WO2018135414A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018135414A1
WO2018135414A1 PCT/JP2018/000710 JP2018000710W WO2018135414A1 WO 2018135414 A1 WO2018135414 A1 WO 2018135414A1 JP 2018000710 W JP2018000710 W JP 2018000710W WO 2018135414 A1 WO2018135414 A1 WO 2018135414A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
flux density
Prior art date
Application number
PCT/JP2018/000710
Other languages
English (en)
French (fr)
Inventor
尾田 善彦
智幸 大久保
善彰 財前
正憲 上坂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18741549.2A priority Critical patent/EP3572545B1/en
Priority to KR1020197019541A priority patent/KR102248323B1/ko
Priority to CN201880007130.4A priority patent/CN110177897B/zh
Priority to US16/476,937 priority patent/US11286537B2/en
Priority to RU2019125483A priority patent/RU2717447C1/ru
Publication of WO2018135414A1 publication Critical patent/WO2018135414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof.
  • Patent Document 1 discloses a non-oriented electrical steel sheet in which Co is added to 0.1% or more and 5% or less of steel to 4% or less of Si.
  • Co is very expensive, there is a problem that the cost increases when applied to a general motor.
  • the magnetic flux density can be increased.
  • a low Si material is soft, there is a problem that the iron loss is greatly increased when a punched material is used for a motor core.
  • an object of the present invention is to provide a non-oriented electrical steel sheet that reduces iron loss while increasing magnetic flux density, and a method for manufacturing the same.
  • the steel sheet has a component composition that causes a ⁇ ⁇ ⁇ transformation (transformation from the ⁇ phase to the ⁇ phase) during hot rolling, and has a Vickers hardness of 140 HV or more and 230 HV. It was found that a material having an excellent balance between magnetic flux density and iron loss can be obtained without performing hot-rolled sheet annealing within the following range.
  • the present invention has been made based on such knowledge and has the following configuration.
  • % By mass C: 0.0050% or less, Si: 1.50% or more and 4.00% or less, Al: 0.500% or less, Mn: 0.10% to 5.00%, S: 0.0200% or less, P: 0.200% or less, N: 0.0050% or less, O: 0.0200% or less It contains 0.0010% or more and 0.10% or less of Sb and / or Sn, respectively, and the balance has a composition of Fe and inevitable impurities, Ar 3 transformation point is 700 ° C. or more, crystal grain size is 80 ⁇ m or more and 200 ⁇ m or less, Vickers Non-oriented electrical steel sheet with a hardness of 140HV or more and 230HV or less.
  • the component composition further includes: % By mass The non-oriented electrical steel sheet according to 1 above, containing Ca: 0.0010% or more and 0.0050% or less.
  • the component composition further includes: % By mass The non-oriented electrical steel sheet according to 1 or 2 above, containing Ni: 0.010% to 3.0%.
  • the component composition further includes: % By mass Ti: 0.0030% or less, Nb: 0.0030% or less, V: 0.0030% or less and Zr: The non-oriented electrical steel sheet according to any one of 1 to 3 above, containing at least one of 0.0020% or less.
  • an electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained without performing hot-rolled sheet annealing.
  • This hot-rolled sheet after hot rolling is pickled, cold-rolled to a sheet thickness of 0.35 mm, and subjected to finish annealing in a 20% H 2 -80% N 2 atmosphere and held at 950 ° C. for 10 s. A finish annealed plate was used.
  • a ring sample 1 having an outer diameter of 55 mm and an inner diameter of 35 mm was produced by punching from the finish annealed plate thus obtained.
  • V caulking 2 was performed on six equally divided portions of the ring sample 1, ten ring samples 1 were laminated and fixed, and magnetic properties, Vickers hardness and crystal grain size were measured.
  • the magnetic characteristics were measured by conducting a primary 100 turns and a secondary 100 turns on the laminated body in which the ring sample 1 was laminated and fixed, and evaluated by the wattmeter method.
  • the Vickers hardness was measured by indenting a diamond indenter at 500 gf into the cross section of the steel sheet in accordance with JIS Z2244. Further, the crystal grain size was measured in accordance with JIS G0551 after the cross section of the steel plate was polished and etched with nital.
  • Table 2 shows the measurement results of the magnetic properties and Vickers hardness of steel A to steel C in Table 1 above.
  • the balance of Si and Mn content is added.
  • the changed steel was melted in the laboratory and slabs made from each steel were hot-rolled. Hot rolling is performed in 7 passes, the entry temperature of the first pass (F1) of hot rolling is 900 ° C, the entry temperature of the final pass (F7) of hot rolling is 780 ° C, and at least one pass is from the ⁇ phase. Rolling was performed in a two-phase region where transformation to the ⁇ phase occurred.
  • the hot-rolled sheet produced under these hot-rolling conditions is pickled, cold-rolled to a sheet thickness of 0.35 mm, and subjected to finish annealing at 950 ° C x 10 s in a 20% H 2 -80% N 2 atmosphere. A finish annealed plate was used.
  • a ring sample 1 having an outer diameter of 55 mm and an inner diameter of 35 mm is produced by punching from the finished annealed plate thus obtained, and V-caulking 2 is performed on six equally divided portions of the ring sample 1 as shown in FIG. 1 was laminated and fixed to obtain a laminate.
