CN103003577A - 微流体***和网络 - Google Patents

微流体***和网络 Download PDF

Info

Publication number
CN103003577A
CN103003577A CN2011800356078A CN201180035607A CN103003577A CN 103003577 A CN103003577 A CN 103003577A CN 2011800356078 A CN2011800356078 A CN 2011800356078A CN 201180035607 A CN201180035607 A CN 201180035607A CN 103003577 A CN103003577 A CN 103003577A
Authority
CN
China
Prior art keywords
fluid
passage
network
actuator
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800356078A
Other languages
English (en)
Other versions
CN103003577B (zh
Inventor
P.科尔尼洛维奇
A.戈夫雅迪诺夫
D.P.马克尔
E.D.托尔尼埃宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN103003577A publication Critical patent/CN103003577A/zh
Application granted granted Critical
Publication of CN103003577B publication Critical patent/CN103003577B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/022Flow-dividers; Priority valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17526Electrical contacts to the cartridge
    • B41J2/1753Details of contacts on the cartridge, e.g. protection of contacts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/032Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
    • F15B11/0325Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters the fluid-pressure converter increasing the working force after an approach stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/082Servomotor systems incorporating electrically operated control means with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0026Valves using channel deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/088Channel loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/082Active control of flow resistance, e.g. flow controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14467Multiple feed channels per ink chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Micromachines (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Reciprocating Pumps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

在一个实施例中,微流体***包括在每一端耦合到储存器的流体通道。流体致动器不对称地定位在所述通道内以创建通道的长侧和短侧并且生成朝向通道的每一端传播的波,从而产生单向净流体流动。控制器是要选择性地激活所述流体致动器以控制通过该通道的单向净流体流动。

