CN101894221B - 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法 - Google Patents

基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法 Download PDF

Info

Publication number
CN101894221B
CN101894221B CN 201010242568 CN201010242568A CN101894221B CN 101894221 B CN101894221 B CN 101894221B CN 201010242568 CN201010242568 CN 201010242568 CN 201010242568 A CN201010242568 A CN 201010242568A CN 101894221 B CN101894221 B CN 101894221B
Authority
CN
China
Prior art keywords
degradation
sequential
sample
product
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010242568
Other languages
English (en)
Other versions
CN101894221A (zh
Inventor
王立
李晓阳
姜同敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201010242568 priority Critical patent/CN101894221B/zh
Publication of CN101894221A publication Critical patent/CN101894221A/zh
Application granted granted Critical
Publication of CN101894221B publication Critical patent/CN101894221B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,主要包括步骤一、试验数据采集及预处理;步骤二、退化量分布的参数估计;步骤三、退化量分布参数时序建模;步骤四、基于退化量分布的加速退化建模;步骤五、基于退化量分布的寿命预测;该方法不仅能够对加速应力下所有样本退化的统计规律进行宏观描述,对加速退化过程的退化量分布参数时序分析全面,并能将加速应力下的退化量分布外推至正常应力,得到反映产品加速退化随机过程波动性规律的产品可靠度与寿命关系预测,提高了寿命预测及可靠性评估结果的可信度,且与正常应力水平下的性能退化预测相比更加省时高效。