  • the measurement of the magnetic properties of this laminate was performed by conducting a primary 100 turns and a secondary 100 turns on the laminate, and evaluating by a wattmeter method.
  • FIG. 2 shows the effect of the Ar 3 transformation point on the magnetic flux density B 50 . It can be seen that when the Ar 3 transformation point is lower than 700 ° C., the magnetic flux density B 50 decreases. The reason for this is not clear, but when the Ar 3 transformation point is less than 700 ° C, the crystal grain size before cold rolling becomes small, which is disadvantageous for the magnetic properties in the process from subsequent cold rolling to finish annealing. (111) It is thought that the texture has developed.
  • the Ar 3 transformation point is set to 700 ° C. or higher.
  • the Ar 3 transformation point is preferably 1000 ° C. or less. This is because hot rolling during transformation promotes the development of a texture preferable for magnetic properties.
  • the Vickers hardness is 140 HV or higher, preferably 150 HV or higher.
  • the pressure is preferably 200 HV or less.
  • % representing the content of each component element means “% by mass” unless otherwise specified.
  • C 0.0050% or less C is made 0.0050% or less from the viewpoint of preventing magnetic aging. On the other hand, since C has an effect of improving the magnetic flux density, 0.0010% or more is preferably contained.
  • Si 1.50% or more and 4.00% or less Since Si is an effective element for increasing the specific resistance of the steel sheet, it is 1.50% or more.
  • the magnetic flux density decreases as the saturation magnetic flux density decreases, so the upper limit is made 4.00%.
  • it is 3.00% or less. This is because if it exceeds 3.00%, it is necessary to add a large amount of Mn in order to obtain a two-phase region, resulting in an unnecessarily high cost.
  • Al 0.500% or less Since Al is an element in which the appearance temperature range of the ⁇ phase is a closed type, it is preferably less, and is made 0.500% or less. Al is preferably 0.020% or less, more preferably 0.002% or less. On the other hand, the addition amount of Al is preferably 0.0005% or more from the viewpoint of manufacturing cost and the like.
  • Mn 0.10% or more and 5.00% or less Since Mn is an effective element for expanding the appearance temperature range of the ⁇ phase, the lower limit is set to 0.10%. On the other hand, if it exceeds 5.00%, the magnetic flux density is lowered, so the upper limit is made 5.00%. Preferably, it is 3.00% or less. This is because if it exceeds 3.00%, the cost will increase.
  • S 0.0200% or less
  • the addition amount of S is preferably 0.0005% or more from the viewpoint of manufacturing cost and the like.
  • P 0.200% or less P is added in excess of 0.200%, and the steel sheet becomes hard, so 0.200% or less, more preferably 0.100% or less. More preferably, it is 0.010% or more and 0.050% or less. This is because P is segregated on the surface and suppresses nitriding.
  • N 0.0050% or less N
  • the addition amount of N is preferably 0.0005% or more from the viewpoint of manufacturing cost and the like.
  • O 0.0200% or less
  • O has a large amount of oxide when the content is large, and increases iron loss. Therefore, it is set to 0.0200% or less.
  • the addition amount of O is preferably 0.0010% or more from the viewpoint of manufacturing cost and the like.
  • Sb and / or Sn is 0.0010% or more and 0.10% or less, respectively.
  • Sb and Sn are effective elements for improving the texture, and the lower limit of each is 0.0010%.
  • Al is 0.010% or less
  • the effect of improving the magnetic flux density by adding Sb and Sn is large, and the magnetic flux density is greatly improved by adding 0.050% or more.
  • the upper limit of each is set to 0.10%.
  • the basic components of the present invention have been described above.
  • the balance other than the above components is Fe and inevitable impurities, but in addition, the following elements can be appropriately contained as required.
  • Ca 0.0010% or more and 0.0050% or less
  • Ca can fix iron sulfide as CaS and reduce iron loss. For this reason, it is preferable to make the lower limit at the time of adding 0.0010%. On the other hand, if it exceeds 0.0050%, a large amount of CaS precipitates and the iron loss is increased, so the upper limit is preferably made 0.0050%. In addition, in order to reduce iron loss stably, it is more preferable to set it as 0.0015% or more and 0.0035% or less.
  • Ni 0.010% or more and 3.0% or less Since Ni is an effective element for expanding the ⁇ region, the lower limit is preferably set to 0.010% when added. On the other hand, if it exceeds 3.0%, the cost is unnecessarily increased, so the upper limit is preferably set to 3.0%, and a more preferable range is 0.100% or more and 1.0% or less.
  • Ti 0.0030% or less If the Ti content is large, the amount of TiN precipitated increases, which may increase iron loss. Therefore, when it contains, it is 0.0030% or less. On the other hand, the addition amount of Ti is preferably 0.0001% or more from the viewpoint of manufacturing cost and the like.
  • Nb 0.0030% or less If the content of Nb is large, the amount of NbC deposited increases, which may increase iron loss. Therefore, when it contains, it is 0.0030% or less. On the other hand, the amount of Nb added is preferably 0.0001% or more from the viewpoint of manufacturing cost and the like.
  • V 0.0030% or less If the content of V is large, the amount of VN and VC precipitated increases, which may increase iron loss. Therefore, when it contains, it is 0.0030% or less. On the other hand, the addition amount of V is preferably 0.0005% or more from the viewpoint of manufacturing cost and the like.
