CN103781801A - 包含两个Fab片段的无Fc的抗体及使用方法 - Google Patents

包含两个Fab片段的无Fc的抗体及使用方法 Download PDF

Info

Publication number
CN103781801A
CN103781801A CN201280041081.9A CN201280041081A CN103781801A CN 103781801 A CN103781801 A CN 103781801A CN 201280041081 A CN201280041081 A CN 201280041081A CN 103781801 A CN103781801 A CN 103781801A
Authority
CN
China
Prior art keywords
antibody
cell
fab
fab fragment
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280041081.9A
Other languages
English (en)
Other versions
CN103781801B (zh
Inventor
P·布鲁恩克尔
C·耶格尔
C·克莱因
W·舍费尔
P·乌马纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Glycart AG
Original Assignee
Roche Glycart AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Glycart AG filed Critical Roche Glycart AG
Publication of CN103781801A publication Critical patent/CN103781801A/zh
Application granted granted Critical
Publication of CN103781801B publication Critical patent/CN103781801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/66Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a swap of domains, e.g. CH3-CH2, VH-CL or VL-CH1

Abstract

本发明涉及包含至少两个Fab片段的双特异性抗体,其中第一Fab片段包含对第一抗原特异的至少一个抗原结合位点;和第二Fab片段包含对第二抗原特异的至少一个抗原结合位点,其中将第二Fab重链和轻链的可变区或恒定区交换;并且其中所述双特异性抗体缺少Fc结构域;涉及用于产生它们的方法,涉及含有所述抗体的药物组合物和其用途。

