CN102545884B - 带有高效能预加重均衡的电压型数据发送器 - Google Patents

带有高效能预加重均衡的电压型数据发送器 Download PDF

Info

Publication number
CN102545884B
CN102545884B CN201210036315.2A CN201210036315A CN102545884B CN 102545884 B CN102545884 B CN 102545884B CN 201210036315 A CN201210036315 A CN 201210036315A CN 102545884 B CN102545884 B CN 102545884B
Authority
CN
China
Prior art keywords
nmos pass
pmos
circuit
pass transistor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210036315.2A
Other languages
English (en)
Other versions
CN102545884A (zh
Inventor
盖伟新
何金杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI XINCHENG MICROELECTRONICS CO Ltd
Original Assignee
WUXI XINCHENG MICROELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI XINCHENG MICROELECTRONICS CO Ltd filed Critical WUXI XINCHENG MICROELECTRONICS CO Ltd
Priority to CN201210036315.2A priority Critical patent/CN102545884B/zh
Publication of CN102545884A publication Critical patent/CN102545884A/zh
Application granted granted Critical
Publication of CN102545884B publication Critical patent/CN102545884B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明公布了带有高效能预加重均衡的电压型数据发送器,能够根据发送数据信号当前位及其前一位的电平高低,自动配置主发送电路和预加重电路的驱动电流的权重,使***发送信号低频成分时预加重电路有效地关闭,克服了现行带预加重均衡的电压型发送器在发送信号低频成分时能量存在较大浪费的缺陷,大大提高了发送器的效能,在较高预加重强度下,本发明节省功耗60%以上。本发明包括一个由偏置电压可调的差分驱动电路组成的主发送电路、一个偏置电流可调的差分驱动组成的预加重电路、一个能根据输出幅度和预加重强度要求自适应配置发送器的偏置电路。本发明可用于各种数据通信***中,特别是在高速数据通信中体现出高效能的特点。