  • Zr 0.0020% or less If the content of Zr is large, the amount of ZrN precipitated increases, which may increase iron loss. Therefore, when it contains, it is 0.0020% or less. On the other hand, the amount of Zr added is preferably 0.0005% or more from the viewpoint of manufacturing cost and the like.
  • the average crystal grain size of the steel sheet is 80 ⁇ m or more and 200 ⁇ m or less.
  • the average crystal grain size is less than 80 ⁇ m, the iron loss increases although the Vickers hardness can be 140 HV or higher with a low Si material. For this reason, the crystal grain size is 80 ⁇ m or more.
  • the crystal grain size exceeds 200 ⁇ m, plastic deformation due to punching or caulking increases, and iron loss increases. For this reason, the upper limit of the crystal grain size is set to 200 ⁇ m.
  • solid solution strengthening elements such as Si, Mn and P.
  • the other processes can be manufactured by a normal method of manufacturing a non-oriented electrical steel sheet. . That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and then casting and hot rolling are performed.
  • the coiling temperature during hot rolling need not be specified, but at least one pass during hot rolling needs to be performed in a two-phase region of ⁇ phase and ⁇ phase.
  • the winding temperature is preferably 650 ° C. or lower in order to prevent oxidation during winding.
  • the finish annealing temperature is preferably set to a condition that satisfies the grain size of the steel sheet, for example, in the range of 900 to 1050 ° C.
  • excellent magnetic properties can be obtained without performing hot-rolled sheet annealing, but hot-rolled sheet annealing may be performed.
  • finish annealing is performed.
  • the test piece was evaluated for magnetic properties (W 15/50 , B 50 ), Vickers hardness (HV) and crystal grain size ( ⁇ m).
  • the magnetic properties were measured by Epstein measurement by cutting out an Epstein sample from the rolling direction and the direction perpendicular to the rolling direction.
  • the Vickers hardness was measured by indenting a diamond indenter with a force of 500 gf into the cross section of the steel sheet in accordance with JIS Z2244.
  • the crystal grain size was measured in accordance with JIS G0551 after the cross section of the steel plate was polished and etched with nital.
  • the non-oriented electrical steel sheet suitable for the present invention in terms of component composition, Ar 3 transformation point, crystal grain size and Vickers hardness is compared with the magnetic flux density and iron in comparison with the steel sheet of the comparative example that is out of the scope of the present invention. It turns out that it is excellent in both loss characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明に従い、質量%で、C:0.0050%以下、Si:1.50%以上4.00%以下、Al:0.500%以下、Mn:0.10%以上5.00%以下、S:0.0200%以下、P:0.200%以下、N:0.0050%以下、O:0.0200%以下並びにSbおよび/またはSnをそれぞれ0.0010%以上0.10%以下含有し、残部はFeおよび不可避不純物である成分組成を有し、Ar3変態点を700℃以上、結晶粒径を80μm以上200μm以下、ビッカース硬度を140HV以上230HV以下とすることで、磁束密度を高めて鉄損を低減することができる。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、無方向性電磁鋼板およびその製造方法に関するものである。