Description

微流体***和网络
背景技术
微流体是一种日益重要的技术,它应用在包括工程、物理、化学、显微技术和生物技术的各种学科上。微流体涉及研究少量的流体以及如何在各种微流体***和设备诸如微流体芯片中操纵、控制和使用这些少量的流体。例如,微流体生物芯片(称为“芯片实验室(lab-on-chip)”)在分子生物学领域中用来集成化验操作以用于诸如分析酶和DNA、检测生化毒素和病原体、诊断疾病等的目的。
许多微流体***的有益使用部分地取决于如下的能力:把流体适当地引入到微流体设备,并且控制流体通过这些设备的流动。一般而言,无法管理微米尺度上的微流体设备中的流体引入和流动限制了它们在实验室设置之外的应用,其中它们在环境和医学分析中的有用性是特别有价值的。引入和控制微流体设备中的流体的现有方法已包括使用在尺度上不是微米的外部设备和各种类型的泵。这些现有的解决方案具有例如与它们的大尺寸、它们的通用性缺乏和它们的复杂性相关的缺点,所有这些都可以限制实施这种微流体设备的微流体***的功能。
附图说明
现在将参照附图通过示例的方式描述本实施例,在所述附图中:
图1示出了根据一个实施例的适合于合并微流体设备、网络和惯性泵的微流体***;
图2示出了根据一些实施例的带有集成惯性泵的封闭的、单向的一维流体网络的示例;
图3示出了根据一些实施例的带有集成惯性泵的封闭的、双向的一维流体网络的示例;
图4示出了根据一个实施例的带有集成惯性泵的开放的、双向的一维流体网络的示例;
图5示出了根据一个实施例的封闭的二维流体网络的示例,所述二维流体网络图解说明通过选择性激活单个流体泵致动器而由不同的泵激活方式所产生的流体流动模式;
图6示出了根据一个实施例的封闭的二维流体网络的示例,所述二维流体网络图解说明通过选择性激活两个流体泵致动器而由不同的泵激活方式所产生的流体流动模式;
图7示出了根据一个实施例的封闭的二维流体网络的示例,所述二维流体网络图解说明通过选择性激活三个流体泵致动器而由不同的泵激活方式所产生的流体流动模式;
图8示出了根据一个实施例的开放的、双向的三维流体网络的示例的自顶向下的视图和相应的横截面图;
图9示出了根据一些实施例的合并流体泵致动器和有源元件两者的流体网络的示例;
图10示出了根据一个实施例的集成流体泵致动器处于不同操作阶段的示例流体网络通道的侧视图;
图11示出了根据一个实施例的处于来自图10的操作阶段的活动流体致动器;
图12、13和14示出了根据一些实施例的处于来自图10的操作阶段的活动流体致动器,包括净流体流动方向箭头;
图15、16和17示出了根据一些实施例的示例位移脉冲波形;以及
图18示出了根据一个实施例的集成流体泵致动器处于不同操作阶段的示例流体网络通道的侧视图。
具体实施方式
问题和解决方案的概述
如上所述,在微流体设备中管理流体的先前方法包括使用在尺度上不是微米的外部设备和泵机构。这些解决方案具有可能限制微流体***的应用范围的缺点。例如,外部注射器和气动泵有时用来注入流体并产生微流体设备内的流体流动。然而,外部注射器和气动泵体积大,难以处理和编程,并具有不可靠的连接。这些类型的泵在通用性方面也受微流体设备/芯片可以容纳的外部流体连接的数目限制。
另一种类型的泵是根据流体填充一组薄毛细管的原则工作的毛细管泵。照此,该泵仅仅提供单通能力。由于该泵是完全不活动的,所以流体的流动被“硬连线”到设计中并且不能被重新编程。电泳泵也可以被使用,但需要专门的涂层、复杂的三维几何形状和高的操作电压。所有这些属性限制了这种类型的泵的适用性。附加的泵类型包括蠕动泵和旋转泵。然而,这些泵具有移动的部件且难以小型化。
本公开的实施例一般通过改进的微流体设备而改进了现有的解决方案以在微流体***和设备中进行流体管理,所述改进的微流体设备实现了具有与流体致动器集成的惯性泵的复杂的和通用的微流体网络。所公开的微流体网络可以具有一维、二维和/或三维的拓扑结构,并且因此可以具有相当的复杂性。在网络内的每一个流体通道边缘可以包含一个、一个以上流体致动器或没有包含流体致动器。集成在微流体网络通道内的不对称位置处的流体致动器可以产生通过通道的单向和双向流体流动。朝向在网络中的多个微流体通道的端部不对称定位的多个流体致动器的选择性激活使得能够在网络内产生任意和/或定向控制的流体流动模式。此外,对流体致动器的机械操作或运动的时间控制使得能够对通过流体网络通道的流体流动进行方向控制。因此,在一些实施例中,单一流体致动器的正向和反向冲程(即,压缩和拉伸的流***移)的精确控制可以提供网络通道内的双向流体流动,并产生网络内的任意和/或定向控制的流体流动模式。
流体致动器可以由各种致动器机构诸如热气泡电阻器致动器、压电膜致动器、静电(MEMS)膜致动器、机械/冲击驱动膜致动器、音圈致动器、磁致伸缩驱动器致动器等驱动。流体致动器可以使用传统的微加工工艺而被集成到微流体***中。这实现了具有任意压力和流量分布的复杂微流体设备。微流体设备还可以包括各种集成有源元件,诸如电阻加热器、珀耳帖冷却器、物理、化学和生物传感器、光源以及它们的组合。微流体设备可能被连接到或可能不被连接到外部的流体储存器。所公开的微流体设备和网络的优点一般包括为操作微流体***所需的减少的设备量,这提高了移动性和扩大了潜在应用的范围。
在一个示例实施例中,微流体***包括在两端耦合到储存器的流体通道。流体致动器不对称地定位在通道内,从而创建具有不相等的惯性属性的通道的长短侧。流体致动器是要产生如下波:朝向通道的两端传播并产生通过该通道的单向净流体流动。控制器可以选择性地激活所述流体致动器以控制通过该通道的单向净流体流动。在一个实施方式中,流体致动器是朝向通道的第一端定位的第一流体致动器,并且第二流体致动器朝向通道的第二端不对称地定位在通道内。该控制器可以激活第一流体致动器以导致在从第一端到第二端的第一方向上通过通道的净流体流动,并可以激活第二流体致动器以导致在从第二端到第一端的第二方向上通过该通道的净流体流动。
在另一示例实施例中,微流体***包括:具有第一端和第二端的微流体通道的网络。通道端在末端通道交叉点处不同地耦合到彼此。至少一个通道是具有由不对称地定位在泵通道的相对端之间的流体致动器区分的短侧和长侧的泵通道。流体致动器是要产生朝向泵通道的相反端传播的、产生通过泵通道的单向净流体流动的波。在一个实施方式中,通道内集成的第二流体致动器朝向泵通道的第二端不对称地定位,并且控制器可以选择性地激活第一和第二流体致动器以产生通过网络的双向流体流动。在另一个实施方式中,附加的流体致动器朝向多个微流体通道的第一端和第二端不对称地定位并且控制器可以选择性地激活所述流体致动器以诱导在整个网络中定向控制的流体流动模式。
在另一个实施例中,微流体网络包括在第一平面中的微流体通道以促进通过第一平面内的网络的二维流体流动。第一平面中的微流体通道延伸到第二平面中以跨越并避免与第一平面中的另一微流体通道相交,这促进通过第一和第二平面内的网络的三维流体流动。有源元件被集成在至少一个微流体通道内。流体致动器不对称地集成在至少一个微流体通道内,并且控制器可以选择性地激活流体致动器以诱导网络内定向控制的流体流动模式。
在另一示例实施例中,在微流体网络中产生净流体流动的方法包括产生在持续时间方面在时间上不对称的压缩和拉伸的流***移。使用被不对称集成在微流体通道内的流体致动器来产生所述位移。
在另一示例实施例中,微流体***包括微流体网络。流体致动器被集成在网络通道内的不对称位置以产生通道内的不同持续时间的压缩和拉伸的流***移。控制器通过控制流体致动器的压缩和拉伸的流***移持续时间来调节通过该通道的流体流动方向。
在另一示例实施例中,在微流体网络中控制流体流动的方法包括利用通道内不对称定位的流体致动器来产生微流体通道中的不对称的流***移。
说明性实施例
图1图解说明了根据本公开的一个实施例的适用于合并本文中所公开的微流体设备、网络和惯性泵的微流体***100。微流体***100可以例如是化验***、微电子冷却***、诸如聚合酶链反应(PCR)***的核酸扩增***、或任何涉及使用、操纵和/或控制小体积的流体的***。微流体***100典型地实施微流体设备102诸如微流体芯片(例如,“芯片实验室”)以实现广泛的微流体应用范围。微流体设备102一般包括一个或多个具有通道与惯性泵以使流体在整个网络中循环的流体网络103。一般而言,微流体设备102的结构和部件可以使用传统的集成电路的微加工技术诸如电铸、激光烧蚀,各向异性蚀刻、溅射、干法蚀刻、光刻、浇铸、模压、冲压、加工、旋涂和层压来制造。微流体***100还可以包括外部流体储存器104以供应和/或循环流体至微流体设备102。微流体***100还包括电子控制器106和电源108以向可以是***100的一部分的微流体设备102、电子控制器106及其他电元件提供功率。
电子控制器106典型地包括处理器、固件、软件、包括易失性和非易失性存储器部件的一个或多个存储器部件、和其他用于与微流体设备102和流体储存器104通信且对其控制的电子设备。因此,电子控制器106是可编程的,并且典型地包括一个或多个存储在存储器中且可执行以控制微流体设备102的软件模块。这样的模块可以例如包括流体致动器选择、定时及频率模块110和流体致动器不对称操作模块112,如图1所示。
电子控制器106也可以从主机***诸如计算机接收数据114,并把数据114暂时存储在存储器中。数据114典型地沿着电子、红外线、光学或其他信息传送路径发送到微流体***100。数据114例如表示单独或与软件/固件模块中的其他可执行指令结合使用的可执行指令和/或参数,其存储在电子控制器106上以控制微流体设备102内的流体流动。可编程控制器106上可执行的各种软件和数据114使得能够选择性激活集成在微流体设备102的网络通道内的流体致动器以及对这种激活的压缩和拉伸位移的定时、频率和持续时间进行精确控制。对流体致动器的容易地可修改(即,可编程)控制允许大量的流体流动模式可动态用于给定的微流体设备102。
图2示出根据本公开的实施例的具有适合于实施在微流体设备102内的集成惯性泵200的封闭的、单向的一维(即,线性的)流体网络103(A,B,C,D)的示例。如本文档中使用的:“封闭的”网络意指不具有与外部流体储存器的连接的网络;“单向”网络意指仅在一个方向上产生流体流动的网络;并且一维网络意指线性网络。惯性泵200一般包括带有朝向泵通道206的一端不对称设置的集成流体致动器202的泵通道206。注意在如下面所讨论的一些实施例中,网络通道204本身用作泵通道206。图2的示例惯性泵200每个具有流体泵致动器202以使流体移动通过网络通道204(1和2)之间的泵通道206。在此示例中,每个网络通道204用作泵通道206的每一端处的流体储存器。虽然网络103(A,B,C,D)是一维的(即,线性的)——其中流体从一端流到另一端,但是在网络通道204的端部(1和2)示出的虚线旨在表明在一些实施例中网络通道204可以更远延伸作为具有附加维度(即,二维和三维)的更大网络103的一部分,其中网络通道204与作为这样的较大网络103的一部分的其他网络通道相交。在下面讨论这样的较大网络的示例。
图2的网络A、B、C和D中所示的四个惯性泵200每个包含单一集成流体泵致动器202,其朝向泵通道206的一端不对称地定位在泵通道206内。网络A和C的泵200中的流体致动器202是不活动的,或者没有被激活,如图2中提供的图例所表明的。因此,没有通过网络通道1和2(204)之间的泵通道206的净流体流动。然而,网络B和D的泵200中的流体致动器202是活动的,这产生通过网络通道1和2(204)之间的泵通道206的净流体流动。
通过流体致动器202在泵通道206内的不对称定位而在网络B和D的活动惯性泵200中实现流体双极性(diodicity)(即,单向的流体流动)。当惯性泵通道206的宽度比它正连接的网络通道204(例如,网络通道1和2)的宽度小时,惯性泵200的驱动功率主要由泵通道206的属性(即,泵通道的宽度和流体致动器202在泵通道内的不对称性)确定。泵通道206内的流体致动器202的确切定位可能略微变化,但在任何情况下关于泵通道206的长度将是不对称的。因此,流体致动器202将位于泵通道206的中心点的一侧。关于给定的流体致动器202,其不对称的放置创建了泵通道206的短侧和泵通道206的长侧。因此,网络B的惯性泵200中的活动流体致动器202更靠近更宽网络通道2(204)的不对称定位是泵通道206内的流体双极性的基础,这导致从网络通道2到网络通道1(即,从右到左)的净流体流动。同样地,网络D的泵200中的活动流体致动器202在泵通道206短侧的定位导致从网络通道1到网络通道2(即,从左到右)的净流体流动。流体致动器202泵通道206内的不对称定位创建了在泵通道206内驱动流体双极性(净流体流动)的惯性机构。流体致动器202产生在泵通道206内传播的在两个相反方向上沿泵通道206推压流体的波。当在泵通道206内不对称地定位流体致动器202时,存在通过泵通道206的净流体流动。更大量的流体部分(典型地包含在泵通道206的长侧中)在正向流体致动器泵冲程末端具有较大的机械惯性。因此,这流体的主体比通道的短侧中的液体更缓慢地反转方向。通道的较短侧中的流体具有更多的时间以在反向流体致动器泵冲程期间获得机械动量。因此,在反向冲程末端,通道的较短侧中的流体具有比通道的长侧中的流体更大的机械动量。结果,净流动典型地处在从泵通道206的短侧到长侧的方向上。由于净流动是两个流体元件(即,通道的短侧和长侧)的不相等惯性属性的后果,因此这种类型的微型泵被称为惯性泵。
图3示出了根据本公开的实施例的具有诸如上面参考图2所讨论的适合于实施在微流体设备102内的集成惯性泵200的封闭的、双向的一维(即,线性的)流体网络103(A,B)的示例。代替一个流体泵致动器202,图3的示例惯性泵200具有两个流体泵致动器202以使流体通过网络通道204和在网络通道204之间移动。朝向每个泵通道206的相对侧不对称地定位两个流体致动器202。在泵通道206的每一侧具有流体致动器202使得能够在任一方向上产生通过通道206的净流体流动,这取决于哪个流体致动器202是活动的。因此,在图3的网络A的惯性泵200中,活动流体致动器202朝向泵通道206的右侧不对称地定位靠近网络通道2,并且产生的净流体流动是从泵通道206的右侧(短侧)到左侧(长侧),这使流体从网络通道2朝向网络通道1移动。类似地,在网络B的惯性泵200中,活动流体致动器202朝向泵通道206的左侧不对称地定位靠近网络通道1,并且产生的净流体流动是从泵通道206的左侧(再次,短侧)到右侧(长侧),这使流体从网络通道1朝向网络通道2移动。
如上所述,控制器106是可编程的以用多种方式控制微流体设备102。作为示例,关于图2的惯性泵200(每个惯性泵具有单一集成流体泵致动器202),控制器106中的模块110(即,流体致动器选择、定时及频率模块110)使得能够选择性激活在整个网络103中任何数量的泵通道206中的任何数量的致动器202。因此,虽然网络A、B、C和D是一维的,具有带有仅一个流体致动器202的惯性泵200,但是在不同的实施例中它们可能是较大网络中的一部分,其中其他互连的网络通道204中的其他致动器202的选择性激活可以实现对在整个较大网络103中的流体流动方向的控制。模块110还实现对流体致动器的激活的定时和频率的控制从而管理何时产生净流体流动和流体流动速率。关于图3的具有朝向每个泵通道206的相反侧不对称定位的两个流体致动器202的惯性泵200,控制器106上的模块110实现对单一泵通道206内的两个致动器的选择性激活除此之外在整个较大网络103中任何数量的其他泵通道中的任何数量的致动器的选择性激活。以这种方式选择性地激活流体致动器的能力实现对个别网络通道204内以及贯穿整个扩展网络103的流体流动方向的控制。
