方法
CN104462733B (zh) * 2015-01-10 2017-09-01 中国科学院新疆理化技术研究所 模拟ntc尖晶石内电子态密度微观变化的数据处理方法

Also Published As

Publication number Publication date
CN104150897B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
KR101464688B1 (ko) 높은 전위 구배 및 높은 비-선형 계수를 가지는 산화아연 바리스터의 제조 공정
CN101531507B (zh) 高能型氧化锌压敏电阻复合粉体及该压敏电阻的制造方法
CN104671771B (zh) 一种高电压梯度氧化锌基压敏电阻材料及其制备方法
EP2869311B1 (en) Method of manufacturing fully dense Nd-Fe-B magnets with enhanced coercivity and gradient microstructure
CN104003709B (zh) 避雷器用氧化锌基压敏陶瓷材料及制备方法和应用
Cheng et al. Electrical properties of Al2O3-doped ZnO varistors prepared by sol–gel process for device miniaturization
CN103833343B (zh) 一种纳米稀土永磁铁氧体材料
JP2021011421A (ja) 低損失ガーネットフェライト材料の調製方法
CN111410525B (zh) 一种高性能氧化锌电阻陶瓷材料及其制备方法
CN103030390A (zh) 一种氧化锌压敏电阻材料及制备方法
CN102515741A (zh) 一种氧化锌压敏电阻材料及其制备方法
CN109192420A (zh) 一种高性能氧化锌电阻片的制备方法
CN107021746A (zh) 一种锰锌铁氧体材料及其制备方法
CN104086170A (zh) 低压压敏电阻陶瓷片及其制备方法、低压压敏电阻器的制备方法
CN104671772B (zh) 改性纳米掺杂制备氧化锌压敏电阻复合粉体及制备方法
Yan et al. Effects of sizes of additive particles on suspensions, microstructures, and electrical properties of ZnO varistors
Li et al. Effectively enhanced comprehensive electrical performance of ZnO varistors by a fast combinatorial refinement method
CN104193320B (zh) 一种纳米氧化锌压敏电阻复合粉体材料及其制备方法
CN104402038A (zh) 一种单分散纳米ZnO压敏陶瓷粉体的制备方法
CN102515740A (zh) 一种高能型氧化锌压敏电阻材料及其制备方法
CN104150897B (zh) 高能高电位梯度型二氧化锡压敏电阻复合粉体及制备方法
Sedghi et al. Comparison of electrical properties of zinc oxide varistors manufactured from micro and nano ZnO powder
CN112479707A (zh) 一种氧化钨基陶瓷靶材材料的冷等静压成型制备方法
CN102173778B (zh) 一种高性能Pr系ZnO压敏陶瓷材料及制备方法
CN108046791B (zh) 一种以纳米MnZn铁氧体粉体制备铁氧体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106

Termination date: 20190903