 近年、工場の省エネルギー化ニーズの高まりを受け、高効率の誘導モータが使用されるようになってきている。このようなモータでは、その誘導効率を向上させるために、鉄心積厚を増大したり、巻線の充填率を向上させたりしている。さらに、鉄心に使用される電磁鋼板を、従来の低グレード材からより鉄損の低い高グレード材に変更することも行われている。
 このような誘導モータのコア材においては、鉄損の他に銅損を低減する観点から、低鉄損化を図る以外に、設計磁束密度での励磁実効電流を低減することが要求されている。そして、この励磁実効電流を低減するためには、コア材の磁束密度を高めることが有効である。
 また、最近、急速に普及が進んでいるハイブリッド電気自動車の駆動モータでは、発進時および加速時に高トルクが必要となることから、磁束密度の一層の向上が望まれている。
 磁束密度の高い電磁鋼板として、例えば、特許文献1には、Siが4%以下の鋼に、Coを0.1%以上5%以下添加する無方向性電磁鋼板が開示されている。しかし、Coは非常に高価であるため、一般のモータに適用すると著しいコストアップをまねくという問題を有している。
 一方、所定の低Siの材料を用いると、磁束密度を高めることが可能である。しかしながら、かかる低Si材は軟質であるため、モータコア用に打ち抜き材とした際は鉄損の増加が大きいという問題がある。
特開2000-129410号公報
 このような背景から、著しいコストアップを招くことなく、電磁鋼板の磁束密度を高めつつその鉄損を低減するという技術が望まれている。
 本発明は、上記の課題に鑑み、磁束密度を高めつつ鉄損を低減する無方向性電磁鋼板およびその製造方法を提供することを目的とする。
 本発明者らが上記課題の解決に関し鋭意検討したところ、鋼板を、熱間圧延時にγ→α変態(γ相からα相への変態)を生じる成分組成とし、かつそのビッカース硬度を140HV以上230HV以下の範囲とすることにより、熱延板焼鈍を行うことなく磁束密度と鉄損のバランスに優れた材料が得られることを見出した。
 本発明は、かかる知見に基づきなされたもので、以下の構成を有する。
1.質量%で、
C:0.0050%以下、
Si:1.50%以上4.00%以下、
Al:0.500%以下、
Mn:0.10%以上5.00%以下、
S:0.0200%以下、
P:0.200%以下、
N:0.0050%以下、
O:0.0200%以下並びに
Sbおよび/またはSnをそれぞれ0.0010%以上0.10%以下
を含有し、残部はFeおよび不可避不純物である成分組成を有し、Ar3変態点が700℃以上、結晶粒径が80μm以上200μm以下、ビッカース硬度が140HV以上230HV以下である無方向性電磁鋼板。
2.前記成分組成は、さらに、
 質量%で、
Ca: 0.0010%以上0.0050%以下
を含有する、上記1に記載の無方向性電磁鋼板。
3.前記成分組成は、さらに、
 質量%で、
Ni:0.010%以上3.0%以下
を含有する、上記1または2に記載の無方向性電磁鋼板。
4.前記成分組成は、さらに、
 質量%で、
Ti:0.0030%以下、
Nb:0.0030%以下、
V:0.0030%以下および
Zr:0.0020%以下
の少なくともいずれか一つを含有する、上記1から3のいずれかに記載の無方向性電磁鋼板。
5.上記1から4のいずれかに記載の無方向性電磁鋼板を製造する方法であって、γ相からα相の二相域において少なくとも1パス以上の熱間圧延を行う無方向性電磁鋼板の製造方法。
 本発明によれば、熱延板焼鈍を行うことなく、高磁束密度かつ低鉄損の電磁鋼板を得ることができる。
カシメリング試料の模式図である。 磁束密度B50に及ぼすAr3変態点の影響を示すグラフである。
 以下、本発明の詳細をその限定理由とともに説明する。
 最初に、磁気特性に及ぼすγ相からα相の二相域の影響について調査するため、表1の成分組成を含有する鋼Aから鋼Cを実験室にて溶製し、熱間圧延を行った。上記熱間圧延は7パスで行い、その初パス(F1)の入り側温度は1030℃、また最終パス(F7)の入り側温度は910℃とした。
Figure JPOXMLDOC01-appb-T000001
 この熱間圧延後の熱間圧延板を酸洗後、板厚0.35mmまで冷間圧延し、20%H-80%N雰囲気中、950℃で10s間保持する条件で仕上焼鈍を行い仕上焼鈍板とした。
 かくして得られた仕上焼鈍板から、外径55mm、内径35mmのリング試料1を打ち抜きにより作製した。次いで、図1に示すようにリング試料1の等分6箇所にVカシメ2を行い、10枚のリング試料1を積層固定して、磁気特性、ビッカース硬度および結晶粒径を測定した。磁気特性の測定は、リング試料1を積層固定した積層体に一次100ターン、二次100ターンの巻き線を行い、電力計法にて評価した。また、ビッカース硬度は、JIS Z2244に準拠し、鋼板断面に500gfでダイヤモンド圧子を押し込むことにより測定した。さらに、結晶粒径は、鋼板の断面を研磨し、ナイタールにてエッチングした後、JIS G0551に準拠して測定した。
 上記表1の鋼Aから鋼Cの磁気特性およびビッカース硬度の測定結果を表2に示す。まず磁束密度に着目すると、鋼Aでは磁束密度が低く、鋼Bおよび鋼Cでは磁束密度が高いことがわかる。この原因を調査するため、仕上焼鈍後の材料の集合組織を調査したところ、鋼Aでは、鋼B,Cに比べて磁気特性に不利な(111)集合組織が発達していることが明らかとなった。電磁鋼板の集合組織の形成には冷間圧延前の組織が大きな影響を及ぼすことが知られているため、冷間圧延前である熱間圧延後の組織を調査したところ、鋼Aでは未再結晶組織となっていた。このため鋼Aでは、熱間圧延後の冷間圧延、仕上焼鈍工程において(111)集合組織が発達したものと考えられる。
Figure JPOXMLDOC01-appb-T000002
 一方、鋼B,Cの熱間圧延後の組織を観察したところ、完全に再結晶した組織となっていた。このため鋼B,Cでは磁気特性の向上に不利な(111)集合組織の形成が抑制され、磁束密度が高くなったものと考えられる。
 このように、鋼種により熱間圧延後の組織が異なることとなった原因を調査するため、熱間圧延時の変態挙動を線膨張係数測定により評価した。その結果、鋼Aでは、高温域から低温域までα単相であり、熱間圧延時には相変態は生じていないことが明らかとなった。一方、鋼BではAr3変態点は1020℃、鋼CではAr3変態点は930℃となっており、鋼Bでは初パスに、鋼Cでは3~5パスでγ→α変態を生じていることが明らかとなった。すなわち、鋼種による熱間圧延後の組織の差は、熱間圧延中にγ→α変態が生じることによって生まれた変態歪みを駆動力として鋼板内の再結晶が進んだことによるものと考えられる。
 以上のことから、磁束密度を高めるためには、熱間圧延を行う温度域においてγ→α変態を有することが重要であることが分かった。そこで、γ→α変態が完了するAr3変態点が何度であればいいかを調査するため、以下の実験を行った。すなわち、質量%で、C:0.0016%、Al:0.001%、P:0.010%、S:0.0008%、N:0.0020%、O:0.0050~0.0070%、Sb:0.0050%、Sn:0.0050%、Ni:0.100%、Ca:0.0010%、Ti:0.0010%、V:0.0010%、Zr:0.0005%、およびNb:0.0004%を基本成分とし、これにAr3変態点を変化させるためSiおよびMnの含有バランスを変化させた鋼を、実験室にて溶製し、各鋼から作製したスラブに対して熱間圧延を行った。熱間圧延は7パスで行い、熱間圧延の初パス(F1)の入り側温度を900℃、熱間圧延の最終パス(F7)入り側温度は780℃とし、少なくとも1パスはα相からγ相への変態が生じる二相域で圧延するようにした。
