CN102782185A - 无方向性电磁钢板及其制造方法 - Google Patents

无方向性电磁钢板及其制造方法 Download PDF

Info

Publication number
CN102782185A
CN102782185A CN2011800099242A CN201180009924A CN102782185A CN 102782185 A CN102782185 A CN 102782185A CN 2011800099242 A CN2011800099242 A CN 2011800099242A CN 201180009924 A CN201180009924 A CN 201180009924A CN 102782185 A CN102782185 A CN 102782185A
Authority
CN
China
Prior art keywords
quality
steel sheet
cold
oriented electromagnetic
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800099242A
Other languages
English (en)
Other versions
CN102782185B (zh
Inventor
山崎修一
久保田猛
黑崎洋介
藤仓昌浩
岛津高英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of CN102782185A publication Critical patent/CN102782185A/zh
Application granted granted Critical
Publication of CN102782185B publication Critical patent/CN102782185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明的无方向性电磁钢板具有基底金属(1)、和形成在基底金属(1)的表面上的1g/m2以上且6g/m2以下的应力赋予型的绝缘覆膜(2)。在基底金属(1)的表面上形成有氧化物层(3),该氧化物层含有选自由Si、Al及Cr组成的组中的至少一种的氧化物,并且厚度为0.01μm以上且0.5μm以下。