图4示出了根据本公开的一个实施例的具有适合于实施在微流体设备102内的集成惯性泵200的开放的、双向的一维流体网络103的示例。如本文档中使用的,“开放的”网络是连接到至少一个外部流体储存器诸如储存器400的网络。当以与网络通道204连接相同的方式与流体储存器400连接时,如果惯性泵200的宽度小于它正连接到的流体储存器400的宽度,则惯性泵200的驱动功率主要由泵通道206的属性(即,泵通道的宽度和流体致动器202在泵通道内的不对称性)确定。因此,在这个示例中,在泵通道206的一端连接到外部流体储存器400而泵通道206的另一端连接到网络通道204(通道1)时,储存器400和网络通道204二者用作关于惯性泵200的驱动功率的流体储存器。在这种“开放的”网络103的其他实施方式中,泵通道206的两端可以容易地连接到外部流体储存器400。网络103的泵200中的流体致动器202在泵通道206的短侧靠近更宽流体储存器400的不对称定位是泵通道206内的流体双极性的基础,这导致从流体储存器400到网络通道1(即从右到左)的净流体流动。注意,一个储存器400可以由一个以上泵通道206连接到网络103,或者连接到一个或多个带有或不带有任何惯性泵的网络通道204。一般而言,储存器可以通过提供存储和访问各种流体诸如待分析的生物样品、废物收集器、DNA基本成分的容器等来促进各种流体应用。
微流体设备102内的网络103可以具有一维、二维或三维拓扑结构,如上所述。例如,上面所讨论的图2和3中的网络103被示为线性或一维网络103。然而,在这些网络内的网络通道204还就潜在地连接到作为较大网络103的部分的其他网络通道方面进行讨论。图5 – 7示出了这种较大网络103的示例,展示了二维网络拓扑结构。
图5示出了根据本公开的一个实施例的封闭的二维流体网络103的示例,所述二维流体网络图解说明通过选择性激活网络103内的单数流体泵致动器202而由不同的泵激活方式所产生的流体流动模式(A,B,C,D)。二维网络103具有四个流体泵致动器202和由五个顶点或通道交叉点(引用为1,2,3,4,5)分离的八个网络通道(或边缘)。在本实施例中,惯性泵包括集成到网络通道204中的流体泵致动器202。因此,未示出如在先前网络中上面所讨论的单独的泵通道。网络通道204本身用作流体泵致动器202的泵通道。较窄宽度的网络通道204在较宽通道交叉点(顶点1,2,3,4,5)连接实现了惯性泵的驱动功率,这是基于流体致动器202在较窄宽度的网络通道204内的不对称放置。
参照展现流体流动模式A的图5的网络103,活动流体致动器202(参见图5中的标识活动流体致动器的图例)产生在从顶点3到顶点5的方向上的净流体流动,如净流动方向箭头所表明的。在顶点5,流体的流动分开并遵循不同方向通过从顶点5到顶点1、2和4延伸的网络通道。此后,流体从顶点1、2和4流回到顶点3,如净流动方向箭头所表明的。因此,如流动模式A所示的靠近顶点3的单一流体泵致动器202的选择性激活引起在整个网络中特定方向的流体流动。
相比之下,如流动模式B、C和D所示的其他个别流体泵致动器202的选择性激活引起通过网络103的完全不同方向的流体流动。例如,参照展现流体流动模式B的图5的网络103,活动流体致动器202产生在从顶点1到顶点5的方向上的净流体流动,如净流动方向箭头所表明的。在顶点5,流体的流动分开并遵循不同方向通过从顶点5到顶点2、3和4延伸的网络通道。此后,流体从顶点2、3和4流回到顶点1,如净流动方向箭头所表明的。不同方向的流体流动类似地适用于流动模式C和D。因此,微流体***100中的可编程控制器106可以通过选择性激活微流体设备102的特定网络103内的单一流体泵致动器202而容易地调整该网络内的流体流动模式。
图6示出了根据本公开的一个实施例的封闭的二维流体网络103的示例,所述二维流体网络图解说明通过在网络103内同时选择性激活两个流体泵致动器202而由不同的泵激活方式所产生的流体流动模式(E,F,G,H,I,J)。二维网络103与图5所示的相同,并具有四个流体泵致动器202与由五个顶点或通道交叉点(引用为1,2,3,4,5)分离的八个网络通道(或边缘)。如流体流动模式(E,F,G,H,I,J)所示的同时选择性激活两个流体泵致动器202引起通过网络103的特定方向的流体流动,其针对每个模式而变化。
参照展现流体流动模式E的图6的网络103,例如,活动流体致动器202产生在从顶点2和3到顶点5的方向上的净流体流动,如净流动方向箭头所表明的。在顶点5,流体的流动分开并遵循不同方向通过从顶点5到顶点1和4延伸的网络通道。此后,流体从顶点1和4流回到顶点2和3,如净流动方向箭头所表明的。注意,在顶点1和4之间和在顶点2和3之间的网络通道中没有净流体流动。因此,如流体流动模式E所示的同时选择性激活靠近顶点2和3的两个流体泵致动器202引起在整个网络中特定方向的流体流动。对于图6所示的每一个其他流体流动模式,不同方向的流体流动如每个模式中的净流动方向箭头所表明的那样产生。因此,微流体***100中的可编程控制器106可以通过同时选择性激活微流体设备102的特定网络103内的两个流体泵致动器202而容易地调整该网络内的流体流动模式。
图7示出了根据本公开的一个实施例的封闭的二维流体网络103的示例,所述二维流体网络图解说明通过在网络103内同时选择性激活三个流体泵致动器202而由不同的泵激活方式所产生的流体流动模式(K,L,M,N)。二维网络103与图5所示的相同,并具有四个流体泵致动器202与由五个顶点或通道交叉点(引用为1,2,3,4,5)分离的八个网络通道(或边缘)。如流体流动模式(K,L,M,N)所示的同时选择性激活三个流体泵致动器202引起通过网络103的特定方向的流体流动,其针对每个模式而变化。
参照展现流体流动模式K的图7的网络103,例如,活动流体致动器202产生在从顶点1、2和3通过顶点5到顶点4的方向上的净流体流动,如净流动方向箭头所表明的。在顶点4,流体的流动分开并遵循不同方向通过从顶点4到顶点1和3延伸的网络通道。到达顶点1和3的流体再次分开且在不同的方向上流动到顶点5和2,如净流动方向箭头所表明的。因此,如流体流动模式K所示的同时选择性激活靠近顶点1、2和3的四个流体泵致动器202中的三个引起在整个网络103中特定方向的流体流动。对于图7所示的每一个其他流体流动模式,不同方向的流体流动如每个模式中的净流动方向箭头所表明的那样产生。通过可编程控制器106选择性激活流体致动器202,可以在微流体设备102的网络中实施各种流体流动模式。
如上所述,微流体设备102内的网络103可以具有一维、二维或三维拓扑结构。图8示出了根据本公开的一个实施例的开放的、双向的三维流体网络103的示例的自顶向下的视图和相应的横截面图。开放的流体网络103被连接到流体储存器400并且促进在三维中的流体流动,其中一个流体通道跨越另一个流体通道。可以例如使用传统的微加工技术和多层SU8技术诸如湿膜旋涂和/或干膜层压来制造这种网络。SU8是通常用作用于制造半导体器件的光致抗蚀剂掩模的透明的光电可成像的聚合物材料。如图8所示,例如所述流体储存器400和网络通道1、2和3可以在第一SU8层中制造。第二SU8层802然后可以用来给其他通道上方的流体通道定路线以避免网络内不想要的通道交叉点。这种三维的拓扑结构实现了在微流体设备内复杂和通用的具有集成惯性泵的微流体网络。
通过集成用于分析、检测、加热等的各种有源和无源元件,显著增强了微流体设备102的有用性。这样的集成元件的示例包括电阻加热器、珀耳帖冷却器、物理、化学和生物传感器、光源以及它们的组合。图9示出了合并流体泵致动器202和有源元件900的几个流体网络103的示例。本文中所讨论的每一个流体网络适合于合并这样的集成元件900除此之外提供网络内的各种流体流动模式的流体泵致动器。
虽然已经图示出和讨论了具体的流体网络,但是本文中所考虑的微流体设备102和***可以实施在一个、两个和三个维度中具有多种布局的包括多种配置的集成流体泵致动器以及其他有源和无源元件的许多其他流体网络。
如前所述,流体泵致动器202的泵送效果取决于致动器在流体通道内(例如,泵通道206内)的不对称放置,所述流体通道的宽度比储存器或其他从其正在泵送流体的通道(诸如网络通道204)的宽度窄。(再次,泵通道可以本身是例如在更宽的流体储存器之间泵送流体的网络通道)。流体致动器202向流体通道的中心点的一侧的不对称放置建立了通道的短侧和通道的长侧,并且可以在从通道的短侧(即,在此处定位流体致动器)到长侧的方向上实现单向的流体流动。流体通道内对称放置(即,在通道的中心处)的流体泵致动器将产生零净流动。因此,流体网络通道内的流体致动器202的不对称放置是为了实现可以产生通过该通道的净流体流动的泵送效果而需要满足的一个条件。
然而,除了流体通道内的流体致动器202的不对称放置之外,流体致动器的泵送效果的另一组成部分是它的操作方式。具体而言,为了实现泵送效果和通过该通道的净流体流动,流体致动器也应当关于通道内的其流***移不对称地操作。在操作期间,流体通道中的流体致动器首先在一个方向然后另一个方向上偏转(诸如与柔性膜或活塞冲程那样)以导致通道内的流***移。如上所述,流体致动器202产生在两个相反的方向上沿着通道推压流体的在流体通道中传播的波。如果流体致动器的操作是使得它的偏转使流体在两个方向上以相同的速度位移,则流体致动器将在通道中产生零净流体流动。为了产生净流体流动,所述流体致动器的操作应当被配置为使得它的偏转或流***移是不对称的。因此,流体致动器关于其偏转冲程或流***移的定时的不对称操作是为了实现可以产生通过该通道的净流体流动的泵送效果而需要满足的第二条件。
图10示出了根据本公开的一个实施例的集成流体泵致动器1002处于不同操作阶段的示例流体网络通道1000的侧视图。流体储存器1004连接在通道1000的每一端。集成流体致动器1002被不对称地放置在靠近流体储存器1004的输入的通道的短侧,从而满足为创建可以产生通过该通道的净流体流动的泵送效果而需要的第一条件。为创建泵送效果而需要满足的第二条件是流体致动器1002的不对称操作,如上所述。流体致动器1002在本文中一般被描述为是如下压电膜:其在流体通道内的上下偏转(有时被称为活塞冲程)产生可以被具体地控制的流***移。然而,可以使用各种其他设备来实施流体致动器,例如包括用以产生汽泡的电阻加热器,静电(MEMS)膜,机械/冲击驱动膜,音圈,磁致伸缩驱动器等等。
在图10所示的操作阶段A,流体致动器1002处于静止位置并且是不活动的,所以没有净流体流动通过通道1000。在操作阶段B,流体致动器1002是活动的,并且该膜被向上偏转到流体通道1000中。这种向上偏转或正向冲程导致通道1000内的流体的压缩位移,因为该膜向外推压流体。在操作阶段C,流体致动器1002是活动的并且该膜正开始向下偏转以返回到其原始静止位置。该膜的这种向下偏转或反向冲程导致通道1000内的流体的拉伸位移,因为它向下拉动流体。向上和向下的偏转是一个偏转循环。如果在反复的偏转循环中向上偏转(即,压缩位移)和向下偏转之间存在时间的不对称性,则产生通过通道1000的净流体流动。由于下面参照图11 - 14讨论时间的不对称性和净流体流动方向,所以图10针对操作阶段B和C包括相反的净流动方向箭头之间***的问号。这些问号旨在指示压缩和拉伸位移之间的时间的不对称性没有被指定,并且因此流动的方向(如果有的话)还不知道。
图11示出了根据本公开的一个实施例的处于来自图10的操作阶段B和C的活动流体致动器1002连同时间标记“t1”和“t2”以帮助图解说明流体致动器1002产生的压缩和拉伸位移之间的时间的不对称性。时间t1是使流体致动器膜向上偏转从而产生压缩流***移所花费的时间。时间t2是使流体致动器膜向下偏转或回到其原始位置从而产生拉伸流***移所花费的时间。如果压缩位移(向上膜偏转)的t1持续时间大于或小于(即,不同于)拉伸位移(向下膜偏转)的t2持续时间,则发生流体致动器1002的不对称操作。在反复的偏转循环内的这种不对称流体致动器操作产生了通道1000内的净流体流动。然而,如果t1和t2的压缩和拉伸位移相等或对称,则将存在很少或没有通过该通道1000的净流体流动,不管通道1000内的流体致动器1002的不对称放置。
图12、13和14示出了根据本公开的一些实施例的处于来自图10的操作阶段B和C的活动流体致动器1002,包括指示哪个方向流体流动通过该通道1000(如果有的话)的净流体流动方向箭头。净流体流动的方向取决于来自致动器的压缩和拉伸位移持续时间(t1和t2)。图15、16和17示出了示例位移脉冲波形,其持续时间分别与图12、13和14的位移持续时间t1和t2对应。对于各种流体泵致动器,压缩位移和拉伸位移时间t1和t2可以通过控制器106例如执行诸如来自微流体***100内的模块112(流体致动器不对称操作模块112)的指令而得到精确的控制。
参考图12,压缩位移持续时间t1小于拉伸位移持续时间t2,所以在从通道1000的短侧(即,致动器所位于的一侧)到通道的长侧的方向上存在净流体流动。压缩和拉伸位移持续时间t1和t2之间的差别在图15中可以看出,其中图15示出了在压缩位移持续时间为t1和拉伸位移持续时间为t2时可能由流体致动器产生的相应的示例位移脉冲波形。图15的波形指示在压缩位移持续时间t1约为0.5微秒(ms)和拉伸位移持续时间t2约为9.5ms时大约为1皮升(pl)的位移脉冲/循环。为流***移量和位移持续时间提供的值仅仅是示例而并非旨在作为在任何方面的限制。
在图13中,压缩位移持续时间t1大于拉伸位移持续时间t2,所以在从通道1000的长侧到通道的短侧的方向上存在净流体流动。压缩和拉伸位移持续时间t1和t2之间的差别在图16中可以看出,其中图16示出了在压缩位移持续时间为t1和拉伸位移持续时间为t2时可能由流体致动器产生的相应的示例位移脉冲波形。图16的波形指示在压缩位移持续时间t1约为9.5微秒(ms)和拉伸位移持续时间t2约为0.5ms时大约为1皮升(pl)的位移脉冲/循环。
在图14中,压缩位移持续时间t1等于拉伸位移持续时间t2,所以很少或没有净流体流动通过通道1000。相等的压缩和拉伸位移持续时间t1和t2在图17中可以看出,其中图17示出了在压缩位移持续时间为t1和拉伸位移持续时间为t2时可能由流体致动器产生的相应的示例位移脉冲波形。图17的波形指示在压缩位移持续时间t1约为5.0微秒(ms)和拉伸位移持续时间t2约为5.0ms时大约为1皮升(pl)的位移脉冲/循环。
注意,在图14中虽然在通道1000内不对称地定位流体致动器1002(满足用于实现泵送效果的一个条件),但是仍然很少或没有净流体流动通过通道1000,因为流体致动器操作不是不对称的(不满足用于实现泵送效果的第二条件)。同样地,如果流体致动器的位置是对称的(即,位于通道的中心)而致动器的操作是不对称的,则将仍然很少或没有净流体流动通过通道,因为两个泵送效果条件均将未得到满足。
根据图10 - 17的以上示例和讨论,重要的是注意流体致动器的不对称位置的泵送效果条件与流体致动器的不对称操作的泵送效果条件之间的相互作用。也就是说,如果流体致动器的不对称位置和不对称操作在相同的方向上工作,则流体泵致动器将展示高效率的泵送效果。然而,如果流体致动器的不对称位置和不对称操作彼此抵消工作,则流体致动器的不对称位置反转由流体致动器的不对称位置所导致的净流动矢量,并且该净流是从通道的长侧到通道1000的短侧。
另外,根据图10 - 17的以上示例和讨论,现在可以更好地理解上面关于图2 - 8的微流体网络103讨论的流体泵致动器202被假定为其压缩位移持续时间小于其拉伸位移持续时间的致动器设备。这样的致动器的示例是加热流体并通过超临界蒸汽***而导致位移的电阻加热元件。这样的事件具有***性的不对称性,其扩张阶段(即,压缩位移)比它的塌陷阶段(即拉伸位移)快。此事件的不对称性不能以与例如由压电膜致动器导致的偏转不对称性相同的方式进行控制。
图18示出了根据本公开的一个实施例的集成流体泵致动器1002处于不同操作阶段的示例流体网络通道1000的侧视图。此实施例类似于上面关于图10示出和讨论的实施例,除了流体致动器膜的偏转被示出不同地工作以创建通道1000内的压缩和拉伸位移。在图18所示的操作阶段A,流体致动器1002处于静止位置并且是不活动的,所以没有净流体流动通过通道1000。在操作阶段B,流体致动器1002是活动的并且该膜被向下偏转到流体通道1000之外。该膜的这种向下偏转导致通道1000内的流体的拉伸位移,因为它向下拉动流体。在操作阶段C,流体致动器1002是活动的并且该膜正开始向上偏转以返回到其原始静止位置。这种向上偏转导致通道1000内的流体的压缩位移,因为该膜向上推压流体到通道中。如果在压缩位移和拉伸位移之间存在时间的不对称性,则产生通过该通道1000的净流体流动。净流体流动的方向以如上面所讨论的相同方式取决于压缩和拉伸位移的持续时间。