 この熱間圧延条件で作製した熱間圧延板を、酸洗後、板厚0.35mmまで冷間圧延し、20%H-80%N雰囲気で950℃×10sの条件の仕上焼鈍を行い、仕上焼鈍板とした。
 かくして得られた仕上焼鈍板から外径55mm、内径35mmのリング試料1を打ち抜きにより作製し、図1に示すようにリング試料1の等分6箇所にVカシメ2を行い、10枚のリング試料1を積層固定し、積層体とした。この積層体の磁気特性の測定は、積層体に一次100ターン、二次100ターンの巻き線を行い、電力計法にて評価した。
 図2に磁束密度B50に及ぼすAr3変態点の影響を示す。Ar3変態点が700℃未満の場合には磁束密度B50が低下することがわかる。この理由は明確でないが、Ar3変態点が700℃未満となった場合、冷間圧延前の結晶粒径が小さくなるため、続く冷間圧延から仕上焼鈍に至る過程で、磁気特性に不利な(111)集合組織が発達したためと考えられる。
 以上のことから、本発明では、Ar3変態点は700℃以上とする。Ar3変態点の上限は特に設けないが、熱間圧延中にγ→α変態を生じることが重要であり、熱間圧延時に少なくとも1パスでγ相とα相との二相域で熱間圧延を行う必要があり、この観点からAr3変態点は1000℃以下であることが好適である。これは変態中に熱間圧延を行うことにより、磁気特性に好ましい集合組織の発達が促されるためである。
 前記表2における鉄損の評価に着目すると、鋼A,Cでは鉄損が低いが、鋼Bでは鉄損が高いことがわかる。この原因は明確ではないが、鋼Bでは仕上焼鈍後の鋼板の硬度(HV)が低いため、打ち抜きおよびカシメによる圧縮応力場が広がりやすくなり、その結果、鉄損が増加したものと考えられる。このことから、本発明は、ビッカース硬度を140HV以上、好ましくは150HV以上とする。一方、ビッカース硬度が230HVを超えると打ち抜き用の金型の損耗が激しくなり、いたずらにコストアップとなるため、上限は230HVとする。金型損耗の抑制の観点から、好ましくは200HV以下とする。
 以下、本発明の一実施形態による無方向性電磁鋼板について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
 C:0.0050%以下
 Cは、磁気時効防止の観点から0.0050%以下とする。一方、Cは磁束密度を向上させる効果があるため0.0010%以上含むことが好ましい。
 Si:1.50%以上4.00%以下
 Siは、鋼板の固有抵抗を上げるために有効な元素であるため1.50%以上とする。一方、4.00%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため上限は4.00%とする。好ましくは、3.00%以下とする。これは3.00%を超えると二相域とするために多量のMnを添加する必要があり、いたずらにコストアップとなるためである。
 Al:0.500%以下
 Alは、γ相の出現温度域が閉鎖型となる元素であるため少ないほうが好ましく、0.500%以下とする。なお、Alは、好ましくは0.020%以下、より好ましくは0.002%以下とする。一方、Alの添加量は、製造コスト等の観点から、0.0005%以上が好ましい。
 Mn:0.10%以上5.00%以下
 Mnは、γ相の出現温度域を拡大するために効果的な元素であるため、下限を0.10%とする。一方、5.00%超になると磁束密度を低下させるので上限を5.00%とする。好ましくは、3.00%以下とする。これは3.00%を超えるといたずらにコストアップとなるためである。
 S:0.0200%以下
 Sは、0.0200%を超えるとMnSの析出により鉄損が増大する。そのため、上限を0.0200%とする。一方、Sの添加量は、製造コスト等の観点から、0.0005%以上が好ましい。
 P:0.200%以下
 Pは、0.200%を超えて添加すると鋼板が硬くなるため0.200%以下、より好ましくは0.100%以下とする。さらに好ましくは0.010%以上0.050%以下とする。これはPが表面偏析して窒化を抑制する効果があるためである。
 N:0.0050%以下
 Nは、含有量が多い場合にはAlNの析出量が多くなり、鉄損を増大させる。そのため0.0050%以下とする。一方、Nの添加量は、製造コスト等の観点から、0.0005%以上が好ましい。
 O:0.0200%以下
 Oは、含有量が多い場合には酸化物が多くなり、鉄損を増大させる。そのため0.0200%以下とする。一方、Oの添加量は、製造コスト等の観点から、0.0010%以上が好ましい。
 Sbおよび/またはSnをそれぞれ0.0010%以上0.10%以下
 SbおよびSnは、集合組織改善のために効果的な元素であり、それぞれの下限を0.0010%とする。特に、Alが0.010%以下の場合には、SbおよびSnの添加による磁束密度の向上効果が大きく、0.050%以上の添加により磁束密度が大きく向上する。一方、0.10%を超えて添加しても効果が飽和し、いたずらにコストアップとなるため、それぞれの上限を0.10%とする。
 以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避不純物であるが、その他にも必要に応じて、以下の元素を適宜含有させることができる。
 Ca: 0.0010%以上0.0050%以下
 Caは、硫化物をCaSとして固定し鉄損を低減できる。このため添加する際の下限を0.0010%とすることが好ましい。一方、0.0050%を超えるとCaSが多量に析出し、鉄損を増加させるため上限を0.0050%とすることが好ましい。なお、鉄損を安定して低減するため、0.0015%以上0.0035%以下とすることがより好ましい。
 Ni:0.010%以上3.0%以下
 Niは、γ域を拡大するために効果的な元素であるため、添加する際には下限を0.010%とすることが好ましい。一方、3.0%超になるといたずらにコストアップを招くため、上限を3.0%とすることが好ましく、より好ましい範囲は0.100%以上1.0%以下である。
 Ti:0.0030%以下
 Tiは、含有量が多いとTiNの析出量が多くなり、鉄損を増大させるおそれがある。そのため、含有させる場合には0.0030%以下とする。一方、Tiの添加量は、製造コスト等の観点から、0.0001%以上が好ましい。
 Nb:0.0030%以下
 Nbは、含有量が多いとNbCの析出量が多くなり、鉄損を増大させるおそれがある。そのため、含有させる場合には0.0030%以下とする。一方、Nbの添加量は、製造コスト等の観点から、0.0001%以上が好ましい。
 V:0.0030%以下
 Vは、含有量が多いとVN、VCの析出量が多くなり、鉄損を増大させるおそれがある。そのため、含有させる場合には0.0030%以下とする。一方、Vの添加量は、製造コスト等の観点から、0.0005%以上が好ましい。