Description

包含两个Fab片段的无Fc的抗体及使用方法
发明领域
本发明涉及包含至少两个Fab片段的双特异性抗体,其中第一Fab片段包含对第一抗原特异的至少一个抗原结合位点;和第二Fab片段包含对第二抗原特异的至少一个抗原结合位点,其中将第二Fab重链和轻链的可变区或恒定区交换;并且其中所述双特异性抗体缺少Fc结构域;涉及用于产生它们的方法,涉及含有所述抗体的药物组合物以及其用途。
背景
单克隆抗体(mAb)是一类日益重要的治疗剂。除由全尺寸形式的IgG组成的mAb产物之外,已经开发了类型广泛的多特异性重组抗体样式,例如由如IgG抗体样式与单链结构域融合的四价双特异性抗体(见例如Coloma,M.J.等人,Nature Biotech15(1997)159-163;WO2001/077342;和Morrison,S.L.,NatureBiotech25(2007)1233-1234)。
已经开发了其中不再留下抗体核芯结构(IgA、IgD、IgE、IgG或IgM)的几种其他新样式如双体、三体或四体抗体、微型抗体,能够结合两种或更多种抗原的几种单链形式(scFv、双scFv)(Holliger,P.等人,Nature Biotech23(2005)1126-1136;Fischer,N.,Léger,O.,Pathobiology74(2007)3-14;Shen,J.等人,Journal of Immunological Methods318(2007)65-74;Wu,C.等人,NatureBiotech.25(2007)1290-1297)。
全部这类样式均使用接头以使抗体核芯(IgA、IgD、IgE、IgG或IgM)与其他结合蛋白(例如scFv)融合或以使例如两个Fab片段或scFv融合(Fischer,N.,Léger,O.,Pathobiology74(2007)3-14)。串联ScFV是通过额外肽接头连接的两个scFv片段并且也称作(scFv)2。通过减小可变结构域之间肽接头的长度,产生双体抗体(diabody)。在两种多肽之间添加额外肽接头产生了所谓的单链双体抗体。US2007/0274985涉及包含单链Fab(scFab)片段的抗体。与全尺寸单克隆抗体相比,抗体片段作为治疗药具有优点和缺点:一个优点在于它们更小并且更快地进入组织和肿瘤。此外,已经提出小尺寸的片段允许与全尺寸单克隆抗体不可及的表位结合。缺点在于,片段在人类中显示短循环半寿期,这可能归因于肾清除。较短半寿期可能妨碍治疗剂在靶向的部位充分积累。抗体片段的产生并不繁琐,因为片段可能形成聚集物并且可能比全尺寸单克隆抗体不稳定。此外,非相关重链和轻链的不想要配对导致无活性抗原结合位点和/或其他无功能的不想要的副产物的形成,这在临床规模生产和治疗性应用抗体片段中是主要问题。具体而言,其中两个或更多个Fab借助一种连接物彼此融合的串联-Fab构建体不是可行的,原因在于两条轻链的随机缔合产生无活性、不想要的副产物。这些缺点现在已经用本发明的新抗体样式克服。本文中提供一种新的双特异性抗体样式,所述双特异性抗体样式可以因错配副产物的量减少而以增加的产率容易地产生,比本领域已知的双特异性抗体片段显示更少聚集。使用交叉方案纠正LC缔合可以在不需要产生共同轻链的情况下实现。常规轻链法不可能用于现存的抗体。此外,与许多常规双特异性抗体片段相比,这种新的双特异性抗体样式具有更高的分子量,因此防止过度肾清除并导致改进的体内半寿期。新的双特异性抗体样式具有完整功能并且具有与相应的常规双特异性抗体可比较的或改进的结合作用和活性。
概述
本发明涉及包含至少两个Fab片段的双特异性抗体,其中第一Fab片段包含对第一抗原特异的至少一个抗原结合位点;和第二Fab片段包含对第二抗原特异的至少一个抗原结合位点,其中将第二Fab重链和轻链的可变区或恒定区交换;并且其中所述双特异性抗体缺少Fc结构域。在一个实施方案中,第一和第二Fab片段借助肽接头连接。优选地,所述肽接头是(G4S)2接头。
在一个实施方案中,所述抗体额外地包含第三Fab片段。在另一个实施方案中,所述第三Fab片段包含对第一或第二抗原特异、优选地对第一抗原特异的至少一个抗原结合位点。
在一个实施方案中,第三Fab片段与第一Fab片段的轻链或重链连接。在另一个实施方案中,第三Fab片段与第二Fab片段的轻链或重链的N或C末端连接。在一个实施方案中,第三Fab片段借助肽接头与第一或第二Fab片段连接。优选地,所述肽接头是(G4S)2接头。
本发明的双特异性抗体至少是双价的并可以是三价或多价的,例如四价。在一个实施方案中,所述双特异性抗体是双价的(1+1样式),其中一个结合位点分别各自靶向第一抗原和第二抗原。在另一个实施方案中,所述双特异性抗体是三价的(2+1样式),其中两个结合位点分别各自靶向第一抗原,并且一个结合位点靶向第二抗原,如以下部分中详述。
在第二目的中,本发明涉及一种包含本发明双特异性抗体的药物组合物。
在第三目的中,本发明涉及用于治疗癌症的本发明双特异性抗体。在另一个实施方案中,提供了该双特异性抗体作为药物的用途。优选地,所述用途是用于治疗癌症。
在其他目的中,本发明涉及包含编码本发明双特异性抗体的重链的序列的核酸序列、包含编码本发明双特异性抗体的轻链的序列的核酸序列、包含本发明核酸序列的表达载体和包含本发明载体的原核或真核宿主细胞。此外,提供了产生抗体的方法,包括培养宿主细胞,从而产生所述抗体。
在又一个实施方案中,提供了包含本发明双特异性抗体和细胞毒性剂的免疫缀合物。
附图简述
图1:示意性显示本发明的示例性双特异性抗体样式。a)Fab-Crossfab分子C端,b)Fab-Crossfab分子N端,c)(Fab)2-Crossfab分子C端,d)(Fab)2-Crossfab分子N端,e)Fab-Crossfab-Fab分子。
图2:人Fab(MCSP)-Crossfab(CD3)产生和纯化的分析:SDS-PAGE:4-12%Bis/Tris(NuPage[invitrogen];考马斯染色):a)1-Mark12(invitrogen),2-未还原的人Fab(MCSP)-Crossfab(CD3);b)1-Mark12(Invitrogen;),2-还原的人Fab(MCSP)-Crossfab(CD3)。
图3:Fab(MCSP)-Crossfab(CD3)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex20010/300GL[GE Healthcare];2mM MOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品)。
图4:人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)产生和纯化的分析:SDS-PAGE:4-12%Bis/Tris(NuPage[invitrogen];考马斯染色):a)1-Mark12(invitrogen),2-未还原的人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3);b)1-Mark12(Invitrogen;),2-还原的人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)。
图5:人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex20010/300GL[GE Healthcare];2mMMOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品)。
图6:人Fab(MCSP)-Crossfab(CD3)-Fab(MCSP)产生和纯化的分析。SDS-PAGE:4-12%Bis/Tris(NuPage[invitrogen];考马斯染色):a)1-Mark12(invitrogen),2-未还原的人Fab(MCSP)-Crossfab(CD3)-Fab(MCSP);b)1-Mark12(Invitrogen;),2-还原的人Fab(MCSP)-Crossfab(CD3)-Fab(MCSP)。
图7:人Fab(MCSP)-Crossfab(CD3)-Fab(MCSP)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex20010/300GL[GE Healthcare];2mMMOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品)。
图8:鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)产生和纯化的分析。SDS-PAGE:4-12%Bis/Tris(NuPage[invitrogen];考马斯染色):a)1-Mark12(invitrogen),2-未还原的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP);b)1-Mark12(Invitrogen;),2-还原的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)。
图9:鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex20010/300GL[GE Healthcare];2mMMOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品)。
图10:与人泛T细胞(E:T比率=5:1)共培养并且由不同浓度的人Fab(MCSP)-Crossfab(CD3)(=“Fab-Crossfab”)、人Fab(MCSP)-Crossfab(CD3)-Fab(MCSP)(=“Fab-Crossfab-Fab”)、人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)(=“(Fab)2-Crossfab”)以及(scFv)2(抗MCSP/抗人CD3e)(=“(scFv)2”)双特异性分子活化20小时的情况下,对MDA-MB-435肿瘤细胞的杀伤作用(如通过LDH释放所测量)。与“(scFv)2”构建体相比,具有双价MCSP靶向作用的构建体显示可比较的细胞毒活性,然而具有单价MCSP结合作用的“Fab-Crossfab”构建体明显效力较小。
图11:人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)(=“(Fab)2-Crossfab”)和(scFv)2(抗MCSP/抗huCD3e)(=“(scFv)2”)构建体的比较,描述了与人泛T细胞(E/T比率=5:1)共培养并且由不同浓度的双特异性构建体和相应IgG活化21小时的情况下,来自MDA-MB-435肿瘤细胞的LDH释放。“(Fab)2-Crossfab”至少可比地与(scFv)2分子同样良好地在靶细胞中诱导凋亡。
图12:人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)(=“(Fab)2-Crossfab”)和(scFv)2(抗MCSP/抗huCD3e)(=“(scFv)2”)构建体的比较。描述了与人PBMC(E/T比率=10:1)共培养并且由不同浓度的双特异性构建体和相应IgG活化26小时的情况下,来自MV-3人黑素瘤肿瘤细胞的LDH释放。“(Fab)2-Crossfab”至少可比地与(scFv)2分子同样良好地在靶细胞中诱导凋亡。
图13:通过用靶向人MCSP的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)构建体(=(Fab)2-CrossFab)以及鼠CD3活化原代鼠T细胞所诱导的来自B16/F10-人MCSP Fluc2(克隆48肿瘤细胞)的LDH释放。效应细胞对靶细胞比率是5:1。在37℃,5%CO2温育23.5小时后分析该测定法。该构建体诱导浓度依赖性T细胞介导的表达人MCSP的靶细胞凋亡。
图14:通过用50nM靶向人MCSP的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)构建体(=(Fab)2-CrossFab)以及鼠CD3活化原代鼠T细胞所诱导的来自B16/F10-人MCSP Fluc2(克隆48肿瘤细胞)的LDH释放。效应细胞对靶细胞比率是5:1。在37℃,5%CO2温育23.5小时后分析该测定法。该构建体诱导T细胞介导的表达人MCSP的靶细胞凋亡。在构建体的这种浓度时,仅存在弱的T细胞过度活化。
图15:在用1nM不同的CD3-MCSP双特异性构建体(人Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)(=“(Fab)2-Crossfab”)和(scFv)2(抗MCSP/抗huCD3e)(=“(scFv)2”))在Colo-38肿瘤细胞存在(A、B)或不存在(C、D)下处理24小时后,在全血的上清液中测量的不同细胞因子水平。将280μl全血铺种96孔板的每个孔并添加30000个Colo-38细胞,如所示。在Colo-38肿瘤细胞存在下活化T细胞时分泌的主要细胞因子是IL-6,随后是IFNγ。此外,粒酶B的水平也在靶细胞存在下活化T细胞时极大地增加。通常,与其他双特异性构建体相比,“(scFv)2”构建体升高TNF和IFNγ的水平,以及在靶细胞存在下(A和B)略微升高粒酶B的水平。
在靶细胞存在或不存在下由双特异性构建体活化T细胞时,不存在Th2细胞因子(IL-10和IL-4)的明显分泌。在这种测定法中,还存在微弱IFNγ分泌,所述分泌由“(Fab)2-Crossfab”构建体在靶细胞不存在的情况下诱导。
图16:从脾细胞分离的鼠泛T细胞上晚期活化标记物CD25的表面表达水平。鼠泛T细胞在B16/F10-人MCSP Fluc2克隆48肿瘤靶细胞存在或不存在下与50nM鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)构建体(=(Fab)2-CrossFab)双特异性构建体(靶向鼠CD3,以及人MCSP)温育,如所示(E:T比率是10:1)。描述了70小时后CD8+T细胞上晚期活化标记物CD25的表达水平。在具有(Fab)2-CrossFab构建体的CD8+T细胞上CD25的上调仅在靶细胞存在的情况下出现。所用的调节至相同体积摩尔浓度的参比IgG不能够上调CD25。
图17:Fab(CD33)-CrossFab(CD3)产生和纯化的分析。SDS-PAGE:a)3-8%Tris/乙酸盐(NuPage[invitrogen];考马斯染色):a)1-HiMark(invitrogen),2-未还原的鼠Fab(CD33)-CrossFab(CD3);b)4-12%Bis/Tris(NuPage[invitrogen]:1-Mark12(invitrogen),2-还原的Fab(CD33)-CrossFab(CD3)。
图18:Fab(CD33)-CrossFab(CD3)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex20010/300GL[GE Healthcare];2mM MOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品)。
图19:与人PBMC(E:T比率=5:1)共培养并且由不同浓度的CD3-MCSP双特异性构建体(人Fab(MCSP)-Crossfab(CD3),称为“1+1无Fc”;和(scFv)2(抗MCSP/抗人CD3e)(=“(scFv)2”)参考分子)活化24小时的情况下,对MV-3肿瘤细胞的杀伤作用(如通过LDH释放所测量)。“1+1无Fc”构建体在MV-3靶细胞中以计算的EC5025.4pM诱导凋亡,而“(scFv)2”参考分子的计算的EC50是57pM,这显示“1+1无Fc”分子就EC50而言略微更好的效力。
图20:CD4+或CD8+T细胞的活化,如在人MCSP阳性MV-3肿瘤细胞存在下,与用CD3-MCSP双特异性构建体(分别是人Fab(MCSP)-Crossfab(CD3),称为“1+1无Fc”;和(scFv)2(抗MCSP/抗人CD3e)(=“(scFv)2”)参考分子)处理约24小时的人PBMC(E:T比率=10:1)共培养时CD69的上调(A)、CD69阳性细胞相应增加(B)所度量。通常,与CD4+T细胞相比,CD69中位值在CD8+T细胞上更高。对于两种构建体,存在CD69中位值的明显浓度依赖性增加,以及CD69阳性细胞百分比的明显浓度依赖性增加。
图21:(scFv)2参考分子的图示。
图21:(scFv)2(抗MCSP/抗人CD3e)产生和纯化的分析。SDS-PAGE:4-12%Bis/Tris(NuPage[invitrogen];考马斯染色的):1-Mark12(invitrogen),2-还原的(scFv)2(抗MCSP/抗人CD3e);3-未还原的(scFv)2(抗MCSP/抗人CD3e)。
图23:(scFv)2(抗MCSP/抗人CD3e)产生和纯化的分析。分析性大小排阻层析,色谱图A280(Superdex7510/300GL[GE Healthcare];2mM MOPS pH7.3,150mM NaCl,0.02%(w/v)NaCl;注入50μg样品((scFv)2(抗MCSP/抗人CD3e)))。
本发明的实施方案的详细描述
I.定义
“构架”或“FR”指除高变区(HVR)残基之外的可变结构域残基。可变结构域的FR通常由以下4个FR结构域组成:FR1、FR2、FR3和FR4。因此,HVR序列和FR序列通常按以下序列出现在VH(或VL)中:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
出于本文目的,“接纳体人类构架”是这样的构架,它包含源自人免疫球蛋白构架的轻链可变结构域(VL)构架或重链可变结构域(VH)构架或如下文定义的人共有序列构架的氨基酸序列。“源自”人免疫球蛋白构架或人类共有构架的接纳体人类构架可以包含其相同的氨基酸序列,或它可以含有氨基酸序列变化。在一些实施方案中,氨基酸变化的数目是10或更小、9或更小、8或更小、7或更小、6或更小、5或更小、4或更小、3或更小、或2或更小。在一些实施方案中,VL接纳体人类构架在序列上与VL人免疫球蛋白构架序列或人类共有构架序列相同。
“人类共有构架”是这样的构架,它代表在人免疫球蛋白VL或VH构架序列的选项中最常出现的氨基酸残基。通常,人免疫球蛋白VL或VH构架序列的选项来自可变结构域序列的亚组。通常,序列亚组是如Kabat等人,Sequencesof Proteins of Immunological Interest(目的免疫蛋白质的序列),第5版,NIHPublication91-3242,Bethesda MD(1991),第1-3卷中那样的亚组。在一个实施方案中,对于VL,该亚组是如上文Kabat等人中描述的亚组κI。在一个实施方案中,对于VH,该亚组是如上文Kabat等人中描述的亚组III。
如本文所用,术语“高变区”或“HVR”指抗体可变结构域中在序列方面高度变化和/或形成结构上限定的环(“高变环”)的每个区域。通常,天然4链抗体包含六个HVR;VH中三个(H1、H2、H3)和VL中三个(L1、L2、L3)。HVR通常包含来自高变环和/或来自“互补决定区”(CDR)的氨基酸残基,后者具有最高序列变异性和/或参与抗原识别。示例性高变环存在于第26-32(L1)、50-52(L2)、91-96(L3)、26-32(H1)、53-55(H2)和96-101(H3)位氨基酸残基处。(Chothia和Lesk,J.Mol.Biol.196:901-917(1987))。示例性CDR(CDR-L1、CDR-L2、CDR-L3、CDR-H1、CDR-H2、和CDR-H3)存在于L1的第24-34位氨基酸残基、L2的第50-56位氨基酸残基、L3的第89-97位氨基酸残基、H1的第31-35B位氨基酸残基、H2的第50-65位氨基酸残基和H3的第95-102位氨基酸残基处。(Kabat等人,Sequences of Proteins of Immunological Interest(目的免疫蛋白质的序列),第5版.Public Health Service,National Institutes of Health,Bethesda,MD(1991))。在谈及形成抗原结合区的可变区部分时,术语“高变区(HVR)”和“互补决定区(CDR)”在本文中可互换地使用。这种特定区域已经由描述Kabat等人,美国卫生和公众服务部(U.S.Dept.of Health and Human Services),"Sequencesof Proteins of Immunological Interest(目的免疫蛋白质的序列)"(1983)并且由Chothia等人,J.Mol.Biol.196:901-917(1987)描述,其中所述定义包括彼此比较时氨基酸残基的重叠或子集。然而,谈及抗体或其变体的CDR的任一个定义的应用意在处于如本文中定义和使用的术语范围内。作为比较,下文在表1中描述了构成如上文所引用每篇参考文献所定义的CDR的适宜氨基酸残基。构成特定CDR的确切残基数目将根据该CDR的序列和尺寸变动。根据抗体的可变区氨基酸序列,本领域技术人员可以常规地确定哪种残基构成特定CDR。
表1.CDR定义1
CDR Kabat Chothia AbM2
VHCDR1 31-35 26-32 26-35
VHCDR2 50-65 52-58 50-58
VHCDR3 95-102 95-102 95-102
VLCDR1 24-34 26-32 24-34
VLCDR2 50-56 50-52 50-56
VLCDR3 89-97 91-96 89-97
1根据Kabat等人(见下文)所述的编号惯例对表1中全部CDR定义编号
2如表1中使用的具有小写体“b”的“AbM”指如Oxford Molecular“AbM”抗体建模软件所定义的CDR。
Kabat等人还定义了适用于任何抗体的可变区序列编号体系。本领域普通技术人员可以毫无疑义地将这种Kabat编号体系应用至任何可变区序列,不依赖于除序列本身之外的任何实验数据。如本文所用,“Kabat编号”指Kabat等人,美国卫生和公众服务部(U.S.Dept.of Health and Human Services),"Sequences of Proteins of Immunological Interest(目的免疫蛋白质的序列)"(1983)所述的编号体系。除非另外说明,否则根据Kabat编号体系来提及抗体可变区中特定氨基酸残基位置的编号。
除了VH中的CDR1外,CDR通常包含形成高变环的氨基酸残基。CDR还包含“特异性决定残基”或“SDRs”,它们是接触抗原的残基。SDR含于CDR的称作缩写-CDR或a-CDR的区域内部。示例性a-CDR(a-CDR-L1、a-CDR-L2、a-CDR-L3、a-CDR-H1、a-CDR-H2和a-CDR-H3)存在于L1的第31-34位氨基酸残基、L2的第50-55位氨基酸残基、L3的第89-96位氨基酸残基、H1的第31-35B位氨基酸残基、H2的第50-58位氨基酸残基和H3的第95-102位氨基酸残基处。(见Almagro和Fransson,Front.Biosci.13:1619-1633(2008))。除非另外说明,可变结构域中的HVR残基和其他残基(例如,FR残基)在本文中根据上文Kabat等人所述编号。
术语“抗体”在本文中以最广意义使用并且涵盖多种抗体结构物,包括但不限于单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体)和抗体片段,只要它们显示出所需的抗原结合活性。具体而言,术语“抗体”还包括本发明的包含至少两个fab片段但是没有Fc结构域的双特异性抗体。
“人抗体”是这样一种抗体,它拥有与下述抗体的氨基酸序列相对应的氨基酸序列,所述抗体由人或人细胞产生或从利用人抗体库或其他编码人抗体的序列的非人类来源衍生。这种人抗体定义特别排除包含非人抗原结合残基的人源化抗体。
如本文所用,术语“重组人抗体”意在包括通过重组手段所制备、表达、产生或分离的全部人抗体,如从宿主细胞如NS0或CHO细胞或从相对于人免疫球蛋白基因为转基因的动物(例如小鼠)中分离的抗体或使用转染至宿主细胞中的重组表达载体所表达的抗体。此类重组人抗体具有重排形式的可变区和恒定区。本发明的重组人抗体已经经历体内体细胞超突变。因此,重组抗体的VH和VL区的氨基酸序列是尽管源自人种系VH和VL序列并且与之相关,但可以不天然存在于体内人抗体种系库内部的序列。
“人源化”抗体指包含来自非人类HVR的氨基酸残基和来自人FR的氨基酸残基的嵌合抗体。在某些实施方案中,人源化抗体将包含至少1个、并且一般2个可变结构域的基本上全部,其中全部或基本上全部的HVR(例如,CDR)与非人抗体的那些HVR对应并且全部或基本上全部的FR区与人抗体的那些FR对应。人源化抗体任选地可以包含抗体恒定区的从人抗体衍生的至少一部分。抗体的“人源化形式”例如,非人抗体,指已经历过人源化的抗体。由本发明涵盖的其他形式的“人源化抗体”是这些抗体,其中恒定区已经由原始抗体的恒定区被额外地修饰或改变以产生本发明的特性,尤其在C1q结合和/或Fc受体(FcR)结合方面。
术语“嵌合抗体”指一种抗体,其中重链和/或轻链的一部分源自特定来源或物种,而重链和/或轻链的剩余部分源自不同的来源或物种,通常借助重组DNA技术制备。优选包含鼠可变区和人恒定区的嵌合抗体。由本发明涵盖的其他优选形式的“嵌合抗体”是这样的抗体,其中恒定区已经由原始抗体的恒定区被修饰或改变以产生本发明的特性,尤其在C1q结合和/或Fc受体(FcR)结合方面。这类嵌合抗体也称作“类别转换抗体”。嵌合抗体是表达的免疫球蛋白基因的产物,所述免疫球蛋白基因包含编码免疫球蛋白可变区的DNA区段和编码免疫球蛋白恒定区的DNA区段。用于产生嵌合抗体的方法涉及常规重组DNA并且基因转染技术是本领域熟知的。见,例如Morrison,S.L.等人,Proc.Natl.Acad.Sci.USA81(1984)6851-6855;美国专利号5,202,238和5,204,244。
如本文中所用的术语“单克隆抗体”指从基本上均一的抗体群体获得的抗体,即,包含于该群体的各个抗体是相同的和/或结合相同的表位,除了可能的变体抗体之外(例如,含有天然存在突变或在产生单克隆抗体制备物期间出现),这类变体通常以微小的量存在。与一般包括针对不同决定簇(表位)的不同抗体的多克隆抗体制备物相反,单克隆抗体制备物的每种单克隆抗体针对抗原上的单一决定簇。因此,修饰语“单克隆的”指示该抗体的特征为从基本上均一的抗体群体获得,并且不得解释为要求通过任何特定方法产生该抗体。例如,可以通过多种技术产生待根据本发明使用的单克隆抗体,所述技术包括但不限于杂交瘤方法、重组DNA方法、噬菌体展示方法和利用含有全部或部分的人免疫球蛋白基因座的转基因动物的方法,本文中描述了用于产生单克隆抗体的这类方法和其他示例性方法。
“抗体片段”指不为完整抗体的、包含完整抗体的一部分的分子,所述部分结合至与完整抗体结合的抗原。抗体片段的例子包括但不限于Fv,Fab',Fab'-SH,F(ab')2;双体抗体;线性抗体;单链抗体分子(例如scFv);和从抗体片段形成的多特异性抗体。scFv抗体例如在Houston,J.S.,Methods in Enzymol.203(1991)46-96)中描述。此外,抗体片段包括单链多肽,所述单链多肽具有VH结构域的特征,即能够与VL结构域一起装配成有功能的抗原结合位点,或具有VL结构域的特征,即能够与VH结构域一起装配成有功能的抗原结合位点,并因而提供全长抗体的抗原结合特性。
如本文所用,“Fab片段”指包含轻链片段的抗体片段,所述轻链片段包含轻链的VL结构域和恒定结构域(CL)以及重链的VH结构域和第一恒定结构域(CH1)。本发明的双特异性抗体包含至少两个Fab片段,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。由于可变区或恒定区的交换,所述第二Fab片段也称作“cross-Fab片段”或“xFab片段”或“交换(crossover)Fab片段”。交换Fab分子的两种不同链组合是可能的并且包含于本发明的双特异性抗体中:在一方面,Fab重链和轻链的可变区是交换的,即交换Fab分子包含由轻链可变区(VL)和重链恒定区(CH1)组成的肽链,和由重链可变区(VH)和轻链恒定区(CL)组成的肽链。这种交换Fab分子是也称作CrossFab(VLVH)。在另一方面,当Fab重链和轻链的恒定区交换时,交换Fab分子包含由重链可变区(VH)和轻链恒定区(CL)组成的肽链,和由轻链可变区(VL)和重链恒定区(CH1)组成的肽链。这种交换Fab分子是也称作CrossFab(CLCH1)
在一个实施方案中,所述Fab片段借助肽接头连接。“连接”意指Fab片段直接或者借助一个或多个肽接头通过肽键连接。
如在本发明中所用,术语“肽接头”指具有氨基酸序列的肽,所述肽优选地是合成来源的。本发明的这些肽接头用来使Fab片段之一与另一个Fab片段的C末端或N末端连接以形成本发明的多特异性抗体。优选地,所述肽接头是具有至少5个氨基酸长度、优选地具有5至100个、更优选地10至50个氨基酸长度的氨基酸序列的肽。在一个实施方案中,所述肽接头是(GxS)n或(GxS)nGm,其中G=甘氨酸,S=丝氨酸并且(x=3,n=3、4、5或6,以及m=0、1、2或3)或(x=4,n=2、3、4或5和m=0、1、2或3),优选地x=4并且n=2或3,更优选地x=4,n=2。另外,接头可以包含(一部分的)免疫球蛋白铰链区。在一个实施方案中,所述肽接头是(G4S)2(SEQ ID:NO28)。适于连接Fab片段的其他肽接头,例如(G4S)6-GG(SEQID NO:147)或(SG3)2-(SEG3)4-(SG3)-SG(SEQ ID NO:148),或EPKSC(D)-(G4S)2(SEQ ID Nos:145和146)。
术语“抗原结合结构域”指抗原结合分子的部分,所述部分包含与部分或完整抗原特异性结合并且与之互补的区域。在抗原是大抗原的情况下,抗原结合分子仅可以与抗原的特定部分结合,所述部分称作表位。抗原结合结构域可以由例如一个或多个抗体可变结构域(也称作抗体可变区)提供。优选地,抗原结合结构域包含抗体轻链可变区(VL)和抗体重链可变区(VH)。
术语“可变区”或“可变结构域”指抗体重链或轻链的参与抗体结合至抗原的结构域。天然抗体重链和轻链的可变结构域(分别是VH和VL)通常具有相似的结构,每种结构域包含4个保守的构架区(FR)和三个高变区(HVR)。(见,例如,Kindt等人,Kuby Immunology,第6版,W.H.Freeman and Co.,第91页(2007))。单个VH结构域或VL结构域可能足以赋予抗原结合特异性。另外,结合特定抗原的抗体可以利用来自结合该抗原的抗体的VH或VL结构域进行分离以分别筛选互补性VL结构域或VH结构域的文库。见,例如,Portolano等人,J.Immunol.150:880-887(1993);Clarkson等人,Nature352:624-628(1991)。
在本文中使用时,术语“抗体的抗原结合位点”指抗体的负责抗原结合的氨基酸残基。抗体的抗原结合部分包含来自“互补决定区”或“CDR”的氨基酸残基。“构架”或“FR”区是除如本文中定义的高变区残基之外的那些可变结构域区域。因此,抗体的轻链和重链可变结构域从N端至C末端包含结构域FR1、CDR1、FR2、CDR2、FR3、CDR3和FR4。尤其地,重链的CDR3是对抗原结合作用贡献最大并限定抗体特性的区域。根据Kabat等人,Sequences of Proteins ofImmunological Interest(目的免疫蛋白质的序列),第5版,美国公共卫生署(Public Health Service),国家健康研究所,Bethesda,MD(1991)的标准定义和/或来自“高变环”的那些残基确定CDR区和FR区。
