CN101889044A - 用于制备导电聚碳酸酯复合材料的方法 - Google Patents

用于制备导电聚碳酸酯复合材料的方法 Download PDF

Info

Publication number
CN101889044A
CN101889044A CN2008801195565A CN200880119556A CN101889044A CN 101889044 A CN101889044 A CN 101889044A CN 2008801195565 A CN2008801195565 A CN 2008801195565A CN 200880119556 A CN200880119556 A CN 200880119556A CN 101889044 A CN101889044 A CN 101889044A
Authority
CN
China
Prior art keywords
polycarbonate
carbon nanotube
carbon
cnt
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801195565A
Other languages
English (en)
Other versions
CN101889044B (zh
Inventor
S·巴恩米勒
A·格雷纳
M·沙克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futurecarbon GmbH
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of CN101889044A publication Critical patent/CN101889044A/zh
Application granted granted Critical
Publication of CN101889044B publication Critical patent/CN101889044B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • C01P2004/136Nanoscrolls, i.e. tubes having a spiral section
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及用于制备基于热塑性聚碳酸酯和碳纳米管的导电聚碳酸酯复合材料的方法,其中用熔融聚碳酸酯将酸官能化的碳纳米管分散。

Description

用于制备导电聚碳酸酯复合材料的方法
本发明涉及一种基于热塑性聚碳酸酯和碳纳米管,制备导电聚碳酸酯复合材料的方法,其中用熔融聚碳酸酯将酸官能化的碳纳米管分散。在下文中,所述碳纳米管任选地简写为CNT(碳纳米管)。
基于其高结晶碳的化学结构和大表面积,碳纳米管具有大量特殊的性质。
根据现有技术,将碳纳米管主要理解为具有3-100nm直径和数倍于直径的长度的圆柱形碳管。这些管由一层或多层有序碳原子构成,并具有不同形态的核心。这些碳纳米管还称作例如“碳原纤”或“中空碳纤维”。
碳纳米管已经见诸于技术文献中很久了。尽管Iijima(出版:S.Iijima,Nature 354,56-58,1991)通常被认为是纳米管的发现者,但这些材料,特别是具有数个石墨层的纤维状石墨材料,自70年代和80年代早期便已知晓。Tates和Baker(GB 1469930A1,1977和EP 56004A2)首次描述了由烃的催化分解产生的极细纤维状碳沉积。然而,没有采用其直径对所述基于短链烃生产的碳长丝进行更加详细的表征。
这些碳纳米管的常规结构为圆柱形碳纳米管。这些圆柱形结构被划分为单壁的单一碳纳米管(单壁碳纳米管)和多壁的圆柱形碳纳米管(多壁碳纳米管)。用于其生产的常规方法例如为电弧法(电弧放电)、激光烧蚀、化学气相沉积(CVD法)和催化化学气相沉积(CCVD法)。
Iijima,Nature 354,1991,56-8公开了在电弧法中碳纳米管的形成,其包括两个或更多个石墨烯层,并卷起形成无缝的密闭圆筒,且相互嵌套。取决于卷绕矢量(Aufrollvektor),相对于碳纤维的纵轴,可形成碳原子的手性和非手性排列。
Bacon等在J.Appl.Phys.34,1960,283-90中首次描述了其中基于独立的连续石墨烯层(所谓卷轴形)或不连续石墨烯层(所谓洋葱形)的纳米管构造的纳米管结构。该结构称作卷轴形。相应的结构后来同样还被Zhou等(Science,263,1994,1744-47)和Lavin等(Carbon 40,2002,1123-30)发现。然而,CNT的高表面活性度具有以下缺陷:CNT形成机械上非常稳定的团聚体,其尺寸在微米范围内,且很难将其结合再次分解。从而,迄今为止,存在很多在液体或聚合物基质中解决CNT解聚问题的尝试。