Description

无方向性电磁钢板及其制造方法
技术领域
本发明涉及适用于马达的铁心材料的无方向性电磁钢板及其制造方法。
背景技术
对电气设备的效率化的期望很强烈,而对于用于电气设备中所含有的马达的铁心材料的无方向性电磁钢板,一直要求更加低铁损化。因而,对于通过在无方向性电磁钢板中含有Si及Al等来提高电阻率且增大结晶粒径的技术、及通过热轧板退火及调节冷轧率来改善织构的技术等,正在进行研究。
此外,无方向性电磁钢板是结晶方位在与钢板表面平行的方向上不规则的电磁钢板,但根据无方向性电磁钢板的用途,也有时优选与表面平行的某一方向、例如轧制方向的磁特性优于其他方向的磁特性。例如,在作为马达的定子采用***铁心的情况下,优选采用上述那样的电磁钢板作为***铁心。作为轧制方向的磁特性优良的电磁钢板也可考虑方向性电磁钢板,但方向性电磁钢板的表面上存在玻璃皮膜,因而难以进行冲裁加工。此外,与无方向性电磁钢板相比,在方向性电磁钢板的制造中需要更多的控制,因此方向性电磁钢板昂贵。再有,在采用***铁心作为马达的定子的情况下,能够在磁通的流动方向上使电磁钢板的易磁化方向一致,因此能够提高马达的效率。此外,能够提高原材料即电磁钢板的成品率,增加绕线填充率。
但是,尽管提出了多种有关***铁心用的无方向性电磁钢板,但是采用现有的技术的话,难以得到充分的轧制方向的磁特性。
现有技术文献
专利文献
专利文献1:日本特开2004-332042号公报
专利文献2:日本特开2006-265720号公报
专利文献3:日本特开2008-260996号公报
专利文献4:日本特开昭56-55574号公报
专利文献5:日本特开2001-140018号公报
专利文献6:日本特开2001-279400号公报
发明内容
发明所要解决的问题
本发明的目的在于提供能够得到更好的轧制方向的磁特性的无方向性电磁钢板及其制造方法。
用于解决问题的手段
本发明者们着眼于专利文献4中所公开的技术,考虑通过采用张力赋予型的绝缘覆膜作为形成在无方向性电磁钢板的基底金属的表面上的绝缘覆膜来看能否提高轧制方向的磁特性,并进行了多种实验。但是,发现:在单纯地采用了张力赋予型的绝缘覆膜的情况下,绝缘覆膜不能充分承受用于形成***铁心的各种加工(冲裁、铆接等)。也就是说,有时产生绝缘覆膜脱落等。此外,尽管轧制方向的磁特性提高,但是不一定能说是充分的。本发明者们为了探究这些问题的原因进行了深入的研究,结果发现:张力赋予型的绝缘覆膜与基底金属之间的密合性低,进而伴随与此不能对基底金属作用充分的张力。另外,本发明者们基于上述见识再进行了深入的研究,结果发现:在基底金属表面上存在特定的氧化物层的情况下,该氧化物层有助于提高基底金属与张力赋予型的绝缘覆膜之间的密合性,使轧制方向的磁特性显著提高。此外,还发现:伴随着密合性提高,绝缘覆膜的脱落等得到抑制。
本发明的主旨如下。
(1)一种无方向性电磁钢板,其特征在于,具有:
基底金属、和
形成在所述基底金属的表面上的1g/m2以上且6g/m2以下的应力赋予型的绝缘覆膜,
所述基底金属含有:
Si、Al及Cr:以总含量计为2质量%以上且6质量%以下、及
Mn:0.1质量%以上且1.5质量%以下,
所述基底金属的C含量为0.005质量%以下,
所述基底金属的残余部分包含Fe及不可避免的杂质,
在所述基底金属的表面上形成有氧化物层,该氧化物层含有选自由Si、Al及Cr组成的组中的至少一种的氧化物,并且厚度为0.01μm以上且0.5μm以下。
(2)根据(1)所述的无方向性电磁钢板,其特征在于,所述基底金属的Al及Cr的总含量为0.8质量%以上。
(3)根据(1)或(2)所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有磷酸盐和胶体二氧化硅的涂布液而形成。
(4)根据(1)或(2)所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有硼酸和氧化铝溶胶的涂布液而形成。
(5)一种无方向性电磁钢板的制造方法,其特征在于,具有:
对冷轧钢带进行最终退火的工序、和
在所述冷轧钢带的表面上形成1g/m2以上且6g/m2以下的张力赋予型的绝缘覆膜的工序,
所述冷轧钢带含有:
Si、Al及Cr:以总含量计为2质量%以上且6质量%以下、及
Mn:0.1质量%以上且1.5质量%以下,
所述冷轧钢带的C含量为0.005质量%以下,
所述冷轧钢带的残余部分包含Fe及不可避免的杂质,
所述进行最终退火的工序具有在所述冷轧钢带的表面上形成含有选自由Si及Al组成的组中的至少一种的氧化物并且厚度为0.01μm以上且0.5μm以下的氧化物层的工序,其中,在将所述冷轧钢带的Si及Al的总含量表示为X(质量%)时,在水蒸气相对于氢的分压比为0.005×X2以下的气氛中将所述冷轧钢带的温度规定为800℃以上且1100℃以下。
(6)根据(5)所述的无方向性电磁钢板的制造方法,其特征在于,
所述形成绝缘覆膜的工序在所述进行最终退火的工序后具有:
在所述冷轧钢带的表面上涂布涂布液的工序、和
将所述冷轧钢带的温度规定为800℃以上且1100℃以下并对所述涂布液进行烘焙的工序。
(7)根据(5)所述的无方向性电磁钢板的制造方法,其特征在于,