术语“表位“包括能够与抗体特异性结合的任何多肽决定簇。在某些实施方案中,表位决定簇包括化学活跃的分子表面基团,如氨基酸、糖侧链、磷酰基或磺酰基,并且在某些实施方案中,可以具有特定的三维结构特征,和/或特定的电荷特征。表位是由抗体结合的抗原的区域。
术语“Fc结构域”在本文中用来定义免疫球蛋白重链的含有恒定区的至少一部分的C端区域。例如在天然抗体中,Fc结构域由源自处于IgG、IgA和IgD同种型的抗体的两条重链的第二和第三恒定结构域的两个相同蛋白质片段组成;IgM和IgE Fc结构域在每种多肽链中含有三个重链恒定结构域(CH结构域2-4)。本发明的双特异性抗体缺少Fc结构域。如本文所用,“缺少Fc结构域”意指本发明的双特异性抗体不包含CH2、CH3或CH4结构域;即恒定重链仅由一个或多个CH1结构域组成。
“亲和力”指分子(例如,抗体)的单一结合位点及其结合配偶体(例如,抗原)之间总计非共价相互作用的强度。除非另外指出,否则如本文所用,“结合亲和力”指反映结合对子的成员(例如,抗体和抗原)之间1:1相互作用的固有结合亲和力。分子X对其配偶体Y的亲和力可以通常由解离常数(KD)代表。亲和力可以由本领域已知的常见方法测量,包括本文所述的那些方法。在下文中描述用于测量结合亲和力的具体示意性和示例性实施方案。
如本文所用,术语“结合”或“特异性结合”意指结合作用对抗原是选择性的并且可以与不想要的或非特异的相互作用区别。抗原结合部分与特定抗原决定簇结合的能力可以通过酶联免疫吸附测定法(ELISA)或本领域技术人员熟悉的其他技术,例如表面等离子体共振(SPR)技术(在BIAcore仪上分析)(Liljeblad等人,Glyco J17,323-329(2000))和常规结合测定法(Heeley,Endocr Res28,217-229(2002))测量。在一个实施方案中,抗原结合部分与不相关蛋白质结合的程度小于抗原结合部分与抗原结合的程度约10%,如通过SPR测量。在某些实施方案中,与抗原结合的抗原结合部分或包含该抗原结合部分的抗原结合分子具有≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM,或≤0.001nM(例如10-8M或更小,例如从10-8M至10-13M,例如,从10-9M至10-13M)的解离常数(KD)。
“亲和力成熟的”抗体指在一个或多个高变区(HVR)中存在一个或多个改变的抗体,其中与不拥有这些改变的亲本抗体相比,这类改变导致抗体对抗原的亲和力改善。
在一个实施方案中,特异性结合第一抗原和第二抗原的双特异性抗体与不相关蛋白质结合的程度小于该抗体与第一或第二抗原结合的程度约10%,如通过放射免疫测定法(RIA)或流式细胞术(FACS)测量。在某些实施方案中,特异性结合第一抗原和第二抗原的双特异性抗体具有≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM,或≤0.001nM(例如10-8M或更小,例如从10-8M至10-13M,例如,从10-9M至10-13M)的解离常数(KD)。在某些实施方案中,特异性结合第一抗原和第二抗原的双特异性抗体与第一抗原或第二抗原的表位结合,所述表位在来自不同物种的第一或第二抗原之间保守。
抗体特异性指抗体对抗原特定表位的选择性识别作用。例如,天然抗体是单特异性。本发明的“双特异性抗体”是具有两种不同抗原结合特异性的抗体。本发明的抗体对两种不同抗原特异,即对第一抗原和第二抗原特异。
如本文所用,术语“单特异性”抗体指具有一个或多个结合位点的抗体,所述位点的每一个与相同抗原的相同表位结合。
如本文所用,术语“双特异性”抗体指具有至少两个结合位点的抗体,所述位点的每一个与相同抗原或不同抗原的不同表位结合。
本文提供的抗体是多特异性抗体,例如双特异性抗体。多特异性抗体是对至少两个不同位点具有结合特异性的单克隆抗体。本文提供了双特异性抗体,其具有针对第一抗原和第二抗原的结合特异性。在某些实施方案中,双特异性抗体可以与第一抗原或第二抗原的两个不同表位结合。
双特异性抗体也可以用来使细胞毒性剂定位至表达第一抗原或第二抗原的细胞。
如本申请中所用,术语“价态”指抗体分子中存在指定数目的结合位点。就这一点而论,术语“双价”、“四价”和“六价”指抗体分子中分别存在两个结合位点、4个结合位点和六个结合位点。本发明的双特异性抗体至少是“双价的”并且可以是“三价”或“多价的”(例如“四价”或“六价”)。
本发明的抗体具有两个或更多个结合位点并且是双特异性的。即,这些抗体可以是双特异性的,甚至在存在多于两个结合位点的情况下(即该抗体是三价或多价的)也是如此。
“与参考抗体结合相同表位的抗体”指在竞争测定法中阻断参考抗体与其抗原结合达50%或更多的抗体,并且反过来,参考抗体在竞争测定法中阻断该抗体与其抗原结合达50%或更多。本文提供示例性竞争测定法。
“没有实质交叉反应性”意指分子(例如,抗体)不识别或不特异性结合与该分子的实际靶抗原不同的抗原(例如与靶抗原密切相关的抗原),特别地与该靶抗原相比时。例如,抗体可以结合小于约10%至小于约5%的与实际靶抗原不同的抗原,或可以按选自小于约10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.2%、或0.1%的量结合与实际靶抗原不同的所述抗原,优选地按小于约2%、1%或0.5%并且最优选地小于约0.2%或0.1%的量结合与实际靶抗原不同的抗原。
相对于参考多肽序列,将“氨基酸序列同一性百分数(%)”定义为比对序列并根据需要引入空位以实现最大序列同源性百分数并且不考虑任何保守性置换作为序列同一性的部分之后,候选序列中与参考多肽序列中的氨基酸残基相同的氨基酸残基的百分数。为了确定氨基酸序列同一性百分数的比对可以按本领域能力范围内的多种方式实现,例如,使用可公开获得的计算机软件如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)软件。本领域技术人员可以确定用于比对序列的适宜参数,包括为实现正在比较的全长序列范围内最大比对所需要的任何算法。然而,出于本文目的,使用序列比较计算机程序ALIGN-2产生氨基酸序列同一性%值。ALIGN-2序列比较计算机程序由Genentech,Inc.授权,并且源代码已经随用户文档提交至华盛顿特区20559的美国版权局,在那里它以美国版权登记号TXU510087登记。ALIGN-2程序从Genentech,Inc.,SouthSan Francisco,加利福尼亚州可公开获得或可以从源代码汇编。应当将ALIGN-2程序汇编在UNIX操作***(包括数字式UNIX V4.0D)上使用。全部序列比较参数由ALIGN-2程序设定并且不变动。
在使用ALIGN-2比较氨基酸序列的情况下,如下计算给定氨基酸序列A与给定氨基酸序列B、同给定氨基酸序列B或针对给定氨基酸序列B(这可以备选地描述为与给定氨基酸序列B、同给定氨基酸序列B或针对给定氨基酸序列B具有或包含某个氨基酸序列同一性%的给定氨基酸序列A)的氨基酸序列同一性%:100乘以分数X/Y,其中X是由序列比对程序ALIGN-2在该程序的A和B比对结果中评定为相同匹配的氨基酸残基的数目,并且其中Y是B中氨基酸残基的总数。将可以理解在氨基酸序列A的长度不等于氨基酸序列B的长度时,A相对于B的氨基酸序列同一性%将不等于B相对于A的氨基酸序列同一性%。除非另外特别声明,否则本文所用的全部氨基酸序列同一性值%如紧接前段中所述那样使用ALIGN-2计算机程序获得。
“分离的”抗体是已经与其自然环境的组分分离的一种抗体。在一些实施方案中,将抗体纯化至大于95%或99%纯度,如通过例如电泳(例如,SDS-PAGE、等电聚焦(IEF)、毛细管电泳法)或色谱(例如,离子交换或反相HPLC)所确定。关于评估抗体纯度的方法的综述,见,例如,Flatman等人,J.Chromatogr.B848:79-87(2007)。
“分离的”核酸指已经与其自然环境的组分分离的核酸分子。分离的核酸包括含于细胞内的核酸分子,所述细胞通常含有该核酸分子,但是该核酸分子存在于染色体外或与其天然染色***置不同的染色***置处。
“编码本发明双特异性抗体的分离核酸”指编码抗体重链和轻链(或其片段)的一个或多个核酸分子,包括在单一载体或独立载体中的这类核酸分子和在宿主细胞中一个或多个位置处存在的这类核酸分子。
如本申请中使用,术语”氨基酸”是指一组天然存在的羧基α-氨基酸,包括丙氨酸(三字母代码:ala,单字母代码:A)、精氨酸(arg,R)、天冬酰胺(asn,N)、天冬氨酸(asp,D)、半胱氨酸(cys,C)、谷氨酰胺(gln,Q)、谷氨酸(glu,E)、甘氨酸(gly,G)、组氨酸(his,H)、异亮氨酸(ile,I)、亮氨酸(leu,L)、赖氨酸(lys,K)、甲硫氨酸(met,M)、苯丙氨酸(phe,F)、脯氨酸(pro,P)、丝氨酸(ser,S)、苏氨酸(thr,T)、色氨酸(trp,W)、酪氨酸(tyr,Y)和缬氨酸(val,V)。
如本文所用,术语“载体”指能够增殖与其连接的另一种核酸的核酸分子。该术语包括作为自我复制型核酸结构的载体以及并入已经引入该载体至宿主细胞的基因组内的载体。某些载体能够指导与它们有效连接的核酸表达。此类载体在本文中称作“表达载体”。
如本文所用,表述“细胞”、“细胞系”和“细胞培养物”互换使用并且全部这类名称包括后代。因而,词语“转化体”和“经转染的细胞”包括原代主题细胞和从其衍生的培养物,而无论转移次数是多少。还应当理解,全部后代可以在DNA含量方面不是精确地相同,原因在于有意或不经意突变。包括具有与最初转化细胞中所筛选的相同功能或生物活性的变体后代。
术语“宿主细胞”、“宿主细胞系”和“宿主细胞培养物”互换使用并且指已经向其中引入外源核酸的细胞,包括这类细胞的后代。宿主细胞包括“转化体”和“经转化的细胞”,其包括原代转化细胞和从其衍生的后代,而无论传代次数是多少。后代可以在核酸含量方面不与亲本细胞完全相同,反而可以含有突变。本文包括具有与最初转化细胞中所筛选或选择的相同功能或生物活性的突变后代。
“裸抗体”指不与异源部分(例如,细胞毒部分)或放射标记物缀合的抗体。裸抗体可以存在于药物制剂中。
“免疫缀合物”是与一个或多个异源分子(包括但不限于细胞毒性剂)缀合的抗体。
如本文所用,术语“细胞毒性剂”指抑制或阻止细胞功能和/或造成细胞死亡或破坏的物质。细胞毒性剂包括但不限于放射性同位素(例如,At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素);化疗药或药物(例如,甲氨蝶呤、阿霉素、长春碱类生物碱(长春新碱、长春碱、依托泊苷)、多柔比星、美法仑、丝裂霉素C、苯丁酸氮芥、佐柔比星或其他嵌入剂);生长抑制剂;酶及其片段如溶核酶;抗生素;毒素如细菌源、真菌源、植物源或动物源的小分子毒素或酶活性毒素,包括其片段和/或变体;和下文公开的各种抗肿瘤剂或抗癌剂。
术语“N末端”指N末端的最末氨基酸,术语“C末端”指C末端的最末氨基酸。
术语“药物制剂”指一种制备物,所述制备物处于这类形式从而允许其中所含的有效成分的生物活性有效,并且不含有对于将会施用该制剂的受试者不可接受地有毒的额外组分。
“可药用载体”指药物制剂中除有效成分之外的对受试者无毒的成分。可药用载体包括但不限于缓冲剂、赋形剂、稳定剂或防腐剂。
如本文所用,名词“治疗”(和其语法变型如动词“治疗”或分词“治疗”)指意欲改变正在治疗的个体的天然过程的临床介入,并且可以为了预防或在临床病理学过程期间实施。想要的治疗效果包括,但不限于防止疾病出现或复发、减轻症状、减小疾病的任何直接或间接病理学后果、防止转移、降低病情进展速率、改善或缓和疾病状态,以及缓解或预后改善。在一些实施方案中,本发明的抗体用来延缓疾病发展或用来减慢疾病的进展。
“个体”或“受试者”是哺乳动物。哺乳动物包括但不限于驯化动物(例如,奶牛、绵羊、猫、犬和马)、灵长类(例如,人和非人灵长类如猴)、兔和啮齿类(例如,小鼠和大鼠)。在某些实施方案中,个体或受试者是人。
药剂(例如,药物制剂)的“有效量”指以需要的剂量并持续需要的时间段,有效实现所需治疗性或预防性结果的量。
如本文所用,术语“癌症”指增殖性疾病,如淋巴瘤、淋巴细胞白血病、肺癌、非小细胞肺癌(NSCL)、支气管肺泡细胞肺癌、骨癌、胰腺癌、皮肤癌、头或颈癌、皮肤或眼球内黑素瘤、子宫癌、卵巢癌、直肠癌、肛区癌、胃癌、胃癌、结肠癌、乳腺癌、子宫癌、输卵管癌、子宫内膜癌、子***、***癌、外阴癌、霍奇金病、食道癌、小肠癌、内分泌***癌、甲状腺癌、甲状旁腺癌、肾上腺癌、软组织肉瘤、尿道癌、***癌、***癌、膀胱癌、肾或输尿管癌、肾细胞癌、肾盂癌、间皮瘤、肝细胞癌、胆道癌、中枢神经***(CNS)肿瘤、脊枢椎肿瘤、脑干胶质瘤、多形性胶质母细胞瘤、星形细胞瘤、神经鞘瘤、室管膜瘤、髓母细胞瘤、脑膜瘤、鳞状细胞癌、垂体腺瘤和Ewings肉瘤,包括前述任一癌症的难治形式或一种或多种上述癌症的组合。
术语“包装插页”用来指治疗产品的商业包装中习惯性包括的说明书,所述说明书含有关于适应症、用法、剂量、施用、联合疗法、禁忌症和/或涉及此类治疗产品用途之警告的信息。
II.组合物和方法
A.示例性双特异性抗体
本发明涉及包含至少两个Fab片段的双特异性抗体,其中第一Fab片段包含对第一抗原特异的至少一个抗原结合位点;和第二Fab片段包含对第二抗原特异的至少一个抗原结合位点,其中将第二Fab片段的重链和轻链的可变区或恒定区交换;并且其中所述双特异性抗体缺少Fc结构域。在一个实施方案中,第一和第二Fab片段借助肽接头连接。优选地,所述肽接头是具有至少5个氨基酸长度、优选地具有5至100个、更优选地10至50个氨基酸长度的氨基酸序列的肽。在一个实施方案中,所述肽接头是(GxS)n或(GxS)nGm,其中G=甘氨酸,S=丝氨酸并且(x=3,n=3、4、5或6,以及m=0、1、2或3)或(x=4,n=2、3、4或5和m=0、1、2或3),优选地x=4并且n=2或3,更优选地其中x=4,n=2。在一个实施方案中,所述肽接头是(G4S)2。肽接头用来连接第一和第二Fab片段。在一个实施方案中,第一Fab片段与第二Fab片段的C末端或N末端连接。
在一个实施方案中,第一Fab片段与第二Fab片段的N末端连接。取决于第二Fab片段的重链和轻链的可变结构域或恒定结构域是否交换,当第一Fab片段与第二Fab片段的N末端连接时,不同的双特异性抗体分子是可能的。
在一个实施方案中,交换第二Fab片段的可变结构域(即第二Fab片段是CrossFab(VHVL)),并且第一Fab片段的重链或轻链的C末端与第二Fab片段的VLCH1链的N末端连接。优选地,第一Fab片段的C末端重链与第二Fab片段的VLCH1链的N末端连接。因而,在一个实施方案中,双特异性抗体包含三条链:第一Fab片段的轻链(VLCL)、借助肽接头与第二Fab片段的VLCH1链连接的第一Fab片段的重链(VHCH1-接头-VLCH1)和第二Fab片段的VHCL链。
在另一个实施方案中,交换第二Fab片段的恒定结构域(即第二Fab片段是CrossFab(CLCH1)),并且第一Fab片段的重链或轻链的C末端与第二Fab片段的VHCL链的N末端连接。优选地,第一Fab片段的重链的C末端与第二Fab片段的VHCL链的N末端连接。因而,在一个实施方案中,双特异性抗体包含三条链:第一Fab片段的轻链(VLCL)、借助肽接头与第二Fab片段的VHCL链连接的第一Fab片段的重链(VHCH1-接头-VHCL)和第二Fab片段的VLCH1链。
在一个实施方案中,第一Fab片段与第二Fab片段的C末端连接。取决于第二Fab片段的重链和轻链的可变结构域或恒定结构域是否交换,当第一Fab片段与第二Fab片段的C末端连接时,不同的双特异性抗体分子是可能的。
在一个实施方案中,交换第二Fab片段的可变结构域(即第二Fab片段是CrossFab(VHVL)),并且第二Fab片段的CH1结构域与第一Fab片段的重链或轻链的N末端连接。优选地,第二Fab片段的CH1结构域与第一Fab片段的重链的N末端连接。因而,在一个实施方案中,双特异性抗体包含三条链:第一Fab片段的轻链(VLCL)、借助肽接头与第一Fab片段的重链连接的第二Fab片段的VLCH1链(VLCH1-接头-VHCH1)和第二Fab片段的VHCL链。
在另一个实施方案中,交换第二Fab片段的恒定结构域(即第二Fab片段是CrossFab(CLCH1)),并且第二Fab片段的CL结构域与第一Fab片段的重链或轻链的N末端连接。优选地,第二Fab片段的CL结构域与第一Fab片段的重链的N末端连接。因而,在一个实施方案中,双特异性抗体包含三条链:第一Fab片段的轻链(VLCL)、借助肽接头与第一Fab片段的重链连接的第二Fab片段的VHCL链(VLCH1-接头-VHCH1)和第二Fab片段的VLCH1链。
本发明的双特异性抗体至少是双价的并可以是三价或多价的,例如四价。在一个实施方案中,所述双特异性抗体是双价的(1+1样式),其中一个结合位点分别各自靶向第一抗原和第二抗原。在另一个实施方案中,所述双特异性抗体是三价的(2+1样式),其中两个结合位点分别各自靶向第一抗原,并且一个结合位点靶向第二抗原,如以下部分中详述。
在一个实施方案中,所述抗体额外地包含第三Fab片段。在另一个实施方案中,所述第三Fab片段包含对第一或第二抗原特异、优选地对第一抗原特异的至少一个抗原结合位点。
在一个实施方案中,第三Fab片段与第一Fab片段的N末端或C末端连接。在一个实施方案中,第三Fab片段借助肽接头与第一Fab片段连接。优选地,所述肽接头是(G4S)2接头。
在一个实施方案中,第三Fab片段与第一Fab片段的轻链或重链的N末端或C末端连接。取决于第一Fab片段的哪个末端与第二Fab片段连接(如上文详述),第三Fab片段在第一片段的相对(游离)末端上连接。
在一个实施方案中,本发明的双特异性抗体包含三个Fab片段,其中所述Fab片段和所述接头从N端至C端方向按以下顺序连接:Fab片段3-接头-Fab片段1-接头-Fab片段2,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。在这个实施方案中,第三Fab片段的C末端与第一Fab片段的N末端连接。如上文详述,Fab片段可以借助重链或轻链彼此连接。在一个实施方案中,第三Fab片段的重链的C末端借助肽接头与第一Fab片段的重链的N末端连接;并且第一Fab片段的C末端与第二Fab片段的N末端连接,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。取决于第二Fab片段的重链和轻链的可变结构域或恒定结构域是否交换,不同的双特异性抗体分子是可能的。
在一个实施方案中,交换第二Fab片段的可变结构域(即第二Fab片段是CrossFab(VHVL)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VHCH1-接头-VHCH1-接头-VLCH1。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、与本身借助肽接头与第二Fab片段的VLCH1链连接的第一Fab片段的重链连接的第三片段的重链(VHCH1-接头-VHCH1-接头-VLCH1)和第二Fab片段的VHCL链。
在一个实施方案中,交换第二Fab片段的恒定结构域(即第二Fab片段是CrossFab(CLCH1)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VHCH1-接头-VHCH1-接头-VHCL。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、与本身借助肽接头与第二Fab片段的VHCL链连接的第一Fab片段的重链连接的第三片段的重链((VHCH1-接头-VHCH1-接头-VHCL)和第二Fab片段的VLCH1链。
在一个实施方案中,本发明的双特异性抗体包含三个Fab片段,其中所述Fab片段和所述接头从N端至C端方向按以下顺序连接:Fab片段2-接头-Fab片段1-接头-Fab片段3,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。在这个实施方案中,第三Fab片段的N末端与第一Fab片段的C末端连接。如上文详述,Fab片段可以借助重链或轻链彼此连接。在一个实施方案中,第三Fab片段的重链的N末端借助肽接头与第一Fab片段的重链的C末端连接;并且第一Fab片段的N末端与第二Fab片段的C末端连接,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。取决于第二Fab片段的重链和轻链的可变结构域或恒定结构域是否交换,不同的双特异性抗体分子是可能的。
在一个实施方案中,交换第二Fab片段的可变结构域(即第二Fab片段是CrossFab(VHVL)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VLCH1-接头-VHCH1-接头-VHCH1。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、与本身借助肽接头与第一Fab片段的重链连接的第一片段的重链连接的第二Fab片段的VLCH1链(VLCH1-接头-VHCH1-接头-VHCH1)和第二Fab片段的VHCL链。
在一个实施方案中,交换第二Fab片段的恒定结构域(即第二Fab片段是CrossFab(CLCH1)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VHCL-接头-VHCH1-接头-VHCH1。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、与本身借助肽接头与第一Fab片段的重链连接的第一片段的重链连接的第二Fab片段的VHCL链(VHCL-接头-VHCH1-接头-VHCH1)和第二Fab片段的VLCH1链。
在另一个实施方案中,第三Fab片段与第二Fab片段的轻链或重链的N或C末端连接。在一个实施方案中,第三Fab片段借助肽接头与第二Fab片段连接。优选地,所述肽接头是(G4S)2接头。如上文详述,Fab片段可以借助重链或轻链彼此连接。
在一个实施方案中,本发明的双特异性抗体包含三个Fab片段,其中所述Fab片段和所述接头从N端至C端方向按以下顺序连接:Fab片段1-接头-Fab片段2-接头-Fab片段3,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。在一个实施方案中,第三Fab片段的N末端与第二Fab片段的C末端连接。
在另一个实施方案中,第三Fab片段的重链的C末端借助肽接头与第二Fab片段的N末端连接;并且第一Fab片段的N末端与第二Fab片段的C末端连接,其中将第二Fab片段的重链和轻链的可变区或恒定区交换。
取决于第二Fab片段的重链和轻链的可变结构域或恒定结构域是否交换,不同的双特异性抗体分子是可能的。
在一个实施方案中,交换第二Fab片段的可变结构域(即第二Fab片段是CrossFab(VHVL)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VHCH1-接头-VLCH1-接头-VHCH1。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、借助肽接头与第二Fab片段的VLCH1链的N末端和所述VLCH1链的C末端(其与第一Fab片段的重链的N末端连接)的第三片段的重链(VHCH1-接头-VLCH1-接头-VHCH1)和第二Fab片段的VHCL链。
在一个实施方案中,交换第二Fab片段的恒定结构域(即第二Fab片段是CrossFab(CLCH1)),并且三个Fab片段的链从N端至C端方向按以下顺序连接:VHCH1-接头-VHCL-接头-VHCH1。在一个实施方案中,双特异性抗体包含4条链:第三Fab片段的轻链(VLCL)、第一Fab片段的轻链(VLCL)、借助肽接头与第二Fab片段的VHCL链的N末端和所述VHCL链的C末端(其与第一Fab片段的重链的N末端连接)的第三片段的重链(VHCH1-接头-VHCL-接头-VHCH1)和第二Fab片段的VLCH1链。
在本发明的一个实施方案中,双特异性抗体是人源化抗体,如下文详述。
在本发明的另一个实施方案中,双特异性抗体是人抗体,如下文详述。
在第二目的中,本发明涉及一种包含本发明双特异性抗体的药物组合物。
在第三目的中,本发明涉及用于治疗癌症的本发明双特异性抗体。在另一个实施方案中,提供该双特异性抗体作为药物的用途。优选地,所述用途是治疗癌症。
在其他目的中,本发明涉及包含编码本发明双特异性抗体的重链的序列的核酸序列、包含编码本发明双特异性抗体的轻链的序列的核酸序列、包含本发明核酸序列的表达载体和包含本发明载体的原核或真核宿主细胞。此外,提供了产生抗体的方法,包括培养宿主细胞,从而产生所述抗体。
在又一个实施方案中,提供了包含本发明双特异性抗体和细胞毒性剂的免疫缀合物。
在又一个方面,根据任一个以上实施方案的双特异性抗体可以单独或以组合方式合并如下文1-5部分中所述的任一特征:
1.抗体亲和力
可以根据实施例中所述的方法,通过表面等离子体共振(SPR),使用标准仪器如BIAcore仪(GE Healthcare)确定本文提供的双特异性抗体针对靶抗原的亲和力,并且可以通过重组表达获得受体或靶蛋白。备选地,双特异性抗体对不同受体或靶抗原的结合作用可以使用表达特定受体或靶抗原的细胞系评价,例如通过流式细胞术(FACS)评价。
在某些实施方案中,本文提供的双特异性抗体具有≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM或≤0.001nM(例如10-8M或更小,例如从10-8M至10-13M,例如,从10-9M至10-13M)的解离常数(KD)。
根据一个实施方案,使用表面等离子体共振测定法,使用
Figure BDA0000468687070000251
Figure BDA0000468687070000252
(BIAcore,Inc.,Piscataway,NJ)在25℃采用固定抗原CM5芯片以约10个响应单位(RU),测量KD。简而言之,根据供应商说明书,以盐酸N-乙基-N'-(3-二甲氨基丙基)-碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧甲基化葡聚糖生物传感器芯片(CM5,BIACORE,Inc.)。抗原用10mM乙酸钠,pH4.8稀释至5μg/ml(约0.2μM),随后以5μl/分钟的流速上样以实现偶联蛋白的大约10个响应单位(RU)。注射抗原后,注入1M乙醇胺以封闭未反应的基团。对于动力学测量,将Fab的两倍连续稀释物(0.78nM至500nM)在25℃以大约25μl/分钟的流速注射于具有0.05%聚山梨醇酯20(Tween-20TM)表面活性剂的PBS中(PBST)。使用简单的一对一朗格缪尔结合模型(
Figure BDA0000468687070000253
评价软件3.2版)通过同时拟合缔合和解离传感图(sensorgram),计算缔合速率(ka或kon)和解离速率(kd或koff)。将平衡解离常数(KD)计算为比率koff/kon。见,例如,Chen等人,J.Mol.Biol.293:865-881(1999)。如果通过以上表面等离子体共振测定法显示缔合速率超过106M-1s-1,则缔合速率可以使用荧光猝灭技术测定,其中所述的荧光猝灭技术在如光谱仪(如配备止流法(stop-flow)的分光光度计(Aviv Instruments)或具有搅拌型比色皿的8000-系列SLM-AMINCOTM分光光度计(ThermoSpectronic))中所测量的增加浓度的抗原存在下,在25℃测量在PBS,pH7.2中的20nM抗抗原抗体(Fab形式)的荧光发射强度(激发=295nm;发射=340nm,16nm带通)增加或减少。
2.嵌合和人源化抗体
在某些实施方案中,本文提供的双特异性抗体是嵌合抗体。某些嵌合抗体例如在美国专利号4,816,567;和Morrison等人,Proc.Natl.Acad.Sci.USA,81:6851-6855(1984))中描述。在一个例子中,嵌合抗体包含非人类可变区(例如,源自小鼠、大鼠、仓鼠、兔或非人灵长类如猴的可变区)和人类恒定区。在又一个例子中,嵌合抗体是“类转换”抗体,其中类或亚类已经相对亲本抗体发生改变。嵌合抗体包括其抗原结合片段。
在某些实施方案中,嵌合抗体是人源化抗体。一般地,将非人抗体人源化以降低对人的免疫原性,同时保留亲本非人抗体的特异性和亲和力。通常,人源化抗体包含其中HVR例如CDR(或其部分)源自非人抗体并且FR(或其部分)源自人抗体序列的一个或多个可变结构域。人源化抗体任选地也将包含人恒定区的至少一部分。在一些实施方案中,人源化抗体中的一些FR残基用来自非人抗体(例如,从中衍生HVR残基的抗体)的相应残基置换,例如,以恢复或改善抗体特异性或亲和力。
人源化抗体和制造它们的方法综述于例如Almagro和Fransson,Front.Biosci.13:1619-1633(2008)中,并且例如还在Riechmann等人,Nature332:323-329(1988);Queen等人,Proc.Nat’l Acad.Sci.USA86:10029-10033(1989);美国专利号5,821,337,7,527,791,6,982,321,和7,087,409;Kashmiri等人,Methods36:25-34(2005)(描述SDR(a-CDR)移植);Padlan,Mol.Immunol.28:489-498(1991)(描述“表面重塑(resurfacing)”);Dall'Acqua等人,Methods36:43-60(2005)(描述“FR改组”);和Osbourn等人,Methods36:61-68(2005)和Klimka等人,Br.J.Cancer,83:252-260(2000)(描述针对FR改组的“导向选择”方案)中描述。
可以用于人源化的人构架区包括但不限于:使用“最佳配合”法选择的构架区(见,例如,Sims等人,J.Immunol.151:2296(1993));从具有特定亚组的轻链可变区或重链可变区的人抗体的共有序列衍生的构架区(见,例如,Carter等人,Proc.Natl.Acad.Sci.USA,89:4285(1992);和Presta等人,J.Immunol.,151:2623(1993));人成熟(体细胞突变)构架区或人种系构架区(见,例如,Almagro和Fransson,Front.Biosci.13:1619-1633(2008));和从筛选FR文库衍生的构架区(见,例如,Baca等人,J.Biol.Chem.272:10678-10684(1997)和Rosok等人,J.Biol.Chem.271:22611-22618(1996))。
3.人抗体
在某些实施方案中,本文提供的双特异性抗体是人抗体。可以使用本领域已知的多种技术产生人抗体。人抗体总体上在van Dijk和van de Winkel,Curr.Opin.Pharmacol.5:368-74(2001)和Lonberg,Curr.Opin.Immunol.20:450-459(2008)中描述。
人抗体可以通过施用免疫原至转基因动物制备,其中所述转基因动物已经被修饰以应答于抗原攻击产生完整人抗体或具有人可变区的完整抗体。这类动物一般含有全部或一部分的人免疫球蛋白基因座,所述全部或一部分的人免疫球蛋白基因座替代内源免疫球蛋白基因座或在染色体外存在或随机地整合至动物染色体中。在这类转基因小鼠中,内源免疫球蛋白基因座通常已经失活。关于从转基因动物获得人抗体的方法的综述,见Lonberg,Nat.Biotech.23:1117-1125(2005)。还见,例如,描述XENOMOUSETM技术的美国专利号6,075,181和6,150,584;描述
Figure BDA0000468687070000271
技术的美国专利号5,770,429;描述K-M小鼠技术的美国专利号7,041,870,和描述
Figure BDA0000468687070000273
技术的美国专利申请公开号US2007/0061900)。来自这类动物产生的完整抗体的人可变区可以进一步修饰,例如,通过与不同的人恒定区组合进行修饰。