Claims (15)

1.一种微流体***,其包括:
流体通道,其在每一端耦合到流体储存器;
流体致动器,其不对称地定位在所述通道内以创建具有不相等的惯性属性的通道的长侧和短侧,所述流体致动器生成朝向通道的每一端传播并产生单向净流体流动的波;以及
控制器,其用以选择性地激活所述流体致动器以控制通过该通道的单向净流体流动。
2.根据权利要求1所述的微流体***,其中单向净流体流动从通道的短侧向长侧前进。
3.根据权利要求1所述的微流体***,其中流体致动器包括朝向通道的第一端定位的第一流体致动器,所述***进一步包括:
第二流体致动器,其朝向通道的第二端不对称地定位在通道内;
其中,该控制器对第一流体致动器的激活导致在从第一端到第二端的第一方向上通过通道的净流体流动,并且该控制器对第二流体致动器的激活导致在从第二端到第一端的第二方向上通过该通道的净流体流动。
4.根据权利要求3所述的微流体***,进一步包括:流体模块,能够在控制器上执行以控制通过通道的流体流动的方向、速率和定时。
5.根据权利要求1所述的微流体***,进一步包括在通道内集成的有源元件。
6.根据权利要求5所述的微流体***,其中所述有源元件选自由电阻加热器、珀耳帖冷却器、物理传感器、化学传感器、生物传感器、光源以及它们的组合组成的组。
7.根据权利要求1所述的微流体***,其中所述储存器包括两个不同的储存器并且所述流体通道的每一端都耦合到不同的储存器中的一个。
8.一种微流体***,其包括具有在末端通道交叉点处不同地耦合到彼此的第一端和第二端的微流体通道的网络,其中至少一个通道是具有由不对称地定位在泵通道的相对端之间的流体致动器区分的短侧和长侧的泵通道,所述流体致动器用以生成朝向泵通道的相反端传播的且产生通过泵通道的单向净流体流动的波。
9.根据权利要求8所述的微流体***,其中流体致动器是朝向泵通道的第一端定位的第一流体致动器,所述***进一步包括:
第二流体致动器,其朝向泵通道的第二端不对称地定位;以及
控制器,其用以选择性地激活第一和第二流体致动器以生成通过网络的双向流体流动。
10.根据权利要求8所述的微流体***,进一步包括:
附加的流体致动器,其朝向多个微流体通道的第一端和第二端不对称地定位;以及
控制器,其用以选择性地激活所述流体致动器以诱导在网络内定向控制的流体流动模式。
11.根据权利要求10所述的微流体***,进一步包括:流体模块,能够在控制器上执行以诱导在网络内各种定向控制的流体流动模式。
12.根据权利要求8所述的微流体***,进一步包括:微流体通道,其在各自的第一端和第二端之间彼此相交以形成中间通道交叉点。
13.根据权利要求12所述的微流体***,进一步包括:微流体通道,其跨越另一个微流体通道以避免中间通道交叉点。
14.根据权利要求8所述的微流体***,其中微流体通道比交叉点窄。
15.一种微流体网络,其包括:
第一平面中的微流体通道,其用以促进通过第一平面内的网络的二维流体流动;
第一平面中的微流体通道,其延伸到第二平面中以跨越第一平面中的另一微流体通道并避免与该另一微流体通道相交并且促进通过第一和第二平面内的网络的三维流体流动;
有源元件,其被集成在微流体通道内;
流体致动器,其不对称地集成在至少一个微流体通道内;以及
控制器,其用以选择性地激活流体致动器以诱导网络内定向控制的流体流动模式。
CN201180035607.8A 2010-05-21 2011-01-13 微流体***和网络 Expired - Fee Related CN103003577B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2010/035697 WO2011146069A1 (en) 2010-05-21 2010-05-21 Fluid ejection device including recirculation system
USPCT/US2010/035697 2010-05-21
PCT/US2011/021168 WO2011146145A1 (en) 2010-05-21 2011-01-13 Microfluidic systems and networks