所述形成绝缘覆膜的工序具有:
在进行所述最终退火的工序之前在所述冷轧钢带的表面上涂布涂布液的工序、和
在所述最终退火时对所述涂布液进行烘焙的工序。
(8)根据(6)或(7)所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有磷酸盐和胶体二氧化硅。
(9)根据(6)或(7)所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有硼酸及氧化铝溶胶。
(10)根据(5)~(9)中任一项所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
发明的效果
根据本发明,能够得到基底金属与张力赋予型的绝缘覆膜之间的高密合性,能够显著提高轧制方向的磁特性。
附图说明
图1A是表示在分压比(PH2O/PH2)为0.1的气氛下进行了最终退火的钢带的表面的氧化物的扫描式电子显微镜截面照片的图。
图1B是表示在分压比(PH2O/PH2)为0.01的气氛下进行了最终退火的钢带的表面的氧化物的扫描式电子显微镜截面照片的图。
图2是表示外部氧化膜102的高灵敏度反射红外光谱的图。
图3是表示冷轧钢带的组成及最终退火的气氛与基底金属表面的状态之间的关系的图。
图4是表示本发明的实施方式的无方向性电磁钢板的结构的剖视图。
图5是表示无方向性电磁钢板的制造方法的例子的流程图。
图6是表示无方向性电磁钢板的制造方法的其他例子的流程图。
具体实施方式
首先,对本发明者们进行的有关将张力赋予型的绝缘覆膜用于无方向性电磁钢板的实验进行说明。
在该实验中,制作了如下的两个无方向性电磁钢板用的冷轧钢带:含有Si:3质量%、Mn:0.15质量%及Al:1.2质量%,残余部分包含Fe及不可避免的杂质,厚度为0.35mm。然后,对每个冷轧钢带在不同的退火气氛下进行1000℃的最终退火。在一种退火气氛中,将水蒸气相对于氢的分压比(PH2O/PH2)规定为0.01,在另一种退火气氛中,将分压比(PH2O/PH2)规定为0.1。然后,对于轧制方向(L方向)及在冷轧钢带的表面内与轧制方向正交的方向(C方向),测定了频率为50Hz、最大磁通密度为1.0T的励磁条件下的铁损值(W10/50)。然后,在各钢带的两面上以单面3g/m2涂布由磷酸铝、胶体二氧化硅及铬酸构成的涂布液(涂敷液),在800℃下进行烘焙。也就是说,形成张力赋予型的绝缘覆膜。然后,对于L方向及C方向,再次测定了铁损值(W10/50)。这些结果见表1。
表1
Figure BDA00002023981700051
如表1所示,在分压比(PH2O/PH2)为0.1的气氛下退火时,发现L方向的铁损有8%左右的改善。但是,如果从具备这样形成的绝缘覆膜的无方向性电磁钢板制作***铁心,则绝缘覆膜不能承受冲裁及铆接等加工。
另一方面,在分压比(PH2O/PH2)为0.01的气氛下退火时,发现L方向的铁损有17%左右的改善,此外,绝缘覆膜能够充分承受冲裁及铆接等加工。
本发明者们为了调查起因于上述的最终退火的气氛的绝缘覆膜耐加工性的差异的原因,对最终退火后的钢带的表面的氧化物的截面进行了观察。图1A中示出在分压比(PH2O/PH2)为0.1的气氛下进行了最终退火的钢带的表面的氧化物的扫描式电子显微镜截面照片,图1B中示出在分压比(PH2O/PH2)为0.01的气氛下进行了最终退火的钢带的表面的氧化物的扫描式电子显微镜截面照片。
如图1A所示,在分压比(PH2O/PH2)为0.1的气氛下进行了最终退火的钢带的基底金属101的表面上存在厚的内部氧化物层103。另一方面,如图1B所示,在分压比(PH2O/PH2)为0.01的气氛下进行了最终退火的钢带的基底金属101的表面上存在厚度为50nm左右的薄的外部氧化物膜102。再有,存在于外部氧化物膜102及内部氧化物层103上的Au蒸镀层104是为在制作截面观察用的试样时用于保护外部氧化物膜102及内部氧化物层103而形成的。
此外,图2中示出外部氧化膜102的高灵敏度反射红外光谱。从图2所示的光谱能够确认出外部氧化物膜102主要由Al2O3形成。
从以上得知:在制造无方向性电磁钢板时,如果在冷轧钢带的最终退火时形成外部氧化膜并其后形成张力赋予型的绝缘覆膜,则绝缘覆膜与基底金属之间的密合性显著提高,此外,L方向的磁特性也显著改善。再有,如后所述,即使在进行了张力赋予型的绝缘覆膜的原料(涂布液)的涂布后,通过进行最终退火,一并进行外部氧化膜的形成及通过烘焙涂布液进行的绝缘覆膜的形成,也可实现密合性的提高及L方向的磁特性的显著改善。
这里,为了在最终退火时形成外部氧化膜,退火条件是重要的。因而,本发明者们对最终退火的对象即冷轧钢带的组成及最终退火的气氛与基底金属表面状态之间的关系进行了调查。在该调查中,制作Si、Al及Cr的总含量(X(质量%))不同的多种冷轧钢带,在多种分压比(PH2O/PH2)的气氛下进行最终退火。然后,观察最终退火后的基底金属表面的状态。再有,将最终退火的温度规定为900℃。其结果见图3。图3中的白色空心的标记表示形成了内部氧化层,涂黑的标记表示形成了外部氧化膜。
从图3得知:关于Si、Al及Cr的总含量(X(质量%)),如果在分压比(PH2O/PH2)低于0.005×X2的条件下,则能够形成外部氧化膜。