也可以通过基于杂交瘤的方法产生人抗体。已经描述了用于产生人单克隆抗体的人骨髓瘤细胞系和小鼠-人杂合骨髓瘤细胞系。(见,例如,Kozbor J.Immunol.,133:3001(1984);Brodeur等人,Monoclonal Antibody ProductionTechniques and Applications,第51-63页(Marcel Dekker,Inc.,New York,1987);和Boerner等人,J.Immunol.,147:86(1991))。借助人B-细胞杂交瘤技术产生的人抗体还在Li等人,Proc.Natl.Acad.Sci.USA,103:3557-3562(2006)中描述。额外的方法包括例如在美国专利号7,189,826(描述从杂交瘤细胞系产生单克隆人IgM抗体)和Ni,Xiandai Mianyixue,26(4):265-268(2006)(描述人-人杂交瘤)中描述的那些。人杂交瘤技术(三体瘤技术)还在Vollmers和Brandlein,Histology and Histopathology,20(3):927-937(2005)以及Vollmers和Brandlein,Methods and Findings in Experimental and Clinical Pharmacology,27(3):185-91(2005)中描述。
也可以通过分离从人衍生的噬菌体展示文库中选择的Fv克隆可变结构域序列产生人抗体。这类可变结构域序列随后可以与所需的人恒定结构域组合。下文描述从抗体文库选择人抗体的技术。
4.文库衍生的抗体
可以通过对组合文库筛选具有所需活性或多种活性的抗体,分离本发明的双特异性抗体。例如,本领域已知用于产生噬菌体展示文库并对这类文库筛选拥有所需结合特征的抗体的多种方法。这类方法例如综述于Hoogenboom等人,引自Methods in Molecular Biology178:1-37(O'Brien等人编著,Human Press,Totowa,NJ,2001)中并且例如还在McCafferty等人,Nature348:552-554;Clackson等人,Nature352:624-628(1991);Marks等人,J.Mol.Biol.222:581-597(1992);Marks和Bradbury,引自Methods in Molecular Biology248:161-175(Lo编著,Human Press,Totowa,NJ,2003);Sidhu等人,J.Mol.Biol.338(2):299-310(2004);Lee等人,J.Mol.Biol.340(5):1073-1093(2004);Fellouse,Proc.Natl.Acad.Sci.USA101(34):12467-12472(2004);和Lee等人,J.Immunol.Methods284(1-2):119-132(2004)中描述。
在某些噬菌体展示法中,VH基因和VL基因库分别由聚合酶链反应(PCR)克隆并且在噬菌体文库中随机重组,其中随后可以对所述噬菌体文库筛选结合抗原的噬菌体,如Winter等人,Ann.Rev.Immunol.,12:433-455(1994)中所述。噬菌体一般将抗体片段展示为单链Fv(scFv)片段或展示为Fab片段。来自已免疫来源的文库提供针对免疫原的高亲和力抗体,无需构建杂交瘤。备选地,可以(例如,从人)克隆天然库以在不做任何免疫的情况下,提供针对广泛类型非自身抗原的抗体和还针对自身抗原的抗体的单一来源,如Griffiths等人,EMBO J,12:725-734(1993)所述。最后,也可以通过从干细胞克隆未重排的V-基因区段并使用含有随机序列以编码高度可变的CDR3区并实现体外重排的PCR引物,合成地产生天然文库,如Hoogenboom和Winter,J.Mol.Biol.,227:381-388(1992)所述。描述人抗体噬菌体文库的专利公布例如包括:美国专利号5,750,373和美国专利公开号2005/0079574、2005/0119455、2005/0266000、2007/0117126、2007/0160598、2007/0237764、2007/0292936和2009/0002360。
从人抗体文库分离的抗体或抗体片段视为本文中的人抗体或人抗体片段。
5.抗体变体
在某些实施方案中,构思了本文提供的双特异性抗体的氨基酸序列变体。例如,可能想要改善双特异性抗体的结合亲和力和/或其他生物学特性。可以通过向编码双特异性抗体的核苷酸序列引入适宜修饰或通过肽合成制备双特异性抗体的氨基酸序列变体。此类修饰包括例如,从抗体的氨基酸序列内部缺失残基和/或将残基***所述氨基酸序列中和/或置换所述氨基酸序列中的残基。可以产生缺失、***和置换的任意组合以获得最终构建体,只要所述最终构建体拥有想要的特征,例如抗原结合作用。
a)置换变体、***变体和缺失变体
在某些实施方案中,提供了具有一个或多个氨基酸置换的抗体变体。用于置换诱变的目的位点包括HVR和FR。表1中在“保守性置换”标题下显示保守性置换。表1中在“示例性置换”标题下显示并且参考氨基酸侧链类别如下文进一步描述更明显的变化。可以将氨基酸置换引入目的抗体中并且对产物筛选所需的活性,例如,保留/改善的抗原结合作用或降低的免疫原性。
表1
Figure BDA0000468687070000291
Figure BDA0000468687070000301
氨基酸可以根据常见的侧链特性分组:
(1)疏水性:正亮氨酸、Met、Ala、Val、Leu;Ile;
(2)中性亲水:Cys、Ser、Thr、Asn;Gln;
(3)酸性:Asp、Glu;
(4)碱性:His、Lys Arg;
(5)影响链取向的残基:Gly、Pro;
(6)芳族:Trp、Tyr、Phe。
非保守性置换将使这些分类之一的成员交换为另一个分类的成员。
一个置换变体类型涉及置换亲本抗体(例如,人源化或人抗体)的一个或多个高变区残基。通常,用于进一步研究的所选择的产生的变体相对于亲本抗体在某些生物学特性方面(例如,增加的亲和力,降低的免疫原性)具有修饰(例如,改善)和/或将具有亲本抗体的基本上保留的某些生物学特性。示例性置换变体是亲和力成熟抗体,所述抗体可以例如,使用基于噬菌体展示的亲和力成熟技术如本文所述的那些技术便利地产生。简而言之,将一个或多个HVR残基突变并且将变体抗体在噬菌体上展示并筛选特定生物活性(例如结合亲和力)。
可以在HVR中做出改变(例如,置换),例如以改善抗体亲和力。这类改变可以在HVR“热点”(即,在体细胞成熟过程期间以高频率经历突变的密码子所编码的残基(见,例如,Chowdhury,Methods Mol.Biol.207:179-196(2008)))和/或SDR(a-CDR)中做出,同时对所产生的变体VH或VL测试结合亲和力。已经例如在Hoogenboom等人,引自Methods in Molecular Biology178:1-37(O'Brien等人编著,Human Press,Totowa,NJ,(2001))中描述了通过构建次级文库并从中重新选择实现亲和力成熟。在亲和力成熟的一些实施方案中,通过多种方法(例如,易错PCR、链改组或寡核苷酸定向诱变)的任一种,将多样性引入所选择用于成熟的可变基因中。随后产生次级文库。随后筛选该文库以鉴定具有所需亲和力的任何抗体变体。另一种引入多样性的方法涉及HVR指导的方案,其中将几种HVR残基(例如,一次4-6个残基)随机分组。可以特别地鉴定参与抗原结合的HVR残基,例如,使用丙氨酸扫描法诱变或建模。特别地经常靶向CDR-H3和CDR-L3。
在某些实施方案中,置换、***或缺失可以在一个或多个HVR内部出现,只要这类改变不实质降低抗体结合抗原的能力。例如,可以在HVR中做出不实质降低结合亲和力的保守性改变(例如,如本文中提供的保守性置换)。这类改变可以在HVR“热点”或SDR的外部。在上文提供的变体VH和VL序列的某些实施方案中,每个HVR不予改变或含有不多于一个、两个或三个氨基酸置换。
一种用于鉴定可以被靶向以便诱变的抗体残基或区域的有用方法称作“丙氨酸扫描法诱变法”,如Cunningham和Wells(1989)Science,244:1081-1085所述。在这种方法中,鉴定一个残基或靶残基组(例如,带电荷残基如arg、asp、his、lys和glu)并且用中性或带负电荷的氨基酸(例如,丙氨酸或聚丙氨酸)替换以确定该抗体与抗原的相互作用是否受影响。可以在对于初始置换显示功能敏感的氨基酸位置处引入其他置换。备选地或额外地,测定抗原-抗体复合物的晶体结构以鉴定抗体和抗原之间的接触点。可以将这类接触残基和邻近残基作为置换候选物靶向或消除。可以筛选变体以确定它们是否含有所需的特性。
氨基酸序列***包括长度从1个残基至含有成百个或更多个残基的多肽间变动的氨基端和/或羧基端融合,以及单个或多个氨基酸残基的序列内***。末端***的例子包括具有N末端甲硫氨酰基残基的抗体。抗体分子的其他***性变体包括抗体的N末端或C末端与酶(例如针对ADEPT的酶)或增加该抗体血清半寿期的多肽融合。
b)半胱氨酸工程化抗体变体
在某些实施方案中,可以想要产生半胱氨酸工程化的双特异性抗体,例如,“硫代MAb”,其中双特异性抗体的一个或多个残基用半胱氨酸残基置换。在具体的实施方案中,置换的残基出现在双特异性抗体的可及位点处。通过用半胱氨酸置换这些残基,因而将反应性巯基安置在抗体的可及位点处并且可以用来使抗体缀合至其他部分,如药物部分或接头-药物部分以产生免疫缀合物,如本文中进一步所述。在某些实施方案中,可以用半胱氨酸取代以下残基的任何一个或多个:轻链的V205(Kabat编号)和重链的A118(EU编号)。可以例如美国专利号7,521,541中所述那样产生半胱氨酸工程化的抗体。
c)抗体衍生物
在某些实施方案中,可以进一步修饰本文提供的双特异性抗体以含有本领域已知并轻易可获得的额外的非蛋白质部分。适于衍生双特异性抗体的部分包括但不限于水溶性聚合物。水溶性聚合物的非限制性例子包括但不限于聚乙二醇(PEG)、乙二醇/丙二醇的共聚物、羧甲基纤维素、葡聚糖、聚乙烯醇、聚乙烯吡咯烷酮、聚1,3-二氧戊环、聚1,3,6-三烷、亚乙基/马来酐共聚物、聚氨基酸(均聚物或无规共聚物)、和葡聚糖或聚(n-乙烯基吡咯烷酮)聚乙二醇、丙二醇均聚物、聚环氧丙烷/环氧乙烷共聚物、聚氧乙基化多元醇(例如,丙三醇)、聚乙烯醇、和它们的混合物。聚乙二醇丙醛可以具有制造方面的优点,原因在于其在水中的稳定性。这种聚合物可以具有任何分子量,并可以是分枝或不分枝的。与抗体连接的聚合物的数目可以变动,并且如果连接多于一个聚合物,它们可以是相同或不同的分子。通常,用于衍生的聚合物的数目和/或类型可以基于以下考虑事项确定,包括但不限于待改善的抗体特定特性或功能、抗体衍生物是否将用于限定情况下的疗法中等等。
在另一个实施方案中,提供了双特异性抗体和可以通过暴露于辐射而选择性加热的非蛋白质部分的缀合物。在一个实施方案中,非蛋白质部分是碳纳米管(Kam等人,Proc.Natl.Acad.Sci.USA102:11600-11605(2005))。辐射可以具有任何波长,并包括,但不限于这样的波长,所述波长不伤害普通细胞,但是使非蛋白质部加热至杀伤临近于抗体-非蛋白质部分的细胞的温度。
B.重组方法和组合物
本发明的双特异性抗体可以例如通过固态肽合成(例如Merrifield固相合成)或重组生产获得。为了重组生产,将编码双特异性抗体(片段)的一个或多个多核苷酸(例如,如上文所述)分离并***一个或多个载体中以便进一步在宿主细胞中克隆和/或表达。使用常规方法,可以轻易地分离这种多核苷酸并将其测序。在一个实施方案中,提供包含本发明的一种或多种多核苷酸的载体,优选地表达载体。本领域技术人员熟知的方法可以用来构建表达载体,所述表达载体含有双特异性抗体(片段)的编码序列,连同适宜的转录/翻译控制信号。这些方法包括体外重组DNA技术,合成技术和体内重组/遗传重组。见,例如在Maniatis等人,Molecular Cloning:A Laboratory Manual,Cold Spring HarborLaboratory,N.Y.(1989)和Ausubel等人,Current Protocols in MolecularBiology,Greene Publishing Associates and Wiley Interscience,N.Y(1989)中描述的技术。表达载体可以是质粒、病毒的部分,或可以是核酸片段。表达载体包括将编码双特异性抗体(片段)的多核苷酸(即编码区)以与启动子和/或其他转录或翻译控制元件有效连接的方式克隆的表达盒。如本文所用,“编码区”是由翻译成氨基酸的密码子组成的核酸的一部分。虽然“终止密码子”(TAG、TGA或TAA)不翻译成氨基酸,但是如果存在的话,可以将它视为编码区的部分,但是任何侧翼序列,例如启动子、核糖体结合位点、转录终止子、内含子、5'和3'非翻译区等,均不是编码区的部分。两个或更多个编码区可以存在于单一多核苷酸构建体中,例如存在于单一载体上或存在于分立的多核苷酸构建体中,例如存在于分立(不同)的载体上。另外,任何载体可以含有单个编码区,或可以包含两个或更多个编码区,例如,本发明的载体可以编码一种或多种多肽,所述多肽借助蛋白酶剪切作用以翻译后方式或以共翻译方式分离成最终的蛋白质。此外,本发明的载体、多核苷酸或核酸可以编码异源编码区,所述异源编码区与编码本发明双特异性抗体(片段)的多核苷酸或变体或其衍生物融合或不融合。异源编码区包括但不限于专用元件或基序,如分泌信号肽或异源功能性结构域。有效连接是以下情况,此时基因产物(例如多肽)的编码区与一种或多种调节序列以如此方式连接,从而将基因产物的表达置于调节序列的影响或控制下。如果启动子功能的诱导导致编码所需基因产物的mRNA转录并且如果两个DNA片段之间连接的性质不干扰表达调节序列指导基因产物表达的能力或不干扰DNA模板被转录的能力,则这两个DNA片段(如多肽编码区和与之连接的启动子)是“有效连接”的。因而,如果启动子能够实现编码多肽的核酸的转录,则该启动子区与该核酸有效连接。启动子可以是指导DNA仅在预定细胞中大量转录的细胞特异性启动子。其除启动子之外的他转录控制元件,例如增强子、操纵基因、阻遏蛋白和转录终止信号,可以与多核苷酸有效连接以指导细胞特异转录。本文中公开了合适的启动子和其他转录控制区。多种转录控制区是本领域技术人员已知的。这些包括但不限于,在脊椎动物细胞中发挥功能的转录控制区,例如,但不限于,来自巨细胞病毒(例如立即早期启动子,连同内含子-A一起)、猴病毒40(例如早期启动子)和逆转录病毒(如,例如劳斯肉瘤病毒)的启动子和增强子区段。其他转录控制区包括源自脊椎动物基因如肌动蛋白,热休克蛋白,牛生长激素和兔α-珠蛋白的那些,以及能够控制真核细胞中基因表达的其他序列。额外的合适转录控制区包括组织特异性启动子和增强子以及诱导型启动子(例如四环素诱导型启动子)。类似地,多种翻译控制元件是本领域普通技术人员已知的。这些包括但不限于核糖体结合位点、翻译起始和终止密码子和源自病毒***的元件(特别是内部核糖体进入位点,或IRES,也称作CITE序列)。表达盒也可以包括其他特征如复制起点,和/或染色体整合元件如逆转录病毒长末端重复序列(LTR)或腺相关病毒(AAV)反向末端重复序列(ITR)。
本发明的多核苷酸和核酸编码区可以与编码分泌肽或信号肽的额外编码区连接,所述分泌肽或信号肽指导由本发明多核苷酸编码的多肽分泌。例如,如果需要分泌双特异性抗原结合分子,则可以将编码信号序列的DNA置于编码本发明双特异性抗体或其片段的核酸上游。根据信号假设,由哺乳动物细胞分泌的蛋白质具有一旦已经启动正在增长的蛋白质链跨糙面内质网输出则从成熟蛋白切下的信号肽或分泌前导序列。本领域普通技术人员知晓由脊椎动物细胞分泌的多肽通常具有与多肽N末端融合的信号肽,所述信号肽从翻译的多肽被切下以产生分泌或“成熟”形式的多肽。在某些实施方案中,使用天然信号肽,例如免疫球蛋白重链或轻链的信号肽,或该序列的功能衍生物,所述功能衍生物保留指导与该序列有效连接的多肽分泌的能力。备选地,可以使用异源哺乳动物信号肽或其功能衍生物。例如,野生型前导序列可以用人组织纤维蛋白溶酶原激活物(TPA)或小鼠β-葡糖醛酸糖苷酶的前导序列替换。
可以在编码双特异性抗体(片段)的多核苷酸的内部或末端处包含编码短蛋白质序列的DNA,所述短蛋白质序列可以用来促进稍后的纯化(例如组氨酸标签)或辅助标记双特异性抗体。
在又一个实施方案中,提供了包含一种或多种本发明多核苷酸的宿主细胞。在某些实施方案中,提供了包含一种或多种本发明载体的宿主细胞。多核苷酸和载体可以分别相对于多核苷酸和载体,单独或以组合方式合并本文中所述的任一特征。在一个这样的实施方案中,宿主细胞包含载体(例如已经用所述载体转化或转染),所述载体包含编码本发明双特异性抗体(部分)的多核苷酸。如本文所用,术语“宿主细胞”指可以工程化以产生本发明双特异性抗体或其片段的任何种类的细胞***。适于复制和支持双特异性抗体表达的宿主细胞是本领域熟知的。根据需要,这类细胞可以用特定表达载体转染或转导,并且可以培育大量含有载体的细胞用于接种大规模发酵器以获得足够量的双特异性抗体用于临床应用。合适的宿主细胞包括原核微生物,如大肠杆菌,或各种真核细胞,如中国仓鼠卵巢细胞(CHO)、昆虫细胞等。例如,可以在细菌中产生多肽,特别是当不需要糖基化时可以在细菌中产生多肽。在表达后,可以将多肽从细菌细胞糊状物分离于可溶性级分中并且可以进一步纯化多肽。除原核生物之外,真核微生物如丝状真菌或酵母是编码多肽的载体的合适克隆宿主或表达宿主,包括其糖基化途径已经“人源化”的真菌和酵母菌株,导致产生具有部分或完全人类糖基化模式的多肽。见Gerngross,Nat Biotech22,1409-1414(2004)和Li等人,Nat Biotech24,210-215(2006)。用于表达(糖基化)多肽的合适宿主细胞还源自多细胞生物(无脊椎动物和脊椎动物)。无脊椎动物细胞的例子包括植物细胞和昆虫细胞。已经鉴定了可以与昆虫细胞一起使用、尤其用于转染草地贪夜蛾(Spodoptera frugiperda)细胞的众多杆状病毒毒株。也可以利用植物细胞培养物作为宿主。见,例如美国专利号5,959,177、6,040,498、6,420,548、7,125,978和6,417,429(描述在转基因植物中产生抗体的PLANTIBODIESTM技术)。也可以使用脊椎动物细胞作为宿主。例如,适应于悬浮培育的哺乳动物细胞系可以是有用的。有用的哺乳动物宿主细胞系的其他例子是由SV40转化的猴肾CV1系(COS-7);人胚肾系(293或293T细胞,如Graham等人,J Gen Virol36,59(1977)中所述那样)、幼仓鼠肾细胞(BHK)、小鼠支持细胞(TM4细胞,如在例如Mather,Biol Reprod23,243-251(1980)中所述那样)、猴肾细胞(CV1)、非洲绿猴肾细胞(VERO-76)、人***细胞(HELA)、犬肾细胞(MDCK)、布法罗大鼠肝脏细胞(BRL3A)、人肺细胞(W138)、人肝脏细胞(Hep G2)、小鼠乳腺瘤细胞(MMT060562)、TRI细胞(如在例如Mather等人,Annals N.Y.Acad Sci383,44-68(1982中所述那样))、MRC5细胞和FS4细胞。其他有用的哺乳动物宿主细胞系包括中国仓鼠卵巢(CHO)细胞,包括dhfr-CHO细胞(Urlaub等人,ProcNatl Acad Sci USA77,4216(1980));和骨髓瘤细胞系如YO、NS0、P3X63和Sp2/0。关于适于产生蛋白质的某些哺乳动物宿主细胞系的综述,见,例如,Yazaki和Wu,Methods in Molecular Biology,第248卷(B.K.C.Lo编著,Humana Press,Totowa,NJ),第255-268页(2003)。宿主细胞包括培养的细胞,例如,培养的哺乳动物细胞、酵母细胞、昆虫细胞、细菌细胞和植物细胞,此处仅提到数种,还包括含于转基因动物、转基因植物或培养的植物组织或动物组织内部的细胞。在一个实施方案中,宿主细胞是真核细胞,优选地是哺乳动物细胞,如中国仓鼠卵巢(CHO)细胞、人胚肾(HEK)细胞或淋巴样细胞(例如,Y0、NS0、Sp20细胞)。
本领域已知在这些***中表达外来基因的标准技术。表达包含抗原结合结构域的重链或轻链的多肽(如抗体)的细胞可以如此工程化,从而还表达抗体链之其他,由此表达产物是具有重链和轻链的抗体。
在一个实施方案中,提供了产生本发明双特异性抗体的方法,其中所述方法包括在适于表达双特异性抗原结合分子的条件下培养如本文中提供的宿主细胞,所述宿主细胞包含编码双特异性抗体的多核苷酸,并且从宿主细胞(或宿主细胞培养基)回收双特异性抗体。
双特异性抗体的组件以遗传方式彼此融合。可以如此设计双特异性抗体,从而其组件彼此直接融合或通过接头序列间接融合。接头的组成和长度可以根据本领域熟知的方法确定并且可以就功效进行测试。在双特异性抗体的不同组件之间的接头序列的例子存在于本文提供的序列中。如果需要,也可以包括额外的序列以并入切割位点以便分隔融合物的各种组分,例如内肽酶识别序列。
在某些实施方案中,双特异性抗体的一个或多个抗原结合部分至少包含能够结合抗原决定簇的抗体可变区。可变区可以形成天然或非天然存在的抗体及其片段的部分,和可变区可以衍生自天然或非天然存在的抗体及其片段。产生多克隆抗体和单克隆抗体的方法是本领域熟知的(见例如Harlow和Lane,"Antibodies,a laboratory manual",Cold Spring Harbor Laboratory,1988)。非天然存在的抗体可以使用固相肽合成法构建,可以重组产生(例如,如美国专利号4,186,567中所述),或可以例如通过筛选包含可变重链和可变轻链的组合文库获得(见例如授予McCafferty的美国专利号5,969,108)。
任何动物种类的抗体、抗体片段、抗原结合结构域或可变区可以用于本发明的双特异性抗体中。可用于本发明中的非限制性抗体、抗体片段、抗原结合结构域或可变区可以是鼠源、灵长类源或人源的。如果抗体意图用于人类,则可以使用嵌合形式的抗体,其中该抗体的恒定区来自人类。也可以根据本领域熟知的方法制备人源化或完全人形式的抗体(见例如授予Winter的美国专利号5,565,332)。人源化可以通过各种方法实现,所述方法包括但不限于(a)在保留或不保留关键构架残基(例如对保留良好抗原结合亲和力或抗体功能重要的那些残基)的情况下,将非人类(例如,供体抗体)CDR移植到人类(例如受体抗体)构架和恒定区上,(b)仅将非人类特异性决定区(SDR或a-CDR;对抗体-抗原相互作用至关重要的残基)移植到人构架和恒定区上,或(c)移植整个非人类可变结构域,但是通过更换表面残基用人样部分“掩蔽”它们。人源化抗体和制造它们的方法例如在Almagro和Fransson,Front Biosci13,1619-1633(2008)中综述,并且例如还在Riechmann等人,Nature332,323-329(1988);Queen等人,Proc NatlAcad Sci USA86,10029-10033(1989);美国专利号5,821,337、7,527,791、6,982,321和7,087,409;Jones等人,Nature321,522-525(1986);Morrison等人,Proc Natl Acad Sci81,6851-6855(1984);Morrison和Oi,Adv Immunol44,65-92(1988);Verhoeyen等人,Science239,1534-1536(1988);Padlan,MolecImmun31(3),169-217(1994);Kashmiri等人,Methods36,25-34(2005)(描述SDR(a-CDR移植);Padlan,Mol Immunol28,489-498(1991)(描述“表面重塑”);Dall'Acqua等人,Methods36,43-60(2005)(描述“FR改组”);和Osbourn等人,Methods36,61-68(2005)和Klimka等人,Br J Cancer83,252-260(2000)(描述针对FR改组的“导向选择”方案)中描述。人抗体和人可变区可以使用本领域已知的多种技术产生。人抗体总体上在van Dijk和van de Winkel,Curr OpinPharmacol5,368-74(2001)和Lonberg,Curr Opin Immunol20,450-459(2008)中描述。人可变区可以形成通过杂交瘤方法产生的人单克隆抗体的部分,和人可变区可以衍生自所述人单克隆抗体(见例如Monoclonal Antibody ProductionTechniques and Applications(单克隆抗体生产技术及应用),第51-63页(MarcelDekker,Inc.,New York,1987))。人抗体和人可变区也可以通过施用免疫原至转基因动物制备,其中所述转基因动物已经被修饰以应答于抗原攻击而产生完整人抗体或具有人可变区的完整抗体(见例如Lonberg,Nat Biotech23,1117-1125(2005)。也可以通过分离从人衍生的噬菌体展示文库中选择的Fv克隆可变结构域序列产生人抗体和人可变区(见例如,Hoogenboom等人,引自Methods inMolecular Biology178,1-37(O'Brien等人编著,Human Press,Totowa,NJ,2001);和McCafferty等人,Nature348,552-554;Clackson等人,Nature352,624-628(1991))。噬菌体一般将抗体片段展示为单链Fv(scFv)片段或展示为Fab片段。
在某些实施方案中,根据例如在美国专利申请公开号2004/0132066中公开的方法,将本发明的双特异性抗体工程化以具有增强的结合亲和力,所述文献的完整内容因而通过引用的方式并入本文作为参考。本发明的双特异性抗体与特定抗原决定簇结合的能力可以通过酶联免疫吸附测定(ELISA)或本领域技术人员熟悉的其他技术,例如表面等离子体共振技术(在BIACORE T100***上分析)(Liljeblad等人,Glyco J17,323-329(2000))和传统结合测定法(Heeley,Endocr Res28,217-229(2002))测量。竞争测定法可以用来鉴定与参考抗体竞争结合至特定抗原的抗体、抗体片段、抗原结合结构域或可变结构域,例如,与V9抗体竞争结合至CD3的抗体。在某些实施方案中,这种竞争性抗体与参考抗体结合的相同表位(例如线性表位或构象表位)结合。用于定位与抗体结合的表位的详细示例性方法在Morris(1996)“Epitope Mapping Protocols(表位定位法)”,引自Methods in Molecular Biology第66卷(Humana Press,Totowa,NJ)中提供。在示例性竞争测定法中,将固定的抗原(例如CD3)在溶液中温育,所述溶液包含与该抗原结合的第一标记抗体(例如V9抗体)和正在测试与第一抗体竞争结合至该抗原的能力的第二未标记抗体。第二抗体可以存在于杂交瘤上清液中。作为对照,将固定的抗原在包含第一标记抗体但是不包含第二未标记抗体的溶液中温育。在允许第一抗体与该抗原结合的条件下温育后,移除过多的未结合的抗体,并且测量与固定抗原结合的标记物的量。如果与固定抗原结合的标记物的量在测试样品中相对于对照样品实质降低,则这表示第二抗体正在与第一抗体竞争结合至该抗原。见Harlow和Lane(1988)Antibodies:ALaboratory Manual第14章(Cold Spring Harbor Laboratory,Cold SpringHarbor,NY)。
如本文所述那样制备的双特异性抗体可以通过现有已知的技术如高效液相色谱、离子交换层析、凝胶电泳、亲和层析、大小排阻层析等纯化。用来纯化特定蛋白质的实际条件将部分取决于诸多因素,如净电荷、疏水性、亲水性等并且将是本领域技术人员显而易见的。对于亲和层析纯化,可以使用与双特异性抗体结合的抗体、配体、受体或抗原。例如,对于本发明双特异性抗体的亲和层析纯化,可以使用具有蛋白A或蛋白G的基质。基本上如实施例中所述,依次的蛋白A或G亲和层析和大小排阻层析可以用来分离双特异性抗体。双特异性抗体的纯度可以由多种熟知分析方法的任一种方法确定,所述熟知分析方法包括凝胶电泳、高压液相色谱等。
C.测定法
可以通过本领域已知的多种测定法,鉴定、筛选或表征本文提供的双特异性抗体的物理/化学特性和/或生物学活性。
1.结合测定法和其他测定法
在一个方面,例如,通过已知的方法如ELISA、蛋白质印迹法等,对本发明的双特异性抗体测试其抗原结合活性。
在另一个方面,竞争测定法可以用来鉴定与特定抗体竞争结合于第一或第二抗原的抗体。在某些实施方案中,这种竞争性抗体与特定抗体结合的相同表位(例如线性表位或构象表位)结合。用于定位与抗体结合的表位的详细示例性方法在Morris(1996)“Epitope Mapping Protocols(表位定位法)”,引自Methods inMolecular Biology第66卷(Humana Press,Totowa,NJ)中提供。
2.活性测定法
在一个方面,提供了用于鉴定具有生物活性的双特异性抗体的测定法。生物活性可以包括例如裂解所靶向的细胞或诱导凋亡。还提供在体内和/或在体外具有这类生物活性的抗体。
在某些实施方案中,对本发明的双特异性抗体测试这类生物活性。用于检测细胞裂解(例如通过测量LDH释放)或凋亡(例如使用TUNEL测定法)的测定法是本领域熟知的。
D.免疫缀合物
本发明也提供了包含与一种或多种细胞毒性剂如化疗剂或药物、生长抑制剂、毒素(例如,细菌源、真菌源、植物源或动物源的蛋白质毒素、酶活性毒素)或放射性同位素缀合的本发明双特异性抗体的免疫缀合物。
在一个实施方案中,免疫缀合物是抗体-药物缀合物(ADC),其中抗体与一种或多种药物缀合,所述药物包括但不限于类美登素(maytansinoid)(见美国专利号5,208,020,5,416,064和欧洲专利EP0425235B1);澳瑞司他汀如单甲基澳瑞司他汀药物部分DE和DF(MMAE和MMAF)(见美国专利号5,635,483和5,780,588和7,498,298);海兔毒素(dolastatin);刺孢霉素或其衍生物(见美国专利号5,712,374,5,714,586,5,739,116,5,767,285,5,770,701,5,770,710,5,773,001和5,877,296;Hinman等人,Cancer Res.53:3336-3342(1993);和Lode等人,Cancer Res.58:2925-2928(1998));蒽环类如柔红霉素或多柔比星(见Kratz等人,Current Med.Chem.13:477-523(2006);Jeffrey等人,Bioorganic&Med.Chem.Letters16:358-362(2006);Torgov等人,Bioconj.Chem.16:717-721(2005);
Nagy等人,Proc.Natl.Acad.Sci.USA97:829-834(2000);Dubowchik等人,Bioorg.&Med.Chem.Letters12:1529-1532(2002);King等人,J.Med.Chem.45:4336-4343(2002);和美国专利号6,630,579);甲氨蝶呤;长春地辛;紫杉烷如多西紫杉醇、紫杉醇、larotaxel、tesetaxel和ortataxel;单端孢霉烯族化合物;和CC1065。
在另一个实施方案中,免疫缀合物包含与酶活性毒素或其片段缀合的如本文所述的双特异性抗体,所述酶活性毒素或其片段包括但不限于白喉A链、白喉毒素的无结合活性片段、外毒素A链(来自铜绿假单胞菌(Pseudomonasaeruginosa))、蓖麻毒蛋白A链、相思豆毒蛋白A链、蒴莲根毒蛋白A链、α-帚曲菌素、油桐(Aleurites fordii)蛋白、香石竹毒蛋白、垂序商陆(Phytolacaamericana)蛋白(PAPI、PAPII和PAP-S)、苦瓜(momordica charantia)抑制蛋白、麻疯树毒蛋白、巴豆毒蛋白、肥皂草(sapaonaria officinalis)抑制蛋白、多花白树毒蛋白、丝林霉素(mitogellin)、局限曲菌素、酚霉素、伊诺霉素和单端孢霉烯族类化合物。