Description

带有高效能预加重均衡的电压型数据发送器
技术领域
本发明属于数据通信高速互连集成电路的技术领域,是一种带有高效能预加重均衡的电压型数据发送器,能有效地补偿高速数据通信因信道频宽不足带来的信号衰减,能用于各种数据通信发送器或收发器***中,也能作为独立IP使用。
背景技术
图1为一种典型的高速数据通信***,该***主要由发送器100、传输媒介105、交流耦合106a(或直流耦合106b)、接收器108构成。数据的收发和传送过程如下:差分数字信号109由发送器100驱动,通过传输媒介105的传送,信号到达接收端由接收器108接收并恢复为差分数字信号110。为减少信号的反射,通常可以在发送端、接收端或两端同时配置用于匹配传输媒介信道阻抗的端接电阻107a和107b。所述接收器端接电阻107a和107b的偏置电位VRX在直流耦合时可以接到固定电位或悬空,但在交流耦合时必须接固定电位。传输媒介105可以包括但不限于以下一种或多种的组合:芯片封装、印制电路板、背板、连接器、各种类型的线缆等。
随着数据通信速度的快速提高,目前已达到几个吉赫兹(GHz)或几十吉赫兹,传输媒介105的信道频宽大大低于数据传输速率,由此引起的基于信号频率的衰减会使数据完整性严重受损,误码率大大提高。为补偿在传输媒介105中的信号衰减,采用预加重均衡技术在信号进入传输媒介105之前对其进行预处理,输出差分信号111,即对于信号中的高频成分提高其输出幅度114,而对于低频成分降低输出幅度113。信号经过传输媒介105的传送,其高频成分的衰减大于低频成分,当信号到达接收端时,高低频成分的幅度趋于一致,达到均衡,形成接收端的差分输入信号112。
发送器100是一种带有预加重均衡的n+1抽头电压型数据发送器。数据信号109经过延时控制电路103产生两路或多路不同延迟的数据信号,分别驱动所述主发送电路101以及预加重电路102a、102b等多个分支,实际抽头数可以根据传输媒介的性能进行配置。所述主发送电路101和预加重电路102a、102b等各个分支在输出端104a和104b短接,驱动输出差分信号111。
所述带预加重均衡的电压型数据发送器100在输出信号的高频成分时能够较充分地利用电源供给的能量,效率很高;但是当输出信号的低频成分时,却浪费了大量的能耗,能效较低,而且随着预加重强度的提高,能效快速下降,严重限制了电压型数据发送器电路配置预加重均衡以补偿传输媒介信道频宽不足的能力,阻碍了这一结构在数据通信,特别是高速数据通信领域的广泛应用。
发明内容
本发明针对带预加重均衡的电压型发送器效能较低的缺陷,提出了一种新型的高效能电压型发送器。所述发送器由主发送电路、预加重电路和偏置电路组成,主发送电路发送信号的低频成分,预加重电路和主发送电路一起发送信号的高频成分,偏置电路给主发送电路和预加重电路提供适当的偏置电压和偏置电流。
所述主发送电路由三个PMOS晶体管、三个NMOS晶体管和两个运算放大器组成。其中第一PMOS晶体管的源极接电源,栅极接第一运算放大器的输出端,漏极与第二和第三PMOS晶体管的源极相接,并连接到第一运算放大器的正相输入端。第一NMOS晶体管源极接地,栅极连接到第二运算放大器的输出端,漏极连接到第二和第三NMOS晶体管的源极,并连接到第二运算放大器的正相输入端。第二PMOS晶体管与第二NMOS晶体管的漏极和栅极分别对应相接,第三PMOS晶体管与第三NMOS晶体管的漏极和栅极分别对应相接。
设定所述主发送电路的第一运算放大器的反相输入端偏置电压,通过第一运算放大器和第一PMOS晶体管形成的负反馈,能在第二和第三PMOS晶体管的源极形成稳定的高电位。设定所述第二运算放大器的反相输入端偏置电压,通过第二运算放大器和第一NMOS晶体管形成的负反馈,能在第二和第三NMOS晶体管的源极形成稳定的低电位。所述高电位与第一运算放大器的反相输入端偏置电压相同,所述低电位与第二运算放大器的反相输入端偏置电压相同。