以下,参照附图对本发明的实施方式进行说明。图4是表示本发明的实施方式的无方向性电磁钢板的结构的剖视图。
如图4所示,在本实施方式的无方向性电磁钢板中,在基底金属1的表面上形成有1g/m2以上且6g/m2以下的应力赋予型的绝缘覆膜2。此外,在基底金属1的表面上形成有外部氧化膜3,其含有选自由Si、Al及Cr组成的组中的至少一种的氧化物,并且厚度为0.01μm以上且0.5μm以下。基底金属1包含基底4及外部氧化膜3。外部氧化膜3为氧化物层的一个例子。
基底金属1含有Si、Al及Cr:以总含量计为2质量%以上且6质量%以下、及Mn:0.1质量%以上且1.5质量%以下。基底金属1的C含量为0.005质量%以下,基底金属1的残余部分包含Fe及不可避免的杂质。
接着,对这样的无方向性电磁钢板的制造方法进行说明。图5是表示无方向性电磁钢板的制造方法的例子的流程图。
在本实施方式中,首先,对加热到规定温度的规定组成的板坯(钢原料)进行热轧,制作热轧钢带(步骤S1)。接着,通过酸洗除去氧化皮,对热轧钢带进行冷轧,制作冷轧钢带(步骤S2)。作为冷轧,可以进行仅一次的冷轧,也可以进行中间夹着中间退火的两次以上的冷轧。再有,也可以在冷轧前根据需要进行退火。
这里,对板坯(钢原料)中含有的成分进行说明。
C使铁损增加,且成为磁时效的原因。所以,将C含量规定为0.005质量%以下。
Si、Al及Cr呈现使无方向性电磁钢板的电阻率增大、降低涡电流损失的效果。此外,Si、Al及Cr可用于形成外部氧化膜3,其详细情况后述。但是,如果Si、Al及Cr的总含量低于2质量%,则不能充分得到这些效果。所以,将Si、Al及Cr的总含量规定为2质量%以上。如果Si、Al及Cr的总含量超过6质量%,则难以进行冷轧等冷加工。所以,将Si、Al及Cr的总含量规定为6质量%以下。
Mn呈现在加热板坯时降低固溶S的效果。但是,如果Mn含量低于0.1质量%,则不能充分得到此效果。所以,将Mn含量规定为0.1质量%以上。另一方面,如果Mn含量超过1.5质量%,则磁特性下降。所以,将Mn含量规定为1.5质量%以下。
再有,S、N及O、以及通过与它们键合而有可能形成非磁性夹杂物的Ti、V、Zr、Nb等不可避免的杂质的含量尽量减少。此外,为了清除S、N及O,也可以含有稀土元素及Ca等。稀土元素及Ca等的优选的含量为0.002质量%以上且0.01质量%以下。
Sn或Sb具有通过改善织构来改善L方向特性的效果,通过添加可期待与由本申请发明所产生的效果的协同作用。
冷轧(步骤S2)后,在规定的气氛下对冷轧钢带进行最终退火,制作表面上形成有外部氧化膜3的基底金属1(步骤S3)。在该最终退火中,将冷轧钢带的温度规定为800℃以上且1100℃以下。如果温度低于800℃,则难以充分形成外部氧化膜3。另一方面,如果温度超过1100℃,则成本显著上升,同时难以进行稳定的操作。此外,作为最终退火的气氛,考虑到上述的见识,关于Si、Al及Cr的总含量(X(质量%)),将水蒸气相对于氢的分压比(PH2O/PH2)规定为低于0.005×X2。只要满足此条件,如上所述,就能够作为外部氧化膜3形成所希望的外部氧化膜。该外部氧化膜3有助于显著提高张力赋予型的绝缘覆膜2与基底金属1之间的密合性。而且,伴随着密合性的提高张力有效地起作用,可进一步改善L方向的磁特性。
再有,如果外部氧化膜3的厚度低于0.01μm,则难以得到充分的密合性。所以,外部氧化膜3的厚度期望在0.01μm以上。此外,在外部氧化膜3的厚度超过0.5μm的情况下,也难以得到充分的密合性。推断这是因为,因较厚地形成外部氧化膜3而在基底金属1的基底4的表面上产生不必要的应力。所以,外部氧化膜3的厚度期望在0.5μm以下。外部氧化膜3的厚度例如可通过调节最终退火的温度及均热时间来控制。也就是说,均热温度越高,均热时间越长,就越厚地形成外部氧化膜3。
构成外部氧化膜3的物质根据Si、Al及Cr的各含量来决定,外部氧化膜3的主要构成物为例如SiO2、Al2O3、Cr2O3等。例如,在冷轧钢带中的Al及Cr少时,SiO2为外部氧化膜3的主体,如果Al及Cr的总含量在0.8质量%以上,则Al2O3、Cr2O3或(Al,Cr)2O3成为外部氧化膜3的主体。外部氧化膜3的主要构成物没有特别的限定,但在主体为Al2O3、Cr2O3或(Al,Cr)2O3的情况下,能够得到特别高的密合性。所以,Al及Cr的总含量期望在0.8质量%以上。再有,外部氧化膜3并非仅由这些主要构成物构成,在Al及Cr少时,有时也含有Al2O3及Cr2O3等,在Al及Cr的总含量超过0.8质量%时,可含有SiO2
在最终退火及形成氧化物层(步骤S3)之后,在基底金属1的表面上形成张力赋予型的绝缘覆膜2(步骤S4)。在绝缘覆膜2的形成中,进行规定的涂布液的涂布及烘焙。作为涂布液,可使用方向性电磁钢板中所用的涂布液。例如,能够采用以磷酸盐和胶体二氧化硅为主体的涂布液。磷酸盐和胶体二氧化硅的比例没有特别的限定,但优选胶体二氧化硅的比例为4质量%~24质量%,磷酸盐的比例为5质量%~30质量%。这样的涂布液例如在日本特开昭48-39338号公报及日本特开昭50-79442号公报等中有记载。此外,也能够采用以硼酸及氧化铝溶胶为主体的涂布液。铝及硼的成分比没有特别的限定,但按各自的氧化物换算,优选氧化铝为50质量%~95质量%。这样的涂布液例如在日本特开平6-65754号公报及日本特开平6-65755号公报中有记载。