在另一个实施方案中,免疫缀合物包含与放射性原子缀合以形成放射缀合物的如本文所述的双特异性抗体。多种放射性同位素可用于产生放射缀合物。例子包括At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素。当放射缀合物用于检测时,它可以包含用于闪烁法研究的放射性原子,例如tc99m或I123,或核磁共振(NMR)成像的自旋标记物(也称作磁共振成像,mri),如再次的碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或铁。
可以使用多种双官能蛋白质偶联剂产生双特异性抗体和细胞毒性剂的缀合物,所述双官能蛋白质偶联剂如N-琥珀酰亚胺基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、4-(N-马来酰亚胺甲基)环己烷-1-羧酸琥珀酰亚胺酯(SMCC)、亚氨基硫烷(IT)、亚氨酯的双官能衍生物(如己二亚氨二盐酸二甲酯)、活性酯(如辛二酸二琥珀酰亚胺酯)、醛(如戊二醛)、双-叠氮化合物(如双(对-重氮盐苯甲酰基)己二胺)、双-重氮盐衍生物(如双-(对-重氮盐苯甲酰基)-乙二胺)、二异氰酸酯(如2,6-二异氰酸甲苯酯)和双活性氟化合物(如1,5-二氟-2,4-二硝基苯)。例如,可以如Vitetta等人,Science238:1098(1987)中所述那样制备蓖麻毒蛋白免疫毒素。碳-14-标记的1-异硫氰酸根合苄基-3-甲基二乙三胺五乙酸(MX-DTPA)是用于放射性核素与抗体缀合的示例性螯合剂。见WO94/11026。接头可以是促进细胞毒性药在细胞中释放的“可切割接头”。例如,可以使用酸不稳定接头、肽酶敏感的接头、光不稳定接头、二甲基接头或含有二硫键的接头(Chari等人,Cancer Res.52:127-131(1992);美国专利号5,208,020)。
免疫缀合物或ADC在本文中明确地构思,但不限于采用交联剂试剂制备的这类缀合物,所述交联剂试剂包括但不限于BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、磺基-EMCS、磺基-GMBS、磺基-KMUS、磺基-MBS、磺基-SIAB、磺基-SMCC、和磺基-SMPB、和可商业获得的SVSB(琥珀酰亚胺基-(4-乙烯砜)苯甲酸酯)(例如,获自PPierce Biotechnology,Inc.,Rockford,伊利诺伊州,美国)。
E.用于诊断和检测的方法和组合物
在某些实施方案中,本文提供的任一种双特异性抗体可用于检测第一和/或第二抗原在生物样品中的存在。如本文所用,术语“检测”涵盖定量性或定性检测。在某些实施方案中,生物样品包括细胞或组织。
在一个实施方案中,提供在诊断或检测方法中使用的双特异性抗体。在又一个方面,提供一种检测第一和/或第二抗原在生物样品中存在的方法。在某些实施方案中,该方法包括使生物样品与如本文所述的双特异性抗体在允许双特异性抗体与第一和/或第二抗原结合的条件下接触并且检测复合物是否在双特异性抗体和第一和/或第二抗原之间形成。这种方法可以是体外或体内方法。在一个实施方案中,将双特异性抗体用来选择对采用双特异性抗体的疗法敏感的受试者,例如其中第一和/或第二抗原是用于选择患者的生物标记物。
可以使用本发明抗体诊断的示例性病症包括癌症。
在某些实施方案中,提供了标记的双特异性抗体。标记物包括但不限于,直接检测到的标记物或部分(如荧光、发色、电子致密、化学发光和放射性的标记物),以及间接检测到(例如借助酶促反应或分子相互作用)的部分,如酶或配体。示例性标记物包括但不限于放射性同位素32P、14C、125I、3H和131I、荧光团如稀土元素螯合物或荧光素及其衍生物、罗丹明及其衍生物、丹磺酰、伞形酮、萤光素酶例如萤火虫萤光素酶和细菌萤光素酶(美国专利号4,737,456)、萤光素、2,3-二氢二氮杂萘二酮、辣根过氧化物酶(HRP)、碱性磷酸酶、β-半乳糖苷酶、葡糖淀粉酶、溶菌酶、糖氧化酶例如葡萄糖氧化酶、半乳糖氧化酶、和葡萄糖-6-磷酸脱氢酶、杂环氧化酶如尿酸酶和黄嘌呤氧化酶,其与利用过氧化氢来氧化染料前体的酶如HRP、乳过氧化物酶或微过氧化物酶偶联,生物素/抗生物素蛋白、自旋标记物、噬菌体标记物、稳定自由基等。
F.药物制剂
通过以下方式制备冻干制剂或水溶液剂形式的如本文所述的双特异性抗体的药物制剂:将具有所需纯度的这种双特异性抗体与一种或多种任选的可药用载体混合(Remington's Pharmaceutical Sciences第16版,Osol,A.编著(1980))。可药用载体总体上在所用的剂量和浓度对接受者无毒,并且包括但不限于:缓冲剂如磷酸盐、柠檬酸和其他有机酸;抗氧化剂(包括抗坏血酸和甲硫氨酸);防腐剂(如十八烷基苄基二甲基氯化铵;六甲氯铵;苯扎氯铵、苯扎溴铵;苯酚、丁醇或苄醇;烷基尼泊金酯如尼泊金甲酯或丙酯;儿茶酚;雷琐辛;环己醇;3-戊醇和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,如血清白蛋白、明胶或免疫球蛋白;亲水聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其他糖类包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖如蔗糖、甘露糖、海藻糖或山梨糖;形成盐的反荷离子如钠;金属复合物(例如Zn-蛋白质复合物)和/或非离子表面活性剂如聚乙二醇(PEG)。本文中的示例性可药用载体还包括间质药物分散剂如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如,人可溶性PH-20透明质酸酶糖蛋白,如rHuPH20(
Figure BDA0000468687070000441
Baxter International,Inc.)。在美国专利公开号2005/0260186和2006/0104968中描述了某些示例性sHASEGP和使用方法,包括rHuPH20。在一个方面,sHASEGP与一种或多种额外的糖胺聚糖酶如软骨素酶组合。
示例性冻干抗体制剂在美国专利号6,267,958中描述。水质抗体制剂包括在美国专利号6,171,586和WO2006/044908中描述的那些制剂,后一类制剂包含组氨酸-乙酸盐缓冲剂。
本文中的制剂也可以根据正在治疗的特定适应症需要而含有多于一种有效成分,优选地是具有并未相互不利影响的互补活性的那些有效成分。这种有效成分以有效用于预期目的的量适当地存在。
有效成分可以包埋于例如分别通过凝聚技术或界面聚合制备的微胶囊(例如,羟甲基纤维素微胶囊或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊)、胶态药物递送***(例如,脂质体、白蛋白微球体、微乳液、纳米粒子和纳米胶囊)或乳浊液中。此类技术在Remington's Pharmaceutical Sciences第16版,Osol,A.编著(1980)中公开。
可以制备持续释放制品。持续释放制品的合适例子包括含有抗体的固态疏水性聚合物半通透性基质,所述基质处于成型制品(例如薄膜或微胶囊)形式。
待用于体内施用的制剂通常是无菌的。可以例如通过借助无菌滤膜过滤轻易地实现无菌性。
G.治疗方法和组合物
本文提供的任何双特异性抗体可以用于治疗方法中。
在一个方面,提供了作为药物使用的双特异性抗体。在其他方面,提供了用于治疗癌症的双特异性抗体。在某些实施方案中,提供了用于治疗方法中的双特异性抗体。在某些实施方案中,本发明提供了双特异性抗体用于治疗患有癌症的个体的方法中,所述方法包括向个体施用有效量的双特异性抗体。在一个这种实施方案中,该方法还包括向该个体施用有效量的至少一种额外的治疗药,例如,如下文描述。根据以上实施方案中任一个实施方案的“个体”优选地是人。
在又一个方面,本发明提供双特异性抗体在制造或制备药物中的用途。在一个实施方案中,该药物用于治疗癌症。在又一个实施方案中,该药物用于治疗癌症的方法中,所述方法包括向患有癌症的个体施用有效量的药物。在一个这种实施方案中,该方法还包括向该个体施用有效量的至少一种额外的治疗药,例如,如下文描述。根据以上实施方案中任一个的“个体”可以是人。
在又一个方面,本发明提供用于治疗癌症的方法。在一个实施方案中,该方法包括向患有癌症的个体施用有效量的双特异性抗体。在一个这种实施方案中,该方法还包括向该个体施用有效量的至少一种额外的治疗药,如下文描述。根据以上实施方案中任一个的“个体”可以是人。
在又一个方面,本发明提供了包含本文提供的任何双特异性抗体的药物制剂,例如,用于前述任一个治疗方法中。在一个实施方案中,药物制剂包含本文提供的任何双特异性抗体和可药用载体。在另一个实施方案中,药物制剂包含本文提供的任何双特异性抗体的和至少一种额外的治疗药,例如,如下文描述。
本发明的双特异性抗体可以在疗法中单独或与其他药物组合使用。例如,本发明的双特异性抗体可以与至少一种额外的治疗药共施用。
上文所示的这类联合疗法涵盖联合施用(其中在相同或独立的制剂中包含两种或更多种治疗药),和独立施用,在这种情况下,本发明抗体的施用可以在施用额外的治疗药和/或辅助剂之前、同时和/或之后进行。本发明的双特异性抗体也可以与放射疗法组合使用。
本发明的双特异性抗体(和任何额外的治疗药)可以通过任何合适的手段施用,所述的合适手段包括肠胃外、肺内和鼻内以及(如果局部治疗需要)病灶内施用。肠胃外输注包括肌内、静脉内、动脉内、腹内或皮下施用。给药可以通过任何合适的途径进行,例如通过注射,如静脉内或皮下注射,这部分地取决于施用是否为短暂或长时间的。本文中构思了各种给药方案,包括但不限于单次或在各种时间点多次施用、快速浓注施用和脉冲输注。
本发明的双特异性抗体将以符合好的医学规范的方式配制、定剂量和施用。在这种情况下考虑的因素包括正在治疗的具体病症、正在治疗的具体哺乳动物、个体患者的临床状况、病症原因、送递药物的部位、施用方法、施用计划和医疗执业者已知的其他因素。双特异性抗体不需要与目前用来预防或治疗所讨论病症的一种或多种药物一起配制,但是任选地与它们一起配制。这类其他药物的有效量取决于该制剂中存在的抗体的量、疾病类型或疗法和上文讨论的其他因素。这些药物通常以与本文所述相同的剂量并且采用与本文所述相同的施用途径使用,或以约1%至99%的本文所述剂量使用,或以经验地/临床上确定适宜的任何剂量和任何途径使用。
对于预防或治疗疾病,本发明双特异性抗体的适宜剂量(当单独或与一种或多种其他额外治疗药组合使用时)将取决于待治疗疾病的类型、抗体的类型、疾病的严重性和过程,双特异性抗体是否出于预防或治疗目的施用,先前疗法、患者的临床史和对双特异性抗体的应答以及主治医师的决定。将抗体适当地按一次或经过一系列治疗施用至患者。取决于疾病的类型和严重性,约1μg/kg至15mg/kg(例如0.1mg/kg-10mg/kg)双特异性抗体可以是向患者施用的初始候选剂量,无论是否例如通过一个或多个单独施用或通过连续输注来施用。取决于上文提到的因素,一个常见的每日剂量可能是从约1μg/kg至100mg/kg或更多。对于在几日或更长时间范围内重复施用,取决于病状,治疗通常将持续直至对疾病症状的所需抑制作用出现。双特异性抗体的一个示例性剂量将处于约0.05mg/kg至约10mg/kg范围内。因此,可以向患者施用约0.5mg/kg、2.0mg/kg、4.0mg/kg或10mg/kg的一种或多种剂量(或其任意组合)。这类剂量可以间歇地施用,例如每周或每3周施用(例如从而该患者接受双特异性抗体的约2个约20个剂量,或例如约6个剂量)。可以施用较高的初始负荷剂量,随后是一个或多个较低剂量。然而,可以使用其他剂量方案。通过常规技术和测定法容易地监测这种疗法的进程。
可以理解,前述任一种制剂或治疗方法可以使用本发明免疫缀合物替代本发明的双特异性抗体或除本发明双特异性抗体之外还使用本发明免疫缀合物来实施。
H.制造物
在本发明的另一个方面,提供制造物,所述制造物含有上文描述的可用于治疗、预防和/或诊断病症的物质。该制造物包括容器和在该容器上或与之结合的标签或包装插页。合适的容器包括例如瓶、小药瓶、注射器、静脉内输液袋等。容器可以从多种材料如玻璃或塑料形成。该容器容纳了本身或与另一种组合物组合时有效治疗、预防和/或诊断病症的组合物并且可以具有无菌接入口(例如该容器可以是静脉内输液袋或是具有皮下注射针头可穿透的瓶塞的小药瓶)。组合物中的至少一种活性物质是本发明的双特异性抗体。标签或包装插页说明该组合物用于治疗选择的病状。而且,制造物可以包含(a)其中含有组合物的第一容器,其中所述组合物包含本发明的双特异性抗体;和(b)其中含有组合物的第二容器,其中所述组合物包含其他细胞毒性剂或治疗剂。在本发明的这个实施方案中制造物还可以包含指示组合物可以用来治疗特定病状的包装插页。备选地或额外地,该制造物可以还包含第二(或第三)容器,其包含可药用缓冲剂,如抑菌注射用水(BWFI)、磷酸盐缓冲盐水、林格液和葡萄糖溶液。它可以还包括从商业和用户观点看受欢迎的其他材料,包括其他缓冲剂、稀释剂、滤器、针头和注射器。
可以理解,前述任一制造物可以包括替代本发明的双特异性抗体的本发明免疫缀合物,或可以在本发明的双特异性抗体之外还包括本发明的免疫缀合物。
III.实施例
以下是本发明的方法和组合物的例子。应当理解,鉴于上文提供的一般性描述,可以实施多种其他实施方案。
虽然已经出于清晰理解的目的,以说明和举例方式某种程度地详细描述前述发明,但是这些说明和例子不应当解释为限制本发明的范围。本文中援引的全部专利和科学文献的公开内容通过引用方式明确地完整并入本文作为参考。
实施例1:Fab(MCSP)-CrossFab(CD3)的制备
已经与预先***相应受体哺乳动物表达载体中的恒定重链或恒定轻链符合可读框地亚克隆了所产生的重链和轻链的可变区DNA序列。抗体表达受MPSV启动子驱动并且在CDS的3'末端携带合成性polyA信号序列。此外,每个载体含有EBV OriP序列。
通过使用磷酸钙转染法用该哺乳动物表达载体共转染HEK293-EBNA细胞,产生该分子。通过磷酸钙法转染指数生长的HEK293-EBNA细胞。备选地,通过聚氮丙啶转染以悬浮方式生长的HEK293-EBNA细胞。细胞用相应的表达载体以1:1:1比率(“载体CH1-VH-CK-VH”:“载体轻链”:“载体轻链CH1-VL”)转染。
对于使用磷酸钙法的转染,在T型瓶中使用补充有10%(v/v)FCS的DMEM培养基,将细胞培育为贴壁单层培养物,并且在细胞达到50和80%汇合度时转染细胞。对于T150瓶的转染,将1500万个细胞在转染之前24小时接种于补充有FCS(终浓度10%v/v)的25ml DMEM培养基中,并且将细胞在37℃置于具有5%CO2气氛的培养箱中过夜。对于每个待转染的T150瓶,通过混合按相应比例划分的94μg总质粒载体DNA、水至终体积469μl并混合469μl1MCaCl2溶液,制备DNA、CaCl2和水的溶液。向这种溶液添加938μl50mMHEPES、280mM NaCl、1.5mM pH7.05的Na2HPO4溶液,立即混合10秒并在室温静置20秒。将该悬液用补充有2%(v/v)FCS的10ml DMEM稀释并添加至T150替代现存培养基。随后添加额外的13ml转染培养基。将细胞在37℃,5%CO2温育约17至20小时,随后将培养基替换为25ml DMEM,10%FCS。交换培养基后大约7日,通过以210×g离心15分钟收获条件培养基,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%(w/v)添加叠氮钠并在4℃保持。
对于使用聚氮丙啶的转染,在CD CHO培养基中以无血清悬浮方式培育HEK293EBNA细胞。为了在500ml摇瓶中生产,在转染之前24小时接种四亿个HEK293EBNA细胞。为了转染,将细胞通过210×g离心5分钟,上清液由预温的20ml CD CHO培养基替换。将表达载体混于20ml CD CHO培养基中至最终量200μg DNA。在添加540μl PEI后,将溶液涡旋混合15秒并随后在室温温育10分钟。此后,将细胞与DNA/PEI溶液混合,转移至500ml摇瓶并在37℃在具有5%CO2气氛的培养箱中温育3小时。在温育时间后,添加160ml F17培养基并且将细胞培育24小时。在转染后1日添加1mM丙戊酸并且添加7%Feed1(Lonza)。在7日后,通过以210×g离心15分钟收集培养上清液用于纯化,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%w/v添加叠氮钠并在4℃保持。
通过使用蛋白A和蛋白G亲和层析的亲和层析,随后使用大小排阻层析步骤,从细胞培养上清液纯化分泌型蛋白。对于亲和层析,将上清液加载于连接至HiTrap蛋白G HP柱(CV=5ml,GE Healthcare)的HiTrap蛋白A HP柱(CV=5ml,GE Healthcare)上,每根柱用30ml20mM磷酸钠,20mM柠檬酸钠,pH7.5平衡。通过用6个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5洗涤该柱移除未结合的蛋白质。随后,需要额外的洗涤步骤以使用至少8个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5仅洗涤HiTrap蛋白GHP柱。使用步骤梯度以7个柱体积的8.8mM甲酸,pH3.0,从HiTrap蛋白G HP柱洗脱靶蛋白。通过添加1/10的0.5M磷酸钠,pH8.0中和蛋白溶液。将靶蛋白浓缩并且过滤,之后加载于用25mM磷酸钾、125mM氯化钠、100mMpH6.7甘氨酸溶液平衡的HiLoad Superdex200柱(GE Healthcare)上。
通过使用基于氨基酸序列计算的摩尔消光系数,在280nm测量光密度(OD)确定纯化蛋白质样品的蛋白质浓度。在还原剂(5mM1,4-二硫苏糖醇)存在和不存在下通过SDS-PAGE并用考马斯(来自Invitrogen的SimpleBlueTM SafeStain)染色,分析抗体的纯度和分子量。根据制造商的说明书使用预制凝胶***(Invitrogen,美国)(4-12%Tris-乙酸盐凝胶或4-12%Bis-Tris)。在25℃使用Superdex20010/300GL大小排阻分析柱(GE Healthcare,瑞典)在2mMMOPS,150mM NaCl,0.02%(w/v)NaN3,pH7.3运行缓冲液中分析抗体样品的聚集物含量。
在图2和图3中显示示例性Fab-Crossfab分子(由三条链组成:VHCH1(MCSP)-VLCH1(CD3V9)=SEQ ID NO:25、VLCL(MCSP)=SEQ ID NO:17和VHCL(CD3V9)=SEQ ID NO:23;取向如图1a)中所示)产生和纯化的分析。这种分子又称作Fab(MCSP)-Crossfab(CD3)或hu Fab(MCSP)-Crossfab(CD3)。
实施例2:Fab(MCSP)-Fab(MCSP)-CrossFab(CD3)和Fab(MCSP)-CrossFab(CD3)-Fab(MCSP)的制备
已经与预先***相应受体哺乳动物表达载体中的恒定重链或恒定轻链符合可读框地亚克隆了所产生的重链和轻链的可变区DNA序列。抗体表达受MPSV启动子驱动并且在CDS的3'末端携带合成性polyA信号序列。此外,每个载体含有EBV OriP序列。
通过使用磷酸钙转染法用该哺乳动物表达载体共转染HEK293-EBNA细胞,产生该分子。通过磷酸钙法转染指数生长的HEK293-EBNA细胞。备选地,通过聚氮丙啶转染以悬浮方式培育的HEK293-EBNA细胞。细胞用相应的表达载体以1:2:1比率(“载体CH1-VH-CH1-VH-CK-VH”:“载体轻链”:“载体轻链CH1-VL”)转染。
对于使用磷酸钙法的转染,在T型瓶中使用补充有10%(v/v)FCS的DMEM培养基,将细胞培育为贴壁单层培养物,并且在细胞达到50和80%汇合度时转染细胞。对于T150瓶的转染,将1500万个细胞在转染之前24小时接种于补充有FCS(终浓度10%v/v)的25ml DMEM培养基中,并且将细胞在37℃置于具有5%CO2气氛的培养箱中过夜。对于每个待转染的T150瓶,通过混合按相应比例划分的94μg总质粒载体DNA、水至终体积469μl并混合469μl1MCaCl2溶液,制备DNA、CaCl2和水的溶液。向这种溶液添加938μl50mMHEPES、280mM NaCl、1.5mM pH7.05的Na2HPO4溶液,立即混合10秒并在室温静置20秒。将该悬液用补充有2%(v/v)FCS的10ml DMEM稀释并添加至T150替代现存培养基。随后添加额外的13ml转染培养基。将细胞在37℃,5%CO2温育约17至20小时,随后将培养基替换为25ml DMEM,10%FCS。交换培养基后大约7日,通过以210×g离心15分钟收获条件培养基,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%(w/v)添加叠氮钠并在4℃保持。对于使用聚氮丙啶的转染,在CD CHO培养基中以无血清悬浮方式培育HEK293EBNA细胞。为了在500ml摇瓶中生产,在转染之前24小时接种四亿个HEK293EBNA细胞。为了转染,将细胞通过210×g离心5分钟,上清液由预温的20ml CD CHO培养基替换。将表达载体混于20ml CD CHO培养基中至最终量200μg DNA。在添加540μl PEI后,将溶液涡旋混合15秒并随后在室温温育10分钟。此后,将细胞与DNA/PEI溶液混合,转移至500ml摇瓶并在37℃在具有5%CO2气氛的培养箱中温育3小时。在温育时间后,添加160ml F17培养基并且将细胞培育24小时。在转染后1日添加1mM丙戊酸并且添加7%Feed1(Lonza)。在7日后,通过以210×g离心15分钟收集培养上清液用于纯化,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%w/v添加叠氮钠并在4℃保持。
通过使用蛋白A和蛋白G亲和层析的亲和层析,随后使用大小排阻层析步骤,从细胞培养上清液纯化分泌型蛋白。
对于亲和层析,将上清液加载于连接至HiTrap蛋白G HP柱(CV=5ml,GE Healthcare)的HiTrap蛋白A HP柱(CV=5ml,GE Healthcare)上,每根柱用30ml20mM磷酸钠,20mM柠檬酸钠,pH7.5平衡。通过用6个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5洗涤该柱移除未结合的蛋白质。随后,需要额外的洗涤步骤以使用至少8个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5仅洗涤HiTrap蛋白G HP柱。使用步骤梯度以7个柱体积的8.8mM甲酸,pH3.0,从HiTrap蛋白G HP柱洗脱靶蛋白。通过添加1/10的0.5M磷酸钠,pH8.0中和蛋白溶液。将靶蛋白浓缩并且过滤,之后加载于用25mM磷酸钾、125mM氯化钠、100mM pH6.7甘氨酸溶液平衡的HiLoad Superdex200柱(GE Healthcare)上。
通过使用基于氨基酸序列计算的摩尔消光系数,在280nm测量光密度(OD)确定纯化蛋白质样品的蛋白质浓度。在还原剂(5mM1,4-二硫苏糖醇)存在和不存在下通过SDS-PAGE并用考马斯(来自Invitrogen的SimpleBlueTMSafeStain)染色,分析抗体的纯度和分子量。根据制造商的说明书使用
Figure BDA0000468687070000512
预制凝胶***(Invitrogen,美国)(4-12%Tris-乙酸盐凝胶或4-12%Bis-Tris)。在25℃使用Superdex20010/300GL大小排阻分析柱(GE Healthcare,瑞典)在2mMMOPS,150mM NaCl,0.02%(w/v)NaN3,pH7.3运行缓冲液中分析抗体样品的聚集物含量并且与现有技术的抗体片段(scFv)2比较(结果见下表)。
Figure BDA0000468687070000511
HMW=高分子量;LMW=低分子量
在图4和图5中显示示例性Fab-Fab-Crossfab分子(由四条链组成:VHCH1(MCSP)-VHCH1(MCSP)-VLCH1(CD3V9)=SEQ ID NO:26、2条VLCL(MCSP)链=SEQ ID NO:17和一条VHCL(CD3V9)链=SEQ ID NO:23;取向如图1c)中所示)产生和纯化的分析。这种分子又称作Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)或hu Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)。
在图6和图7中显示示例性Fab-Crossfab-Fab分子(由四条链组成:VHCH1(MCSP)-VLCH1(CD3V9)-VHCH1(MCSP)=SEQ ID NO:27、2条VLCL(MCSP)链=SEQ ID NO:17和一条VHCL(CD3V9)链=SEQ ID NO:23;取向如图1e)中所示)产生和纯化的分析。这种分子又称作Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)或hu Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)。
在图8和图9中显示示例性Crossfab-Fab-Fab分子(由四条链组成:VLCH1(CD32C11)-VHCH1(MCSP)-VHCH1(MCSP)=SEQ ID NO:42、2条VLCL(MCSP)链=SEQ ID NO:17和一条VHCL(CD32C11)链=SEQ ID NO:43;取向如图1d)中所示)产生和纯化的分析。这种分子又称作鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)。
实施例3:Fab(CD33)-CrossFab(CD3)的制备
已经与预先***相应受体哺乳动物表达载体中的恒定重链或恒定轻链符合可读框地亚克隆了所产生的重链和轻链的可变区DNA序列。抗体表达受MPSV启动子驱动并且在CDS的3'末端携带合成性polyA信号序列。此外,每个载体含有EBV OriP序列。
通过使用磷酸钙转染法用该哺乳动物表达载体共转染HEK293-EBNA细胞,产生该分子。通过磷酸钙法转染指数生长的HEK293-EBNA细胞。备选地,通过聚氮丙啶转染以悬浮方式培育的HEK293-EBNA细胞。细胞用相应的表达载体以1:1:1比率(“载体CH1-VH-CK-VH”:“载体轻链”:“载体轻链CH1-VL”)转染。
对于使用磷酸钙法的转染,在T型瓶中使用补充有10%(v/v)FCS的DMEM培养基,将细胞培育为贴壁单层培养物,并且在细胞达到50和80%汇合度时转染细胞。对于T150瓶的转染,将1500万个细胞在转染之前24小时接种于补充有FCS(终浓度10%v/v)的25ml DMEM培养基中,并且将细胞在37℃置于具有5%CO2气氛的培养箱中过夜。对于每个待转染的T150瓶,通过混合按相应比例划分的94μg总质粒载体DNA、水至终体积469μl并混合469μl1MCaCl2溶液,制备DNA、CaCl2和水的溶液。向这种溶液添加938μl50mMHEPES、280mM NaCl、1.5mM pH7.05的Na2HPO4溶液,立即混合10秒并在室温静置20秒。将该悬液用补充有2%(v/v)FCS的10ml DMEM稀释并添加至T150替代现存培养基。随后添加额外的13ml转染培养基。将细胞在37℃,5%CO2温育约17至20小时,随后将培养基替换为25ml DMEM,10%FCS。交换培养基后大约7日,通过以210×g离心15分钟收获条件培养基,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%(w/v)添加叠氮钠并在4℃保持。
对于使用聚氮丙啶的转染,在CD CHO培养基中以无血清悬浮方式培育HEK293EBNA细胞。为了在500ml摇瓶中生产,在转染之前24小时接种四亿个HEK293EBNA细胞。为了转染,将细胞通过210×g离心5分钟,上清液由预温的20ml CD CHO培养基替换。将表达载体混于20ml CD CHO培养基中至最终量200μg DNA。在添加540μl PEI后,将溶液涡旋混合15秒并随后在室温温育10分钟。此后,将细胞与DNA/PEI溶液混合,转移至500ml摇瓶并在37℃在具有5%CO2气氛的培养箱中温育3小时。在温育时间后,添加160ml F17培养基并且将细胞培育24小时。在转染后1日添加1mM丙戊酸并且添加7%Feed1(LONZA)。在7日后,通过以210×g离心15分钟收集培养上清液用于纯化,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%w/v添加叠氮钠并在4℃保持。
通过使用蛋白A和蛋白G亲和层析的亲和层析,随后使用大小排阻层析步骤,从细胞培养上清液纯化分泌型蛋白。
对于亲和层析,将上清液加载于连接至HiTrap蛋白G HP柱(CV=5mL,GE Healthcare)的HiTrap蛋白A HP柱(CV=5mL,GE Healthcare)上,每根柱用30ml20mM磷酸钠,20mM柠檬酸钠,pH7.5平衡。通过用6个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5洗涤该柱移除未结合的蛋白质。随后,需要额外的洗涤步骤以使用至少8个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH7.5仅洗涤HiTrap蛋白G HP柱。使用步骤梯度以7个柱体积的8.8mM甲酸,pH3.0,从HiTrap蛋白G HP柱洗脱靶蛋白。通过添加1/10的0.5M磷酸钠,pH8.0中和蛋白溶液。将靶蛋白浓缩并且过滤,之后加载于用25mM磷酸钾、125mM氯化钠、100mM pH6.7甘氨酸溶液平衡的HiLoadSuperdex200柱(GE Healthcare)上。
通过使用基于氨基酸序列计算的摩尔消光系数,在280nm测量光密度(OD)确定纯化蛋白质样品的蛋白质浓度。在还原剂(5mM1,4-二硫苏糖醇)存在和不存在下通过SDS-PAGE并用考马斯(来自Invitrogen的SimpleBlueTMSafeStain)染色,分析抗体的纯度和分子量。根据制造商的说明书使用
Figure BDA0000468687070000541
预制凝胶***(Invitrogen,美国)(4-12%Tris-乙酸盐凝胶或4-12%Bis-Tris)。在25℃使用Superdex20010/300GL大小排阻分析柱(GE Healthcare,瑞典)在2mMMOPS,150mM NaCl,0.02%(w/v)NaN3,pH7.3运行缓冲液中分析抗体样品的聚集物含量。
在图17和图18中显示示例性Fab-Crossfab分子(由三条链组成:VHCH1(CD33)-VLCH1(CD3V9)=SEQ ID NO:102、VLCL(CD33)=SEQ ID NO:100和VHCL(CD3V9)=SEQ ID NO:23或SEQ ID NO:101;取向如图1a)中所示)产生和纯化的分析。这种分子又称作Fab(CD33)-CrossFab(CD3)或huFab(CD33)-CrossFab(CD3)。
实施例4:参考分子(scFv)2的制备
克隆和产生
已经将所产生的重链和轻链的可变区DNA序列按照符合可读框地亚克隆至分别的受体哺乳动物表达载体中。抗体表达受MPSV启动子驱动并且在CDS的3'末端携带合成性polyA信号序列。此外,每个载体含有EBV OriP序列。
通过使用聚氮丙啶用该哺乳动物表达载体转染HEK293-EBNA细胞,产生该分子。在CD CHO培养基中以无血清悬浮方式培育HEK293EBNA细胞。为了在500ml摇瓶中生产,在转染之前24小时接种四亿个HEK293EBNA细胞。为了转染,将细胞通过210×g离心5分钟,上清液由预温的20ml CD CHO培养基替换。将表达载体混于20ml CD CHO培养基中至最终量200μg DNA。在添加540μl PEI后,将溶液涡旋混合15秒并随后在室温温育10分钟。此后,将细胞与DNA/PEI溶液混合,转移至500ml摇瓶并在37℃在具有5%CO2气氛的培养箱中温育3小时。在温育时间后,添加160ml F17培养基并且将细胞培育24小时。在转染后1日添加1mM丙戊酸并且添加7%Feed1(LONZA)。在7日后,通过以210×g离心15分钟收集培养上清液用于纯化,将溶液无菌过滤(0.22μm滤器),并且以终浓度0.01%w/v添加叠氮钠并在4℃保持。