Publications (2)

Publication Number Publication Date
CN103003577A true CN103003577A (zh) 2013-03-27
CN103003577B CN103003577B (zh) 2016-06-29

Family

ID=44991957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180035607.8A Expired - Fee Related CN103003577B (zh) 2010-05-21 2011-01-13 微流体***和网络

Country Status (7)

Country Link
US (6) US9090084B2 (zh)
EP (1) EP2572110B1 (zh)
JP (1) JP5756852B2 (zh)
KR (2) KR101846808B1 (zh)
CN (1) CN103003577B (zh)
BR (1) BR112012029581B1 (zh)
WO (2) WO2011146069A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106985543A (zh) * 2016-01-08 2017-07-28 佳能株式会社 液体喷出头和液体喷出设备
CN107208015A (zh) * 2015-01-30 2017-09-26 惠普发展公司,有限责任合伙企业 微流体流量控制
US9963739B2 (en) 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
CN108350870A (zh) * 2015-12-21 2018-07-31 船井电机株式会社 微流体装置
CN108430318A (zh) * 2016-01-29 2018-08-21 惠普发展公司,有限责任合伙企业 微流体***
CN109070588A (zh) * 2016-07-29 2018-12-21 惠普发展公司,有限责任合伙企业 流体喷射装置
CN109203678A (zh) * 2017-06-29 2019-01-15 佳能株式会社 液体喷出头和液体喷出装置
US10179453B2 (en) 2016-01-08 2019-01-15 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
CN109203716A (zh) * 2017-07-07 2019-01-15 佳能株式会社 液体喷射头、液体喷射设备和液体供应方法
US10272691B2 (en) 2010-05-21 2019-04-30 Hewlett-Packard Development Company, L.P. Microfluidic systems and networks
US11865540B2 (en) 2016-09-23 2024-01-09 Hewlett-Packard Development Company, L.P. Microfluidic device

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540355B2 (en) * 2010-07-11 2013-09-24 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
US8657429B2 (en) * 2010-10-26 2014-02-25 Eastman Kodak Company Dispensing liquid using overlapping outlet/return dispenser
EP3511168B1 (en) * 2011-04-29 2021-02-24 Hewlett-Packard Development Company, L.P. Systems and methods for degassing fluid
KR20140143386A (ko) 2012-03-05 2014-12-16 후지필름 디마틱스, 인크. 프린트 헤드 보강법
WO2013162606A1 (en) * 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Fluid ejection device with two-layer tophat
EP2828088B1 (en) * 2012-07-03 2020-05-27 Hewlett-Packard Development Company, L.P. Fluid ejection apparatus
EP2828081B1 (en) * 2012-07-24 2019-10-09 Hewlett-Packard Company, L.P. Fluid ejection device with particle tolerant thin-film extension
WO2014046687A1 (en) * 2012-09-24 2014-03-27 Hewlett-Packard Development Company, L.P. Microfluidic mixing device
US9409170B2 (en) * 2013-06-24 2016-08-09 Hewlett-Packard Development Company, L.P. Microfluidic mixing device
EP3099964B1 (en) * 2014-01-29 2019-09-04 Hewlett-Packard Development Company, L.P. Microfluidic valve
WO2016068954A1 (en) 2014-10-30 2016-05-06 Hewlett-Packard Development Company, L.P. Print head sensing chamber circulation
WO2016068987A1 (en) * 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016068989A1 (en) 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2016068988A1 (en) * 2014-10-31 2016-05-06 Hewlett-Packard Development Company, L.P. Fluid ejection device
BR112017008528A2 (pt) 2015-01-29 2017-12-19 Hewlett Packard Development Co dispositivo de ejeção de fluido
EP3233495B1 (en) * 2015-04-30 2021-06-09 Hewlett-Packard Development Company, L.P. Fluid ejection device
US11345162B2 (en) 2015-07-14 2022-05-31 Hewlett-Packard Development Company, L.P. Fluid recirculation channels
CN107531050B (zh) * 2015-10-27 2019-07-23 惠普发展公司,有限责任合伙企业 流体喷射装置
US10336070B2 (en) 2015-10-30 2019-07-02 Hewlett-Packard Development Company, L.P. Fluid ejection device with a fluid recirculation channel
EP3222351A1 (en) * 2016-03-23 2017-09-27 Ecole Polytechnique Federale de Lausanne (EPFL) Microfluidic network device
WO2017180120A1 (en) * 2016-04-14 2017-10-19 Hewlett-Packard Development Company, L.P. Microfluidic device with capillary chamber
WO2018017120A1 (en) * 2016-07-22 2018-01-25 Hewlett-Packard Development Company, L.P. Microfluidic devices
CN109070595B (zh) * 2016-07-29 2021-01-05 惠普发展公司,有限责任合伙企业 流体喷射装置
IT201600083000A1 (it) * 2016-08-05 2018-02-05 St Microelectronics Srl Dispositivo microfluidico per la spruzzatura termica di un liquido contenente pigmenti e/o aromi con tendenza all'aggregazione o al deposito
US10632747B2 (en) 2016-10-14 2020-04-28 Hewlett-Packard Development Company, L.P. Fluid ejection device
US10723128B2 (en) * 2016-11-01 2020-07-28 Hewlett-Packard Development Company, L.P. Fluid ejection device including fluid output channel
US20200031135A1 (en) * 2017-01-23 2020-01-30 Hewlett-Packard Development Company, L.P. Fluid ejection device
WO2018143957A1 (en) * 2017-01-31 2018-08-09 Hewlett-Packard Development Company, L.P. Inkjet ink composition and inkjet cartridge
WO2019022746A1 (en) 2017-07-27 2019-01-31 Hewlett-Packard Development Company, L.P. POLYMER PARTICLES
US10883008B2 (en) 2017-01-31 2021-01-05 Hewlett-Packard Development Company, L.P. Inkjet ink set
WO2018190848A1 (en) 2017-04-13 2018-10-18 Hewlett-Packard Development Company, L.P. White inks
EP3494182B1 (en) 2017-01-31 2020-04-22 Hewlett-Packard Development Company, L.P. Inkjet printing system
WO2018143962A1 (en) 2017-01-31 2018-08-09 Hewlett-Packard Development Company, L.P. Method of inkjet printing and fixing composition
US11066566B2 (en) 2017-06-09 2021-07-20 Hewlett-Packard Development Company, L.P. Inkjet printing systems
US10442195B2 (en) 2017-06-22 2019-10-15 Fujifilm Dimatix, Inc. Piezoelectric device and method for manufacturing an inkjet head
JP7057071B2 (ja) 2017-06-29 2022-04-19 キヤノン株式会社 液体吐出モジュール
JP2019014243A (ja) 2017-07-04 2019-01-31 キヤノン株式会社 インクジェット記録方法及びインクジェット記録装置
JP2019014245A (ja) * 2017-07-04 2019-01-31 キヤノン株式会社 インクジェット記録方法及びインクジェット記録装置
EP3661750A4 (en) 2017-09-11 2021-04-07 Hewlett-Packard Development Company, L.P. INPUT AND OUTPUT CHANNEL FLUID MATRICES
JP6964775B2 (ja) * 2017-11-27 2021-11-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 交差ダイ再循環チャネル及びチャンバ再循環チャネル
WO2019143321A1 (en) * 2018-01-16 2019-07-25 Hewlett-Packard Development Company, L.P. Inertial pump fluid dispensing
US11312131B2 (en) 2018-04-06 2022-04-26 Hewlett-Packard Development Company, L.P. Sense measurement indicators to select fluidic actuators for sense measurements
WO2019240764A1 (en) * 2018-06-11 2019-12-19 Hewlett-Packard Development Company, L.P. Microfluidic valves
US11376862B2 (en) 2018-07-23 2022-07-05 Hewlett-Packard Development Company, L.P. Fluid ejection with micropumps and pressure-difference based fluid flow
US20210322974A1 (en) * 2018-11-14 2021-10-21 Hewlett-Packard Development Company, L.P. Microfluidic devices
JP7183023B2 (ja) * 2018-12-19 2022-12-05 キヤノン株式会社 素子基板、液体吐出ヘッド、及び記録装置
JP7309359B2 (ja) * 2018-12-19 2023-07-18 キヤノン株式会社 液体吐出装置
JP7237567B2 (ja) 2018-12-25 2023-03-13 キヤノン株式会社 液体吐出ヘッド及び液体吐出ヘッドの制御方法
JP7171424B2 (ja) 2018-12-26 2022-11-15 キヤノン株式会社 液体吐出ヘッド、液体吐出装置、および液体供給方法
JP7251175B2 (ja) * 2019-01-31 2023-04-04 セイコーエプソン株式会社 インクジェット記録方法、記録ヘッドセット及びインクジェット記録装置
JP7234697B2 (ja) * 2019-02-28 2023-03-08 カシオ計算機株式会社 電子機器及び印刷装置
JP7419008B2 (ja) 2019-10-01 2024-01-22 キヤノン株式会社 液体吐出ヘッド
JP2021066041A (ja) * 2019-10-18 2021-04-30 キヤノン株式会社 液体吐出ヘッド
CN115023350B (zh) * 2020-02-14 2024-05-28 惠普发展公司,有限责任合伙企业 打印方法和流体喷射设备
WO2021177963A1 (en) * 2020-03-05 2021-09-10 Hewlett-Packard Development Company, L.P. Fluid-ejection element between-chamber fluid recirculation path
WO2021177965A1 (en) * 2020-03-05 2021-09-10 Hewlett-Packard Development Company, L.P. Fluid-ejection element having above-chamber layer through which fluid is to recirculate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526170A (ja) * 1991-07-18 1993-02-02 Aisin Seiki Co Ltd 流体制御装置
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
US20010030130A1 (en) * 2000-03-17 2001-10-18 Ricco Antonio J. Microfluidic device and system with improved sample handling
JP2003534538A (ja) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 3次元配列チャネルネットワークを含む微量流体システム
JP2004513342A (ja) * 2000-10-31 2004-04-30 カリパー・テクノロジーズ・コープ. 現場で材料を濃縮するミクロ流体方法、装置及びシステム
JP2004249741A (ja) * 1998-01-22 2004-09-09 Matsushita Electric Ind Co Ltd インキジェット装置
JP2007224844A (ja) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロポンプによる送液方法および送液システム
CN101267885A (zh) * 2005-09-20 2008-09-17 皇家飞利浦电子股份有限公司 磁性微流体阀门