此外,将张力赋予型的绝缘覆膜2的形成量规定为单面1g/m2以上且6g/m2以下。如果绝缘覆膜2的形成量低于1g/m2,则不能充分赋予张力,从而难以充分改善轧制方向(L方向)的磁特性。另一方面,如果绝缘覆膜2的形成量超过6g/m2,则占空系数降低。
此外,优选烘焙温度为800℃以上且1100℃以下。如果烘焙温度低于800℃,则不能充分赋予张力,难以充分改善轧制方向(L方向)的磁特性。另一方面,如果烘焙温度超过1100℃,则成本显著上升,而且难以进行稳定的操作。
通过这样的一连串的处理,能够制造实施方式的无方向性电磁钢板。而且,在该无方向性电磁钢板中,外部氧化膜3使基底金属1与张力赋予型的绝缘覆膜2相互牢固地密合。因此,可赋予更高的张力,更加改善轧制方向(L方向)的磁特性,而且即使在进行用于形成***铁心的各种加工(冲裁、铆接等)时,也能够抑制绝缘覆膜2脱落等。
再有,在该制造方法中,在最终退火(步骤S3)后进行用于形成绝缘覆膜2(步骤S4)的涂布液的涂布及烘焙,但也可以与最终退火一并进行烘焙。也就是说,如图6所示,也可以在冷轧(步骤S2)之后,在冷轧钢带上涂布涂布液(步骤S11),进行兼顾烘焙涂布液的最终退火(步骤S12)。
此外,在张力赋予型的绝缘覆膜2形成后,为了改善形成***铁心等铁心时的冲裁性,也可以在张力赋予型的绝缘覆膜2上,形成仅由树脂构成的覆膜及/或由无机物及树脂构成的覆膜。也就是说,通过进行无方向性电磁钢板的绝缘覆膜的形成中通常采用的涂布液的涂布及烘焙,可使冲裁性更好。作为这样的涂布液,能够采用含有铬酸盐及丙烯酸树脂的涂布液。例如,能够采用在铬酸水溶液中溶解金属氧化物、金属氢氧化物、金属碳酸盐,再添加乳化型的树脂而成的涂布液。这样的涂布液例如在日本特公昭50-15013号公报中有记载。此外,也能够采用含有磷酸盐及丙烯酸树脂的涂布液。例如,能够采用相对于100重量份的磷酸盐添加1质量份~300质量份的有机树脂乳液的涂布液。这样的涂布液例如在日本特开平6-330338号公报中有记载。
实施例
接着,对本发明者们进行的实验进行说明。这些实验中的条件等是为确认本发明的可实施性及效果而采用的例子,本发明并不限于这些例子。
(第1实验)
首先,对含有表2所示的各种成分且残余部分包含Fe及不可避免的杂质的钢坯(钢No.1~No.7)进行热轧,制作厚度为2.5mm的热轧钢带。接着,在900℃下对热轧钢带进行1分钟的退火(热轧板退火)。然后,进行酸洗,通过冷轧制作厚度为0.35mm的冷轧钢带。
表2
之后,在表3所示的条件下进行最终退火,对形成的外部氧化膜(氧化物层)的主要构成物质及厚度进行调查。外部氧化膜的主要构成物质的鉴别利用高灵敏度反射红外光谱进行,通过透射电子显微镜观察调查了外部氧化膜的厚度。
接着,在表3所示的条件下进行涂布液的涂布及烘焙,形成张力赋予型的绝缘覆膜。表3中的“涂布液”栏中的“S”表示采用含有胶体二氧化硅、磷酸铝及铬酸的涂布液,“A”表示采用含有硼酸及氧化铝溶胶的涂布液。
然后,对绝缘覆膜的密合性进行了评价。其结果见表3。表3中的“密合性”栏中的“×”表示将无方向性电磁钢板卷绕在直径为30mm的圆棒上时绝缘覆膜发生了剥离。此外,“○”表示虽然在卷绕在直径为30mm的圆棒上时绝缘覆膜没有剥离,但是在卷绕在直径为20mm的圆棒上时绝缘覆膜发生了剥离。“◎”表示即使卷绕在直径为20mm的圆棒上时绝缘覆膜也没有剥离。
此外,还对L方向的铁损改善率进行了评价。在该评价中,测定了按上述方法制造的无方向性电磁钢板的铁损值W1(W10/50),与基准试样的铁损值W0(W10/50)进行了比较。作为基准试样,代替张力赋予型的绝缘覆膜,而采用通过日本特开平6-330338号公报中所记载的含有磷酸盐及丙烯酸树脂的涂布液的涂布及烘焙形成绝缘覆膜而成的试样。进行这样的评价是因为铁损的绝对值依赖于成分和工序条件。其结果见表3。表3中的“L方向的铁损改善率”栏中的数值是用“(W0-W1)/W0”表示的值。
如表3所示,在满足本发明的条件的情况下,绝缘覆膜的密合性及L方向的磁特性非常好。此外,在没有形成外部氧化膜而形成内部氧化层的情况下,密合性非常低。
(第2实验)
对表2所示的钢No.1、No.3及No.4的钢坯进行热轧,制作厚度为2.5mm的热轧钢带。接着,在900℃下对热轧钢带进行1分钟的退火(热轧板退火)。然后,进行酸洗,通过冷轧制作厚度为0.35mm的冷轧钢带。
之后,在表4所示的条件下进行涂布液的涂布。接着,在表4所示的条件下进行兼顾烘焙涂布液的最终退火。也就是说,在第1实验中进行按照图5所示流程的处理,而在第2实验中进行按照图6所示流程的处理。然后,与第1实验同样地对绝缘覆膜的密合性及L方向的铁损改善率进行评价。其结果见表4。
表4
Figure BDA00002023981700131
如表4所示,按照图6所示的流程图,在进行了兼顾烘焙涂布液的最终退火的情况下,也能够得到非常好的绝缘覆膜密合性及L方向磁特性。
产业上的可利用性
本发明例如能够用于电磁钢板制造产业及电磁钢板应用产业。