所述主发送电路的所述第二、第三PMOS晶体管和第二、第三NMOS晶体管构成差分输入差分输出的电路结构,所述晶体管的栅极为差分输入端,所述晶体管的漏端为差分输出端。
所述预加重电路由三个PMOS晶体管和三个NMOS晶体管组成。第四PMOS晶体管的源极接固定高电位,栅极连接偏置电压设定第四PMOS晶体管的偏置工作电流,其漏极连接到第五和第六PMOS晶体管的源极。所述第四至第六PMOS晶体管构成差分对,当第五PMOS晶体管的栅极电压为低而导通时,第四PMOS晶体管的电流经过第五PMOS晶体管流出;当第六PMOS晶体管的栅极电压为低而导通时,第四PMOS晶体管的电流经过第六PMOS晶体管流出。
所述预加重电路的第四NMOS晶体管的源极接固定低电位,栅极连接偏置电压设定第四NMOS晶体管的偏置工作电流,其漏极连接到第五和第六NMOS晶体管的源极。所述第四至第六NMOS晶体管构成差分对,当第五NMOS晶体管的栅极电压为高而导通时,第四NMOS晶体管的电流经过第五NMOS晶体管流入;当第六NMOS晶体管的栅极电压为高而导通时,第四NMOS晶体管的电流经过第六NMOS晶体管流入。
所述预加重电路的所述第五PMOS和所述第五NMOS晶体管漏端短接,并与所述主发送电路的第二PMOS和第二NMOS晶体管的漏端短接;所述第六PMOS和所述第六NMOS晶体管漏端短接,并与所述主发送电路的第三PMOS和第三NMOS晶体管的漏端短接。在所述主发送电路发送信号的低频成分时,第五和第六PMOS晶体管、第五和第六NMOS晶体管都关断,输出信号的幅度由主发送电路的所述第一和第二运算放大器的反相偏置电压、所述第二和第三PMOS晶体管、第二和第三NMOS晶体管的导通等效压降和所述主发送电路的输出端负载决定。在所述主发送电路发送信号的高频成分时,第五和第六PMOS晶体管、第五和第六NMOS晶体管能根据传送的信号分别设置为导通或关断,通过对所述主发送器差分输出端相应地注入和抽取电流,提高高频信号的输出幅度。
所述预加重电路的所述第五PMOS、所述第五NMOS晶体管、所述第六PMOS和所述第六NMOS晶体管在主发送电路输出信号的低频成分时全部关断,消耗能量在忽略晶体管漏电的情况下为零,大大提高了整个发送器的效能。
所述偏置电路包括第七和第八PMOS晶体管、第七NMOS晶体管、第一到第四阻值完全相同的四个电阻以及第三运算放大器。第七PMOS晶体管的源极接固定高电位,栅极和漏极分别连接第三运算放大器的输出端和正相输入端,所述第七PMOS晶体管漏极顺序串接所述第一到第四电阻,第四电阻的另一端连接低电位。调节所述第三运算放大器的反相输入端偏置和第四电阻连接的低电位,能设定所述第七PMOS晶体管不同的工作电流。
所述偏置电路的第八PMOS晶体管和第七PMOS晶体管的源极和栅极分别相连,构成镜像电流源,其工作电流和第七PMOS晶体管相同并随之变化。所述第七NMOS晶体管的源极接低电位,漏极和栅极短接并和所述第八PMOS晶体管的漏极相连,其工作电流和第八PMOS晶体管相同并随之变化。
所述偏置电路的所述第七PMOS晶体管的栅极和所述预加重电路的所述第四PMOS晶体管栅极相连,所述第四PMOS晶体管和所述第七PMOS晶体管构成镜像电流源,其工作电流和第七PMOS晶体管相同并随之变化,进一步可以通过设定第四PMOS晶体管和第七PMOS晶体管不同的尺寸而按尺寸比例放大或缩小镜像电流。所述偏置电路的所述第七NMOS晶体管的栅极和所述预加重电路的所述第四NMOS晶体管栅极相连,所述第四NMOS晶体管和所述第七NMOS晶体管构成镜像电流源,其工作电流和第七NMOS晶体管相同并随之变化,进一步可以通过设定第四NMOS晶体管和第七NMOS晶体管不同的尺寸而按尺寸比例放大或缩小镜像电流。