Description

基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法
技术领域
本发明涉及一种加速退化试验寿命预测及可靠性评估方法,属于加速试验评估技术领域。 
背景技术
越来越多长寿命高可靠性产品的出现,使产品寿命与可靠性评估更加困难。基于产品性能退化信息预测产品寿命及可靠度成为一种有效途径。为了针对这些难以获得失效数据,但可以获得性能退化数据的产品进行可靠性评估,出现了退化试验的方法。 
目前性能退化预测主要有两种思路: 
1.将性能退化量随时间变化的随机过程各样本函数称为退化轨迹,基于退化轨迹进行预测。该方法能够对单个样本的退化轨迹描述得比较精确,但是缺乏对样本总体退化规律在宏观上的统计描述。 
2.将性能退化量在不同时刻所服从分布的参数看作随机变量,基于退化量分布进行预测。该方法能够对所有样本退化的统计规律进行宏观描述。 
根据以上两种思路以及对退化随机过程描述的全面性,性能退化预测研究现状又可大致分为四种情况: 
1.基于退化轨迹预测,但是仅采用确定性单调回归函数描述退化轨迹,未考虑退化轨迹的随机性及周期性。 
2.基于退化量分布预测,但是仅采用确定性单调回归函数描述退化量分布的参数变化,未考虑退化量分布参数变化的随机性及周期性。 
前两种情况均将产品退化轨迹或退化量分布参数假设为单调回归函数,进行产品性能退化预测。然而,实际工程中由于受到环境干扰及设备控制等因素影响,性能退化量必然存在随机性及周期性变化,若不考虑这些变化则对产品退化随机过程描述不够准确。 
于是,又出现后两种研究情况: 
3.基于退化轨迹预测,不仅采用确定性单调回归函数描述退化轨迹,还应用时间序列、灰色理论等方法描述退化轨迹的随机性及周期性。 
4.基于退化量分布预测,不仅采用确定性单调回归函数描述退化量分布的参数变化,还应用时间序列等方法描述退化量分布参数变化的随机性,但是对退化量分布参数的随机性描述仅限于退化量分布参数为方差平稳随机情况。 
对于最后一种情况,由于退化量分布的不同参数属于不同的非平稳时序类型,仅将所有参数的随机部分视为方差平稳随机时序的假设过于简单,与实际情况不完全相符。可见,目前基于退化轨迹的性能退化预测已经有较全面的分析方法,而基于退化量分布的性能退化预测,目前还未见较为全面合理的分析方法。鉴于基于退化量分布的性能退化预测相比基于退化轨迹方法具有能够把握样本总体退化统计规律的优势,并考虑到产品性能退化随机过程中的多种因素影响,因此,一种新的能够全面合理描述性能退化随机过程的基于退化量分布的产品性能退化预测方法亟待研究。 
此外,为了在更短的时间内获得更多有效的产品性能退化信息,借鉴加速寿命试验的原理,进一步出现了加速退化试验的方法。 
对于加速退化试验的产品寿命预测及可靠性评估,目前已有基于加速退化试验退化轨迹并采用时序分析等方法考虑加速退化随机过程随机性和周期性的产品寿命预测及可靠性评估研究,但是尚未出现基于加速退化试验退化量分布并考虑退化量分布参数变化随机性和周期性的产品寿命预测及可靠性评估研究。同样由于基于退化量分布的加速退化试验分析方法对产品总体退化趋势把握得更加准确,因此,一种新的针对加速退化试验能够全面合理描述性 能加速退化随机过程的基于退化量分布的产品寿命预测及可靠性评估方法亟待进一步研究。 
非平稳时序也可称为非平稳随机信号,若时间序列的均值和方差不依赖于时间,而其自相关函数仅依赖于时间差,这种时间序列称为平稳时序,反之则称为非平稳时序。常见的非平稳时序类型包括方差平稳时序、相关系数平稳时序等。非平稳时序分析利用现代统计学和信息处理技术,能充分挖掘非平稳时序的自相关性,刻画时序随机性波动规律,是一种适于描述退化随机过程的方法。因此采用非平稳时序分析方法,从退化量分布角度出发,进行性能退化产品的寿命预测方法研究为一种有效途径。进而,可以通过基于退化量分布非平稳时序分析的性能退化预测,并建立各退化量分布参数非平稳时序与应力水平关系的加速模型,从而给出基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法。在国内外现有相关加速退化试验产品寿命预测及可靠性评估方法文献中,尚未见到基于退化量分布非平稳时序分析方法的报道。 
然而,基于退化量分布非平稳时序分析在加速退化试验产品寿命预测中的应用需要解决以下问题: 
首先,产品退化量分布中不同参数对应不同的非平稳时序类型,如何从众多非平稳时序类型中,确定退化量分布各参数的非平稳时序类型,需要根据退化随机过程的统计特性,进行合理的分析研究。 
其次,针对确定了非平稳时序类型的退化量分布各参数时序,如何找到相应非平稳时序类型的分析方法,从而分别对其进行描述和预测,需要对各种非平稳时序的统计建模方法进行深入研究。 
此外,在加速退化试验中,需要将加速应力下的退化量分布参数外推至正常应力下的量值,然而退化量分布中的不同参数与应力水平大小的关系也不相同,如何根据现有加速模型的理论,建立不同参数与应力水平大小的关系,需要给出符合工程实际情况的分析依据。 
另外,退化量分布参数变化具有随机性和周期性,如何在加速应力的条件下,根据实际工程中产品退化随机性和周期性的特点,合理地通过应力水平分别外推退化量分布参数的随机部分和周期部分在正常应力水平下的时序,并采用相应类型的非平稳时序分析方法进行描述,也是需要突破的一个难点。 
最后,工程实际中,不同产品样本的退化失效阈值并不总是固定的常数,往往是一个随机变量,而基于退化轨迹的性能退化预测方法由于只能根据某一固定的失效阈值分别给出各产品样本的预测寿命,无法考虑失效阈值服从某一随机分布的情况,因而无法给出随机失效阈值下寿命预测的结果。如何在寿命预测中考虑随机失效阈值的情况,给出基于退化量分布非平稳时序分析的加速退化试验寿命预测方法,是寿命预测领域的又一难点。 
发明内容
本发明的目的是为了解决现有的基于退化量分布的性能退化预测方法对退化试验统计数据随机过程的描述不够全面合理,以及现有的基于退化量分布时序分析的性能退化预测方法难以直接应用于加速退化试验产品寿命预测及可靠性评估的问题,采取基于退化量分布非平稳时序分析的技术手段,达到通过加速退化试验数据的宏观统计特性预测得到与工程实际情况更为相符的产品寿命及可靠性评估的技术效果。 
本发明提出所研究的性能退化过程假设: 
1.产品的性能退化过程总体趋势具有单调性。即性能退化总体趋势不可逆。 
2.退化过程中,所有产品的采样时刻相等。 
3.随着时间的变化,退化量分布的类型不变,仅参数变化。 
为便于说明,本说明书中所有未经解释的字母含义均由下述假设解释:在单一应力水平下,且不需要对不同的应力水平加以区分时,设共有n个产品样本进行试验,每个产品采样间距均为Δt,总采样个数为m,则试验时间长度为τ=Δt·m。以yt表示产品在t时刻的性能退化量或性能退化量的单调非线性变换,如对数变换,以yti表示第i个产品样本的yt。当yt服从某位置-尺度分布时,任意时刻的位置参数与尺度参数分别记为μt和 
Figure BSA00000213458900021
它们可确定yt 在t时刻分布情况。例如: 
1.当性能退化量服从正态分布时,yt表示性能退化量,其分布参数为μt和 
2.当性能退化量服从对数正态分布时,yt表示性能退化量的对数,yt服从正态分布,其分布参数为μt和 
Figure BSA00000213458900032
3.当性能退化量服从形状参数为θt、尺度参数为ηt的威布尔分布时,yt表示性能退化量的对数,yt服从极值分布,其分布参数为μt=lnηt和 
Figure BSA00000213458900033
μt和 
Figure BSA00000213458900034
的估计值可由yt的样本均值 
Figure BSA00000213458900035
和样本方差 
Figure BSA00000213458900036
得到。由于 
Figure BSA00000213458900037
和 
Figure BSA00000213458900038
是按时间顺序变化的随机变量,因此是时间序列,并且是随时间具有一定退化趋势的非平稳时间序列。 
不同类型的非平稳时序建模方法迥异,因此在对退化量分布参数采用时序分析方法建模前,必须先对退化量分布参数进行非平稳性分析,以确定各参数的非平稳时序类型。由于产品退化量分布参数时序为统计量无法直接从试验中测得,因此需先对可直接测得的产品性能退化轨迹时序进行非平稳性分析,根据退化轨迹时序的非平稳时序类型,进而推出退化量分布参数时序的非平稳时序类型。 
1.产品样本退化轨迹时序非平稳性分析 
实际工程中,通常假设产品各样本在长度为τ的时间段内第i个产品样本退化轨迹yti为相互独立的方差平稳时序,其中,t=1,2,...,τ,i=1,2,...,n。由方差平稳时序分解原理,yti可分为确定性时序dti和平稳随机时序rti的叠加 
yti=dti+rti                         (1) 
2.样本均值时序非平稳性分析 
由样本均值的定义,可知yti的样本均值 的时序表达式为 
y ‾ t = 1 n Σ i = 1 n y ti = 1 n Σ i = 1 n ( d ti + r ti ) = d ‾ t + r ‾ t - - - ( 2 )
其中 
Figure BSA000002134589000311
为dti的样本均值, 
Figure BSA000002134589000312
为rti的样本均值,显然 同样为确定性时序, 同样为平稳时序,因此 
Figure BSA000002134589000315
仍是方差平稳时序,可对 
Figure BSA000002134589000316
采用方差平稳时序方法建模。 
3.样本方差时序非平稳性分析 
样本方差 
Figure BSA000002134589000317
时序表达式为 
s t 2 = 1 n - 1 Σ i = 1 n ( y ti - y ‾ t ) 2 = 1 n - 1 Σ i = 1 n ( d ti - d ‾ t + r ti - r ‾ t ) 2 (3) 
= 1 n - 1 Σ i = 1 n ( d ti - d ‾ t ) 2 + 1 n - 1 Σ i = 1 n 2 ( d ti - d ‾ t ) ( r ti - r ‾ t ) + 1 n - 1 Σ i = 1 n ( r ti - r ‾ t ) 2
式(3)中第一项为确定性时序。 
式(3)第二项中, 为平稳时序且对不同的产品样本i相互独立,当 
Figure BSA000002134589000321
对不同的产品样本i可表示为不同常数与同一个关于时刻t的非零函数的乘积时,即 
( d ti - d ‾ t ) = b i g ( t ) , i = 1,2 , . . . , n - - - ( 4 )
其中g(t)为与时刻t有关但与样本i无关的非零函数,bi为与t无关但与i有关的常数。式(3)第二项可表示为 
1 n - 1 Σ i = 1 n 2 ( d ti - d ‾ t ) ( r ti - r ‾ t ) (5) 
= 2 n - 1 g ( t ) Σ i = 1 n b i ( r ti - r ‾ t )
由于 为平稳时序,则式(3)第二项相当于非零确定性时序与平稳时序之积。 
根据相关系数平稳随机过程的定义: 
定义设 
Figure BSA00000213458900041
是随机过程,如果 
1.{xt,t∈T}是二阶矩过程 
2.对任意的t,t+t′∈T,有 
ρ ( t , t + t ′ ) = Cov ( x t , x t + t ′ ) Var ( x t ) Var ( x t + t ′ ) = ρ ( t ′ )
则{xt,t ∈T}是相关系数平稳随机过程。 
相关定理: 
定理设xt为相关系数平稳随机过程,则zt=(xt-E(xt))/I(t)为平稳随机过程,其中Var(xt)=σ2I2(t),σ为与t无关的常数。 
由此,本发明提出推论如下: 
推论任一非零确定性时序与平稳时序之积为相关系数平稳时序。 
证明设 
Figure BSA00000213458900043
zt为任一平稳时序,I(t)为任一关于t的非零函数,则{I(t),t=1,2,...,T}为一非零确定性时序,则对任意的t,t+t′∈T,有 
E(I(t)zt)=I(t)E(zt
Var(I(t)zt)=I2(t)Var(zt
ρ ( t , t + t ′ ) = Cov ( I ( t ) z t , I ( t + t ′ ) z t + t ′ ) Var ( I ( t ) z t ) Var ( I ( t + t ′ ) z t + t ′ )
= I ( t ) I ( t + t ′ ) ( E ( z t z t + t ′ ) - E ( z t ) E ( z t + t ′ ) ) I 2 ( t ) I 2 ( t + t ′ ) Var ( z t ) Var ( z t + t ′ )
= Cov ( z t , z t + t ′ ) Var ( z t ) Var ( z t + t ′ ) = ρ ( t ′ )
由此可知I(t)zt为相关系数平稳时序。证毕。 
因此,当 
Figure BSA00000213458900047
满足式(4)条件时,式(3)第二项为相关系数平稳时序。 
式(3)第三项中,当rti四阶矩存在时,(例如当rti为正态平稳时序时其四阶矩存在),则 
Figure BSA00000213458900048
同为平稳时序且四阶矩存在。且 
Figure BSA00000213458900049
与t无关,并对任意的 
Figure BSA000002134589000410
有 