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE329025B (zh) 1968-03-20 1970-09-28 Lkb Produkter Ab
US3856467A (en) 1972-06-05 1974-12-24 Univ Sherbrooke Cumulative thermal detector
US4318114A (en) 1980-09-15 1982-03-02 The Mead Corporation Ink jet printer having continuous recirculation during shut down
JPH0526170Y2 (zh) 1987-07-14 1993-07-01
EP0317171A3 (en) 1987-11-13 1990-07-18 Hewlett-Packard Company Integral thin film injection system for thermal ink jet heads and methods of operation
GB2266751A (en) 1992-05-02 1993-11-10 Westonbridge Int Ltd Piezoelectric micropump excitation voltage control.
US5807749A (en) 1992-10-23 1998-09-15 Gastec N.V. Method for determining the calorific value of a gas and/or the Wobbe index of a natural gas
US5412411A (en) 1993-11-26 1995-05-02 Xerox Corporation Capping station for an ink-jet printer with immersion of printhead in ink
US6106091A (en) 1994-06-15 2000-08-22 Citizen Watch Co., Ltd. Method of driving ink-jet head by selective voltage application
DE4429592A1 (de) 1994-08-20 1996-02-22 Eastman Kodak Co Tintendruckkopf mit integrierter Pumpe
JP3035854B2 (ja) 1995-09-15 2000-04-24 ハーン−シッカート−ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン 逆止弁を有しない流体ポンプ
US6017117A (en) 1995-10-31 2000-01-25 Hewlett-Packard Company Printhead with pump driven ink circulation
US6010316A (en) * 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US5917508A (en) 1996-03-20 1999-06-29 Diagraph Corporation Piezoelectric ink jet printing system
US5820260A (en) 1996-07-12 1998-10-13 Badger Meter, Inc. Measuring heating value using predetermined volumes in non-catialytic combustion
JPH10151761A (ja) 1996-11-21 1998-06-09 Brother Ind Ltd インクジェット記録装置
US5818485A (en) * 1996-11-22 1998-10-06 Xerox Corporation Thermal ink jet printing system with continuous ink circulation through a printhead
JPH10175307A (ja) 1996-12-18 1998-06-30 Tec Corp インクジェットプリンタ
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6055002A (en) 1997-06-03 2000-04-25 Eastman Kodak Company Microfluidic printing with ink flow regulation
US6079873A (en) 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
US6351879B1 (en) 1998-08-31 2002-03-05 Eastman Kodak Company Method of making a printing apparatus
US6360775B1 (en) 1998-12-23 2002-03-26 Agilent Technologies, Inc. Capillary fluid switch with asymmetric bubble chamber
US6283718B1 (en) 1999-01-28 2001-09-04 John Hopkins University Bubble based micropump
US6283575B1 (en) 1999-05-10 2001-09-04 Eastman Kodak Company Ink printing head with gutter cleaning structure and method of assembling the printer
US6193413B1 (en) 1999-06-17 2001-02-27 David S. Lieberman System and method for an improved calorimeter for determining thermodynamic properties of chemical and biological reactions
US6877713B1 (en) 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
JP3814132B2 (ja) 1999-10-27 2006-08-23 セイコーインスツル株式会社 ポンプ及びその駆動方法
JP2001205810A (ja) 2000-01-28 2001-07-31 Kyocera Corp インクジェットヘッド
US6845962B1 (en) 2000-03-22 2005-01-25 Kelsey-Hayes Company Thermally actuated microvalve device
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
JP3629405B2 (ja) 2000-05-16 2005-03-16 コニカミノルタホールディングス株式会社 マイクロポンプ
US6412904B1 (en) 2000-05-23 2002-07-02 Silverbrook Research Pty Ltd. Residue removal from nozzle guard for ink jet printhead
US8329118B2 (en) 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US6615856B2 (en) * 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
WO2002029106A2 (en) 2000-10-03 2002-04-11 California Institute Of Technology Microfluidic devices and methods of use
US8900811B2 (en) 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
US6631983B2 (en) 2000-12-28 2003-10-14 Eastman Kodak Company Ink recirculation system for ink jet printers
US20020098122A1 (en) 2001-01-22 2002-07-25 Angad Singh Active disposable microfluidic system with externally actuated micropump
US6450773B1 (en) 2001-03-13 2002-09-17 Terabeam Corporation Piezoelectric vacuum pump and method
US6431694B1 (en) 2001-04-24 2002-08-13 Hewlett-Packard Company Pump for recirculating ink to off-axis inkjet printheads
EP1386743B1 (en) 2001-05-09 2010-08-25 Panasonic Corporation Ink jet device and method of manufacturing electronic component using the device
US6629820B2 (en) 2001-06-26 2003-10-07 Micralyne Inc. Microfluidic flow control device
US7147865B2 (en) 2001-06-29 2006-12-12 The Board Of Trustees Of The Leland Stanford University Artificial synapse chip
US7075162B2 (en) 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7025323B2 (en) 2001-09-21 2006-04-11 The Regents Of The University Of California Low power integrated pumping and valving arrays for microfluidic systems
US6655924B2 (en) 2001-11-07 2003-12-02 Intel Corporation Peristaltic bubble pump
WO2003059626A2 (en) 2002-01-02 2003-07-24 Jemtex Ink Jet Printing Ltd. Ink jet printing apparatus
US6568799B1 (en) 2002-01-23 2003-05-27 Eastman Kodak Company Drop-on-demand ink jet printer with controlled fluid flow to effect drop ejection
DE10202996A1 (de) 2002-01-26 2003-08-14 Eppendorf Ag Piezoelektrisch steuerbare Mikrofluidaktorik
JP3569267B2 (ja) * 2002-03-27 2004-09-22 コニカミノルタホールディングス株式会社 流体輸送システム
US7094040B2 (en) * 2002-03-27 2006-08-22 Minolta Co., Ltd. Fluid transferring system and micropump suitable therefor
US6752493B2 (en) 2002-04-30 2004-06-22 Hewlett-Packard Development Company, L.P. Fluid delivery techniques with improved reliability
US8168139B2 (en) 2002-06-24 2012-05-01 Fluidigm Corporation Recirculating fluidic network and methods for using the same
EP1532147B1 (en) 2002-06-27 2006-08-02 Schering Corporation Spirosubstituted piperidines as selective melanin concentrating hormone receptor antagonists for the treatment of obesity
US7052117B2 (en) 2002-07-03 2006-05-30 Dimatix, Inc. Printhead having a thin pre-fired piezoelectric layer
US6910797B2 (en) 2002-08-14 2005-06-28 Hewlett-Packard Development, L.P. Mixing device having sequentially activatable circulators
DE10238564B4 (de) 2002-08-22 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pipettiereinrichtung
US7455770B2 (en) 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
JP3725109B2 (ja) 2002-09-19 2005-12-07 財団法人生産技術研究奨励会 マイクロ流体デバイス
TW590982B (en) 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
EP1411355A1 (en) 2002-10-18 2004-04-21 Emerson Electric Co. Method and device for determining a characteristic value that is representative of the condition of a gas
US6880926B2 (en) 2002-10-31 2005-04-19 Hewlett-Packard Development Company, L.P. Circulation through compound slots
US6811385B2 (en) 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
US7040745B2 (en) 2002-10-31 2006-05-09 Hewlett-Packard Development Company, L.P. Recirculating inkjet printing system
FR2847246B1 (fr) * 2002-11-19 2005-07-08 Poudres & Explosifs Ste Nale Microactionneur pyrotechnique double effet pour microsysteme et microsysteme utilisant un tel microactionneur
US6755509B2 (en) 2002-11-23 2004-06-29 Silverbrook Research Pty Ltd Thermal ink jet printhead with suspended beam heater
US20080047836A1 (en) 2002-12-05 2008-02-28 David Strand Configurable Microfluidic Substrate Assembly
JP4059073B2 (ja) 2002-12-13 2008-03-12 コニカミノルタホールディングス株式会社 合流装置における液体の圧送方法および合流装置
US7195026B2 (en) * 2002-12-27 2007-03-27 American Air Liquide, Inc. Micro electromechanical systems for delivering high purity fluids in a chemical delivery system
US7049558B2 (en) 2003-01-27 2006-05-23 Arcturas Bioscience, Inc. Apparatus and method for heating microfluidic volumes and moving fluids
US6986649B2 (en) 2003-04-09 2006-01-17 Motorola, Inc. Micropump with integrated pressure sensor
KR100539174B1 (ko) 2003-08-28 2005-12-27 박란규 가습헤어부러시
JP2005081775A (ja) 2003-09-10 2005-03-31 Fuji Photo Film Co Ltd インクジェット記録ヘッドアセンブリ及びインクジェット記録装置
EP1518683B1 (en) 2003-09-24 2008-03-19 FUJIFILM Corporation Droplet discharge head and inkjet recording apparatus
JP4457637B2 (ja) 2003-10-24 2010-04-28 ソニー株式会社 ヘッドカートリッジ及び液体吐出装置
KR20050059752A (ko) 2003-12-15 2005-06-21 삼성전자주식회사 개스 버블을 이용하여 유체를 펌핑하는 장치 및 방법
JP3767605B2 (ja) 2004-02-02 2006-04-19 コニカミノルタホールディングス株式会社 流体輸送システム
SG114773A1 (en) 2004-03-01 2005-09-28 Sony Corp Liquid ejection head and liquid ejection device
GB2412088B (en) 2004-03-19 2007-09-19 Zipher Ltd Liquid supply system
CN100458152C (zh) 2004-03-24 2009-02-04 中国科学院光电技术研究所 一种微机械往复膜片泵
US20050220630A1 (en) 2004-03-31 2005-10-06 Sebastian Bohm Method of using triggerable passive valves to control the flow of fluid
US7762719B2 (en) 2004-04-20 2010-07-27 California Institute Of Technology Microscale calorimeter
US7204585B2 (en) 2004-04-28 2007-04-17 Hewlett-Packard Development Company, L.P. Method and system for improving printer performance
US20050249607A1 (en) 2004-05-10 2005-11-10 Klee Matthew S Apparatus and method for pumping microfluidic devices
US7427274B2 (en) 2004-05-13 2008-09-23 Brookstone Purchasing, Inc. Method and apparatus for providing a modifiable massager
US7118189B2 (en) 2004-05-28 2006-10-10 Videojet Technologies Inc. Autopurge printing system
JP3969404B2 (ja) * 2004-06-16 2007-09-05 コニカミノルタホールディングス株式会社 燃料電池装置
GB0419050D0 (en) 2004-08-26 2004-09-29 Munster Simms Eng Ltd A diaphragm and a diaphragm pump
DE102004042987A1 (de) 2004-09-06 2006-03-23 Roche Diagnostics Gmbh Push-Pull betriebene Pumpe für ein mikrofluidisches System
CA2580771A1 (en) 2004-09-18 2006-03-23 Xaar Technology Limited Fluid supply method and apparatus
US7832429B2 (en) 2004-10-13 2010-11-16 Rheonix, Inc. Microfluidic pump and valve structures and fabrication methods
DE102004051394B4 (de) 2004-10-21 2006-08-17 Advalytix Ag Verfahren zur Bewegung von kleinen Flüssigkeitsmengen in Mikrokanälen und Mikrokanalsystem
EP1812813A4 (en) 2004-11-05 2008-04-09 Univ California ADAPTIVE FLUID LENS SYSTEMS WITH PUMP SYSTEMS
SE0402731D0 (sv) 2004-11-10 2004-11-10 Gyros Ab Liquid detection and confidence determination
JP2006156894A (ja) 2004-12-01 2006-06-15 Kyocera Corp 圧電アクチュエータ、圧電ポンプ及びインクジェットヘッド
WO2006083598A2 (en) 2005-01-25 2006-08-10 The Regents Of The University Of California Method and apparatus for pumping liquids using directional growth and elimination of bubbles
JP4543986B2 (ja) 2005-03-24 2010-09-15 コニカミノルタエムジー株式会社 マイクロ総合分析システム
JP4646665B2 (ja) 2005-03-28 2011-03-09 キヤノン株式会社 インクジェット記録ヘッド
US7784495B2 (en) 2005-05-02 2010-08-31 Massachusetts Institute Of Technology Microfluidic bubble logic devices
US8308452B2 (en) 2005-09-09 2012-11-13 The Board Of Trustees Of The University Of Illinois Dual chamber valveless MEMS micropump
DE602006015209D1 (de) 2005-10-06 2010-08-12 Unilever Nv Mikrofluidnetz und verfahren
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
KR101068705B1 (ko) 2006-03-03 2011-09-28 실버브룩 리서치 피티와이 리미티드 펄스 감쇠 유체 구조
JP5254949B2 (ja) 2006-03-15 2013-08-07 マイクロニクス, インコーポレイテッド 一体型の核酸アッセイ
CN101460260A (zh) 2006-05-05 2009-06-17 赛托诺姆公司 平行微流体阵列的致动
US7997709B2 (en) 2006-06-20 2011-08-16 Eastman Kodak Company Drop on demand print head with fluid stagnation point at nozzle opening
KR101212086B1 (ko) 2006-07-04 2012-12-13 삼성전자주식회사 잉크 순환장치 및 이 잉크 순환장치를 포함하는 잉크젯프린터
WO2008091294A2 (en) 2006-07-28 2008-07-31 California Institute Of Technology Polymer nems for cell physiology and microfabricated cell positioning system for micro-biocalorimeter
EP2056902A1 (en) 2006-08-21 2009-05-13 Koninklijke Philips Electronics N.V. Drug delivery device with piezoelectric actuator
KR101306005B1 (ko) 2006-09-29 2013-09-12 삼성전자주식회사 잉크순환시스템과 잉크젯 기록장치 및 잉크 순환방법
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US7926917B2 (en) 2006-12-06 2011-04-19 Canon Kabushiki Kaisha. Liquid recording head
JP4872649B2 (ja) 2006-12-18 2012-02-08 富士ゼロックス株式会社 液滴吐出ヘッドおよび液滴吐出装置
EP1992410A1 (en) 2007-03-12 2008-11-19 Stichting Dutch Polymer Institute Microfluidic system based on actuator elements
CA2679770C (en) 2007-03-30 2019-08-20 Anatech B.V. Sensor for thermal analysis and systems including same
US8186913B2 (en) 2007-04-16 2012-05-29 The General Hospital Corporation Systems and methods for particle focusing in microchannels
US20090038938A1 (en) 2007-05-10 2009-02-12 The Regents Of The University Of California Microfluidic central processing unit and microfluidic systems architecture
CN101306792B (zh) 2007-05-17 2013-09-11 研能科技股份有限公司 微致动流体供应器及其所适用的微泵结构及喷墨头结构
US8071390B2 (en) 2007-06-05 2011-12-06 Ecolab Usa Inc. Temperature stabilized optical cell and method
US20090007969A1 (en) 2007-07-05 2009-01-08 3M Innovative Properties Company Microfluidic actuation structures
KR20090010791A (ko) * 2007-07-24 2009-01-30 삼성전자주식회사 잉크젯 화상형성장치 및 그 제어방법
US8083327B2 (en) 2007-07-27 2011-12-27 Xerox Corporation Hot melt ink delivery reservoir pump subassembly
JP4976225B2 (ja) 2007-07-27 2012-07-18 大日本スクリーン製造株式会社 画像記録装置
US20090040257A1 (en) 2007-08-06 2009-02-12 Steven Wayne Bergstedt Inkjet printheads with warming circuits
WO2009039466A1 (en) 2007-09-20 2009-03-26 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
JP2009117344A (ja) 2007-10-15 2009-05-28 Sanyo Electric Co Ltd 流体移送装置及びこれを具えた燃料電池
KR100911090B1 (ko) 2008-01-28 2009-08-06 재단법인서울대학교산학협력재단 정확도가 향상된 마이크로칼로리미터 소자
JP2009190370A (ja) 2008-02-18 2009-08-27 Canon Finetech Inc 液体吐出ヘッドおよび液体吐出方法
KR100998535B1 (ko) * 2008-04-11 2010-12-07 인싸이토 주식회사 나노틈새를 가지는 미세유체 채널이 구비된 미세유체회로소자 및 이의 제조 방법
KR20100008868A (ko) * 2008-07-17 2010-01-27 삼성전자주식회사 잉크젯 타입 화상형성장치의 헤드칩
CN101391530B (zh) 2008-09-28 2011-07-27 北大方正集团有限公司 一种循环供墨方法和循环供墨***
WO2010044775A1 (en) 2008-10-14 2010-04-22 Hewlett-Packard Development Company, L.P. Fluid ejector structure
US20100101764A1 (en) 2008-10-27 2010-04-29 Tai-Her Yang Double flow-circuit heat exchange device for periodic positive and reverse directional pumping
US8201924B2 (en) 2009-06-30 2012-06-19 Eastman Kodak Company Liquid diverter for flow through drop dispenser
US9970422B2 (en) 2010-03-30 2018-05-15 Georgia Tech Research Corporation Self-pumping structures and methods of using self-pumping structures
US9963739B2 (en) * 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
US10132303B2 (en) 2010-05-21 2018-11-20 Hewlett-Packard Development Company, L.P. Generating fluid flow in a fluidic network
US8540355B2 (en) 2010-07-11 2013-09-24 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
WO2011146069A1 (en) 2010-05-21 2011-11-24 Hewlett-Packard Development Company, L.P. Fluid ejection device including recirculation system
EP2571696B1 (en) * 2010-05-21 2019-08-07 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
CN102985261B (zh) 2010-05-21 2016-02-03 惠普发展公司,有限责任合伙企业 具有循环泵的流体喷射设备
US9395050B2 (en) 2010-05-21 2016-07-19 Hewlett-Packard Development Company, L.P. Microfluidic systems and networks
JP5746342B2 (ja) 2010-07-28 2015-07-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 循環ポンプを有した液体吐出アセンブリ
US8573743B2 (en) 2010-10-26 2013-11-05 Eastman Kodak Company Liquid dispenser including curved vent
US8439481B2 (en) * 2010-10-26 2013-05-14 Eastman Kodak Company Liquid dispenser including sloped outlet opening wall
US8939531B2 (en) 2010-10-28 2015-01-27 Hewlett-Packard Development Company, L.P. Fluid ejection assembly with circulation pump
US9381739B2 (en) * 2013-02-28 2016-07-05 Hewlett-Packard Development Company, L.P. Fluid ejection assembly with circulation pump
JP6755671B2 (ja) * 2016-02-19 2020-09-16 キヤノン株式会社 記録素子基板、液体吐出ヘッドおよび液体吐出装置
WO2018067105A1 (en) * 2016-10-03 2018-04-12 Hewlett-Packard Development Company, L.P. Controlling recirculating of nozzles
JP6949513B2 (ja) * 2017-03-08 2021-10-13 東芝テック株式会社 循環装置及び液体吐出装置
JP6964775B2 (ja) * 2017-11-27 2021-11-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 交差ダイ再循環チャネル及びチャンバ再循環チャネル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526170A (ja) * 1991-07-18 1993-02-02 Aisin Seiki Co Ltd 流体制御装置
JP2004249741A (ja) * 1998-01-22 2004-09-09 Matsushita Electric Ind Co Ltd インキジェット装置
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
US20010030130A1 (en) * 2000-03-17 2001-10-18 Ricco Antonio J. Microfluidic device and system with improved sample handling
JP2003534538A (ja) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 3次元配列チャネルネットワークを含む微量流体システム
JP2004513342A (ja) * 2000-10-31 2004-04-30 カリパー・テクノロジーズ・コープ. 現場で材料を濃縮するミクロ流体方法、装置及びシステム
CN101267885A (zh) * 2005-09-20 2008-09-17 皇家飞利浦电子股份有限公司 磁性微流体阀门
JP2007224844A (ja) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロポンプによる送液方法および送液システム