附图说明
图1为典型高速数据通信***。
图2为现行带预加重均衡的二抽头电压型发送器。
图3为现行带预加重均衡的二抽头电压型发送器的输入和输出信号波形。
图4为现行带预加重均衡的二抽头电压型发送器输出信号高频成分时的等效电路。
图5为现行带预加重均衡的二抽头电压型发送器输出信号低频成分时的等效电路。
图6为本发明提出的带高效能预加重均衡的二抽头电压型发送器结构图。
图7为本发明提出的带高效能预加重均衡的二抽头电压型发送器的等效电路。
图8为本发明提出的电压型发送器与现行电压型发送器在不同预加重强度下的功耗比值。
具体实施方式
图2为现行带预加重均衡的二抽头电压型数据发送器100的典型结构,由一个主发送电路和一个预加重电路组成,多抽头电压型发送器的电路结构可以此为基础简单拓展。所述主发送电路包括MOS晶体管201至204,所述预加重电路包括MOS晶体管205至208。IP和IN为发送器的差分输入端, MOS晶体管201至208在导通时的导通电阻必须和传输媒介105的阻抗匹配,导通阻值的设定有但不限于如下方法:调节MOS晶体管沟道的宽长比、调节输入差分信号VIP和VIN的幅度等。
图3为带预加重均衡的二抽头电压型发送器的输入和输出信号波形。所述差分输入端IP和IN的输入差分信号VIP和VIN如第一行波形所示,输入信号为“1、1、1、-1、-1、1、1、1、-1、-1……”,VIP和VIN延迟一个比特位后产生第二行所示的信号波形VIP*Z-1和VIN*Z-1。如果VIP和VIP*Z-1同为高,对应的VIN和VIN*Z-1同为低,所述MOS晶体管202、203、205、208导通。由于MOS晶体管203和205对于输出端ON的驱动作用相反,晶体管202和208对于输出端OP的驱动作用相反,所以输出信号VOP和VON的幅度减小,如图3中第四行波形的113;当所述信号VIP和VIP*Z-1同为低、对应的VIN和VIN*Z-1同为高时,类似分析可以得出输出信号VOP和VON的幅度也减小。当所述VIP为高并和VIP*Z-1相反、对应的VIN为低并和VIN*Z-1也相反时,MOS晶体管202、203、206、207导通,MOS晶体管203和207对于输出信号ON的驱动作用是同相加强的,MOS晶体管202和206对于输出信号OP的驱动作用也是同相加强的,所以信号VOP和VON的输出幅度加大,如图3中第四行波形的114。
为计算现行带预加重均衡二抽头电压型数据发送器100的功耗,需要把电路图等效为对应到不同工作条件下的电阻网络。当所述VIP和VIN信号的当前比特位和前一比特位相反时,发送器100可以等效为图4的电阻网络;当所述VIP和VIN信号的当前比特位和前一比特位信号相同时,发送器100可以等效为图5的电阻网络。其中实线表示的是输出为高电平“1”的情况下的等效电路,虚线表示的是输出为低电平“-1”的情况下的等效电路,电阻303为传输媒介105作为负载的等效阻抗,无论输出为“1”还是“-1” 电阻303都是导通而存在的。
分析图4的输出为高电平“1”的情况。设定MOS晶体管202和203的导通电阻301为R1、MOS晶体管206和207的导通电阻302为R2,晶体管201、204、205和208关断,传输媒介105等效差分电阻303为2RT(其中RT为单端传输媒介信道阻抗)。为与传输媒介的信道阻抗匹配,需要设定R1//R2为RT,所以等效差分电阻303两端的压降VOP-VON为VR/2。假设差分信号VOP-VON高频成分的幅度的峰峰值要求为A*VP-P,其中Vp-p为该信号低频成分幅度的峰峰值,A为预加重强度,那么VR/2= A*Vp-p/2。所以VR= A*Vp-p。输出端OP和ON的单端信号和差模信号分别如图3中第四和第五行波形所示。