Cov ( ( r ( t + t ′ ) i - r ‾ t + t ′ ) 2 , ( r ti - r ‾ t ) 2 )
= E ( ( r ( t + t ′ ) i - r ‾ t + t ′ ) 2 - E ( r ( t + t ′ ) i - r ‾ t + t ′ ) 2 ) · ( ( r ti - r ‾ t ) 2 - E ( r ti - r ‾ t ) 2 )
= 2 ( Cov ( r ( t + t ′ ) i - r ‾ t + t ′ , r ti - r ‾ t ) ) 2
则 
Figure BSA000002134589000414
为平稳时序,式(3)第三项也为平稳时序。 
当 很小时(接近于零),平稳时序 相对于 为一可忽略的高阶小量,且式(3)第二项中 
Figure BSA000002134589000418
的系数 
Figure BSA000002134589000419
的绝对值随t单调递增,因而式(3)第三项相对式(3)第二项也为可忽略的高阶小量。 
因此,本发明对样本方差 
Figure BSA000002134589000420
建模时仅考虑式(3)前两项,因而将 时序视为确定性时序与相关系数平稳时序之和。 
基于上述假设和分析,本发明提供的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法主要包括以下具体五个步骤: 
步骤一、试验数据采集及预处理; 
由试验设备采集到的原始退化时序通常难以直接对其进行时序分析,为了避免过大的退化量值对时序分析造成的影响,提高退化量分布参数模型的拟合精度,并且统一原始退化时序的初值以及退化失效的判据,应对每个产品的原始退化时序分别作初值化的预处理。 
步骤二、退化量分布的参数估计; 
采用皮尔逊χ2拟合优度检验方法对每一应力水平下各时刻对应的预处理后数据分别进行退化量分布假设检验。计算其退化量分布的样本均值和样本方差时序,从而得到退化量分布参数的估计。 
步骤三、退化量分布参数时序建模; 
(1)产品样本退化轨迹时序检验 
在对每一应力水平下退化量分布参数时序建模之前,需先对所有应力下所有产品样本的退化轨迹时序进行建模,以检验产品退化轨迹时序是否符合其为方差平稳时序以及式(3)第三项是否符合其为平稳时序的假设,若两个假设均符合则可采用本发明的方法进行退化量分布参数时序建模,否则不能采用本发明方法分析。具体方法如下: 
在产品性能退化过程中,产品除自身退化特性外,往往还受到环境及设备因素影响,包括周期性和随机性影响,因此每个产品样本退化轨迹时序yti的确定性部分dti还可进一步分解为单调趋势项fti和周期项cti的叠加: 
yti=dti+rti=fti+cti+rti                   (6) 
fti可采用线性回归函数描述: 
fti=bjt+f0i
其中bi表示退化轨迹时序yti的退化率,f0i表示fti的初值。 
fti也可采用可转化为线性回归函数的单调非线性回归函数描述: 
fti=big(t)+f0i                             (7) 
其中g(t)为单调非线性回归函数,与样本i无关。当g(t)=t时,公式(7)与公式(6)相同。 
从yti减去fti后,cti可采用适用于挖掘数据潜在周期性规律的潜周期模型描述,由于同一批受试产品样本所受到的环境及设备影响相同,因此不同样本的cti理论上也相同,则有 
其中q、ωj、aj、 
Figure BSA00000213458900052
分别为cti的角频率个数、角频率、幅值、相位,与样本i无关。 
再从yti-fti减去cti后,需对剩下的随机项rti进行平稳性检验和正态性检验。可采用轮次检验法进行平稳性检验。若rti通过了平稳性检验,说明产品退化轨迹时序符合方差平稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。采用皮尔逊χ2拟合优度检验方法进行正态性假设检验。若rti通过了正态性检验,说明式(3)第三项符合平稳时序的假设,否则对 
Figure BSA00000213458900053
采用轮次检验法进行平稳性检验,若 
Figure BSA00000213458900054
通过了平稳性检验,说明式(3)第三项符合平稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。检验通过的rti可采用传统平稳时序分析方法中工程应用最广泛、建模简单且适于预测的自回归模型描述: 
r ti = Σ j = 1 p i η ji r ( t - j ) i + ϵ ti - - - ( 9 )
其中pi为rti的自回归模型阶数,ηji为rti的自回归系数,εti为rti的白噪声,r(t-j)i为(t-j)时刻下第i个产品样本的随机项。 
(2)样本均值时序退化建模 
样本均值 
Figure BSA00000213458900056
具有与样本退化轨迹时序相同的结构和类型,其公式为: 
Figure BSA00000213458900061
其中 
Figure BSA00000213458900062
分别为 
Figure BSA00000213458900063
的趋势项、周期项,b为 
Figure BSA00000213458900064
的退化率,f0为 
Figure BSA00000213458900065
的初值,p、ηj、εt为 的自回归模型阶数、自回归系数、白噪声。 
Figure BSA00000213458900067
各项建模方法与yti相同。 
从 
Figure BSA00000213458900068
减去 
Figure BSA00000213458900069
和 后,应对 采用轮次检验法进行平稳性检验。若 通过了平稳性检验,继续对 
Figure BSA000002134589000613
建模;否则调整 和 
Figure BSA000002134589000615
模型的参数,重新对 
Figure BSA000002134589000616
和 
Figure BSA000002134589000617
建模,直至 
Figure BSA000002134589000618
通过平稳性检验。 
(3)样本方差时序退化建模 
对于样本方差 由于各样本退化轨迹的周期项cti理论上相同,即 
Figure BSA000002134589000620
且各样本退化轨迹已进行初值化处理,即样本退化轨迹的初值f0i=f0,有 
d ti - d ‾ t = ( b i g ( t ) + f 0 i + c ti ) - ( bg ( t ) + f 0 + c ‾ t ) = ( b i - b ) g ( t ) - - - ( 11 )
即公式(4)成立的条件满足,则式(3)第二项为相关系数平稳时序。 
将式(3)第一项称为 
Figure BSA000002134589000622
的趋势项fst,第二项称为 
Figure BSA000002134589000623
的相关系数平稳项xt,有 
s t 2 = f st + x t - - - ( 12 )
则样本方差 
Figure BSA000002134589000625
趋势项fst的模型为 
fst=bsg2(t)                        (13) 
其中bs表示样本方差 
Figure BSA000002134589000626
的退化率。 
样本方差 
Figure BSA000002134589000627
相关系数平稳项xt的模型为 
x t = f xt r xt , D ( x t ) = f xt 2 σ r 2 = σ xt 2 - - - ( 14 )
其中fxt表示相关系数平稳项xt的确定性部分,称为相关系数平稳趋势项,是关于t的非零函数,rxt表示相关系数平稳项xt的随机性部分,称为相关系数平稳随机项,是平稳时序,σr为rxt的标准差,与t无关,σxt为xt的标准差,是关于t的非零函数。 
σxt可由|xt|的均值函数得到,即 
σxt=beE(|xt|)=fxtσr             (15) 
其中be为待定系数,令 
fxt=E(|xt|)                        (16) 
则 
be=σr                             (17) 
有 
xt=fxtrxt=E(|xt|)rxt              (18) 
即相关系数平稳项xt可视为|xt|的均值模型E(|xt|)与平稳时序rxt之积。E(|xt|)可采用单调回归函数描述 
E(|xt|)=bxg(t)                     (19) 
其中bx为待定系数。 
从xt中除去相关系数平稳趋势项fxt后,对剩余的相关系数平稳随机项rxt采用轮次检验法进行平稳性检验,若检验通过,对rxt可采用自回归模型描述 
r xt = Σ j = 1 p x η xj r x ( t - j ) + ϵ xt - - - ( 20 )
其中px、ηxj、εxt为rxt的自回归模型阶数、自回归系数、白噪声。 
否则,调整fxt的模型参数,重新对fxt建模,直到rxt通过平稳性检验。则退化量分布样本方差 的最终表达式为 
s t 2 = f st + x t = f st + f xt r xt = b s g 2 ( t ) + b x g ( t ) · ( Σ j = 1 p x η xj r x ( t - j ) + ϵ xt ) - - - ( 21 )
步骤四、基于退化量分布的加速退化建模; 
步骤三给出的是单一应力水平下的退化量分布参数时序建模方法,对于加速退化试验,还需将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应力水平。 
为便于说明,本说明书中其余所有未经解释的字母含义均由下述假设解释:假设加速退化试验中共有k个应力水平Sj,j=1,2,…,k。每个应力水平下的采样间距均为Δt,各应力水平下的采样个数为mj,则各应力水平下的试验时间长度为τj=Δt·mj。 
(1)样本均值时序加速退化建模 
在加速寿命试验的寿命预测中,通常采用产品在各应力下的寿命特征,例如寿命均值,建立其与应力水平的关系作为产品的加速模型。 
而在加速退化试验中,根据累积损伤等效原理,在保持退化数据的累积退化量不变的条件下,其退化速率与退化时间成反比,因此对于样本均值时序,可采用其退化率作为寿命特征,建立其与应力水平的关系作为产品的加速模型。通过加速模型,可将不同应力水平下的退化率进行转换,通过对采样间距进行折合,从而折算为同一应力水平下的样本均值时序。 
根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τi时间的累积退化量等于此产品在第j个应力水平Sj下工作τj时间的累积退化量,其中i,j=1,2,…,k,i≠j。可将加速退化试验的样本均值时序在应力水平Sj,j=,2,…,k下的试验持续时间τj及采样间距Δt在保持折算前后采样个数不变的情况下,按样本均值时序退化率-应力水平关系折算为正常应力水平S0下的试验持续时间τ0j及采样间距Δtj。 
以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关系可采用传统的加速模型表示 
Figure BSA00000213458900072
其中,A、B都是待定参数, 为应力水平Sj的已知函数。 
由公式(22)可得到正常应力下样本均值时序的退化率b0,则有 
b0·τ0j=bj·τj,j=1,2,…,k              (23) 
折算到正常应力下的试验持续时间为 
τ 0 j = b j b 0 · τ j - - - ( 24 )
在保持折算前后采样个数不变的情况下,折算到正常应力水平下的采样间距为 
Δ t j = b j b 0 · Δt - - - ( 25 )
以此类推,就可以将所有应力水平Sj下的样本均值时序折算到正常应力水平S0。 
由于样本均值时序的趋势项反映产品自身退化的确定性变化,与产品受到的应力水平有关,因此,应对不同应力水平下样本均值时序的趋势项进行采样间距折合。 
同样,样本均值时序的随机项反映产品性能自身退化的不确定性变化,也与应力水平相关。因此也应对样本均值时序不同应力水平下的随机项进行采样间距折合。 
然而,样本均值时序的周期项仅与对产品施加应力的设备控制特性等环境因素有关,与产品自身退化特性无关,从而也与应力的水平无关,因此不同应力水平样本均值时序的周期项理论上相同,而无需对其进行采样间距折合。 
(2)样本方差时序加速退化建模 
在加速寿命试验中,通常认为产品在不同应力水平下寿命分布的尺度参数或尺度参数的估计,即样本方差,是相同的。而在加速退化试验中,产品的寿命定义为从试验开始时刻起 产品性能随时间退化直至退化量穿越产品失效阈值的总时间,如果假设产品在不同应力水平下寿命分布的样本方差仍然相同,由于同一应力水平下产品退化量分布的样本方差时序包含随时间单调确定性变化的趋势,则在任一相同时刻下,不同应力水平下的产品退化量分布的样本方差必然是不同的,且其大小与应力水平相关。 
假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差相同,则有 
s j ′ 2 = s ′ 2 = 1 n - 1 D 2 Σ i = 1 n ( 1 b ji - 1 b j ) 2 = 1 n - 1 D 2 Σ i = 1 n ( b ji - b j b ji b j ) 2 (26) 