 Zr:0.0020%以下
 Zrは、含有量が多いとZrNの析出量が多くなり、鉄損を増大させるおそれがある。そのため、含有させる場合には0.0020%以下とする。一方、Zrの添加量は、製造コスト等の観点から、0.0005%以上が好ましい。
 鋼板の平均結晶粒径は80μm以上200μm以下とする。平均結晶粒径が80μm未満の場合には、低Siの材料でビッカース硬度を140HV以上とすることができるものの、鉄損が増加する。このため、結晶粒径は80μm以上とする。一方、結晶粒径が200μmを超える場合には、打ち抜きやカシメによる塑性変形が大きくなり、鉄損が増加することとなる。このため結晶粒径の上限を200μmとする。
 結晶粒径を80μm以上200μm以下とするには仕上焼鈍温度を適切に制御することが重要である。また、ビッカース硬度を140HV以上230HV以下とするにはSi、MnおよびP等の固溶強化元素を適切に添加することが必要である。
 次に、本発明に係る無方向性電磁鋼板の製造条件について説明する。
 本発明の無方向性電磁鋼板は、本発明で規定する成分組成および熱間圧延条件の範囲内であれば、それ以外の工程は通常の無方向性電磁鋼板の製造方法により製造することができる。すなわち、転炉で吹練した溶鋼を、脱ガス処理して所定の成分に調整し、引続き鋳造、熱間圧延を行う。熱間圧延時の巻取り温度は特に規定する必要はないが、熱間圧延時の少なくとも1パスをγ相とα相との二相域で行う必要がある。なお、巻取り温度は巻取り時の酸化を防止するため650℃以下が好ましい。また、仕上焼鈍温度は鋼板の粒径を満足する条件、例えば、900~1050℃の範囲とするのが好ましい。本発明では、熱延板焼鈍を行わなくても優れた磁気特性が得られるが、熱延板焼鈍を行ってもよい。次いで1回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、仕上焼鈍を行う。
 (実施例)
 転炉で吹練した溶鋼を、脱ガス処理し、表3に示す成分に調整して鋳造した後、1120℃×1hの条件でスラブ加熱を行い、板厚が2.0mm厚になるまで熱間圧延を行った。熱間の仕上圧延は7パスで行い、初パスおよび最終パスの入り側板温は表3に示す温度とし、巻取り温度は650℃とした。その後、酸洗を行い、板厚が0.35mm厚になるまで冷間圧延を行い、20%H-80%N雰囲気で表3に示す条件において焼鈍時間10秒で仕上焼鈍を行い、試験片とした。かかる試験片の、磁気特性(W15/50,B50)、ビッカース硬度(HV)および結晶粒径(μm)を評価した。磁気特性の測定は、圧延方向および圧延直角方向よりエプスタインサンプルを切り出し、エプスタイン測定により行った。ビッカース硬度は、JIS Z2244に準拠し、鋼板断面に500gfの力でダイヤモンド圧子を押し込むことにより測定した。結晶粒径は、鋼板の断面を研磨し、ナイタールにてエッチングした後、JIS G0551に準拠して測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 表3から、成分組成、Ar3変態点、結晶粒径およびビッカース硬度が本発明に適合する無方向性電磁鋼板は、本発明の範囲から外れる比較例の鋼板と比較して、磁束密度と鉄損特性の双方に優れていることがわかる。
 本発明によれば、熱延板焼鈍を行うことなく磁束密度と鉄損のバランスに優れた無方向性電磁鋼板を得ることが可能となる。
1 リング試料
2 Vカシメ

Claims (5)

  1.  質量%で、
    C:0.0050%以下、
    Si:1.50%以上4.00%以下、
    Al:0.500%以下、
    Mn:0.10%以上5.00%以下、
    S:0.0200%以下、
    P:0.200%以下、
    N:0.0050%以下、
    O:0.0200%以下並びに
    Sbおよび/またはSnをそれぞれ0.0010%以上0.10%以下
    を含有し、残部はFeおよび不可避不純物である成分組成を有し、Ar3変態点が700℃以上、結晶粒径が80μm以上200μm以下、ビッカース硬度が140HV以上230HV以下である無方向性電磁鋼板。
  2.  前記成分組成は、さらに、
     質量%で、
    Ca: 0.0010%以上0.0050%以下
    を含有する、請求項1に記載の無方向性電磁鋼板。
  3.  前記成分組成は、さらに、
     質量%で、
    Ni:0.010%以上3.0%以下
    を含有する、請求項1または2に記載の無方向性電磁鋼板。
  4.  前記成分組成は、さらに、
     質量%で、
    Ti:0.0030%以下、
    Nb:0.0030%以下、
    V:0.0030%以下および
    Zr:0.0020%以下
    の少なくともいずれか一つを含有する、請求項1から3のいずれかに記載の無方向性電磁鋼板。
  5.  請求項1から4のいずれかに記載の無方向性電磁鋼板を製造する方法であって、γ相からα相の二相域において少なくとも1パス以上の熱間圧延を行う無方向性電磁鋼板の製造方法。
PCT/JP2018/000710 2017-01-17 2018-01-12 無方向性電磁鋼板およびその製造方法 WO2018135414A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18741549.2A EP3572545B1 (en) 2017-01-17 2018-01-12 Non-oriented electromagnetic steel sheet and production method therefor
KR1020197019541A KR102248323B1 (ko) 2017-01-17 2018-01-12 무방향성 전기 강판 및 그 제조 방법
CN201880007130.4A CN110177897B (zh) 2017-01-17 2018-01-12 无方向性电磁钢板及其制造方法
US16/476,937 US11286537B2 (en) 2017-01-17 2018-01-12 Non-oriented electrical steel sheet and method of producing same
RU2019125483A RU2717447C1 (ru) 2017-01-17 2018-01-12 Нетекстурированная электротехническая листовая сталь и способ ее производства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006205 2017-01-17
JP2017006205A JP6665794B2 (ja) 2017-01-17 2017-01-17 無方向性電磁鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2018135414A1 true WO2018135414A1 (ja) 2018-07-26

Family