(scFv) 2 (抗MCSP/抗huCD3)的纯化
通过使用固定金属离子亲和层析(IMAC)的亲和层析,随后使用大小排阻层析步骤,从细胞培养上清液纯化分泌型蛋白。
在第一纯化步骤之前,通过使用配备5.000MWCO膜(Sartocon SliceCassette,Hydrosart;Sartorius)的切线流过滤***Sarcojet(Sartorius)渗滤移除来自上清液的干扰组分。将上清液浓缩至210ml并随后稀释于中1升20mM磷酸钠,500mM氯化钠,pH6.5中。将蛋白溶液再次浓缩至210ml。这个过程重复2次以确保彻底的缓冲液交换。
对于亲和层析,将渗滤过程的截留物质加载于用25ml20mM磷酸钠、500mM氯化钠、15mM咪唑,pH6.5平衡的NiNTA超流管柱(CV=5mL,Qiagen)上。通过用至少2个柱体积的20mM磷酸钠、500mM氯化钠、15mM咪唑,pH6.5洗涤,随后一个使用3个柱体积的20mM磷酸钠、500mM氯化钠、62.5mM咪唑,pH6.5的额外洗涤步骤,移除未结合的蛋白质。将靶蛋白洗脱于2个柱体积的20mM磷酸钠,500mM氯化钠,125mM咪唑,pH6.5中。随后用20mM磷酸钠,500mM氯化钠,250mM咪唑,pH6.5洗涤柱。
将靶蛋白浓缩,随后加载于用25mM KH2PO4,125mM NaCl,200mM精氨酸,pH6.7平衡的HiLoad Superdex75柱(GE Healthcare)上。
上表中显示产率、第一纯化步骤后的聚集物含量和最终单体含量。第一纯化步骤后的聚集物含量的比较显示与(scFv)2相反地,Fab-Crossfab构建体的优越稳定性。
(scFv) 2 的表征
通过使用基于氨基酸序列计算的摩尔消光系数,在280nm测量光密度(OD)确定纯化蛋白质样品的蛋白质浓度。在还原剂(5mM1,4-二硫苏糖醇)存在和不存在下通过SDS-PAGE并用考马斯(来自Invitrogen的SimpleBlueTMSafeStain)染色,分析抗体的纯度和分子量。根据制造商的说明书使用
Figure BDA0000468687070000561
预制凝胶***(Invitrogen,美国)(4-12%Tris-乙酸盐凝胶或4-12%Bis-Tris)。在25℃使用Superdex7510/300GL大小排阻分析柱(GE Healthcare,瑞典)在2mMMOPS,150mM NaCl,0.02%(w/v)NaN3,pH7.3运行缓冲液中分析抗体样品的聚集物含量。
在图21中显示(scFv)2分子的示意图。
在图22和图23中显示示例性(scFv)2分子(抗MCSP/抗huCD3;由两条单链Fv:VL-VH(MCSP)和VH-VL(CD3V9)=SEQ ID NO:149组成)。这种分子又称作(scFv)2(抗MCSP/抗huCD3e)。
实施例5:从PBMC分离原代人泛T细胞(pan T cell)
通过Histopaque密度离心从富集的淋巴细胞制备物(暗黄覆盖层)制备外周血单个核细胞(PBMCs),所述淋巴细胞制备物从本地血库或从健康人类供体的新鲜血液获得。
使用泛T细胞分离试剂盒II(Miltenyi Biotec#130-091-156),根据制造商的说明书从PBMC富集T-细胞。简而言之,将细胞沉淀物按每1千万个细胞稀释于40μl冷缓冲液(无菌过滤的含有0.5%BSA,2mM EDTA的PBS)中并且在4℃按每1千万个细胞与10μl生物素-抗体混合物温育10分钟。
按每1千万个细胞添加30μl冷缓冲液和20μl抗生物素磁珠,并且将混合物4℃温育另外15分钟。
通过添加10-20倍的标记体积并随后以300g离心10分钟的步骤,洗涤细胞。将多达一亿个细胞重悬于500μl缓冲液中。
根据制造商的说明书,使用LS柱(Miltenyi Biotec#130-042-401)磁性分离未标记的人泛T细胞。将所得到的T细胞群体自动计数(ViCell)并于37℃,5%CO2下贮藏在培养箱中的AIM-V培养基内直至开始测试(不超过24小时)。
实施例6:从脾细胞分离鼠泛T细胞
将脾脏从C57BL/6小鼠分离,转移至含有MACS缓冲液(PBS+0.5%BSA+2mM EDTA)的GentleMACS C-管(Miltenyi Biotech#130-093-237)中并且根据制造商的说明书用GentleMACS解离器解离以获得单细胞悬液。
使细胞悬液通过预分离滤器以除去剩余的未解离的组织块。在4℃以400g离心4分钟后,添加ACK裂解缓冲液以裂解红细胞(在室温温育5分钟)。将剩余的细胞用MACS缓冲液洗涤2次,计数并用于鼠泛T细胞的分离。使用来自Miltenyi Biotec的泛T细胞分离试剂盒(#130-090-861),按照制造商的说明书进行负向(磁性)选择。将所得到的T细胞群体自动计数(ViCell)并立即用于进一步的测定。
实施例7:由靶向T细胞上的CD3和肿瘤细胞上的MCSP的交联双特异性构建体介导的再定向的T细胞细胞毒性(LDH释放测定法)
通过LDH释放测定法分析靶向人T细胞或小鼠T细胞上的CD3和肿瘤细胞上的人MCSP的双特异性构建体诱导T细胞介导的靶细胞凋亡的潜力。
简而言之,将靶细胞(人Colo-38、人MDA-MB-435、人黑素瘤MV-3或鼠B16/F10-人MCSP Fluc2克隆48细胞(均表达人MCSP)用细胞解离缓冲液(MCSP是胰蛋白酶敏感的)或胰蛋白酶收获(并随后在此日前铺种),洗涤并重悬在适宜细胞培养基中(见不同图的详细描述)。在圆底96孔平板中每孔铺种20000-30000个细胞并且如所示添加分别的抗体稀释物(一式三份)。添加效应细胞以获得最终E:T比率5:1(对于人泛T细胞)和10:1(对于人PBMC)。
此外,使用1-10μg/ml PHA-M(Sigma#L8902)(从菜豆(Phaseolus vulgaris)分离的同工凝集素混合物)作为促有丝***刺激物以诱导人或食蟹猴T细胞活化。对于鼠T细胞,使用“ConA刺激的大鼠T”(BD#354115)的5%溶液作为T细胞活化的阳性对照。
为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育实现靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2至少18小时温育过夜后,用LDH检测试剂盒(RocheApplied Science,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
采用Fab(MCSP)-Crossfab(CD3)和Fab(MCSP)-Fab(MCSP)-Crossfab (CD3)双特异性构建体的LDH释放测定法
对纯化的Fab(MCSP)-Crossfab(CD3)、Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)和(scFv)2(抗MCSP/抗人CD3e)参考分子分析它们在通过两种靶向部分均与细胞上的相应抗原结合而交联构建体时在肿瘤靶细胞中诱导T细胞介导的凋亡的潜力。简而言之,将表达huMCSP的MDA-MB-435人黑素瘤靶细胞用细胞解离缓冲液收获,洗涤并重悬于AIM-V培养基(Invitrogen#12055-091)中。在圆底96孔平板中每孔铺种30000个细胞并且以所示的浓度添加分别的抗体稀释物。将全部构建体和对照调节至相同的体积摩尔浓度。
添加人泛T效应细胞以获得最终E:T比率5:1。作为活化人泛T细胞的阳性对照,使用1μg/ml PHA-M(Sigma#L8902)。为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育确定靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2二十小时温育过夜后,用LDH检测试剂盒(RocheApplied Science,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
如图10中所示,与“(scFv)2(抗MCSP/抗人CD3e)”构建体相比,具有双价MCSP靶向作用的构建体显示可比较的细胞毒活性,而具有单价MCSP结合作用的“Fab(MCSP)-Crossfab(CD3)”构建体明显效力较小。
采用Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)双特异性构建体和 MDA-MB-435人黑素瘤靶细胞的LDH释放测定法
对纯化的Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)和(scFv)2(抗MCSP/抗人CD3e)参考分子分析它们在通过两种靶向部分均与细胞上的相应抗原结合而交联构建体时在肿瘤靶细胞中诱导T细胞介导的凋亡的潜力。
简而言之,将表达huMCSP的MDA-MB-435人黑素瘤靶细胞用细胞解离缓冲液收获,洗涤并重悬于AIM-V培养基(Invitrogen#12055-091)中。在圆底96孔平板中每孔铺种30000个细胞并且以所示的浓度添加分别的抗体稀释物。将全部构建体和对照调节至相同的体积摩尔浓度。
添加人泛T效应细胞以获得最终E:T比率5:1。作为活化人泛T细胞的阳性对照,使用5μg/ml PHA-M(Sigma#L8902)。为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育确定靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2二十一小时温育过夜后,用LDH检测试剂盒(RocheApplied Science,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
如图11中所示,Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)至少与(scFv)2(抗MCSP/抗人CD3e)分子可比地同样好地在靶细胞中诱导凋亡。
采用Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)双特异性构建体和MV-3人 黑素瘤靶细胞的LDH释放测定法
对纯化的Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)和(scFv)2(抗MCSP/抗人CD3e)分子分析它们在通过两种靶向部分均与细胞上的相应抗原结合而交联构建体时在肿瘤靶细胞中诱导T细胞介导的凋亡的潜力。
简而言之,在启动LDH释放测定法之前一天用胰蛋白酶收获表达huMCSP的MV-3人黑素瘤靶细胞。将细胞洗涤并重悬于适宜的细胞培养基中。在圆底96孔平板中每孔铺种30000个细胞。次日,抛弃上清液,并添加100μl/孔AIM-V培养基(Invitrogen#12055-091)以及以所示的浓度添加相应的抗体稀释物。将全部构建体和对照调节至相同的体积摩尔浓度。
添加人PBMC效应细胞以获得最终E:T比率10:1。作为活化人泛T细胞的阳性对照,使用5μg/ml PHA-M(Sigma#L8902)。为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育确定靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2二十六小时温育过夜后,用LDH检测试剂盒(RocheApplied Science,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
如图12中所示,Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)至少与(scFv)2(抗MCSP/抗人CD3e)分子可比地同样好地在靶细胞中诱导凋亡。
采用Fab(MCSP)-Crossfab(CD3)双特异性构建体和MV-3人黑素瘤靶细胞 的LDH释放测定法
如上文概述进行LDH释放测定法。图19显示当与人PBMC(E:T比率=10:1)共培养,用Fab(MCSP)-Crossfab(CD3)、相应的(scFv)2(抗MCSP/抗人CD3e)参考分子处理约24小时时,对huMCSP阳性MV-3肿瘤细胞的杀伤作用。
采用鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)双特异性构建体的LDH 释放测定法
对纯化的靶向鼠CD3以及人MCSP的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)分析其在通过两种靶向部分均与细胞上的相应抗原结合而交联构建体时在肿瘤靶细胞中诱导T细胞介导的凋亡的潜力。
简而言之,将表达huMCSP的B16/F10-huMCSP Fluc2克隆48肿瘤靶细胞用细胞解离缓冲液收获,洗涤并重悬于包含1x NEAA,10mM Hepes,50μm2-b-ME和1mM丙酮酸钠的RPMI1640培养基中。
在圆底96孔平板中每孔铺种20000个细胞并且以所示的浓度添加相应的抗体稀释物。将双特异性构建体和不同的IgG对照调节至相同的体积摩尔浓度。作为活化鼠T细胞的额外对照,使用以测试培养基1:160稀释的“ConA刺激的T细胞”(BD#354115)。
添加从脾细胞(C57BL/6小鼠)分离的鼠泛T效应细胞以获得最终E:T比率10:1。为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育确定靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2温育70小时后,用LDH检测试剂盒(Roche AppliedScience,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
如图13中所示,双特异性构建体诱导浓度依赖性来自靶细胞的LDH释放,与采用“ConA刺激的T细胞”的阳性对照是可比的。
采用鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)双特异性构建体的LDH 释放测定法
对纯化的靶向鼠CD3以及人MCSP的鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)分析其在通过两种靶向部分均与细胞上的相应抗原结合而交联构建体时在肿瘤靶细胞中诱导T细胞介导的凋亡的潜力。
简而言之,将表达huMCSP的B16/F10-huMCSP Fluc2克隆48肿瘤靶细胞用细胞解离缓冲液收获,洗涤并重悬于包含1x NEAA,10mM Hepes,50μM2-b-ME和1mM丙酮酸钠的RPMI1640培养基中。
在圆底96孔平板中每孔铺种20000个细胞并且添加相应的抗体稀释物以获得终浓度50nM。将双特异性构建体和不同的IgG对照调节至相同的体积摩尔浓度。
添加从脾细胞(C57BL/6小鼠)分离的鼠泛T效应细胞以获得最终E:T比率10:1。为评估鼠T细胞在靶细胞不存情况下过度活化的水平,相应地铺种具有50nM双特异性构建体和T细胞的对照孔。
为了归一化,通过将靶细胞与终浓度1%的Triton-X-100温育确定靶细胞的最大裂解(=100%)。最小裂解(=0%)涉及与效应细胞共温育,但不与任何构建体或抗体共温育的靶细胞。
在37℃,5%CO2温育70小时后,用LDH检测试剂盒(Roche AppliedScience,#11644793001),根据制造商的说明书测量凋亡/坏死的靶细胞向上清液的LDH释放。
如图14中所示,双特异性构建体诱导来自靶细胞的强烈LDH释放。在靶细胞不存在的情况下,相比于未处理的与靶细胞共温育的鼠T细胞,仅存在轻微LDH增加(反映T细胞的过度活化)。对照IgG均不诱导靶细胞的LDH释放。
实施例8:细胞因子释放测定法(CBA分析)
为了评估当T细胞在靶细胞存在或不存在下用CD3-双特异性构建体活化时不同细胞因子的从头分泌,从暗黄覆盖层分离人PBMC并且将每孔三十万个细胞铺种至圆底96孔板中。备选地,深孔96孔板的每个孔铺种280μl来自健康供体的全血。
添加肿瘤靶细胞(例如对于CD3-MCSP-双特异性构建体,添加MDA-MB-435细胞)以获得最终E/T比率10:1。如所示添加双特异性构建体和对照。在37℃,5%CO2温育直至24小时后,将测试平板以350g离心5分钟并将上清液转移至新的深孔96孔板中用于后续分析。
根据制造商的FACS CantoII说明书,使用以下CBA Flex Set的组合进行CBA分析:人粒酶B(BD560304)、人IFN-γFlex Set(BD558269)、人TNF FlexSet(BD558273)、人IL-10Flex Set(BD558274)、人IL-6Flex Set(BD558276)、人IL-4Flex Set(BD558272)。
采用MCSP-CD3双特异性构建体的细胞因子释放测定法
对以下靶向人MCSP和人CD3的纯化的双特异性构建体分析它们在肿瘤靶细胞存在(A、B)或不存在(C、D)下诱导T细胞介导的细胞因子从头分泌的能力:“Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)和(scFv)2(抗MCSP/抗人CD3e)参考分子。
简而言之,深孔96孔板的每个孔铺种280μl来自健康供体的全血。添加30000个表达人MCSP的Colo-38肿瘤靶细胞以及以1nM终浓度添加不同的双特异性构建体和IgG对照。将细胞在37℃,5%CO2温育24小时并随后以350×g离心5分钟。将上清液转移至新的深孔96孔板用于后续分析。
根据制造商的FACS CantoII说明书,使用以下CBA Flex Set的组合进行CBA分析:人粒酶B(BD560304)、人IFN-γFlex Set(BD558269)、人TNF FlexSet(BD558273)、人IL-10Flex Set(BD558274)、人IL-6Flex Set(BD558276)、人IL-4Flex Set(BD558272)。
图15描述不同的细胞因子水平,其中在用1nM不同的CD3-MCSP双特异性构建体(Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)和(scFv)2(抗MCSP/抗人CD3e))在Colo-38肿瘤细胞存在(A、B)或不存在(C、D)下处理24小时后,在全血的上清液中测得所述细胞因子水平。将280μl全血铺种96孔板的每个孔并添加30000个Colo-38细胞,如所示。
在Colo-38肿瘤细胞存在下活化T细胞时分泌的主要细胞因子是IL-6,随后是IFNγ。此外,粒酶B的水平也在靶细胞存在下活化T细胞时极大地增加。通常,与其他双特异性构建体相比,(scFv)2(抗MCSP/抗人CD3e)构建体升高TNF和IFNγ的水平,以及在靶细胞存在下(A和B)略微升高粒酶B的水平。
在靶细胞存在(或不存在)下由双特异性构建体活化T细胞时,不存在Th2细胞因子(IL-10和IL-4)的明显分泌。
在这种测定法中,还存在微弱IFNγ分泌,所述分泌由Fab(MCSP)-Fab(MCSP)-Crossfab(CD3)构建体在靶细胞不存在的情况下诱导。
采用MCSP-鼠双特异性构建体的细胞因子释放测定法
通过流式细胞术对纯化的靶向huMCSP-muCD3的双特异性分子如鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)测试其在表达人MCSP的肿瘤细胞存在下上调CD8+T细胞上晚期活化标记物CD25的潜力。
简而言之,将MCSP阳性B16/F10-huMCSP Fluc2克隆48肿瘤细胞用细胞解离缓冲液收获,计数并检查生存力。将细胞在RPMI1640培养基(包括1xNEAA,10mM Hepes,50μm2-b-ME,1mM丙酮酸钠)中调节至0.3x106个(活)细胞/ml,将100μl这种细胞悬液逐孔吸入圆底96孔板中(如所示)。将50μl(稀释的)双特异性构建体添加至含有细胞的孔以获得终浓度50nM。将人鼠T效应细胞从脾细胞(C57BL/6小鼠)分离并在AIM-V培养基中调节至3x106个(活)细胞/ml。将50μl这种细胞悬液添加至测试平板的每个孔(见上文)以获得最终E:T比率10:1。为了分析双特异性构建体是否能够仅在表达huMCSP的靶细胞存在的情况下活化T细胞,测试中包括下述孔,所述孔含有50nM相应的双特异性分子以及T效应细胞,但是不含靶细胞。
在37℃,5%CO2温育70小时后,将细胞离心(5分钟,350×g)并用150μl/孔包含0.1%BSA的PBS洗涤两次。
根据供应商的建议进行针对CD8a(大鼠IgG2a;克隆53-6.7;BioLegend#100712)和CD25(大鼠IgG2b;克隆3C7;BD#553075)的表面染色。将细胞用150μl/孔包含0.1%BSA的PBS洗涤两次并在4℃使用100μl/孔的固定缓冲液(BD##554655)固定15分钟。
在离心后,使样品重悬于200μl/孔PBS,0.1%BSA中并使用FACSCantoII仪(Software FACS Diva)分析。
图16显示鼠Crossfab(CD3)-Fab(MCSP)-Fab(MCSP)构建体仅在靶细胞存在的情况下诱导CD25上调。
实施例9:当双特异性构建体结合时原代人T细胞上表面活化标记物的表达
为检验在肿瘤靶细胞存在的情况下仅CD3双特异性构建体结合时T细胞的特异性活化,将(如上文所述分离的)原代人PBMC与所示浓度的双特异性构建体在肿瘤抗原阳性靶细胞存在或不存在下温育至少24小时。
简而言之,平底96孔板每孔铺种三十万个原代人PBMC,所述孔含有huMCSP阳性靶细胞(MV-3肿瘤细胞)或培养基。效应细胞对靶细胞(E:T)的最终比率是10:1。将细胞与所示浓度的CD3-MCSP双特异性构建体(Fab(MCSP)-Crossfab(CD3),称为“1+1无Fc”;和(scFv)2(抗MCSP/抗人CD3e)参考分子(称为“(scFv)2”)在37℃5%CO2温育所示的温育时间。将效应细胞对CD8染色,并且通过FACS CantoII分析早期激活标记物CD69或晚期活化标记物CD25。
图20显示这个实验的结果。
尽管显示并描述了本发明当前的优选实施方案,但是应当清楚理解本发明不限于此,本发明可以在以下权利要求范围内多样地体现和实施。
序列
尽管显示并描述了本发明当前的优选实施方案,但是应当清楚理解本发明不限于此,本发明可以在以下权利要求范围内多样地体现和实施。图注:GA201=EGFR结合物,3F2=FAP结合物,CH1A1A=CEA结合物。
蛋白质序列
Figure BDA0000468687070000641
Figure BDA0000468687070000651
Figure BDA0000468687070000661
Figure BDA0000468687070000671
Figure BDA0000468687070000681
Figure BDA0000468687070000691
Figure BDA0000468687070000701
Figure BDA0000468687070000711
Figure BDA0000468687070000721
DNA序列
Figure BDA0000468687070000722
Figure BDA0000468687070000731
Figure BDA0000468687070000741
Figure BDA0000468687070000751
Figure BDA0000468687070000761
Figure BDA0000468687070000791
Figure BDA0000468687070000801
Figure BDA0000468687070000811
Figure BDA0000468687070000821
Figure BDA0000468687070000831
Figure BDA0000468687070000841
Figure BDA0000468687070000861
Figure BDA0000468687070000881
Figure BDA0000468687070000891
尽管显示并描述了本发明当前的优选实施方案,但是应当清楚理解本发明不限于此,本发明可以在以下权利要求的范围内多样地体现和实施。
Figure IDA0000468687130000011
Figure IDA0000468687130000021
Figure IDA0000468687130000031
Figure IDA0000468687130000051
Figure IDA0000468687130000061
Figure IDA0000468687130000071
Figure IDA0000468687130000081
Figure IDA0000468687130000091
Figure IDA0000468687130000101
Figure IDA0000468687130000111
Figure IDA0000468687130000131
Figure IDA0000468687130000141
Figure IDA0000468687130000151
Figure IDA0000468687130000161
Figure IDA0000468687130000171
Figure IDA0000468687130000181
Figure IDA0000468687130000191
Figure IDA0000468687130000201
Figure IDA0000468687130000211
Figure IDA0000468687130000221
Figure IDA0000468687130000231
Figure IDA0000468687130000241
Figure IDA0000468687130000251
Figure IDA0000468687130000261
Figure IDA0000468687130000281
Figure IDA0000468687130000291
Figure IDA0000468687130000301
Figure IDA0000468687130000311
Figure IDA0000468687130000321
Figure IDA0000468687130000331
Figure IDA0000468687130000341
Figure IDA0000468687130000351
Figure IDA0000468687130000361
Figure IDA0000468687130000371
Figure IDA0000468687130000381
Figure IDA0000468687130000391
Figure IDA0000468687130000401
Figure IDA0000468687130000411
Figure IDA0000468687130000421
Figure IDA0000468687130000431
Figure IDA0000468687130000441
Figure IDA0000468687130000451
Figure IDA0000468687130000461
Figure IDA0000468687130000491
Figure IDA0000468687130000501
Figure IDA0000468687130000511
Figure IDA0000468687130000521
Figure IDA0000468687130000531
Figure IDA0000468687130000541
Figure IDA0000468687130000551
Figure IDA0000468687130000561
Figure IDA0000468687130000571
Figure IDA0000468687130000581
Figure IDA0000468687130000591
Figure IDA0000468687130000601
Figure IDA0000468687130000611
Figure IDA0000468687130000631
Figure IDA0000468687130000641
Figure IDA0000468687130000651
Figure IDA0000468687130000661
Figure IDA0000468687130000681
Figure IDA0000468687130000691
Figure IDA0000468687130000701
Figure IDA0000468687130000711
Figure IDA0000468687130000721
Figure IDA0000468687130000731
Figure IDA0000468687130000741
Figure IDA0000468687130000751
Figure IDA0000468687130000771
Figure IDA0000468687130000781
Figure IDA0000468687130000791
Figure IDA0000468687130000801
Figure IDA0000468687130000811
Figure IDA0000468687130000831
Figure IDA0000468687130000861
Figure IDA0000468687130000871
Figure IDA0000468687130000881
Figure IDA0000468687130000891
Figure IDA0000468687130000911
Figure IDA0000468687130000931
Figure IDA0000468687130000951
Figure IDA0000468687130000961
Figure IDA0000468687130000971
Figure IDA0000468687130000981
Figure IDA0000468687130000991
Figure IDA0000468687130001001
Figure IDA0000468687130001011
Figure IDA0000468687130001031
Figure IDA0000468687130001041
Figure IDA0000468687130001051
Figure IDA0000468687130001061
Figure IDA0000468687130001071
Figure IDA0000468687130001081
Figure IDA0000468687130001091
Figure IDA0000468687130001101
Figure IDA0000468687130001111
Figure IDA0000468687130001121
Figure IDA0000468687130001131
Figure IDA0000468687130001141
Figure IDA0000468687130001161
Figure IDA0000468687130001171
Figure IDA0000468687130001181
Figure IDA0000468687130001191
Figure IDA0000468687130001201
Figure IDA0000468687130001211
Figure IDA0000468687130001221
Figure IDA0000468687130001231
Figure IDA0000468687130001241
Figure IDA0000468687130001251