= 1 n - 1 D 2 Σ i = 1 n ( b ji - b j b j 2 + ( b ji - b j ) b j ) 2 , j = 1,2 , . . . , k
其中, 
Figure BSA00000213458900083
s′2均表示第j个应力水平下寿命分布样本方差,其大小与应力水平无关,D为产品失效阈值,与应力水平无关,bji为第j个应力水平下第i个样本退化轨迹的退化率,bj为第j个应力水平下退化量分布样本均值的退化率。 
在同一时刻下,各应力水平下产品的退化量分布样本方差退化率为 
b s j 2 = 1 n - 1 Σ i = 1 n ( b ji - b j ) 2 , j = 1,2 , . . . , k - - - ( 27 )
其中, 表示第j个应力水平下退化量分布样本方差退化率。 
当公式(26)中bji-bj远小于bj,且bj远小于1时,(bji-bj)bj相对公式(26)中其他各项很小可忽略不计,则公式(26)可近似为 
s ′ 2 ≈ 1 n - 1 D 2 Σ i = 1 n ( b ji - b j b j 2 ) 2 = D 2 b j 4 b s j 2 - - - ( 28 )
则在第j个应力水平下,退化量分布样本方差的退化率 
Figure BSA00000213458900087
与寿命分布样本方差s′2仅相差bj 4的D2倍。 
因此本发明基于退化量分布样本均值退化率bj与应力水平的关系,即公式(22),建立产品样本方差时序的退化率与应力水平的关系 
Figure BSA00000213458900088
可采用该关系得到正常应力水平下样本方差时序的退化率,根据疲劳累积损伤等效原理对不同应力水平下样本方差时序进行采样间距折合,从而得到正常应力水平下样本方差时序。 
样本方差时序仅与与退化轨迹时序的随机项及趋势项有关,因此样本方差时序各项均与应力水平有关,应对不同应力水平下样本方差时序各项进行采样间距折合。 
步骤五、基于退化量分布的寿命预测; 
(1)样本均值时序预测 
将各应力水平下的样本均值时序的趋势项和随机项分别折合至正常应力。根据时序模型最佳(最小均方误差)预测原理,由公式(10),当某一应力水平下试验总时间为τ时,该应力水平下的样本均值时序趋势项和随机项的向前l步最佳预测值 
Figure BSA00000213458900089
计算公式分别为 
f ‾ ^ τ + l = bg ( τ + l ) + f 0 , l = 1,2 , . . . - - - ( 30 )
r ‾ ^ τ + l = Σ j = 1 p η j r ‾ ( τ + l - j ) - - - ( 31 )
对正常应力下样本均值时序的趋势项和随机项分别进行预测至某一给定时刻,该给定时刻的选取原则是该时刻应至少能超过该产品平均寿命。 
样本均值时序的周期项向前l步最佳预测值 
Figure BSA00000213458900091
计算公式为 
Figure BSA00000213458900092
将周期项预测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下趋势项和随机项直接相加,得到各应力下折合为正常应力下样本均值时序的预测时序。 
再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本均值时序的预测时序 
加权平均的方法为:假设第j个应力水平下共有nj个产品样本进行试验,j=1,2,...,k,第j个应力水平折合为正常应力下的样本均值时序预测时序为 
Figure BSA00000213458900094
则加权平均后得到产品正常应力下样本均值时序的预测时序 
Figure BSA00000213458900095
为 
y ‾ 0 t = Σ j = 1 k n j y ‾ 0 jt - - - ( 33 )
(2)样本方差时序预测 
将各应力下的样本方差时序折合至正常应力。由公式(21),当某一应力水平下试验总时间为τ时,该应力水平下的样本方差时序的向前l步最佳预测值 
Figure BSA00000213458900097
计算公式为 
s ^ τ + l 2 = f s ( τ + l ) + f x ( τ + l ) r x ( τ + l ) = b s g 2 ( τ + l ) + b x g ( τ + l ) · Σ j = 1 p x η xj r x ( τ + l - j ) , l = 1,2 , . . . - - - ( 34 )
对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻,得到各应力下折合为正常应力下样本方差时序的预测时序。 
再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本方差时序的预测时序 
加权平均的方法为:假设第j个应力水平下共有nj个产品样本进行试验,j=1,2,...,k,第j个应力水平折合为正常应力下的样本方差时序预测时序为 
Figure BSA000002134589000910
则加权平均后得到产品正常应力下样本方差时序的预测时序 
Figure BSA000002134589000911
为 
s 0 t 2 = Σ j = 1 k n j s 0 jt 2 - - - ( 35 )
(3)寿命预测 
根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,可得到退化量或退化量的线性变换yt,t=1,2,...在t时刻到达D的概率,即常数失效阈值下产品可靠度Rt: 
1.当性能退化量服从正态分布或对数正态分布时,yt服从正态分布,若yt随t单调上升,产品可靠度 
R t = 1 - P { y t > = D } = Φ ( ( D - y ‾ 0 t ) / s 0 t ) - - - ( 36 )
其中s0t为 
Figure BSA000002134589000914
的正平方根。 
若yt随t单调下降,产品可靠度 
R t = 1 - P { y t < = D } = 1 - &Phi; ( ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 37 )
2.当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可靠度 
R t = 1 - P { y t > = D } 1 - exp - ( - exp ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 38 )
若yt随t单调下降,产品可靠度 
R t = 1 - P { y t < = D } = exp ( - exp ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 39 )
此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上反映的是可靠度与寿命的关系。 
然而,在工程实际中,产品的失效阈值大多情况是随机的,即产品的失效阈值D同样服从某一分布,该分布的类型可根据被试产品以往的失效情况的经验得到。当yt代表产品性能退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt的初值为1或1的与退化量相同的非线性变换,表示为D0。此时,yt,t=1,2,...在t时刻到达D的概率,即随机失效阈值下产品可靠度Rt变为: 
1.若yt随t单调上升,失效阈值D应不小于yt的初值D0,产品可靠度为 
R t = 1 - P { y t > = D } = &Integral; &Integral; y t > = D f D ( D ) f y t ( y t ) dDd y t - - - ( 40 )
= &Integral; D 0 + &infin; &Integral; D + &infin; f D ( D ) f y t ( y t ) dDd y t
其中fD(D)表示D的分布密度函数, 
Figure BSA00000213458900103
(yt)表示yt在t时刻的分布密度函数。 
2.若yt随t单调下降,失效阈值D应不大于yt的初值D0,产品可靠度为 
R t = 1 - P { y t < = D } = &Integral; &Integral; y t < = D f D ( D ) f y t ( y t ) dDd y t (41) 
= &Integral; - &infin; D 0 &Integral; - &infin; D f D ( D ) f y t ( y t ) dDd y t
本发明的优点在于: 
1.本发明提出一种全新的基于退化量分布非平稳时序分析的性能退化预测方法,该方法能够对所有样本退化的统计规律进行宏观描述,并且不仅考虑产品性能退化过程中的单调确定性趋势,同时考虑了退化的随机性和周期性波动,得到反映产品退化随机过程波动性规律的产品可靠度与寿命关系预测。与传统仅考虑产品退化单调确定性相比,本发明对退化过程的描述更加全面,与基于退化轨迹的性能退化预测方法相比更加宏观,从而提高了性能退化预测结果的可信度。 
2.本发明提出的退化量分布各参数的非平稳时序类型是由工程实际中可测得的产品退化轨迹时序类型推导而来,因此相比仅基于假设的退化量分布参数时序分析更符合工程实际。 
3.本发明针对不同退化量分布参数时序的不同非平稳时序类型,分别提出相应非平稳时序类型的分析方法,其中针对退化量分布样本方差时序,提出相关系数平稳时序定义的推论,证明退化量样本方差时序包含相关系数平稳时序的部分,并给出其建模方法,从而解决了退化量分布各参数非平稳时序的建模难题,并可将其推广于任一具有与之相同非平稳时序类型的时序分析问题。 
4.本发明首次提出一种基于退化量分布非平稳时序分析的加速退化试验寿命预测及可靠性评估方法,该方法不仅能够对加速应力下所有样本退化的统计规律进行宏观描述,对加速退化过程的退化量分布参数时序分析全面,并能将加速应力下的退化量分布外推至正常应力,得到反映产品加速退化随机过程波动性规律的产品可靠度与寿命关系预测,提高了寿命预测及可靠性评估结果的可信度,且与正常应力水平下的性能退化预测相比更加省时高效。 
5.本发明将加速应力下的退化量分布参数外推至正常应力下的量值时,依据现有针对寿命分布的加速模型建模原理,由退化量分布参数与寿命分布的关系,推导得出不同退化量分布参数与应力水平大小的关系,能够提出合理的退化量分布参数加速模型,为采用基于退化量分布参数非平稳时序分析的方法进行加速退化试验寿命预测提供了可能。 
6.本发明考虑了退化量分布参数变化的随机性和周期性,在加速应力的条件下,根据工程实际中产品退化随机性和周期性的不同产生原理,通过应力水平分别外推退化量分布参数中的随机部分和周期部分至正常应力水平,并采用相应类型的时序模型进行建模,从而解决了加速退化试验中对退化量分布参数时序难以进行全面描述的问题。 
7.本发明考虑了失效阈值为随机分布的情况,通过建立失效阈值的分布与加速退化试验的产品性能退化量分布之间的关系,首次提出了随机失效阈值下基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,克服了基于退化轨迹的加速退化试验产品寿命预测无 法考虑随机失效阈值情况的不足,相比假设失效阈值为常数的寿命预测方法,本发明方法的产品寿命与可靠度关系预测结果更符合工程实际情况。 
附图说明
图1是本发明基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法的流程图; 
图1a是步骤一试验数据采集及预处理实施流程; 
图1b是步骤二退化量分布参数估计实施流程; 
图1c是步骤三(1)退化轨迹时序检验实施流程; 
图1d是步骤三(2)样本均值时序建模实施流程; 
图1e是步骤三(3)样本方差时序建模实施流程; 
图1f是步骤四(1)样本均值时序加速退化建模实施流程; 
图1g是步骤四(2)样本方差时序加速退化建模实施流程; 
图1h是步骤五基于退化量分布的寿命预测实施流程; 
图2是退化轨迹为单调回归函数时的退化随机过程; 
图3是实际退化随机过程; 
图4是实施例1试验设备及电路***的结构示意图; 
图5是实施例1经初值化预处理后的试验至失效的原始退化时序; 
图6是实施例1退化轨迹时序及退化轨迹时序模型拟合结果; 
图7是实施例1退化轨迹时序随机项时序; 
图8是实施例1样本均值时序及其趋势项模型拟合结果; 
图9是实施例1样本均值时序减去其趋势项后的时序; 
图10是实施例1样本方差时序及其趋势项模型拟合结果; 
图11是实施例1样本均值退化率-应力关系; 
图12是实施例1折合至6.5v的样本均值随机项时序; 
图13是实施例1样本方差退化率-应力关系; 
图14是实施例1折合至正常应力水平的样本方差时序减去其趋势项后的绝对值时序及其相关系数平稳趋势项模型拟合结果; 
图15是实施例1折合至正常应力水平的样本方差时序相关系数平稳随机项时序; 
图16是实施例1折合至正常应力水平的样本均值时序; 
图17是实施例1正常应力水平的样本均值时序预测时序; 
图18是实施例1折合至正常应力水平的样本方差时序; 
图19是实施例1正常应力水平的样本方差时序预测时序; 
图20是实施例1分别采用本发明方法和仅采用单调回归函数分析方法得到的寿命与可靠度关系。 