Xiao-Lin Xie、Yiu-Wing Mai和Xing-Ping Zhou于2005年在其“Materials Science and Engineering R 49,89-112”综述论文中描述了解聚的迫切性或团聚的防止以及碳纳米管的良好分散。用于制备具有常规填料含量的聚合物的普通配混方法是最简便的采用纳米填料替换微米填料的,并生产高性能聚合物的方案。然而,由于强烈的团聚趋势,纳米填料极难在聚合物基质中分散。为改进聚合物/CNT复合材料的分散,采用高效分散方法,例如超声技术和高速剪切单元。其通常在溶液中操作,如此使得能够应用超声。
Hilding、Grulke、Zhang和Lockwood在2003年的综述“Journal ofDispersion Science and Technology,第24卷第1期,1-41页,2003”中描述了纳米管在液体中的分散性和匀化的重要性。在碳纳米管生产工艺中,形成机械缠绕
Figure GPA00001151536700021
或团聚的不同形态的混合物。团聚的纳米颗粒必须常常悬浮于液体中,以使得材料具有出众的机械性质。
综述“Polymer Nanocomposites Containing Carbon Nanotubes,Macromolecules 2006,39,5194-5205”的作者Moniruzzaman和Winey非常全面地描述了当时采用碳纳米管生产纳米复合材料的现有技术和均匀性的重要。
本发明的目的在于开发一种生产聚碳酸酯-CNT复合材料的方法,其中所述复合材料中存在尽可能多的孤立的(sioliert)CNT,借此可改进能由此获得的聚合物复合材料的机械和电学性质。进一步的目的在于生产其中存在孤立CNT和尽可能少的CNT团块(Agglomerate)和团聚体Aggregate)的CNT材料。团块和团聚体应理解为小颗粒(在本文中为CNT纤维)的成团,其包含相互物理和/或化学结合的大量颗粒。在分散期间团块比团聚体更易于破碎成独立颗粒。
已经发现,通过将聚碳酸酯分子化学接枝在酸官能CNT表面上,在材料混合期间,能够实现高度的解聚,并可在很大程度上防止CNT再团聚。
本发明提供了一种制备导电碳纳米管-聚碳酸酯复合材料的方法,特征在于:在第一步骤中,用氧化剂处理碳纳米管以在CNT上形成酸基;在第二步骤中,将酸官能化的CNT与聚碳酸酯以及酯交换反应催化剂混合;和在第三步骤中,将混合物熔融并经受剪切力。
使用的氧化剂优选为选自硝酸、过氧化氢、高锰酸钾和硫酸或这些试剂的可能的混合物的氧化剂。优选地,使用硝酸或者是硝酸与硫酸的混合物,特别优选使用硝酸。
所有Lewis酸和弱Bronsted酸基本上均适宜作为酯交换反应的催化剂。配体优选应具有σ-π给体性质。
用于聚碳酸酯偶合(Ankopplung)的酯交换反应催化剂优选选自以下的酯交换反应催化剂:四丁醇钛、BF3、AlCl3、SiCl4、PF5、Ti4+、Cr3+、Fe3+、Cu2+、SiF4和Na+
如果在第二和第三步骤中,酸官能化的CNT、聚碳酸酯和酯交换反应催化剂组分的混合、熔融和经受剪切力在一个反应空间内发生,则获得了特别的优势。
如果在第三步骤中,经受剪切力在超过聚碳酸酯玻璃化转变温度至多100℃,优选至多80℃的温度实施,则在进一步优选的方法中实现了进一步的优势。
在本发明情况下,碳纳米管为全部圆筒形、卷轴形或洋葱形结构的多壁或单壁碳纳米管。优选采用圆筒形、卷轴形的多壁碳纳米管或其混合物。
在完成的配混物中,基于聚合物与碳纳米管混合物,碳纳米管特别地以0.01-10重量%,优选0.1-5重量%的量使用。在母料中,碳纳米管的浓度任选地更高。
特别优选地,使用长度与外径之比大于5,优选大于100的碳纳米管。
碳纳米管特别优选以团块形式使用,所述团决特别地具有0.05-5mm,优选0.1-2mm,特别优选0.2-1mm范围内的平均直径。
所用的碳纳米管特别优选基本上具有3-100nm,优选5-80nm,特别优选6-60nm的平均直径。
与上述已知的仅具有一个连续或不连续石墨烯层的卷轴形CNT不同,本申请人还发现了由结合和卷起成叠层结构(多卷轴形)的多个石墨烯层构成的CNT结构。由此形成的这些碳纳米管和碳纳米管团块为例如申请号为102007044031.8的未公开德国专利申请的主题。因此,其中关于CNT及其生产的内容同样包含在本申请的公开内容中。该CNT结构与单卷轴形碳纳米管相比存在和多壁圆柱形碳纳米管(圆柱形MWNT)结构与单壁圆柱形碳纳米管(圆柱形SWNT)结构关系类似的关系。
与洋葱形结构相比,通过横截面观察,这些碳纳米管中孤立石墨烯或石墨层明显自CNT中心连贯地连续向外侧边缘延伸。这使得在管骨架中例如改进且更快地***其它材料成为可能,因为与具有单卷轴结构的CNT(Carbon 34,1996,1301-3)或具有洋葱形结构的CNT(Science 263,1994,1744-7)相比,有更多开放边缘可作为***物的入口区。
目前已知的生产碳纳米管的方法包括电弧、激光烧蚀和催化法。在众多这些方法中,作为副产物形成具有高直径的炭黑、无定形碳和纤维。在催化法中,可以划分为在负载催化剂颗粒上的沉积和原位形成的具有纳米范围直径的在金属中心上的沉积(所谓流动法)。在由反应条件下为气态的烃经催化碳沉积实施生产的情况下(下面的CCVD,催化化学气相沉积),作为可能的碳给体,提及乙炔、甲烷、乙烷、乙烯、丁烷、丁烯、丁二烯、苯和其它含碳进料物。从而,优选使用可由催化法获得的CNT。