图5为现行带预加重均衡的二抽头电压型发送器输出信号低频成分时的等效电阻网络,不妨假设输出为“1”的情况。此时MOS晶体管202和203的导通电阻301为R1、MOS晶体管205和208的导通电阻302为R2,晶体管201、204、206和207关闭。R1和R2的阻值可由基尔霍夫电流定律(KCL)和R1//R2=RT联立求出:                                                
Figure 2012100363152100002DEST_PATH_IMAGE001
,因为VR= A*Vp-p、VOP-VON= Vp-p/2、VOP和VON的共模电压为VR/2,求得
Figure 2012100363152100002DEST_PATH_IMAGE002
,所以,
Figure 2012100363152100002DEST_PATH_IMAGE003
,计算得出
Figure 2012100363152100002DEST_PATH_IMAGE004
定义跳变密度(Transition Density,当前位和前一位不相同的数据位占整个数据量的百分比)为D,发送器消耗的总功率P1可以由下式计算
Figure 2012100363152100002DEST_PATH_IMAGE005
图6为本发明提出带高效能预加重均衡的二抽头电压型发送器结构图,由主发送电路401、预加重电路402和偏置电路403组成,多抽头电压型数据发送器电路结构可以按简单的结构拓展实现。
图6中所述主发送电路401由PMOS晶体管406至408、NMOS晶体管413至415、运算放大器421和422组成。所述主发送电路401用于产生信号的低频部分,通过运算放大器421与PMOS晶体管406形成的反馈环路的调节,VRH电压值设定为外部电压VH;通过运算放大器422与NMOS晶体管413形成的反馈环路的调节,VRL电压值设定为外部电压VL。所述主发送器401的输入信号IP和IN为差分数字信号,通过对晶体管407、408、414和415的控制,驱动差分输出OP和ON。所述PMOS晶体管407、408以及NMOS晶体管414、415的导通电阻一般和传输媒介105的输入阻抗匹配。传输媒介105的输入差分阻抗可以等效为跨接在OP和ON之间且阻值为2RT的电阻。无论OP和ON的输出差分信号为高还是低,VRH和VRL之间均可等效为总阻值为4RT的电阻,所以VOP-VON的差分信号的峰峰值为VH-VL,由图3中第五行的VOP和VON差分信号低频部分幅度峰峰值设为VP-P,可以得到VH-VL为Vp-p
图6中所述主发送电路401的固定电位VRH和VRL也可以采用其他能够直接或间接设定的电路结构,包括但不限于以下一种或几种方法的组合:直接将VRH和VRL两个节点都接到固定电位;VRH和VRL两个节点的一个或两个可连接电流偏置电路或电压偏置电路的输出;为稳定输出共模电压,在输出端VOP和VON之间可以串接两个电阻,根据两个电阻的中间节点调节偏置电流或电压。
图6中偏置电路由PMOS晶体管404至405、NMOS晶体管412、运算放大器420和电阻419组成。运算放大器420的基准电压VH通过反馈环路将所述PMOS晶体管404的漏极电位钳位在VH。四个电阻419的阻值均为RT,从而在晶体管404中产生了值为(VH-VL)/(4RT)的基准电流,即Vp-p/(4RT)。PMOS晶体管405和所述PMOS晶体管404的栅极短接,产生供给NMOS晶体管412的电流,其值也为Vp-p/(4RT)。在实际设计中也可改变四个电阻419的阻值,例如增大它们的阻值,可以降低偏置电路中PMOS晶体管404和405的工作电流以节省功耗。所述四个电阻也可以用一个具有等效电阻值的电阻来实现。