ID=62909220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000710 WO2018135414A1 (ja) 2017-01-17 2018-01-12 無方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US11286537B2 (ja)
EP (1) EP3572545B1 (ja)
JP (1) JP6665794B2 (ja)
KR (1) KR102248323B1 (ja)
CN (1) CN110177897B (ja)
RU (1) RU2717447C1 (ja)
TW (1) TWI710647B (ja)
WO (1) WO2018135414A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095859A1 (ja) * 2019-11-15 2021-05-20 日本製鉄株式会社 無方向性電磁鋼板の製造方法
RU2792272C1 (ru) * 2019-08-26 2023-03-21 Баошань Айрон Энд Стил Ко., Лтд. Лист из нетекстурированной электротехнической стали и способ его изготовления

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241985B1 (ko) * 2018-12-19 2021-04-19 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20220186330A1 (en) * 2019-02-14 2022-06-16 Nippon Steel Corporation Non-oriented electrical steel sheet
JP7056745B2 (ja) * 2019-10-29 2022-04-19 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7415135B2 (ja) * 2019-11-15 2024-01-17 日本製鉄株式会社 無方向性電磁鋼板の製造方法
JP7492105B2 (ja) * 2019-11-15 2024-05-29 日本製鉄株式会社 積層コアおよび電気機器
JP7352082B2 (ja) * 2019-11-15 2023-09-28 日本製鉄株式会社 無方向性電磁鋼板
JP7415134B2 (ja) * 2019-11-15 2024-01-17 日本製鉄株式会社 無方向性電磁鋼板の製造方法
TWI774241B (zh) * 2021-02-19 2022-08-11 日商日本製鐵股份有限公司 無方向性電磁鋼板用熱軋鋼板、無方向性電磁鋼板用熱軋鋼板之製造方法、及無方向性電磁鋼板之製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251752A (ja) * 1997-03-13 1998-09-22 Kawasaki Steel Corp 磁気特性に優れる熱延電磁鋼板の製造方法
JP2000129410A (ja) 1998-10-30 2000-05-09 Nkk Corp 磁束密度の高い無方向性電磁鋼板
JP2001323352A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた低鉄損かつ高磁束密度の無方向性電磁鋼板
JP2002504624A (ja) * 1998-02-20 2002-02-12 ティッセン クルップ シュタール アクチェンゲゼルシャフト 無方向性電磁鋼板を製造する方法
JP2005525469A (ja) * 2002-05-15 2005-08-25 ティッセンクルップ シュタール アクチェンゲゼルシャフト 無方向性電磁鋼ストリップ又は電磁鋼板及びその製造方法
JP2013044009A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
JP2014195818A (ja) * 2013-03-29 2014-10-16 Jfeスチール株式会社 無方向性電磁鋼板用熱延鋼板の製造方法および無方向性電磁鋼板の製造方法
US20150318093A1 (en) * 2012-01-12 2015-11-05 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
JP2016129902A (ja) * 2015-01-14 2016-07-21 Jfeスチール株式会社 打抜き加工方法、打抜き加工装置、および積層鉄心の製造方法
WO2017056383A1 (ja) * 2015-10-02 2017-04-06 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ284195B6 (cs) 1991-10-22 1998-09-16 Pohang Iron And Steel Co., Ltd. Neorientované elektrické ocelové plechy a způsoby jejich výroby
EP0779369B1 (en) 1994-06-24 2000-08-23 Nippon Steel Corporation Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
KR100240995B1 (ko) * 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
CN1102670C (zh) 1999-06-16 2003-03-05 住友金属工业株式会社 无方向性电磁钢片及其制造方法
US6436199B1 (en) 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP4126479B2 (ja) 2000-04-28 2008-07-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR100956530B1 (ko) 2001-06-28 2010-05-07 제이에프이 스틸 가부시키가이샤 무방향성 전자강판 및 그 제조방법
EP1501951B2 (en) * 2002-05-08 2013-08-28 Ak Steel Properties, Inc. Method of continuous casting non-oriented electrical steel strip
EP1632582B1 (en) * 2003-05-06 2011-01-26 Nippon Steel Corporation Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof
JP5000136B2 (ja) * 2003-10-06 2012-08-15 新日本製鐵株式会社 高強度電磁鋼板およびその形状加工部品とそれらの製造方法
JP4804478B2 (ja) * 2004-12-21 2011-11-02 ポスコ 磁束密度を向上させた無方向性電磁鋼板の製造方法