图中:1-实施例1中6.5V下的数据,2-实施例1中7.0V下的数据,3-实施例1中7.5V下的数据,4-实施例1中8.0V下的数据,5-实施例1中各应力水平下的模型拟合结果,6-实施例1中各应力水平下的退化率,7-实施例1中退化率-应力关系,8-实施例1中采用本发明方法常数失效阈值情况下得到的寿命可靠度关系,9-实施例1中采用常数失效阈值情况下基于退化量分布的仅采用单调回归函数分析方法得到的寿命可靠度关系,10-实施例1中采用本发明方法随机失效阈值情况下得到的寿命可靠度关系,11-实施例1中采用随机失效阈值情况下基于退化量分布仅采用单调回归函数分析方法得到的寿命可靠度关系。 
具体实施方式
下面将结合附图和实施例1对本发明作进一步的详细说明。 
本发明是一种基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法。首先对本发明方法的意义进行详细说明。 
产品退化量分布反映了退化随机过程的一维分布,其基本数字特征为均值和方差。若各 样本退化轨迹为单调回归函数,退化随机过程如图2。可知,退化量分布均值和方差也为单调回归函数。 
然而工程中,由于产品受到各种环境因素影响,实际的退化随机过程如图3。可知,当各样本退化轨迹为随机时序时,退化量分布均值和方差也可能为随机时序。当随机时序具有自相关性时,则时序取值不仅与当前时刻有关,且与其历史时刻取值有关。若仍采用单调回归函数描述退化量分布均值和方差时序,则反映不出退化过程随机波动的自相关性,从而影响退化预测结果。因此,应对退化量分布均值和方差采用时序分析方法描述。 
下面对实施方式进行具体介绍,进行方法执行之前进行如下假设: 
1.产品的性能退化过程总体趋势具有单调性。即性能退化总体趋势不可逆。 
2.退化过程中,所有产品的采样时刻相等。 
3.随着时间的变化,退化量分布的类型不变,仅参数变化。 
并假设在单一应力水平下,且不需要对不同的应力水平加以区分时,共有n个产品样本进行试验,每个产品采样间距均为Δt,总采样个数为m,则试验时间长度为τ=Δt·m。以yt表示产品在t时刻的性能退化量或性能退化量的某种非线性变换,如对数变换,以yti表示yt的第i个产品样本。当yt服从某位置-尺度分布时,任意时刻的位置参数与尺度参数分别记为μt和 
Figure BSA00000213458900121
它们可确定yt在t时刻分布情况。 
具体方法实施流程如图1所示,通过如下步骤实现: 
步骤一、试验数据采集及预处理; 
实施流程如图1a。采集加速退化试验数据,对试验观测的原始退化时序经初值化预处理。具体为分别对各产品样本的原始退化时序采用公式(7)建立趋势项,分别将各产品样本的原始退化时序全部时刻的数据除以其趋势项的初值,则处理后的所有产品样本原始退化时序趋势项的初值均为1。 
步骤二、退化量分布的参数估计; 
实施流程如图1b。采用皮尔逊χ2拟合优度检验方法对各时刻对应的预处理后数据分别进行退化量分布假设检验。具体为取6个数据量值宽度相等的区间,尽量保证每个区间包含2个以上产品样本,在0.05显著性水平下,则χ2理论值为7.815。若χ2检验值小于理论值,则接受数据分布假设。 
1.当性能退化量服从正态分布时,yt表示性能退化量,其分布参数为μt和 
Figure BSA00000213458900122
2.当性能退化量服从对数正态分布时,yt表示性能退化量的对数,yt服从正态分布,其分布参数为μt和 
Figure BSA00000213458900123
3.当性能退化量服从形状参数为θt、尺度参数为ηt的威布尔分布时,yt表示性能退化量的对数,yt服从极值分布,其分布参数为μt=lnηt和 
Figure BSA00000213458900124
μt和 的估计值可由yt的样本均值 
Figure BSA00000213458900126
和样本方差 
Figure BSA00000213458900127
得到。由于 
Figure BSA00000213458900128
和 
Figure BSA00000213458900129
是按时间顺序变化的随机变量,因此是时间序列,并且是具有一定退化趋势的非平稳时间序列。 
步骤三、退化量分布参数时序建模; 
(1)产品样本退化轨迹时序检验 
实施流程如图1c。在对每一应力水平下退化量分布参数时序建模之前,需先对所有应力下所有产品样本的退化轨迹时序进行建模,以检验产品退化轨迹时序是否符合其为方差平稳时序以及式(3)第三项是否符合其为平稳时序的假设,若两个假设均符合则可采用本发明的方法进行退化量分布参数时序建模,否则不能采用本发明方法分析。具体方法如下: 
在产品性能退化过程中,产品除自身退化特性外,往往还受到环境及设备因素影响,包括周期性和随机性影响,因此每个产品样本退化轨迹时序yti的确定性部分dti还可进一步分解为单调趋势项fti和周期项cti的叠加,见公式(6)。fti可采用线性回归函数或可转化为线性回归函数的单调非线性回归函数公式(7)描述。 
从yti减去fti后,cti可采用适用于挖掘数据潜在周期性规律的潜周期模型描述,由于同 一批受试产品样本所受到的环境及设备影响相同,因此不同样本的cti理论上相同,则有公式(8)。再从yti-fti减去cti后,需对剩下的随机项rti进行平稳性检验和正态性检验。 
采用轮次检验法对不同产品样本的rti分别进行平稳性检验。具体为将rti按时间分为20等份,对各份数据的均方值进行轮次计算,在0.05显著性水平下,若轮次数在64至125间时,则rti平稳,否则不平稳。 
若rti通过了平稳性检验,说明产品退化轨迹时序符合方差平稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。 
采用皮尔逊χ2拟合优度检验方法对不同产品样本的rti分别进行正态性假设检验。具体为取6个数据量值宽度相等的区间,尽量保证每个区间包含的数据个数相近,在0.05显著性水平下,则χ2理论值为7.815。若χ2检验值小于理论值,则接受正态分布假设,否则不接受。 
若rti通过了正态性检验,说明式(3)第三项符合平稳时序的假设,否则对 
Figure BSA00000213458900131
采用轮次检验法进行平稳性检验,若 
Figure BSA00000213458900132
通过了平稳性检验,说明式(3)第三项符合平稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。 
检验通过的rti可采用传统平稳时序分析方法中工程应用最广泛、建模简单且适于预测的自回归模型公式(9)描述。 
(2)样本均值时序退化建模 
实施流程如图1d,样本均值 
Figure BSA00000213458900133
具有与样本退化轨迹时序相同的结构和类型,见公式(10)。 
Figure BSA00000213458900134
各项建模方法与yti相同。 
从 
Figure BSA00000213458900135
减去样本均值趋势项 
Figure BSA00000213458900136
和样本均值周期项 后,应对样本均值随机项 采用轮次检验法进行平稳性检验,方法同rti的平稳性检验。若 
Figure BSA00000213458900139
通过了平稳性检验,继续对 
Figure BSA000002134589001310
建模;否则调整 
Figure BSA000002134589001311
和 
Figure BSA000002134589001312
模型的参数,重新对 
Figure BSA000002134589001313
和 
Figure BSA000002134589001314
建模,直至 
Figure BSA000002134589001315
通过平稳性检验。 
(3)样本方差时序退化建模 
实施流程如图1e,对于样本方差 
Figure BSA000002134589001316
由于各样本退化轨迹的周期项cti理论上相同,即 
Figure BSA000002134589001317
且各样本退化轨迹已进行初值化处理,即初值f0i=f0,有公式(11)。即公式(4)成立的条件满足,则式(3)第二项为相关系数平稳时序。 
将式(3)第一项作为 
Figure BSA000002134589001318
的趋势项以fst表示,第二项作为 
Figure BSA000002134589001319
的相关系数平稳项以xt表示,有公式(12)。 
样本方差 
Figure BSA000002134589001320
趋势项fst的模型为公式(13)。 
样本方差 
Figure BSA000002134589001321
相关系数平稳项xt的模型为公式(14)。公式(14)中的σxt可由|xt|的均值函数得到,即公式(15)。令公式(15)中的相关系数平稳趋势项fxt等于|xt|的均值函数,见公式(16),则有公式(17)和公式(18)。即相关系数平稳项xt可视为|xt|的均值模型E(|xt|)与相关系数平稳随机项rxt之积。E(|xt|)可采用单调回归函数公式(19)描述。 
从xt中除去fxt后,对剩余的rxt采用轮次检验法进行平稳性检验,若检验通过,对rxt可采用自回归模型公式(20)描述。否则,调整fxt的模型参数,重新对fxt建模,直到rxt通过平稳性检验。则退化量分布样本方差 的最终表达式为公式(21)。 
步骤四、基于退化量分布的加速退化建模; 
步骤三给出的是单一应力水平下的退化量分布参数时序建模方法,对于加速退化试验,还需将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应力水平。 
假设加速退化试验中共有k个应力水平Sj,j=1,2,…,k。每个应力水平下的采样间距均为Δt,各应力水平下的采样个数为mj,则各应力水平下的试验时间长度为τj=Δt·mj。 
(1)样本均值时序加速退化建模 
实施流程如图1f,在加速寿命试验的寿命预测中,通常采用产品在各应力下的寿命特征, 例如寿命均值,建立其与应力水平的关系作为产品的加速模型。 
而在加速退化试验中,根据累积损伤等效原理,在保持退化数据的累积退化量不变的条件下,其退化速率与退化时间成反比,因此对于样本均值时序,可采用其退化率作为寿命特征,建立其与应力水平的关系作为产品的加速模型。通过加速模型,可将不同应力水平下的退化率进行转换,通过对采样间距进行折合,从而折算为同一应力水平下的样本均值时序。 
根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τi时间的累积退化量等于此产品在第j个应力水平Sj下工作τj时间的累积退化量,其中i,j=1,2,…,k,i≠j。可将加速退化试验的样本均值时序在应力水平Sj下的试验持续时间τj及采样间距Δt在保持折算前后采样个数不变的情况下,其中j=1,2,…,k,按样本均值时序退化率-应力水平关系折算为正常应力水平S0下的试验持续时间τ0j及采样间距Δtj。 
以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关系可采用传统的加速模型公式(22)表示。 
由公式(22)可得到正常应力下样本均值时序的退化率b0,则有公式(23),折算到正常应力下的试验持续时间为公式(24)。在保持折算前后采样个数不变的情况下,折算到正常应力水平下的采样间距为公式(25)。 
以此类推,就可以将所有应力水平Sj下的样本均值时序折算到正常应力水平S0。 
由于样本均值时序的趋势项反映产品自身退化的确定性变化,与产品受到的应力水平有关,因此,应对不同应力水平下样本均值时序的趋势项进行采样间距折合。 
同样,样本均值时序的随机项反映产品性能自身退化的不确定性变化,也与应力水平相关。因此也应对样本均值时序不同应力水平下的随机项进行采样间距折合。 
然而,样本均值时序的周期项仅与对产品施加应力的设备控制特性等环境因素有关,与产品自身退化特性无关,从而也与应力的水平无关,因此不同应力水平样本均值时序的周期项理论上相同,而无需对其进行采样间距折合。 
(2)样本方差时序加速退化建模 
实施流程如图1g,在加速寿命试验中,通常认为产品在不同应力水平下寿命分布的尺度参数或尺度参数的估计,即样本方差,是相同的。而在加速退化试验中,产品的寿命定义为从试验开始时刻起产品性能随时间退化直至退化量穿越产品失效阈值的总时间,如果假设产品在不同应力水平下寿命分布的样本方差仍然相同,由于同一应力水平下产品退化量分布的样本方差时序包含随时间单调确定性变化的趋势,则在任一相同时刻下,不同应力水平下的产品退化量分布的样本方差必然是不同的,且其大小与应力水平相关。 
假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差相同,则有公式(26)。 
在同一时刻下,各水平下产品的退化量分布样本方差退化率为公式(27)。当公式(26)中bji-bj远小于bj,且bj远小于1时,(bji-bj)bj相对公式(26)中其他各项很小可忽略不计,则公式(26)可近似为公式(28)。 
因此本发明基于退化量分布样本均值退化率bj与应力水平的关系,即公式(22),建立产品样本方差时序的退化率与应力水平的关系公式(29)。 
可采用该关系得到正常应力水平下样本方差时序的退化率,根据疲劳累积损伤等效原理对不同应力水平下样本方差时序进行采样间距折合,从而得到正常应力水平下样本方差时序。 
样本方差时序仅与与退化轨迹时序的随机项及趋势项有关,因此样本方差时序各项均与应力水平有关,应对不同应力水平下样本方差时序各项进行采样间距折合。 
步骤五、基于退化量分布的寿命预测; 
实施流程如图1h。 
(1)样本均值时序预测 
将各应力水平下的样本均值时序的趋势项和随机项分别折合至正常应力。根据时序模型最佳(最小均方误差)预测原理,由公式(10),当某一应力水平下试验总时间为τ时,该应力 水平下的样本均值时序趋势项和随机项的向前l步最佳预测值 