Claims (20)

1.一种无方向性电磁钢板,其特征在于,具有:
基底金属、和
形成在所述基底金属的表面上的1g/m2以上且6g/m2以下的应力赋予型的绝缘覆膜,
所述基底金属含有:
Si、Al及Cr:以总含量计为2质量%以上且6质量%以下、及
Mn:0.1质量%以上且1.5质量%以下,
所述基底金属的C含量为0.005质量%以下,
所述基底金属的残余部分包含Fe及不可避免的杂质,
在所述基底金属的表面上形成有氧化物层,该氧化物层含有选自由Si、Al及Cr组成的组中的至少一种的氧化物,并且厚度为0.01μm以上且0.5μm以下。
2.根据权利要求1所述的无方向性电磁钢板,其特征在于,所述基底金属的Al及Cr的总含量为0.8质量%以上。
3.根据权利要求1所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有磷酸盐和胶体二氧化硅的涂布液而形成。
4.根据权利要求1所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有硼酸和氧化铝溶胶的涂布液而形成。
5.根据权利要求2所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有磷酸盐和胶体二氧化硅的涂布液而形成。
6.根据权利要求2所述的无方向性电磁钢板,其特征在于,所述绝缘覆膜通过烘焙含有硼酸和氧化铝溶胶的涂布液而形成。
7.一种无方向性电磁钢板的制造方法,其特征在于,具有:
对冷轧钢带进行最终退火的工序、和
在所述冷轧钢带的表面上形成1g/m2以上且6g/m2以下的张力赋予型的绝缘覆膜的工序,
所述冷轧钢带含有:
Si、Al及Cr:以总含量计为2质量%以上且6质量%以下、及
Mn:0.1质量%以上且1.5质量%以下,
所述冷轧钢带的C含量为0.005质量%以下,
所述冷轧钢带的残余部分包含Fe及不可避免的杂质,
所述进行最终退火的工序具有在所述冷轧钢带的表面上形成含有选自由Si及Al组成的组中的至少一种的氧化物并且厚度为0.01μm以上且0.5μm以下的氧化物层的工序,其中,在将所述冷轧钢带的Si及Al的总含量表示为X时,在水蒸气相对于氢的分压比为0.005×X2以下的气氛中将所述冷轧钢带的温度规定为800℃以上且1100℃以下,所述X的单位为质量%。
8.根据权利要求7所述的无方向性电磁钢板的制造方法,其特征在于,
所述形成绝缘覆膜的工序在所述进行最终退火的工序后具有:
在所述冷轧钢带的表面上涂布涂布液的工序、和
将所述冷轧钢带的温度规定为800℃以上且1100℃以下并对所述涂布液进行烘焙的工序。
9.根据权利要求8所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有磷酸盐和胶体二氧化硅。
10.根据权利要求8所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有硼酸及氧化铝溶胶。
11.根据权利要求7所述的无方向性电磁钢板的制造方法,其特征在于,
所述形成绝缘覆膜的工序具有:
在进行所述最终退火的工序之前在所述冷轧钢带的表面上涂布涂布液的工序、和
在所述最终退火时对所述涂布液进行烘焙的工序。
12.根据权利要求11所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有磷酸盐和胶体二氧化硅。
13.根据权利要求11所述的无方向性电磁钢板的制造方法,其特征在于,所述涂布液含有硼酸及氧化铝溶胶。
14.根据权利要求7所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
15.根据权利要求8所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
16.根据权利要求9所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
17.根据权利要求10所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
18.根据权利要求11所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
19.根据权利要求12所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
20.根据权利要求13所述的无方向性电磁钢板的制造方法,其特征在于,所述冷轧钢带的Al及Cr的总含量为0.8质量%以上。
CN201180009924.2A 2010-02-18 2011-02-15 无方向性电磁钢板及其制造方法 Active CN102782185B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-033937 2010-02-18
JP2010033937 2010-02-18
PCT/JP2011/053096 WO2011102328A1 (ja) 2010-02-18 2011-02-15 無方向性電磁鋼板及びその製造方法