JP4648910B2 (ja) * 2006-10-23 2011-03-09 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
KR101682284B1 (ko) 2011-09-27 2016-12-05 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판
JP5605518B2 (ja) 2011-11-11 2014-10-15 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
CN103305748A (zh) * 2012-03-15 2013-09-18 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法
KR101493059B1 (ko) 2012-12-27 2015-02-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101648334B1 (ko) * 2014-12-16 2016-08-16 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101705235B1 (ko) * 2015-12-11 2017-02-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
RU2722359C1 (ru) 2016-10-27 2020-05-29 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251752A (ja) * 1997-03-13 1998-09-22 Kawasaki Steel Corp 磁気特性に優れる熱延電磁鋼板の製造方法
JP2002504624A (ja) * 1998-02-20 2002-02-12 ティッセン クルップ シュタール アクチェンゲゼルシャフト 無方向性電磁鋼板を製造する方法
JP2000129410A (ja) 1998-10-30 2000-05-09 Nkk Corp 磁束密度の高い無方向性電磁鋼板
JP2001323352A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた低鉄損かつ高磁束密度の無方向性電磁鋼板
JP2005525469A (ja) * 2002-05-15 2005-08-25 ティッセンクルップ シュタール アクチェンゲゼルシャフト 無方向性電磁鋼ストリップ又は電磁鋼板及びその製造方法
JP2013044009A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
US20150318093A1 (en) * 2012-01-12 2015-11-05 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
JP2014195818A (ja) * 2013-03-29 2014-10-16 Jfeスチール株式会社 無方向性電磁鋼板用熱延鋼板の製造方法および無方向性電磁鋼板の製造方法
JP2016129902A (ja) * 2015-01-14 2016-07-21 Jfeスチール株式会社 打抜き加工方法、打抜き加工装置、および積層鉄心の製造方法
WO2017056383A1 (ja) * 2015-10-02 2017-04-06 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572545A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792272C1 (ru) * 2019-08-26 2023-03-21 Баошань Айрон Энд Стил Ко., Лтд. Лист из нетекстурированной электротехнической стали и способ его изготовления
WO2021095859A1 (ja) * 2019-11-15 2021-05-20 日本製鉄株式会社 無方向性電磁鋼板の製造方法
JPWO2021095859A1 (ja) * 2019-11-15 2021-05-20
TWI755150B (zh) * 2019-11-15 2022-02-11 日商日本製鐵股份有限公司 無方向性電磁鋼板之製造方法
JP7211532B2 (ja) 2019-11-15 2023-01-24 日本製鉄株式会社 無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR20190093615A (ko) 2019-08-09
US11286537B2 (en) 2022-03-29
EP3572545B1 (en) 2022-06-08
TW201831703A (zh) 2018-09-01
EP3572545A1 (en) 2019-11-27
US20190330710A1 (en) 2019-10-31
JP6665794B2 (ja) 2020-03-13
TWI710647B (zh) 2020-11-21
EP3572545A4 (en) 2019-12-11
CN110177897B (zh) 2021-06-29
KR102248323B1 (ko) 2021-05-04
RU2717447C1 (ru) 2020-03-23
CN110177897A (zh) 2019-08-27
JP2018115362A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6451873B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
RU2674181C1 (ru) Лист из нетекстурированной электротехнической стали, способ его изготовления и сердечник двигателя
JP6866935B2 (ja) 無方向性電磁鋼板の製造方法
JP6319465B2 (ja) 無方向性電磁鋼板およびその製造方法
JP6057082B2 (ja) 磁気特性に優れる無方向性電磁鋼板
WO2013080891A1 (ja) 無方向性電磁鋼板の製造方法
JP2003049250A (ja) 曲げ加工性に優れた方向性電磁鋼板およびその製造方法
JP4852804B2 (ja) 無方向性電磁鋼板
WO2023090138A1 (ja) 無方向性電磁鋼板とその製造方法並びにモータコアの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019541

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018741549

Country of ref document: EP

Effective date: 20190819