Figure BSA00000213458900151
计算公式分别为公式(30)和公式(31)。对正常应力下样本均值时序的趋势项和随机项分别进行预测至某一时刻,预测时刻的选取原则是该时刻应至少能超过该产品平均寿命。 
样本均值时序的周期项向前l步最佳预测值 计算公式为公式(32),将周期项预测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下趋势项和随机项直接相加,得到各应力下折合为正常应力下样本均值时序的预测时序。 
再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本均值时序的预测时序 
Figure BSA00000213458900153
见公式(33)。 
(2)样本方差时序预测 
将各应力下的样本方差时序折合至正常应力。由公式(21),当某一应力水平下试验总时间为τ时,该应力水平下的样本方差时序的向前l步最佳预测值 
Figure BSA00000213458900154
计算公式为公式(34),对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻,得到各应力下折合为正常应力下样本方差时序的预测时序。 
再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本方差时序的预测时序 
Figure BSA00000213458900155
见公式(35)。 
(3)寿命预测 
根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,可得到退化量或退化量的线性变换yt在t时刻到达D的概率,其中t=1,2,...,即常数失效阈值下产品可靠度Rt: 
1.当性能退化量服从正态分布或对数正态分布时,yt服从正态分布,若yt随t单调上升, 
产品可靠度为公式(36),若yt随t单调下降,产品可靠度为公式(37)。 
2.当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可靠度为公式(38),若yt随t单调下降,产品可靠度为公式(39)。 
此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上也反映的是可靠度与寿命的关系。 
然而,在工程实际中,失效阈值大多情况是随机的,即产品的失效阈值D同样服从某一分布,该分布的类型可根据被试产品以往的失效情况的经验得到。当yt代表产品性能退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt的初值为1或1的与退化量相同的非线性变换,表示为D0。此时,yt,t=1,2,...在t时刻到达D的概率,即随机失效阈值下产品可靠度Rt变为: 
1.若yt随t单调上升,失效阈值D应不小于yt的初值D0,产品可靠度为公式(40)。 
2.若yt随t单调下降,失效阈值D应不大于yt的初值D0,产品可靠度为公式(41)。 
实施例1: 
步骤一、试验数据采集及预处理; 
对同一批次55个某电子产品进行4应力水平恒定应力加速退化试验,试验设备及电路***的结构如图4所示。通过电源对电子产品施加额定电压,以串联电阻R两端电压值V作为观测数据。采样间距为1分钟。试验参数如表1: 
表1试验参数 
  电源电压   产品个数   采样个数
  6.5V   13   12000
  7.0V   14   4000
  7.5V   14   2500
  8.0V   14   1000
[0323] 对试验观测的原始退化时序进行初值化预处理,则所有产品经初值化预处理后的原始退化时序趋势项初值均为1。 
为了更好地说明本发明结果的合理性,本次加速退化试验额外进行到了各应力水平下的所有产品样本均失效为止,经初值化预处理后的试验至失效的原始退化时序如图5所示。表1中给出的采样个数仅用于加速退化分析,并非本次试验至产品失效时的采样个数。 
步骤二、退化量分布的参数估计; 
采用皮尔逊χ2拟合优度检验方法对各时刻对应的预处理后数据分别进行退化量分布假设检验。根据产品个数,本发明取6个数据量值宽度相等的区间,以保证每个区间包含2个以上产品样本,在0.05显著性水平下,则χ2理论值为7.815。若χ2检验值小于理论值,则接受数据分布假设。对该数据所有时刻退化量分布类型的χ2检验平均值如表2: 
表2退化量分布χ2检验平均值 
  分布类型   6.5V   7.0V   7.5V   8.0V
  正态分布   4.7426   4.4436   5.5423   2.9632
  对数正态分布   4.6992   4.4307   5.485   2.9461
  威布尔分布   8.0535   7.3982   9.9552   7.7741
可知,威布尔分布检验不通过,取χ2检验平均值最小的对数正态分布为退化量分布。取经过预处理后原始退化时序的对数作为yt,则此时所有产品退化轨迹时序趋势项的初值均为0,如图6。计算退化量分布样本均值和样本方差时序,从而得到退化量分布参数的估计。 
步骤三、退化量分布参数时序建模; 
1.产品样本退化轨迹时序检验 
对退化轨迹时序进行趋势项和周期项建模,减去这两项后,得到随机项如图7。对随机项采用轮次检验法进行平稳性检验。各产品结果如表3: 
表3退化轨迹时序随机项平稳性检验 
  产品   6.5V   7.0V   7.5V   8.0V
  1   72   64   75   90
  2   68   71   78   94
  3   66   90   79   83
  4   79   100   94   68
  5   70   99   69   78
  6   66   70   107   89
  7   71   82   85   107
  8   73   124   88   89
  9   65   90   74   112
  10   68   101   89   65
  11   61   99   104   66
  12   68   57   78   104
  13   85   78   65   70
  14   -   73   91   116
可知全部产品随机项平稳。则该批产品退化轨迹时序为方差平稳时序。对随机项采用皮尔逊χ2拟合优度正态分布检验结果如表4: 
表4退化轨迹时序随机项正态分布检验 
  产品   6.5V   7.0V   7.5V   8.0V
  1   7.7   1.4   7.1   3.9
  2   6.2   3.7   0.2   1.8
  3   7.4   0.1   2.0   4.3
[0338] 
  4   8.2   3.9   2.2   0.2
  5   3.2   4.2   8.4   4.5
  6   8.0   4.1   2.2   1.3
  7   2.6   0.5   5.4   2.6
  8   7.3   3.2   3.3   2.2
  9   7.4   2.8   2.9   1.1
  10   7.8   2.5   1.0   1.9
  11   1.3   2.3   1.2   0.8
  12   2.2   1.4   1.2   3.4
  13   8.1   8.0   2.4   0.6
  14   -   0.9   7.7   4.0
可知产品随机项基本符合正态分布。则认为随机项四阶矩存在。 
2.样本均值时序退化建模 
样本均值时序的趋势项如图8,模型为 
f &OverBar; 1 t = - 1.91 &times; 10 - 5 t 1.1 , f &OverBar; 2 t = - 6.67 &times; 10 - 5 t 1.1 ,
f &OverBar; 3 t = - 1.28 &times; 10 - 4 t 1.1 , f &OverBar; 4 t = - 4.18 &times; 10 - 4 t 1.1 ,
减去趋势项后,可见各应力水平下样本均值时序具有明显的周期性波动,并且所有应力水平下的周期波动频率大致相同,如图9,说明样本均值时序周期项与应力水平大小无关的分析合理。再减去周期项,对随机项进行平稳性检验,结果如表5。 
表5样本均值时序随机项平稳性检验 
  6.5V   7.0V   7.5V   8.0V
  122   64   73   102
可知随机项通过平稳性检验。 
3.样本方差时序退化建模 
样本方差时序的趋势项如图10,模型为 
f1st=1.55×10-11t2.2,f2st=1.63×10-10t2.2, 
f3st=6.02×10-10t2.2,f4st=3.85×10-9t2.2, 
减去样本方差时序趋势项,得到相关系数平稳项。再除去相关系数平稳趋势项,对相关系数平稳随机项进行平稳性检验,结果如表6。 
表6样本方差时序相关系数平稳随机项平稳性检验 
  6.5V   7.0V   7.5V   8.0V
  101   121   78   71
可知相关系数平稳随机项通过平稳性检验。 
步骤四、基于退化量分布的加速退化建模; 
1.样本均值时序加速退化建模 
根据样本均值时序趋势项得到各应力水平下的样本均值时序退化率,采用电应力加速模型逆幂律模型,建立其退化率与应力水平关系,如图11。 
将样本均值时序随机项按样本均值退化率与应力水平关系进行采样间距折合,图12所示为统一折合为6.5v下的随机项。可见折合后各应力水平下随机项变化趋势相似,说明样本均值时序随机项与应力水平相关的分析合理。 
2.样本方差时序加速退化建模 
根据样本方差时序趋势项得到各应力水平下的样本方差时序退化率,因样本方差时序退化率约为样本均值时序退化率4次方的某一与应力水平无关的倍数,故采用与样本均值时序加速模型相同类型的逆幂律模型,建立样本方差时序退化率与应力水平关系,如图13。 
样本方差时序减去样本方差趋势项后,由公式(3)可知应得到相关系数平稳项及一个量值相对很小的平稳随机项,将这两项的绝对值及相关系数平稳趋势项按样本方差时序退化率与应力水平关系折合至正常应力水平6.3v如图14。可见,各应力水平下的数据变化趋势相似,说明样本方差时序各项均与应力水平相关的分析合理。其绝对值在零时刻的量值几乎为零,说明平稳随机项贡献的随时间变化平稳的量值只占整个时序量值的很小一部分,而相关系数平稳项贡献的量值随时间上升趋势明显,占整个时序量值的绝大部分,这与前面样本方差时序非平稳性分析的结果吻合,说明对于该平稳随机项确实可予以忽略,将这两项仅视为相关系数平稳项的处理方法合理。 
折合至6.3v的相关系数平稳随机项如图15。各应力水平下的数据变化趋势相似。 
步骤五、基于退化量分布的寿命预测; 
1.样本均值时序预测 
将各应力水平下的样本均值时序的趋势项和随机项折合到正常应力水平6.3v。将6.3v的趋势项和随机项预测至30000分钟,再将各应力水平下的周期项预测至相应的时刻与之相加,则得到6.3v下的样本均值时序预测时序。图16为折合到6.3v下的样本均值时序。按各应力水平样本个数加权平均后得到6.3V下的样本均值时序预测时序如图17。 
2.样本方差时序预测 
将各应力水平下的样本方差时序折合到正常应力水平6.3v。图18所示为统一折合为6.3v下的样本方差时序。将6.3v下的样本方差时序预测至30000分钟,并按各应力水平样本个数加权平均后如图19。 
3.寿命预测 
根据本次试验的实际失效情况,见图5,取产品失效阈值为原始退化时序趋势项初值的93%,即对于经初值化预处理后的原始退化时序,失效阈值即为常数93%,得到可靠度与寿命关系预测结果。如图20。可见,采用本发明基于退化量分布非平稳时序分析得到的可靠度与寿命关系预测曲线相比仅采用单调回归函数分析方法能反映出退化随机过程的波动性规律。 
另外,根据本次试验的实际失效阈值的分布情况,见图5,采用皮尔逊χ2拟合优度检验方法分别对各应力下所有产品样本失效时刻对应的预处理后数据进行失效阈值分布假设检验,见表7。 
表7失效阈值分布χ2检验平均值 
  分布类型   6.5V   7.0V   7.5V   8.0V
  正态分布   5.8634   1.728   4.2529   1.5396
  对数正态分布   5.8633   1.728   4.2528   1.5396
  威布尔分布   13.1021   8.0856   7.4162   4.7846
可知,该电子产品失效阈值服从对数正态分布,对数正态分布的均值为93%,得到可靠度与寿命关系预测结果。如图20。可见,采用随机失效阈值下基于退化量分布非平稳时序分析得到的可靠度与寿命关系预测结果相比仅采用常数失效阈值下的可靠度与寿命关系预测结果的分散性更大一些,这与本次试验的实际失效情况更为相符。该批电子产品的中位寿命预测为25810分钟。 
本发明的研究分析和实例应用表明,对于实际工程中大多数产品,其各样本退化轨迹为非平稳随机时序,则其退化量分布的参数估计往往也为非平稳随机时序。因而本发明从退化量分布角度出发,提出样本均值和样本方差时序的非平稳时序分析方法,从而得到反映产品退化随机过程波动性规律的产品可靠度与寿命关系预测。 
实际上,这种可靠度的波动性是由于产品可靠度被定义为产品在各时刻退化量穿越失效阈值的概率,在退化量分布参数估计随时间并非单调性变化的实际情况下,产品可靠度也因此不随时间单调下降,而是在单调下降的总体趋势下,还具有一定波动性。这种波动性既包含与当前时刻相关的周期性波动,也包含与历史时刻相关的随机性波动。 