图6中预加重电路402由PMOS晶体管409至411、NMOS晶体管416至418组成。PMOS晶体管409的栅极受所述偏置电路403中运算放大器420的输出端调节,产生IB大小的电流,NMOS晶体管418和所述偏置电路403中的NMOS晶体管412形成电流镜,得到IB大小的镜像电流。PMOS晶体管410和411、NMOS晶体管416和417均等效为开关,它们的导通电阻较小,分别受VPREN_BAR、VPREP_BAR、VPREP、VPREN四个电压控制,VPREP、VPREN的波形如图3第三行的波形所示,其中VPREP
Figure 2012100363152100002DEST_PATH_IMAGE006
、VPREN
Figure DEST_PATH_IMAGE007
,VPREP_BAR和VPREN_BAR分别为VPREP和VPREN的反相信号。预加重电路402的差分输出端与所述主发送电路401差分输出端OP和ON短接,通过向传输媒介105注入预加重电流来提高输出差分信号幅度,达到VP-P*A。
为满足所述主发送电路401和偏置电路420直流工作点的要求,VBH-VBL至少为A*(VH-VL),也即A*Vp-p
图7为本发明提出的带高效能预加重均衡的二抽头电压型发送器的等效电路,其中晶体管410、411、416和417分别等效为开关507、508、509到510,所示实线为输出高电平“1”的等效情况。当输出为信号的低频成分时,预加重电路402的四个开关507至510均关断,所以传输媒介等效差分电阻303上的压降即为(VH-VL)/2,即Vp-p/2;当输出为信号的高频成分时,开关508和509闭合,电流源505和506向传输媒介等效差分电阻303的两端OP和ON分别注入或抽出电流,使得VOP-VON的输出幅度增大而实现对高频信号的预加重。
当预加重强度A≤2时,VOP-VON输出峰峰值为A*Vp-p,所以有
Figure 2012100363152100002DEST_PATH_IMAGE008
,通过设定预加重电路402的PMOS晶体管409和NMOS晶体管418的宽长比分别为偏置电路403的PMOS晶体管404和NMOS晶体管412的2(A-1)倍即可得到所需电流值的偏置电流IB。具体方式可以为但不限于调节PMOS晶体管409和NMOS晶体管418的尺寸、改变PMOS晶体管409和NMOS晶体管418的并联个数、调整PMOS晶体管404的宽长比等。总功耗P2
Figure DEST_PATH_IMAGE009
Figure 2012100363152100002DEST_PATH_IMAGE010
当预加重强度A>2时,由于VOP-VON大于VH-VL,输出驱动电流由预加重电路提供,VOP-VON输出峰峰值为A*Vp-p,可以计算得到IB=A*Vp-p/4RT,通过设定预加重电路402的PMOS晶体管409的宽长比为偏置电路403的PMOS晶体管404的A倍即可得到所需电流值的偏置电流IB。具体方式可以为但不限于调节PMOS晶体管409和NMOS晶体管418的尺寸、增加PMOS晶体管409和NMOS晶体管418的并联个数、调整PMOS晶体管404的宽长比等。由此可以计算其消耗的总功率P2
Figure DEST_PATH_IMAGE011
为比较本发明电压型发送器与现行电压型发送器在不同预加重强度下的功耗比值,可以计算P2 /P1
Figure DEST_PATH_IMAGE012
在评估数据通信***性能时,广泛使用PRBS 伪随机二进制序列,PRBS的跳变密度D为0.5,改变预加重强度,可以得到图8所示本发明电压型发送器与现行电压型发送器在不同预加重强度下的功耗比值。在较大预加重强度条件下,本发明可以节省超过60%的功耗,展现出高效能的特点。