Claims (15)

1.包含至少两个Fab片段的双特异性抗体,其中
第一Fab片段包含对第一抗原特异的至少一个抗原结合位点;和第二Fab片段包含对第二抗原特异的至少一个抗原结合位点,其中将第二Fab重链和轻链的可变区或恒定区交换;并且其中所述双特异性抗体缺少Fc结构域。
2.权利要求1的双特异性抗体,其额外地包含第三Fab片段。
3.权利要求2的双特异性抗体,其中第三Fab片段包含对第一或第二抗原特异的至少一个抗原结合位点。
4.权利要求2的双特异性抗体,其中第三Fab片段包含对第一抗原特异的至少一个抗原结合位点。
5.权利要求2至4中任一项所述的双特异性抗体,其中第三Fab片段与第一Fab片段连接。
6.权利要求5的双特异性抗体,其中第三Fab片段的C末端与第一Fab片段的N末端连接。
7.权利要求2至4的双特异性抗体,其中第三Fab片段与第二Fab片段连接。
8.权利要求7的双特异性抗体,其中第三Fab片段的N末端与第一Fab片段的C末端连接。
9.权利要求1至8中任一项所述的双特异性抗体,其中所述Fab片段通过肽接头连接。
10.权利要求9的双特异性抗体,其中肽接头是(G4S)2接头。
11.药物组合物,其包含权利要求1至10的双特异性抗体。
12.原核或真核宿主细胞,其包含含有核酸分子的载体,所述核酸分子编码权利要求1至10中任一项所述的双特异性抗体的轻链和重链。
13.产生抗体的方法,包括培养权利要求12的宿主细胞,从而产生所述抗体。
14.免疫缀合物,其包含权利要求1至10中任一项所述的抗体和细胞毒性剂。
15.如本文中所述的本发明,尤其参考前述实施例。
CN201280041081.9A 2011-08-23 2012-08-21 包含两个Fab片段的无Fc的抗体及使用方法 Active CN103781801B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11178391.6 2011-08-23
EP11178391 2011-08-23
PCT/EP2012/066219 WO2013026835A1 (en) 2011-08-23 2012-08-21 Fc-free antibodies comprising two fab fragments and methods of use