Claims (6)

1.基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:
性能退化过程假设:
(1)产品的性能退化过程总体趋势具有单调性;
(2)退化过程中,所有产品的采样时刻相等;
(3)随着时间的变化,退化量分布的类型不变,仅参数变化;
基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法主要包括以下具体五个步骤:
步骤一、试验数据采集及预处理;
步骤二、退化量分布的参数估计;
采用皮尔逊χ2拟合优度检验方法对每一应力水平下各时刻对应的预处理后数据分别进行退化量分布假设检验,计算其退化量分布的样本均值和样本方差时序,从而得到退化量分布参数的估计;
步骤三、单一应力水平下退化量分布参数时序建模;
主要包括产品样本退化轨迹时序检验、样本均值时序退化建模和样本方差时序退化建模;
步骤四、基于退化量分布的加速退化建模;
对于加速退化试验,将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应力水平;假设加速退化试验中共有k个应力水平Sj,j=1,2,…,k,每个应力水平下的采样间距均为Δt,各应力水平下的采样个数为mj,则各应力水平下的试验时间长度为τj=Δt·mj;则所述的基于退化量分布的加速退化建模包括样本均值时序加速退化建模和样本方差时序加速退化建模;
步骤五、基于退化量分布的寿命预测;
主要包括样本均值时序预测、样本方差时序预测和寿命预测三个部分,所述的样本均值时序预测,具体为:
将各应力水平下的样本均值时序的趋势项fti和随机项分别折合至正常应力,根据时序模型最小均方误差预测原理,由公式(10):
Figure FDA00002358064500011
其中,
Figure FDA00002358064500012
为产品各样本在长度为τ的时间段内第i个产品样本退化轨迹yti的样本均值,yti分为确定性时序dti和平稳随机时序rti的叠加,
Figure FDA00002358064500013
为dti的样本均值,
Figure FDA00002358064500014
为rti的样本均值,
Figure FDA00002358064500015
分别为
Figure FDA00002358064500016
的趋势项、周期项,b为的退化率,f0
Figure FDA00002358064500018
的初值,p,ηjt
Figure FDA00002358064500019
的自回归模型阶数、自回归系数、白噪声,q、ωj、aj
Figure FDA000023580645000110
分别为的角频率个数、角频率、幅值、相位,
Figure FDA00002358064500021
为(t-j)时刻下样本均值时序的随机项,g(t)为单调非线性回归函数,
当某一应力水平下试验总时间为τ时,该应力水平下的样本均值时序趋势项和随机项的向前l步最佳预测值计算公式分别为:
f &OverBar; ^ &tau; + l = bg ( &tau; + l ) + f 0 , l = 1,2 , &CenterDot; &CenterDot; &CenterDot; - - - ( 30 )
r &OverBar; ^ &tau; + l = &Sigma; j = 1 p &eta; j r &OverBar; ( &tau; + l - j ) - - - ( 31 )
其中,
Figure FDA00002358064500025
为(τ+l-j)时刻样本均值时序的随机项;对正常应力下样本均值时序的趋势项和随机项分别进行预测至某一给定时刻,该给定时刻的选取原则是该时刻应至少能超过该产品平均寿命;
样本均值时序的周期项向前l步最佳预测值
Figure FDA00002358064500026
计算公式为:
Figure FDA00002358064500027
将周期项预测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下趋势项和随机项直接相加,得到各应力下折合为正常应力下样本均值时序的预测时序;再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本均值时序的预测时序
所述的样本方差时序预测,具体如下:
将各应力下的样本方差时序折合至正常应力,由公式(21),
s t 2 = f st + x t = f st + f xt r xt = b s g 2 ( t ) + b x g ( t ) &CenterDot; ( &Sigma; j = 1 p x &eta; xj r x ( t - j ) + &epsiv; xt ) - - - ( 21 )
其中,st 2为样本方差,px、ηxj、εxt为相关系数平稳随机项rxt的自回归模型阶数、自回归系数、白噪声,fst为样本方差时序趋势项,xt为样本方差时序相关系数平稳项,fxt为相关系数平稳趋势项,bs为样本方差的时序的退化率,bx为待定系数,rx(t-j)为(t-j)时刻的相关系数平稳随机项,当某一应力水平下试验总时间为τ时,该应力水平下的样本方差时序的向前l步最佳预测值
Figure FDA000023580645000210
计算公式为:
s ^ &tau; + l 2 = f s ( &tau; + l ) + f x ( &tau; + l ) r x ( &tau; + l ) = b s g 2 ( &tau; + l ) + b x g ( &tau; + l ) &CenterDot; &Sigma; j = 1 p x &eta; xj r x ( &tau; + l - j ) , l = 1,2 , &CenterDot; &CenterDot; &CenterDot; - - - ( 34 )
对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻,得到各应力下折合为正常应力下样本方差时序的预测时序;再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本方差时序的预测时序
Figure FDA000023580645000212
所述的寿命预测,具体如下:
根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,得到退化量或退化量的线性变换yt在t时刻到达失效阈值D的概率,其中t=1,2,…,即常数失效阈值D下产品可靠度Rt
(a)当性能退化量服从正态分布或对数正态分布时,yt服从正态分布,若yt随t单调上升,产品可靠度Rt
R t = 1 - P { y t > = D } = &Phi; ( ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 36 )
若yt随t单调下降,产品可靠度Rt
R t = 1 - P { y t < = D } = 1 - &Phi; ( ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 37 )
(b)当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可靠度Rt
R t = 1 - P { y t > = D } = 1 - exp ( - exp ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 38 )
若yt随t单调下降,产品可靠度Rt
R t = 1 - P { y t < = D } = exp ( - exp ( D - y &OverBar; 0 t ) / s 0 t ) - - - ( 39 )
其中s0t
Figure FDA00002358064500035
的正平方根,此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上也反映的是可靠度与寿命的关系;
若产品的失效阈值D服从某一分布,该分布的类型根据被试产品以往的失效情况的经验得到;当yt代表产品性能退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt的初值为1或1的与退化量相同的非线性变换,表示为D0,此时,yt在t时刻到达D的概率,其中t=1,2,…,即随机失效阈值下产品可靠度Rt变为:
(a)若yt随t单调上升,失效阈值D应不小于yt的初值D0,产品可靠度为
R t = 1 - P { y t > = D } = &Integral; &Integral; y t > = D f D ( D ) f y t ( y t ) d Ddy t - - - ( 40 )
= &Integral; D 0 + &infin; &Integral; D + &infin; f D ( D ) f y t ( y t ) dD dy t
其中fD(D)表示D的分布密度函数,
Figure FDA00002358064500038
表示yt在t时刻的分布密度函数;
(b)若yt随t单调下降,失效阈值D应不大于yt的初值D0,产品可靠度为
R t = 1 - P { y t < = D } = &Integral; &Integral; y t < = D f D ( D ) f y t ( y t ) d Ddy t - - - ( 41 )
= &Integral; - &infin; D 0 &Integral; - &infin; D f D ( D ) f y t ( y t ) dD dy t .
2.根据权利要求1所述的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:步骤三中所述的产品样本退化轨迹时序检验,具体为:
在产品性能退化过程中,将每个产品样本退化轨迹时序yti分为确定性时序dti和平稳随机时序rti的叠加,并将yti的确定性部分dti进一步分解为单调趋势项fti和周期项cti的叠加:
yti=dti+rti=fti+cti+rti(6)
单调趋势项fti采用线性回归函数描述如下:
fti=bit+f0i
其中bi表示退化轨迹时序yti的退化率,f0i表示fti的初值,t为时刻;
fti采用可转化为线性回归函数的单调非线性回归函数描述如下:
fti=big(t)+f0i    (7)
其中g(t)为单调非线性回归函数,与样本i无关,当g(t)=t时,公式(7)与单调趋势项fti的线性回归函数相同;
从yti减去fti后,cti采用适用于挖掘数据潜在周期性规律的潜周期模型描述,则有:
Figure FDA00002358064500041
其中q、ωj、aj
Figure FDA00002358064500042
分别为cti的角频率个数、角频率、幅值、相位,与样本i无关;
再从yti-fti减去cti后,对剩下的随机项rti进行平稳性检验和正态性检验,检验通过的rti采用传统平稳时序分析方法中自回归模型描述:
r ti = &Sigma; j = 1 p i &eta; ji r ( t - j ) i + &epsiv; ti - - - ( 9 )
其中pi为rti的自回归模型阶数,ηji为rti的自回归系数,εti为rti的白噪声,r(t-j)i为(t-j)时刻下第i个产品样本的随机项。
3.根据权利要求1所述的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:步骤三中所述的产品样本均值时序退化建模,具体如下:
样本均值
Figure FDA00002358064500044
具有与样本退化轨迹时序相同的结构和类型,其公式为:
Figure FDA00002358064500045
其中,为样本均值,
Figure FDA00002358064500047
为确定性时序dti的样本均值,
Figure FDA00002358064500048
为平稳时序rti的样本均值,分别为
Figure FDA000023580645000410
的趋势项、周期项,b为
Figure FDA000023580645000411
的退化率,f0的初值,p、ηj、εt
Figure FDA000023580645000413
的自回归模型阶数、自回归系数、白噪声,
Figure FDA000023580645000414
各项建模方法与yti相同;
Figure FDA000023580645000415
减去
Figure FDA000023580645000416
Figure FDA000023580645000417
后,对
Figure FDA000023580645000418
采用轮次检验法进行平稳性检验,若通过了平稳性检验,继续对
Figure FDA000023580645000420
建模;否则调整
Figure FDA000023580645000421
Figure FDA000023580645000422
模型的参数,重新对
Figure FDA000023580645000423
Figure FDA000023580645000424
建模,直至
Figure FDA000023580645000425
通过平稳性检验。
4.根据权利要求1所述的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:步骤三中所述的产品样本方差时序退化建模,具体如下:
对于样本方差
Figure FDA000023580645000426
各样本退化轨迹的周期项cti理论上相同,即
Figure FDA000023580645000427
且各样本退化轨迹已进行初值化处理,样本退化轨迹的初值f0i=f0,有:
d ti - d &OverBar; t = ( b i g ( t ) + f 0 i + c ti ) - ( bg ( t ) + f 0 + c &OverBar; t ) = ( b i - b ) g ( t ) - - - ( 11 )
即公式(4)成立的条件满足,则式(3)第二项
Figure FDA00002358064500051
为相关系数平稳时序;
其中,公式(4)为:
( d ti - d &OverBar; t ) = b i g ( t ) , i = 1,2 , &CenterDot; &CenterDot; &CenterDot; , n ,
公式(3)为:
s t 2 = 1 n - 1 &Sigma; i = 1 n ( y ti - y &OverBar; t ) 2 = 1 n - 1 &Sigma; i = 1 n ( d ti - d &OverBar; t + r ti - r &OverBar; t ) 2 - - - ( 3 )
= 1 n - 1 &Sigma; i = 1 n ( d ti - d &OverBar; t ) 2 + 1 n - 1 &Sigma; i = 1 n 2 ( d ti - d &OverBar; t ) ( r ti - r &OverBar; t ) + 1 n - 1 &Sigma; i = 1 n ( r ti - r &OverBar; t ) 2
dti为产品各样本在长度为τ的时间段内第i个产品样本退化轨迹yti的确定性时序,
Figure FDA00002358064500055
为dti的样本均值,rti为产品各样本在长度为τ的时间段内第i个产品样本退化轨迹yti的平稳随机时序,
Figure FDA00002358064500056
为rti的样本均值,n为产品样本个数;
将式(3)第一项称为st 2的趋势项fst,第二项
Figure FDA00002358064500058
称为st 2的相关系数平稳项xt,第三项
Figure FDA00002358064500059
相对第二项
Figure FDA000023580645000510
为高阶小量,因此忽略第三项后,有
s t 2 = f st + x t - - - ( 12 )
则样本方差st 2趋势项fst的模型为
fst=bsg2(t)(13)
其中bs表示样本方差st 2的退化率;
样本方差st 2相关系数平稳项xt的模型为:
x t = f xt r xt , D ( x t ) = f xt 2 &sigma; r 2 = &sigma; xt 2 - - - ( 14 )
其中fxt表示相关系数平稳项xt的确定性部分,称为相关系数平稳趋势项,是关于t的非零函数,rxt表示相关系数平稳项xt的随机性部分,称为相关系数平稳随机项,是平稳时序,σr为rxt的标准差,与t无关,σxt为xt的标准差,是关于t的非零函数;
σxt由|xt|的均值函数得到:
σxt=beE(|xt|)=fxtσr    (15)
其中be为待定系数,令
fxt=E(|xt|)(16)
be=σr    (17)
xt=fxtrxt=E(|xt|)rxt    (18)
即相关系数平稳项xt为|xt|的均值模型E(|xt|)与相关系数平稳随机项rxt之积,E(|xt|)采用单调回归函数描述:
E(|xt|)=bxg(t)(19)
其中bx为待定系数;
从xt中除去相关系数平稳趋势项fxt后,对剩余的相关系数平稳随机项rxt采用轮次检验法进行平稳性检验,若检验通过,对rxt采用自回归模型描述:
r xt = &Sigma; j = 1 p x &eta; xj r x ( t - j ) + &epsiv; xt - - - ( 20 )
其中px、ηxj、εxt为rxt的自回归模型阶数、自回归系数、白噪声,rx(t-j)为(t-j)时刻下的相关系数平稳随机项;
否则,调整fxt的模型参数,重新对fxt建模,直到rxt通过平稳性检验,则退化量分布样本方差st 2的最终表达式为:
s t 2 = f st + x t = f st + f xt r xt = b s g 2 ( t ) + b x g ( t ) &CenterDot; ( &Sigma; j = 1 p x &eta; xj r x ( t - j ) + &epsiv; xt ) - - - ( 21 ) .
5.根据权利要求1所述的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:步骤四中所述的样本均值时序加速退化建模,具体如下:
根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τi时间的累积退化量等于此产品在第j个应力水平Sj下工作τj时间的累积退化量,其中i,j=1,2,…,k,i≠j;将加速退化试验的样本均值时序在应力水平Sj,j=1,2,…,k下的试验持续时间τj及采样间距Δt在保持折算前后采样个数不变的情况下,按样本均值时序退化率-应力水平关系折算为正常应力水平S0下的试验持续时间τ0j及采样间距Δtj
以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关系采用传统的加速模型表示:
Figure FDA00002358064500063
其中,A、B都是待定参数,
Figure FDA00002358064500064
为应力水平Sj的已知函数;
由公式(22)得到正常应力下样本均值时序的退化率b0,则有:
b0·τ0j=bj·τj,j=1,2,…,k    (23)
折算到正常应力下的试验持续时间为:
&tau; 0 j = b j b 0 &CenterDot; &tau; j - - - ( 24 )
在保持折算前后采样个数不变的情况下,折算到正常应力水平下的采样间距为:
&Delta; t j = b j b 0 &CenterDot; &Delta;t - - - ( 25 )
以此类推,将所有应力水平Sj下的样本均值时序折算到正常应力水平S0
对不同应力水平下样本均值时序的趋势项进行采样间距折合;对样本均值时序不同应力水平下的随机项进行采样间距折合;不同应力水平样本均值时序的周期项理论上相同。
6.根据权利要求1或5所述的基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于:步骤四中所述的样本方差时序加速退化建模,具体如下:
在加速退化试验中,假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差相同,则有:
s j &prime; 2 = s &prime; 2 = 1 n - 1 D 2 &Sigma; i = 1 n ( 1 b ji - 1 b j ) 2 = 1 n - 1 D 2 &Sigma; i = 1 n ( b ji - b j b ji b j ) 2
= 1 n - 1 D 2 &Sigma; i = 1 n ( b ji - b j b j 2 + ( b ji - b j ) b j ) 2 , j = 1,2 , &CenterDot; &CenterDot; &CenterDot; , k - - - ( 26 )
其中,s′2均表示第j个应力水平下寿命分布样本方差,其大小与应力水平无关,D为产品失效阈值,与应力水平无关,bji为第j个应力水平下第i个样本退化轨迹的退化率,bj为第j个应力水平下退化量分布样本均值的退化率;
在同一时刻下,各应力水平下产品的退化量分布样本方差退化率为:
b s j 2 = 1 n - 1 &Sigma; i = 1 n ( b ji - b j ) 2 , j = 1,2 , &CenterDot; &CenterDot; &CenterDot; , k - - - ( 27 )
其中,
Figure FDA00002358064500075
表示第j个应力水平下退化量分布样本方差退化率;
当公式(26)中bji-bj远小于bj,且bj远小于1时,(bji-bj)bj相对公式(26)中其他各项很小忽略不计,则公式(26)近似为
s &prime; 2 &ap; 1 n - 1 D 2 &Sigma; i = 1 n ( b ji - b j b j 2 ) 2 = D 2 b j 4 b s j 2 - - - ( 28 )
则在第j个应力水平下,退化量分布样本方差的退化率
Figure FDA00002358064500077
与寿命分布样本方差s′2仅相差bj 4的D2倍;
基于退化量分布样本均值退化率bj与应力水平的关系,即公式(22),建立产品样本方差时序的退化率与应力水平的关系:
Figure FDA00002358064500078
其中,A、B都是待定参数,
Figure FDA00002358064500079
为应力水平Sj的已知函数,采用该关系得到正常应力水平下样本方差时序的退化率,根据疲劳累积损伤等效原理对不同应力水平下样本方差时序进行采样间距折合,从而得到正常应力水平下样本方差时序;对不同应力水平下样本方差时序各项进行采样间距折合。
CN 201010242568 2010-08-02 2010-08-02 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法 Expired - Fee Related CN101894221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010242568 CN101894221B (zh) 2010-08-02 2010-08-02 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010242568 CN101894221B (zh) 2010-08-02 2010-08-02 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法