Claims (6)

1.一种带有高效能预加重均衡的电压型数据发送器,其特征是:包含一个主发送电路、一个或多个预加重电路以及偏置电路,主发送电路和预加重电路的差分输出端分别短接,实现对输出信号的预加重均衡;其中的主发送电路至少包括第一、第二、第三PMOS晶体管和第一、第二、第三NMOS晶体管以及第一、第二运算放大器;第一PMOS晶体管的源极接电源,栅极接第一运算放大器的输出端,漏极与第二和第三PMOS晶体管的源极相接,并连接到第一运算放大器的正相输入端;第一NMOS晶体管源极接地,栅极连接到第二运算放大器的输出端,漏极连接到第二和第三NMOS晶体管的源极,并连接到第二运算放大器的正相输入端;第二和第三PMOS晶体管的源极短接,第二和第三NMOS晶体管的源极短接,第二PMOS晶体管与第二NMOS晶体管的漏极和栅极分别对应相接,第三PMOS晶体管与第三NMOS晶体管的漏极和栅极分别对应相接,第二PMOS晶体管、第三PMOS晶体管、第二NMOS晶体管、第三NMOS晶体管的导通电阻均和传输媒介的输入阻抗匹配;其中的预加重电路至少包含第四、第五、第六PMOS晶体管以及第四、第五、第六NMOS晶体管;第五和第六PMOS晶体管的源极相连,第五和第六NMOS晶体管的源极相连,第五PMOS晶体管的漏极和第五NMOS晶体管的漏极相连,第六PMOS晶体管的漏极和第六NMOS晶体管的漏极相连;第四PMOS晶体管的源极接固定高电位,栅极连接偏置电压,漏极连接到第五和第六PMOS晶体管的源极;第四NMOS晶体管的源极接固定低电位,栅极连接偏置电压,漏极连接到第五和第六NMOS晶体管的源极;其中的偏置电路包含第七和第八PMOS晶体管、第七NMOS晶体管、第一电阻、第二电阻、第三电阻、第四电阻、第三运算放大器;第七PMOS晶体管的源极接固定高电位,栅极和漏极分别连接第三运算放大器的输出端和正相输入端,漏极顺序串接所述第一到第四电阻,第四电阻的另一端连接低电位;第八PMOS晶体管和第七PMOS晶体管的源极和栅极分别相连,第七NMOS晶体管的源极接低电位,漏极和栅极短接并和第八PMOS晶体管的漏极相连;第一、第二、第三、第四电阻是四个完全相同的电阻,四个电阻的阻值和传输媒介的阻抗匹配,第七PMOS晶体管的偏置电流为输出差分信号的低频部分幅度的峰峰值除以两倍的传输媒介的差分阻抗;所述偏置电路的所述第七PMOS晶体管的栅极和所述预加重电路的所述第四PMOS晶体管栅极相连,所述偏置电路的所述第七NMOS晶体管的栅极和所述预加重电路的所述第四NMOS晶体管栅极相连。
2.根据权利要求1所述的电压型数据发送器,其特征在于,所述主发送电路的第二PMOS的源极接到一个高偏置电位VRH,第二NMOS的源极接到一个低偏置电位VRL,高、低偏置电位的产生方法可以是下面两种方法其中之一,或者两种方法的组合:直接将VRH和VRL两个节点都接到固定电位;VRH和VRL两个节点中的一个或两个连接到电流偏置电路或电压偏置电路的输出。
3.根据权利要求1所述的电压型数据发送器,其特征在于,所述主发送电路通过在输出端VOP和VON之间串接第五电阻和第六电阻,可以调节两个电阻的中间节点调节偏置电流或电压来稳定输出共模电压。
4.根据权利要求1所述的电压型数据发送器,其特征在于,所述预加重电路可以增加一个和第四PMOS晶体管相同的PMOS晶体管,该晶体管和第四PMOS晶体管分别为第五和第六PMOS晶体管控制的两条支路提供电流;可以增加一个和第四NMOS晶体管相同的NMOS晶体管,该晶体管和第四NMOS晶体管分别为第五和第六NMOS晶体管控制的两条支路提供电流。
5.根据权利要求1所述的电压型数据发送器,其特征在于,所述预加重电路的第五和第六PMOS晶体管的源极为高电位偏置VBH,第五和第六NMOS晶体管的源极为低电位偏置VBL,直接通过第五和第六PMOS晶体管以及第五和第六NMOS晶体管的导通和关断来实现对所述主发送器的预加重均衡。
6.根据权利要求1所述的电压型数据发送器,其特征在于,所述预加重电路的第四PMOS晶体管和第四NMOS晶体管的工作电流在预加重强度小于或等于2时,分别为所述偏置电路中第七PMOS晶体管和第七NMOS晶体管的工作电流的2(A-1)倍;当预加重强度大于2时,分别为所述偏置电路中第七PMOS晶体管和第七NMOS晶体管工作电流的A倍。
CN201210036315.2A 2012-02-17 2012-02-17 带有高效能预加重均衡的电压型数据发送器 Expired - Fee Related CN102545884B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210036315.2A CN102545884B (zh) 2012-02-17 2012-02-17 带有高效能预加重均衡的电压型数据发送器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210036315.2A CN102545884B (zh) 2012-02-17 2012-02-17 带有高效能预加重均衡的电压型数据发送器