Publications (2)

Publication Number Publication Date
CN103781801A true CN103781801A (zh) 2014-05-07
CN103781801B CN103781801B (zh) 2018-02-09

Family

ID=46704673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280041081.9A Active CN103781801B (zh) 2011-08-23 2012-08-21 包含两个Fab片段的无Fc的抗体及使用方法

Country Status (11)

Country Link
US (1) US20130060011A1 (zh)
EP (1) EP2748200B1 (zh)
JP (1) JP6060162B2 (zh)
KR (2) KR101886983B1 (zh)
CN (1) CN103781801B (zh)
AR (1) AR087601A1 (zh)
BR (1) BR112014004166A2 (zh)
CA (1) CA2844143C (zh)
MX (1) MX2014001799A (zh)
RU (1) RU2617970C2 (zh)
WO (1) WO2013026835A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108738A (zh) * 2014-07-25 2017-08-29 西托姆克斯治疗公司 抗cd3抗体、可活化抗cd3抗体、多特异性抗cd3抗体、多特异性可活化抗cd3抗体及其使用方法
CN109071674A (zh) * 2015-10-30 2018-12-21 豪夫迈·罗氏有限公司 铰链修饰的抗体片段和其制备方法
CN110669137A (zh) * 2019-10-24 2020-01-10 北京免疫方舟医药科技有限公司 一种多特异性抗体及其制备方法和用途
WO2022007807A1 (zh) * 2020-07-07 2022-01-13 百奥泰生物制药股份有限公司 双特异性抗体及其应用

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266967B2 (en) * 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
JP5501439B2 (ja) * 2009-04-02 2014-05-21 ロシュ グリクアート アクチェンゲゼルシャフト 完全長抗体と単鎖Fabフラグメントとを含む多重特異的抗体
KR101456326B1 (ko) 2009-04-07 2014-11-12 로슈 글리카트 아게 3가, 이중특이적 항체
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
CN104945509A (zh) 2009-09-16 2015-09-30 弗·哈夫曼-拉罗切有限公司 包含卷曲螺旋和/或系链的蛋白质复合体及其用途
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
CN103068846B9 (zh) 2010-08-24 2016-09-28 弗·哈夫曼-拉罗切有限公司 包含二硫键稳定性Fv片段的双特异性抗体
EP2655413B1 (en) 2010-12-23 2019-01-16 F.Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
EP2681240B1 (en) 2011-02-28 2017-08-16 F. Hoffmann-La Roche AG Monovalent antigen binding proteins
EP2681239B8 (en) 2011-02-28 2015-09-09 F. Hoffmann-La Roche AG Antigen binding proteins
EA201892619A1 (ru) 2011-04-29 2019-04-30 Роше Гликарт Аг Иммуноконъюгаты, содержащие мутантные полипептиды интерлейкина-2
RU2605390C2 (ru) 2011-08-23 2016-12-20 Рош Гликарт Аг Биспецифические антитела, специфичные к антигенам, активирующим т-клетки, и опухолевому антигену, и способы их применения
BR112014019579A2 (pt) 2012-02-10 2019-10-15 Genentech, Inc Anticorpo de cadeia única, polinucleotídeo, vetor, célula hospedeira, método de produção de um anticorpo de cadeia única, heteromultímero e método de produção do heteromultímero
US9062120B2 (en) 2012-05-02 2015-06-23 Janssen Biotech, Inc. Binding proteins having tethered light chains
WO2014001325A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
RU2639287C2 (ru) 2012-06-27 2017-12-20 Ф. Хоффманн-Ля Рош Аг Способ отбора и получения высокоселективных и мультиспецифичных нацеливающих групп с заданными свойствами, включающих по меньшей мере две различные связывающие группировки, и их применения
KR20150064068A (ko) 2012-10-08 2015-06-10 로슈 글리카트 아게 2개의 Fab 단편을 포함하는 FC-부재 항체 및 이용 방법
PL2953972T3 (pl) 2013-02-05 2021-03-08 Engmab Sàrl Metoda wyboru przeciwciał przeciwko bcma
EP3444278A1 (en) 2013-02-26 2019-02-20 Roche Glycart AG Bispecific t cell activating antigen binding molecules
DK2961771T3 (da) 2013-02-26 2020-03-02 Roche Glycart Ag Bispecifikke, T-celle-aktiverende, antigenbindende molekyler, der er specifikke for CD3 og CEA
EP2789630A1 (en) 2013-04-09 2014-10-15 EngMab AG Bispecific antibodies against CD3e and ROR1
WO2015013671A1 (en) 2013-07-25 2015-01-29 Cytomx Therapeutics, Inc. Multispecific antibodies, multispecific activatable antibodies and methods of using the same
WO2015052230A1 (en) * 2013-10-11 2015-04-16 F. Hoffmann-La Roche Ag Multispecific domain exchanged common variable light chain antibodies
WO2015150446A1 (en) 2014-04-02 2015-10-08 F. Hoffmann-La Roche Ag Method for detecting multispecific antibody light chain mispairing
UA117289C2 (uk) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Мультиспецифічне антитіло
BR112016030740A2 (pt) 2014-07-01 2018-02-20 Pfizer Inc. diacorpos heterodiméricos biespecíficos e seus usos
WO2016020309A1 (en) 2014-08-04 2016-02-11 F. Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules
RS61134B1 (sr) 2014-11-20 2020-12-31 Hoffmann La Roche Kombinovana terapija bispecifičnim antigen vezujućim molekulima koji aktiviraju t ćelije za cd3 i folatni receptor 1 (folr1), i antagonistima vezivanja ose pd-1
ES2764111T3 (es) 2014-12-03 2020-06-02 Hoffmann La Roche Anticuerpos multiespecíficos
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
JP7044700B2 (ja) 2015-10-02 2022-03-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 二重特異性抗ceaxcd3 t細胞活性化抗原結合分子
RS62450B1 (sr) 2015-10-02 2021-11-30 Hoffmann La Roche Anti-pd1 antitela i postupci primene
EP3150637A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Multispecific antibodies
CN115920030A (zh) 2015-12-09 2023-04-07 豪夫迈·罗氏有限公司 Ii型抗cd20抗体用于降低抗药物抗体形成
CA3006529A1 (en) 2016-01-08 2017-07-13 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
AU2017209099A1 (en) 2016-01-22 2018-08-02 Janssen Biotech, Inc. Anti-ROR1 antibodies, ROR1 x CD3 bispecific antibodies, and methods of using the same
PL3433280T3 (pl) 2016-03-22 2023-07-31 F. Hoffmann-La Roche Ag Dwuswoiste cząsteczki limfocytów T aktywowane przez proteazy
ES2897217T3 (es) 2016-09-30 2022-02-28 Hoffmann La Roche Anticuerpos biespecíficos frente a p95HER2
TW201829463A (zh) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 抗hla-g抗體及其用途
AU2018224094A1 (en) 2017-02-24 2019-09-19 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
US11472889B2 (en) 2017-10-14 2022-10-18 Cytomx Therapeutics, Inc. Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof
JP7475275B2 (ja) 2018-02-08 2024-04-26 ジェネンテック, インコーポレイテッド 二重特異性抗原結合分子及びその使用方法
JP7337079B2 (ja) 2018-02-15 2023-09-01 マクロジェニクス,インコーポレーテッド 変異型cd3結合ドメイン、及び疾患の治療のための併用療法におけるその使用
AR114789A1 (es) 2018-04-18 2020-10-14 Hoffmann La Roche Anticuerpos anti-hla-g y uso de los mismos
BR112021012338A2 (pt) 2018-12-24 2021-09-14 Sanofi Proteínas de ligação multiespecíficas com domínios fab mutantes
RU2716013C2 (ru) * 2019-05-27 2020-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский Государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ изготовления средства для клеточно-опосредованной генной терапии и средство для клеточно-опосредованной генной терапии
CN115916825A (zh) 2020-06-19 2023-04-04 豪夫迈·罗氏有限公司 与cd3和cd19结合的抗体
CN113278071B (zh) 2021-05-27 2021-12-21 江苏荃信生物医药股份有限公司 抗人干扰素α受体1单克隆抗体及其应用
US20230190799A1 (en) * 2021-07-21 2023-06-22 City Of Hope Chimeric antigen receptor t cells targeting cea and anti-cea-il2 immunocytokines for cancer therapy
CN113683694B (zh) 2021-09-03 2022-05-13 江苏荃信生物医药股份有限公司 一种抗人tslp单克隆抗体及其应用
CN113603775B (zh) 2021-09-03 2022-05-20 江苏荃信生物医药股份有限公司 抗人白介素-33单克隆抗体及其应用
CN114395047B (zh) * 2021-12-07 2023-11-07 合肥天港免疫药物有限公司 双特异性抗体及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080254A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
CN101903406A (zh) * 2007-12-21 2010-12-01 霍夫曼-拉罗奇有限公司 二价双特异性抗体
US20100322935A1 (en) * 2009-05-27 2010-12-23 Rebecca Croasdale Tri- or Tetraspecific Antibodies

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2388385B1 (fr) 1977-04-18 1982-01-08 Hitachi Metals Ltd Piece d'ornement fixee par des aimants permanents
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US6548640B1 (en) 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5606040A (en) 1987-10-30 1997-02-25 American Cyanamid Company Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group
US5770701A (en) 1987-10-30 1998-06-23 American Cyanamid Company Process for preparing targeted forms of methyltrithio antitumor agents
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0564531B1 (en) 1990-12-03 1998-03-25 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
JP4124480B2 (ja) 1991-06-14 2008-07-23 ジェネンテック・インコーポレーテッド 免疫グロブリン変異体
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
GB9221657D0 (en) * 1992-10-15 1992-11-25 Scotgen Ltd Recombinant bispecific antibodies
EP0752248B1 (en) 1992-11-13 2000-09-27 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
US5780588A (en) 1993-01-26 1998-07-14 Arizona Board Of Regents Elucidation and synthesis of selected pentapeptides
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
US20030060612A1 (en) * 1997-10-28 2003-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US6610833B1 (en) 1997-11-24 2003-08-26 The Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
BR9813365A (pt) 1997-12-05 2004-06-15 Scripps Research Inst Método para produção e humanização de um anticorpo monoclonal de rato
WO2001025454A2 (en) 1999-10-04 2001-04-12 Medicago Inc. Method for regulating transcription of foreign genes in the presence of nitrogen
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
CA2393869A1 (en) 1999-12-15 2001-06-21 Genetech,Inc. Shotgun scanning, a combinatorial method for mapping functional protein epitopes
WO2001049698A1 (en) 1999-12-29 2001-07-12 Immunogen, Inc. Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use
NZ521540A (en) * 2000-04-11 2004-09-24 Genentech Inc Multivalent antibodies and uses therefor
RU2295537C2 (ru) * 2000-10-20 2007-03-20 Тугаи Сейяку Кабусики Кайся Модифицированное агонистическое антитело
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
ATE378403T1 (de) 2000-11-30 2007-11-15 Medarex Inc Transchromosomale transgen-nagetiere zur herstellung von humänen antikörpern
US7432063B2 (en) 2002-02-14 2008-10-07 Kalobios Pharmaceuticals, Inc. Methods for affinity maturation
JP4753578B2 (ja) 2002-06-03 2011-08-24 ジェネンテック, インコーポレイテッド 合成抗体ファージライブラリー
WO2004065416A2 (en) 2003-01-16 2004-08-05 Genentech, Inc. Synthetic antibody phage libraries
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
BR122018071968B8 (pt) 2003-11-06 2021-07-27 Seattle Genetics Inc conjugado de anticorpo-droga, composição farmacêutica, artigo de manufatura e uso de um conjugado de anticorpo-droga
RU2386638C2 (ru) 2004-03-31 2010-04-20 Дженентек, Инк. Гуманизированные анти-тфр-бета-антитела
US7785903B2 (en) 2004-04-09 2010-08-31 Genentech, Inc. Variable domain library and uses
BRPI0511782B8 (pt) * 2004-06-03 2021-05-25 Novimmune Sa anticorpos anti-cd3, uso e método de produção dos mesmos, composição farmacêutica, molécula de ácido nucleico isolada e vetor
NZ580115A (en) 2004-09-23 2010-10-29 Genentech Inc Cysteine engineered antibody light chains and conjugates
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
WO2007056441A2 (en) 2005-11-07 2007-05-18 Genentech, Inc. Binding polypeptides with diversified and consensus vh/vl hypervariable sequences
WO2007064919A2 (en) 2005-12-02 2007-06-07 Genentech, Inc. Binding polypeptides with restricted diversity sequences
AU2007249408A1 (en) 2006-05-09 2007-11-22 Genentech, Inc. Binding polypeptides with optimized scaffolds
US20070274985A1 (en) 2006-05-26 2007-11-29 Stefan Dubel Antibody
CN100592373C (zh) 2007-05-25 2010-02-24 群康科技(深圳)有限公司 液晶显示面板驱动装置及其驱动方法
MX2011010158A (es) * 2009-04-07 2011-10-17 Roche Glycart Ag Anticuerpos biespecificos anti-erbb-2/anti-c-met.
RU2605390C2 (ru) * 2011-08-23 2016-12-20 Рош Гликарт Аг Биспецифические антитела, специфичные к антигенам, активирующим т-клетки, и опухолевому антигену, и способы их применения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080254A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
CN101903405A (zh) * 2007-12-21 2010-12-01 霍夫曼-拉罗奇有限公司 二价双特异性抗体
CN101903406A (zh) * 2007-12-21 2010-12-01 霍夫曼-拉罗奇有限公司 二价双特异性抗体
US20100322935A1 (en) * 2009-05-27 2010-12-23 Rebecca Croasdale Tri- or Tetraspecific Antibodies

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108738A (zh) * 2014-07-25 2017-08-29 西托姆克斯治疗公司 抗cd3抗体、可活化抗cd3抗体、多特异性抗cd3抗体、多特异性可活化抗cd3抗体及其使用方法
US11802158B2 (en) 2014-07-25 2023-10-31 Cytomx Therapeutics, Inc. Bispecific anti-CD3 antibodies, bispecific activatable anti-CD3 antibodies, and methods of using the same
CN109071674A (zh) * 2015-10-30 2018-12-21 豪夫迈·罗氏有限公司 铰链修饰的抗体片段和其制备方法
CN109071674B (zh) * 2015-10-30 2022-08-05 豪夫迈·罗氏有限公司 铰链修饰的抗体片段和其制备方法
CN110669137A (zh) * 2019-10-24 2020-01-10 北京免疫方舟医药科技有限公司 一种多特异性抗体及其制备方法和用途
CN110669137B (zh) * 2019-10-24 2021-07-16 高新 一种多特异性抗体及其制备方法和用途
WO2022007807A1 (zh) * 2020-07-07 2022-01-13 百奥泰生物制药股份有限公司 双特异性抗体及其应用

Also Published As

Publication number Publication date
BR112014004166A2 (pt) 2018-05-29
RU2014109557A (ru) 2015-09-27
EP2748200B1 (en) 2018-04-11
AR087601A1 (es) 2014-04-03
KR101886983B1 (ko) 2018-08-08
CA2844143C (en) 2018-07-31
KR20170038121A (ko) 2017-04-05
KR20140041876A (ko) 2014-04-04
EP2748200A1 (en) 2014-07-02
JP6060162B2 (ja) 2017-01-11
KR101723273B1 (ko) 2017-04-04
WO2013026835A1 (en) 2013-02-28
JP2014532037A (ja) 2014-12-04
RU2617970C2 (ru) 2017-04-28
CA2844143A1 (en) 2013-02-28
MX2014001799A (es) 2014-03-31
CN103781801B (zh) 2018-02-09
US20130060011A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CN103781801A (zh) 包含两个Fab片段的无Fc的抗体及使用方法
JP6444874B2 (ja) 2つのFabフラグメントを含むFc不含抗体および使用方法
CN103889452B (zh) 对t细胞活化性抗原和肿瘤抗原特异性的双特异性抗体及使用方法
CN107001475B (zh) 抗tim3抗体及使用方法
CN105308069A (zh) 对fap和dr5特异性的双特异性抗体、对dr5特异性的抗体及使用方法
CN106459201A (zh) 结合人和食蟹猴CD3ε的抗体
CN105829347A (zh) 双特异性her2抗体及使用方法
CN107973856A (zh) 共价连接的抗原-抗体缀合物
CN106255705A (zh) 结合HER3β‑发夹和HER2域II的HER3/HER2双特异性抗体
CN112004831A (zh) 抗hla-g抗体及其用途
CN104755500A (zh) 结合HER3 β-发夹的HER3抗原结合蛋白
CN104755499A (zh) 结合HER3β-发夹和HER4β-发夹的抗HER3/HER4抗原结合蛋白
CN106459207A (zh) 结合HER3β‑发夹的抗HER3抗体
CN106687476A (zh) 抗brdu抗体及使用方法
CN106459197A (zh) 结合HER1 β‑发夹的HER1抗原结合蛋白
WO2019192432A1 (zh) 结合淋巴细胞活化基因-3(lag-3)的抗体及其用途
CN104936987A (zh) 抗mcsp抗体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1197826

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1197826

Country of ref document: HK