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272691B2 (en) 2010-05-21 2019-04-30 Hewlett-Packard Development Company, L.P. Microfluidic systems and networks
US9963739B2 (en) 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
US10415086B2 (en) 2010-05-21 2019-09-17 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
CN107208015A (zh) * 2015-01-30 2017-09-26 惠普发展公司,有限责任合伙企业 微流体流量控制
US11097268B2 (en) 2015-01-30 2021-08-24 Hewlett-Packard Development Company, L.P. Microfluidic flow control
CN107208015B (zh) * 2015-01-30 2021-07-30 惠普发展公司,有限责任合伙企业 微流体流量控制
CN108350870A (zh) * 2015-12-21 2018-07-31 船井电机株式会社 微流体装置
CN108350870B (zh) * 2015-12-21 2020-03-24 船井电机株式会社 微流体装置
US11186088B2 (en) 2016-01-08 2021-11-30 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
US10336073B2 (en) 2016-01-08 2019-07-02 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
US10179453B2 (en) 2016-01-08 2019-01-15 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
CN106985543B (zh) * 2016-01-08 2019-09-27 佳能株式会社 液体喷出头和液体喷出设备
CN106985543A (zh) * 2016-01-08 2017-07-28 佳能株式会社 液体喷出头和液体喷出设备
US10625504B2 (en) 2016-01-08 2020-04-21 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
US10688788B2 (en) 2016-01-08 2020-06-23 Canon Kabushiki Kaisha Liquid ejection head and liquid ejection apparatus
CN108430318A (zh) * 2016-01-29 2018-08-21 惠普发展公司,有限责任合伙企业 微流体***
US10946379B2 (en) 2016-01-29 2021-03-16 Hewlett-Packard Development Company, L.P. Microfluidics system
CN109070588A (zh) * 2016-07-29 2018-12-21 惠普发展公司,有限责任合伙企业 流体喷射装置
CN109070588B (zh) * 2016-07-29 2020-07-17 惠普发展公司,有限责任合伙企业 流体喷射装置
US11059290B2 (en) 2016-07-29 2021-07-13 Hewlett-Packard Development Company, L.P. Fluid ejection device
US11865540B2 (en) 2016-09-23 2024-01-09 Hewlett-Packard Development Company, L.P. Microfluidic device
CN109203678A (zh) * 2017-06-29 2019-01-15 佳能株式会社 液体喷出头和液体喷出装置
CN109203716B (zh) * 2017-07-07 2021-03-16 佳能株式会社 液体喷射头、液体喷射设备和液体供应方法
US10688792B2 (en) 2017-07-07 2020-06-23 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection apparatus, and liquid supply method
CN109203716A (zh) * 2017-07-07 2019-01-15 佳能株式会社 液体喷射头、液体喷射设备和液体供应方法