Publications (2)

Publication Number Publication Date
CN102545884A CN102545884A (zh) 2012-07-04
CN102545884B true CN102545884B (zh) 2014-04-16

Family

ID=46351958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210036315.2A Expired - Fee Related CN102545884B (zh) 2012-02-17 2012-02-17 带有高效能预加重均衡的电压型数据发送器

Country Status (1)

Country Link
CN (1) CN102545884B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135272B (zh) * 2014-07-31 2018-05-01 北京大学 节省功耗的预加重lvds驱动电路
CN105207660B (zh) * 2015-09-11 2018-06-19 中国科学院微电子研究所 一种差模反馈电路
CN105262475A (zh) * 2015-10-22 2016-01-20 北京大学 带有预加重均衡的摆幅可调整的sst型数据发送器
TWI748976B (zh) * 2016-02-02 2021-12-11 日商新力股份有限公司 發送裝置及通信系統
TWI722090B (zh) * 2016-02-22 2021-03-21 日商新力股份有限公司 傳送裝置、傳送方法及通訊系統
CN116505933A (zh) * 2023-06-21 2023-07-28 艾创微(上海)电子科技有限公司 一种mos管导通电阻匹配电路
CN117319125B (zh) * 2023-11-28 2024-02-20 北京国科天迅科技股份有限公司 数据收发电路、***和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741360A (zh) * 2008-11-12 2010-06-16 东部高科股份有限公司 差动预加重驱动器
CN102263575A (zh) * 2010-05-25 2011-11-30 索尼公司 传输设备和方法、接收设备和方法、以及传输/接收设备
CN202652186U (zh) * 2012-02-17 2013-01-02 无锡芯骋微电子有限公司 带有高效能预加重均衡的电压型数据发送器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080017973A (ko) * 2006-08-23 2008-02-27 삼성전자주식회사 데이터 전송회로 및 그 방법
CN101606363A (zh) * 2007-02-14 2009-12-16 松下电器产业株式会社 Ac耦合接口电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741360A (zh) * 2008-11-12 2010-06-16 东部高科股份有限公司 差动预加重驱动器
CN102263575A (zh) * 2010-05-25 2011-11-30 索尼公司 传输设备和方法、接收设备和方法、以及传输/接收设备
CN202652186U (zh) * 2012-02-17 2013-01-02 无锡芯骋微电子有限公司 带有高效能预加重均衡的电压型数据发送器

Also Published As

Publication number Publication date
CN102545884A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102545884B (zh) 带有高效能预加重均衡的电压型数据发送器
CN104135272B (zh) 节省功耗的预加重lvds驱动电路
CN101114435B (zh) 驱动电路及显示装置
US8378750B2 (en) Class AB amplifiers
CN103780212A (zh) 一种运算放大器、电平转换电路以及可编程增益放大器
CN103873032B (zh) 轨对轨输入迟滞比较器
CN110224759B (zh) 一种光发射器
CN104617483A (zh) 一种带宽补偿的超高速激光驱动器电路和驱动器芯片
CN202652186U (zh) 带有高效能预加重均衡的电压型数据发送器
CN105871389A (zh) 一种电流型发射机结构
US10996495B2 (en) High-rate high-swing drive circuit applied to silicon photonic modulator
CN107395174A (zh) 一种射频开关的堆叠电路及射频开关
CN104283546A (zh) 一种低压差分信号驱动器
CN102624656A (zh) 低压差分信号发送器
CN103633944A (zh) 一种用于操作功率放大器和负载调制网络的***和方法
CN104917466B (zh) 一种采用漏极调制方式的脉冲功率放大器
CN101369804B (zh) 消除反馈共模信号的装置和方法
US20120250795A1 (en) System and method for effectively implementing a front end core
CN105262475A (zh) 带有预加重均衡的摆幅可调整的sst型数据发送器
US8866514B2 (en) Transmit driver circuit
CN105375916A (zh) 一种改进的异或门逻辑单元电路
CN103907284B (zh) 低压力共源共栅结构
CN104604137B (zh) 驱动器电路及减小电信号驱动器的功耗的方法
CN103023508B (zh) 一种电流舵型数模转换器电流源单元电路
CN204156845U (zh) 一种射频负载驱动单元

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20210217

CF01 Termination of patent right due to non-payment of annual fee