Publications (2)

Publication Number Publication Date
CN102782185A true CN102782185A (zh) 2012-11-14
CN102782185B CN102782185B (zh) 2014-05-28

Family

ID=44482913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180009924.2A Active CN102782185B (zh) 2010-02-18 2011-02-15 无方向性电磁钢板及其制造方法

Country Status (8)

Country Link
US (2) US9187830B2 (zh)
EP (1) EP2537958B1 (zh)
JP (1) JP5073853B2 (zh)
KR (1) KR101263139B1 (zh)
CN (1) CN102782185B (zh)
BR (1) BR112012020219B1 (zh)
TW (1) TWI403614B (zh)
WO (1) WO2011102328A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923046A (zh) * 2015-09-02 2018-04-17 杰富意钢铁株式会社 绝缘被膜处理液和带有绝缘被膜的金属的制造方法
CN108292866A (zh) * 2015-11-27 2018-07-17 日本电产株式会社 马达和马达的制造方法
CN109844179A (zh) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN110114431A (zh) * 2016-12-23 2019-08-09 Posco公司 电工钢板粘合涂覆组分物、电工钢板产品及其制造方法
CN110121567A (zh) * 2017-01-16 2019-08-13 日本制铁株式会社 无方向性电磁钢板及无方向性电磁钢板的制造方法
CN110809644A (zh) * 2017-07-13 2020-02-18 日本制铁株式会社 方向性电磁钢板
CN110832111A (zh) * 2017-07-13 2020-02-21 日本制铁株式会社 方向性电磁钢板
CN113286907A (zh) * 2019-01-16 2021-08-20 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113286903A (zh) * 2019-01-16 2021-08-20 日本制铁株式会社 方向性电磁钢板、方向性电磁钢板用的中间钢板及它们的制造方法
CN113302335A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN115087757A (zh) * 2019-12-20 2022-09-20 Posco公司 无取向电工钢板及其制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839778B2 (ja) * 2010-04-06 2016-01-06 新日鐵住金株式会社 高周波鉄損の優れた無方向性電磁鋼板、及びその製造方法
FR2976349B1 (fr) * 2011-06-09 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un element absorbeur de rayonnements solaires pour centrale solaire thermique a concentration.
KR101379751B1 (ko) 2012-02-28 2014-03-31 청주대학교 산학협력단 합금입자화박막 및 그 제조방법
EP2778246B1 (en) * 2012-05-31 2018-04-04 Nippon Steel & Sumitomo Metal Corporation Non-oriented electromagnetic steel sheet
TWI487796B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic strip annealing method
TWI487795B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic steel sheet for compressor motor and its manufacturing method
TWI504752B (zh) * 2012-10-12 2015-10-21 China Steel Corp Non - directional electromagnetic steel sheet with tissue - optimized and its manufacturing method
US11674212B2 (en) * 2014-03-28 2023-06-13 Kubota Corporation Cast product having alumina barrier layer
KR101596446B1 (ko) * 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
DE102017204522A1 (de) * 2017-03-17 2018-09-20 Voestalpine Stahl Gmbh Verfahren zur Herstellung von lackbeschichteten Elektroblechbändern und lackbeschichtetes Elektroblechband
KR102112171B1 (ko) 2017-12-26 2020-05-18 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR102009393B1 (ko) 2017-12-26 2019-08-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
EP3722460A4 (en) * 2018-02-06 2020-11-11 JFE Steel Corporation INSULATED-COATED ELECTROMAGNETIC STEEL SHEET AND ITS PRODUCTION PROCESS
TWI665311B (zh) * 2018-10-26 2019-07-11 中國鋼鐵股份有限公司 無方向性電磁鋼捲及其製造方法
KR102176346B1 (ko) * 2018-11-30 2020-11-09 주식회사 포스코 전기강판 및 그 제조 방법
KR20220028054A (ko) * 2019-07-31 2022-03-08 제이에프이 스틸 가부시키가이샤 무방향성 전기강판 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110679A (ja) * 1981-12-25 1983-07-01 Kawasaki Steel Corp 鉄損および磁歪特性の優れた無方向性電磁鋼板の製造方法
JPS60152681A (ja) * 1984-01-19 1985-08-10 Nippon Steel Corp 無方向性電磁鋼板の絶縁皮膜
US6322688B1 (en) * 1997-10-14 2001-11-27 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
CN1461357A (zh) * 2001-04-23 2003-12-10 新日本制铁株式会社 赋予张力性绝缘皮膜的粘合性优异的单取向硅钢板及其制造方法
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法
CN101223300A (zh) * 2005-07-14 2008-07-16 新日本制铁株式会社 具有不含铬的绝缘皮膜的取向电磁钢板及其绝缘皮膜剂

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (zh) 1970-08-28 1975-06-02
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
JPS5652117B2 (zh) 1973-11-17 1981-12-10
JPS5573819A (en) * 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JPS5655574A (en) 1979-10-15 1981-05-16 Nippon Steel Corp Manufacture of nondirectional magnetic steel sheet excellent in iron loss and magnetostriction characteristic
JPS60131976A (ja) 1983-12-19 1985-07-13 Kawasaki Steel Corp 鉄損特性に優れた一方向性けい素鋼板の製造方法
CA2089465C (en) 1992-02-13 1996-06-11 Takao Kanai Oriented electrical steel sheet having low core loss and method of manufacturing same
JP2662482B2 (ja) 1992-08-21 1997-10-15 新日本製鐵株式会社 低鉄損方向性電磁鋼板
JP2698003B2 (ja) * 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP2688147B2 (ja) 1992-08-21 1997-12-08 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
KR0129687B1 (ko) 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
JP2944849B2 (ja) 1993-05-21 1999-09-06 新日本製鐵株式会社 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
KR100240995B1 (ko) * 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
JP2962715B2 (ja) 1997-10-14 1999-10-12 新日本製鐵株式会社 電磁鋼板の絶縁皮膜形成方法
JP3307872B2 (ja) * 1998-02-06 2002-07-24 新日本製鐵株式会社 無方向性電磁鋼板鋼板を用いた電気自動車用モータ及びその電磁鋼板の製造方法
JP3490048B2 (ja) * 1999-08-30 2004-01-26 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2001279400A (ja) * 2000-03-30 2001-10-10 Kawasaki Steel Corp 被膜密着性に優れた無方向性電磁鋼板およびその製造方法
JP4358550B2 (ja) 2003-05-07 2009-11-04 新日本製鐵株式会社 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP4681450B2 (ja) 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2008260996A (ja) 2007-04-11 2008-10-30 Nippon Steel Corp 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110679A (ja) * 1981-12-25 1983-07-01 Kawasaki Steel Corp 鉄損および磁歪特性の優れた無方向性電磁鋼板の製造方法
JPS60152681A (ja) * 1984-01-19 1985-08-10 Nippon Steel Corp 無方向性電磁鋼板の絶縁皮膜
US6322688B1 (en) * 1997-10-14 2001-11-27 Nippon Steel Corporation Method of forming an insulating film on a magnetic steel sheet
CN1461357A (zh) * 2001-04-23 2003-12-10 新日本制铁株式会社 赋予张力性绝缘皮膜的粘合性优异的单取向硅钢板及其制造方法
CN101223300A (zh) * 2005-07-14 2008-07-16 新日本制铁株式会社 具有不含铬的绝缘皮膜的取向电磁钢板及其绝缘皮膜剂
JP2008031499A (ja) * 2006-07-26 2008-02-14 Nippon Steel Corp 皮膜密着性に優れ磁気特性が良好な複層皮膜を有する電磁鋼板及びその製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923046A (zh) * 2015-09-02 2018-04-17 杰富意钢铁株式会社 绝缘被膜处理液和带有绝缘被膜的金属的制造方法
CN107923046B (zh) * 2015-09-02 2020-11-17 杰富意钢铁株式会社 绝缘被膜处理液和带有绝缘被膜的金属的制造方法
CN108292866A (zh) * 2015-11-27 2018-07-17 日本电产株式会社 马达和马达的制造方法
CN108292866B (zh) * 2015-11-27 2021-03-12 日本电产株式会社 马达和马达的制造方法
US11091842B2 (en) 2016-10-18 2021-08-17 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
CN109844179A (zh) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN109844179B (zh) * 2016-10-18 2021-08-06 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN110114431A (zh) * 2016-12-23 2019-08-09 Posco公司 电工钢板粘合涂覆组分物、电工钢板产品及其制造方法
US11807922B2 (en) 2016-12-23 2023-11-07 Posco Co., Ltd Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
CN110121567A (zh) * 2017-01-16 2019-08-13 日本制铁株式会社 无方向性电磁钢板及无方向性电磁钢板的制造方法
CN110809644A (zh) * 2017-07-13 2020-02-18 日本制铁株式会社 方向性电磁钢板
CN110809644B (zh) * 2017-07-13 2021-12-21 日本制铁株式会社 方向性电磁钢板
CN110832111B (zh) * 2017-07-13 2022-03-01 日本制铁株式会社 方向性电磁钢板
CN110832111A (zh) * 2017-07-13 2020-02-21 日本制铁株式会社 方向性电磁钢板
CN113286907A (zh) * 2019-01-16 2021-08-20 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113286903A (zh) * 2019-01-16 2021-08-20 日本制铁株式会社 方向性电磁钢板、方向性电磁钢板用的中间钢板及它们的制造方法
CN113302335A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113302335B (zh) * 2019-01-16 2023-06-20 日本制铁株式会社 方向性电磁钢板及其制造方法
CN115087757A (zh) * 2019-12-20 2022-09-20 Posco公司 无取向电工钢板及其制造方法
CN115087757B (zh) * 2019-12-20 2023-11-14 Posco公司 无取向电工钢板及其制造方法