Also Published As

Publication number Publication date
WO2011146069A1 (en) 2011-11-24
US20190111698A1 (en) 2019-04-18
US20150273853A1 (en) 2015-10-01
US10173435B2 (en) 2019-01-08
US20170151807A1 (en) 2017-06-01
EP2572110A4 (en) 2018-04-11
US20210023852A1 (en) 2021-01-28
US20130155152A1 (en) 2013-06-20
KR101846808B1 (ko) 2018-04-06
US9604212B2 (en) 2017-03-28
JP5756852B2 (ja) 2015-07-29
KR101776357B1 (ko) 2017-09-07
JP2013533101A (ja) 2013-08-22
CN103003577B (zh) 2016-06-29
US20160318015A1 (en) 2016-11-03
KR20170101319A (ko) 2017-09-05
US11260668B2 (en) 2022-03-01
EP2572110A1 (en) 2013-03-27
BR112012029581B1 (pt) 2020-12-29
US10807376B2 (en) 2020-10-20
WO2011146145A1 (en) 2011-11-24
US9090084B2 (en) 2015-07-28
US10272691B2 (en) 2019-04-30
BR112012029581A2 (pt) 2016-08-02
EP2572110B1 (en) 2019-10-23
KR20130113957A (ko) 2013-10-16

Similar Documents

Publication Publication Date Title
CN102985831B (zh) 在流体网络中产生流体流动
CN103003577B (zh) 微流体***和网络
US9395050B2 (en) Microfluidic systems and networks
US10415086B2 (en) Polymerase chain reaction systems
Au et al. Microvalves and micropumps for BioMEMS
Sivashankar et al. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications
CN102671723B (zh) 介质上电润湿微电极阵列结构上的液滴处理方法
US11278891B2 (en) Fluidic channels for microfluidic devices
ITTO20070554A1 (it) Dispositivo per il controllo del moto di fluidi in micro o nanocanali tramite onde acustiche superficiali.
US10132303B2 (en) Generating fluid flow in a fluidic network
TWI659211B (zh) 微流體裝置
WO2008139401A2 (en) A device for and a method of handling a fluidic sample
Naji et al. Describing droplet motion on surface-textured ratchet tracks with an inverted double pendulum model
TW200412324A (en) Multi-directional logic micro fluid control system and method
Shilpa et al. A “Twisted” Microfluidic Mixer with “Turbulent” Fluidic Flow for Wide Range of Flowrate Applications
Rose DESIGN OF A MICROFLUIDIC (OLIGONUCLEOTIDE

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160629

CF01 Termination of patent right due to non-payment of annual fee