Publications (2)

Publication Number Publication Date
CN101894221A CN101894221A (zh) 2010-11-24
CN101894221B true CN101894221B (zh) 2013-05-15

Family

ID=43103411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010242568 Expired - Fee Related CN101894221B (zh) 2010-08-02 2010-08-02 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法

Country Status (1)

Country Link
CN (1) CN101894221B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021685A (zh) * 2016-05-16 2016-10-12 北京航空航天大学 一种考虑测量误差的退化可靠性分析方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262700B (zh) * 2011-08-01 2013-01-30 北京航空航天大学 基于小波分析的退化数据预处理的产品寿命预测方法
CN102749196A (zh) * 2011-10-17 2012-10-24 成都发动机(集团)有限公司 长寿命航空发动机寿命考核加速试车方法
CN102509023B (zh) * 2011-11-24 2014-07-16 北京航空航天大学 航天驱动组件综合应力加速寿命试验损伤累积模型的建模方法
CN102542155B (zh) * 2011-12-05 2014-09-17 北京航空航天大学 基于加速退化数据的粒子滤波剩余寿命预测方法
CN102629300A (zh) * 2012-03-15 2012-08-08 北京航空航天大学 一种基于灰色预测模型的步进应力加速退化数据评估方法
CN103308723B (zh) * 2013-07-04 2014-11-26 北京航空航天大学 一种基于物理模型的产品寿命快速检验方法
CN103678939B (zh) * 2013-12-27 2017-01-11 北京航空航天大学 一种面向空间距离与形状和数据分布的退化模型一致性检验方法
CN103840970B (zh) * 2014-01-24 2017-09-15 珠海多玩信息技术有限公司 一种获取业务运行状态的方法及装置
CN104215741A (zh) * 2014-06-20 2014-12-17 卢申林 一种通用可靠性加速模型评价方法
CN104181457B (zh) * 2014-08-15 2017-01-18 中国电子科技集团公司第二十四研究所 一种半导体器件温湿度复合应力加速模型优选方法
CN104615866B (zh) * 2015-01-21 2017-06-23 北京航空航天大学 一种基于物理统计模型的寿命预测方法
CN104678312B (zh) * 2015-02-09 2017-06-23 北京航空航天大学 一次性锂电池容量加速退化试验“倒挂”数据评估方法
CN106227910B (zh) * 2016-06-21 2019-09-03 广东科鉴检测工程技术有限公司 一种基于灰色***理论的加速退化试验可靠性评估方法
CN106774267B (zh) * 2016-12-28 2019-04-02 中南大学 一种时序输出的控制***的性能评估方法及装置
CN109145328A (zh) * 2017-06-27 2019-01-04 中车株洲电力机车研究所有限公司 产品退化参数识别方法、装置和产品性能评估方法、***
CN107515965B (zh) * 2017-07-27 2019-07-23 北京航空航天大学 一种基于不确定过程的加速退化建模评估方法
CN107729599A (zh) * 2017-08-31 2018-02-23 广东科鉴检测工程技术有限公司 医疗器械核心部件加速退化试验数据处理方法
CN109086509B (zh) * 2018-07-24 2023-02-28 北京航空航天大学 基于分位数回归和退化量分布的加速退化数据分析方法
CN110889084B (zh) * 2018-09-10 2020-11-17 湖南银杏可靠性技术研究所有限公司 加速贮存和自然贮存退化数据一致性检验回归置信区间法
CN110895624B (zh) * 2018-09-10 2020-12-22 湖南银杏可靠性技术研究所有限公司 基于最大熵谱估计的加速贮存与自然贮存退化数据一致性检验法
CN110889187B (zh) * 2018-09-10 2020-12-11 湖南银杏可靠性技术研究所有限公司 基于Pearson系数的贮存退化数据一致性检验法
CN109145258B (zh) * 2018-11-29 2020-08-07 中国人民解放军国防科技大学 基于非线性拟合的威布尔分布参数置信区间估计方法
CN109490626B (zh) * 2018-12-03 2021-02-02 中车青岛四方机车车辆股份有限公司 一种基于非平稳随机振动信号的标准psd获取方法及装置
CN109766626B (zh) * 2019-01-08 2020-10-09 北京航空航天大学 一种间断应力下考虑有效冲击的退化建模与寿命预测方法
CN110046453B (zh) * 2019-04-25 2020-12-08 苏州玖物互通智能科技有限公司 一种激光雷达的寿命预测方法
CN110210117B (zh) * 2019-05-31 2023-03-31 西安工程大学 一种细纱机剩余运行寿命的预测方法及***
CN110399658B (zh) * 2019-07-09 2021-01-22 湖北文理学院 电池的加速因子值计算方法、装置、设备及存储介质
CN110991001B (zh) * 2019-11-01 2021-06-18 北京航空航天大学 一种基于单调回归理论的卷簧寿命评估方法
CN111859658B (zh) * 2020-07-15 2023-06-27 北京强度环境研究所 一种产品贮存寿命与可靠性评估方法
CN112149296B (zh) * 2020-09-17 2023-06-20 中国科学院地理科学与资源研究所 一种判定水文时间序列平稳性类型的方法
CN111967167B (zh) * 2020-10-20 2021-04-06 北京航空航天大学 一种非线性退化过程可靠性评估方法
CN114313140B (zh) * 2021-12-13 2023-04-28 中国船舶重工集团公司第七一九研究所 一种船舶装置性能参数退化轨迹的拟合方法和***
CN114579418B (zh) * 2022-05-05 2022-08-02 杭州网易云音乐科技有限公司 实验评估方法、评估装置、存储介质及设备
CN115128427B (zh) * 2022-08-29 2023-01-20 北京芯可鉴科技有限公司 Mos器件寿命预测方法、装置、电子设备、介质及程序产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620045A (zh) * 2009-07-31 2010-01-06 北京航空航天大学 基于时间序列的步进应力加速退化试验可靠性评估方法
CN101666662A (zh) * 2009-09-25 2010-03-10 北京航空航天大学 基于模糊理论的加速退化试验预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620045A (zh) * 2009-07-31 2010-01-06 北京航空航天大学 基于时间序列的步进应力加速退化试验可靠性评估方法
CN101666662A (zh) * 2009-09-25 2010-03-10 北京航空航天大学 基于模糊理论的加速退化试验预测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021685A (zh) * 2016-05-16 2016-10-12 北京航空航天大学 一种考虑测量误差的退化可靠性分析方法
CN106021685B (zh) * 2016-05-16 2019-08-16 北京航空航天大学 一种考虑测量误差的退化可靠性分析方法

Also Published As

Publication number Publication date
CN101894221A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN101894221B (zh) 基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法
Menke et al. Distribution system monitoring for smart power grids with distributed generation using artificial neural networks
CN101620045B (zh) 基于时间序列的步进应力加速退化试验可靠性评估方法
Sevlian et al. Short term electricity load forecasting on varying levels of aggregation
Cao et al. Switching Markov Gaussian models for dynamic power system inertia estimation
Sevlian et al. Detection and statistics of wind power ramps
CN102042848A (zh) 基于多元混合时序分析的多性能参数加速退化试验产品寿命预测方法
Kim et al. LSTM based short-term electricity consumption forecast with daily load profile sequences
CN102208028B (zh) 一种适用于动态复杂***的故障预测和诊断方法
Wen et al. Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
Hodge et al. Improved wind power forecasting with ARIMA models
CN102636740B (zh) 一种基于frm-rvm的电力电子电路故障预测方法
CN105894133A (zh) 一种风电机组部件维修及备品备件需求预测方法
Almutairi et al. Use of MCMC to incorporate a wind power model for the evaluation of generating capacity adequacy
Peng et al. Leveraging degradation testing and condition monitoring for field reliability analysis with time-varying operating missions
CN104657613A (zh) 一种复杂机电***使用寿命评估方法
CN103500364B (zh) 电能质量稳态指标预测方法和***
Li et al. Development of low voltage network templates—Part II: Peak load estimation by clusterwise regression
Petroni et al. Reliability measures for indexed semi-Markov chains applied to wind energy production
Bu et al. Enriching load data using micro-PMUs and smart meters
Wang et al. Lévy process-based stochastic modeling for machine performance degradation prognosis
TWI491801B (zh) 風力發電故障預測系統及其方法
Cui et al. Solar power ramp events detection using an optimized swinging door algorithm
Alzubaidi et al. Identification of Suitable Probability Density Function for Wind Speed Profiles in Power System Studies
CN103268329B (zh) 等离子显示屏制造过程数据挖掘***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130515