Also Published As

Publication number Publication date
US20120305140A1 (en) 2012-12-06
US20160035469A1 (en) 2016-02-04
KR20120105051A (ko) 2012-09-24
JPWO2011102328A1 (ja) 2013-06-17
EP2537958B1 (en) 2016-08-31
BR112012020219B1 (pt) 2020-12-01
BR112012020219A2 (pt) 2017-01-24
US9187830B2 (en) 2015-11-17
TWI403614B (zh) 2013-08-01
KR101263139B1 (ko) 2013-05-15
EP2537958A4 (en) 2015-04-29
JP5073853B2 (ja) 2012-11-14
EP2537958A1 (en) 2012-12-26
WO2011102328A1 (ja) 2011-08-25
US9934894B2 (en) 2018-04-03
TW201204872A (en) 2012-02-01
CN102782185B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
CN102782185B (zh) 无方向性电磁钢板及其制造方法
JP6651759B2 (ja) 無方向性電磁鋼板およびその製造方法
TW201908498A (zh) 無方向性電磁鋼板
JP6226072B2 (ja) 電磁鋼板
US9905361B2 (en) Manufacturing method of common grain-oriented silicon steel with high magnetic induction
EP2878688B1 (en) Method for producing grain-oriented electrical steel sheet
JP6658338B2 (ja) 占積率に優れる電磁鋼板およびその製造方法
CN104046758B (zh) 一种短流程高效高硅钢薄带的冷轧制备方法
KR101457755B1 (ko) 무방향성 전자기 강판 및 그 제조 방법
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
CN102959099A (zh) 无方向性电磁钢板的制造方法
KR20190068581A (ko) 우수한 자성을 갖는 무 방향성 전기강 및 그 제조 방법.
JP6880814B2 (ja) 電磁鋼板、及びその製造方法
JP2012036459A (ja) 無方向性電磁鋼板およびその製造方法
KR102483593B1 (ko) 절연 피막 부착 전자 강판 및 그의 제조 방법
CN104053804A (zh) 电磁钢板
CN102099501A (zh) 无方向性电磁钢板及其制造方法
CN110172561B (zh) 一种具有强{100}织构无取向电工钢的制备方法
JP5671872B2 (ja) 無方向性電磁鋼板およびその製造方法
CN110114488A (zh) 再利用性优良的无取向性电磁钢板
JP2013044009A (ja) 無方向性電磁鋼板およびその製造方法
JP4622162B2 (ja) 無方向性電磁鋼板
JPH11335793A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板及びその製造方法
WO2019132039A1 (ja) クラッド鋼板
CN114106593A (zh) 一种用于取向硅钢表面涂层的涂料、取向硅钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NIPPON STEEL + SUMITOMO METAL CORPORATION

Free format text: FORMER OWNER: SHIN NIPPON STEEL LTD.

Effective date: 20130329

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130329

Address after: Tokyo, Japan

Applicant after: Nippon Steel Corporation

Address before: Tokyo, Japan

Applicant before: Nippon Steel Corporation

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Nippon Iron & Steel Corporation

Address before: Tokyo, Japan

Patentee before: Nippon Steel Corporation

CP01 Change in the name or title of a patent holder