通常所述催化剂包括金属、金属氧化物或可分解或可还原的金属组分。例如现有技术中用于所述催化剂的金属可提及Fe、Mo、Ni、V、Mn、Sn、Co、Cu和其它副族元素。单一金属通常确实具有促进碳纳米管形成的趋势,但根据现有技术,高产率和低无定形碳含量有利地使用基于上述金属组合的那些金属催化剂获得。从而优选采用可使用混合催化剂获得的CNT。
用于CNT生产的特别有利的催化剂体系为基于包含选自Fe、Co、Mn、Mo和Ni中两种或更多种元素的金属或金属化合物的组合。
经验表明,碳纳米管的形成和形成的管的性质以复杂方式取决于用作催化剂的金属组分或多种金属组分的组合,任选使用的催化剂载体材料和催化剂与载体间的相互作用,原料气体及其分压,氢气与其它气体的混入,反应温度和停留时间以及使用的反应器。
特别优选用于碳纳米管生产的方法可由WO 2006/050903A2中知晓。
在迄今为止提及的使用各种催化剂体系的各种方法中,生产了各种结构的碳纳米管,其可主要以碳纳米管粉末的形式从所述方法中分离。
进一步优选适用于本发明的碳纳米管通过原则上在以下参考文献中描述的方法获得:
具有直径小于100nm的碳纳米管生产首次描述于EP 205556B1中。其采用轻质(即,短和中链脂肪族或单或双核芳香族)烃和铁基催化剂用于生产,其中载碳化合物在高于800-900℃温度下分解。
WO 86/03455A1描述了具有3.5-7.0nm恒定直径、大于100的长径比(长度与直径之比)和核心区的圆柱形结构的碳长丝的生产。这些原纤由多个围绕该原纤的圆柱轴同心排列的有序碳原子连续层构成。这些圆柱形纳米管通过CVD法由含碳化合物采用含金属颗粒在850℃-1,200℃温度下生产。
WO 2007/093337A2还公开了一种制备催化剂的方法,所述催化剂适用于圆柱形结构的常规碳纳米管生产。当将该催化剂用于固定床时,获得了较高产率的具有5-30nm范围直径的圆柱形碳纳米管。
Oberlin、Endo和Koyam(Carbon 14,1976,133)描述了生产圆柱形碳纳米管的完全不同的途径。其中,使芳香烃如苯在金属催化剂上反应。形成的碳管表现出清晰界定的石墨中空核心,其具有与催化剂颗粒直径相近的直径,和在其上出现更少石墨状排列的碳。全部管可通过高温(2,500℃-3,000℃)处理来石墨化。
目前,大部分上述方法(电弧、喷雾热解或CVD)均用于碳纳米管的生产。然而,单壁圆柱形碳纳米管的生产的装置投入非常昂贵,且采用已知方法仅能以极低的形成速率实施,以及还常发生多种副反应,导致高含量不期望的杂质,即,所述方法的产率相对低。从而,这类碳纳米管的生产目前在工业上仍然是极其昂贵的,和其主要用于少量的高度专业化的用途。然而,将其用于本发明是可行的,但与圆柱形或卷轴形多壁CNT相比,较不优选。
目前,相互嵌套的无缝圆柱形纳米管形式或所述卷轴或洋葱结构形式的多壁碳纳米管的生产主要采用催化法相对大量地商业实施。这些方法通常表现出高于上述电弧法和其它方法的产率,和目前典型地在kg规模(全球数百千克/天)上实施。采用此方式生产的MW碳纳米管通常比单壁纳米管略便宜,从而用作例如其它材料中的性能增强添加剂。
用于实施该方法的可行聚碳酸酯主要优选以下提及的类型,或在以下制备聚碳酸酯方法中提及的类型。
根据本发明的聚碳酸酯采用相界面法制备。用于聚碳酸酯合成的该方法多次描述于文献中;参考文献可以为例如H Schnell,Chemistry andPhysics of Polycarbonate,Polymer Reviews,第9卷,IntersciencePublishers,New York 1964,从第33页起,Polymer Reviews,第10卷,“Condensation Polymers by Interfacial and Solution Methods”,Paul WMorgan,Interscience Publishers,New York 1965,第VIII章,第325页,Dres.U.Grigo,K.Kircher和P.R.Muller“Polycarbonate”于Becker/Braun,Kunststoff-Handbuch,第3/1卷,Polycarbonate,Polyacetate,Polyester,Celluloseester,Carl Hanser Verlag慕尼黑,维也纳1992,第118-145页和EP-A 0517044。
根据该方法,初始引入碱性水溶液(或悬浮液)中的双酚(或各种双酚的混合物)二钠盐的光气化,该光气化在形成第二相的惰性有机溶剂或溶剂混合物存在下实施。形成的主要存在于有机相中的低聚碳酸酯在适宜催化剂的促进下发生缩合,形成溶解于有机相中的高分子量聚碳酸酯。最后分离有机相,通过多种后处理步骤从其中分离聚碳酸酯。
适用于聚碳酸酯制备的二羟基芳基化合物为式(2)的那些
HO-Z-OH  (2)
其中,Z为具有6-30个碳原子的芳基,其可包含一个或多个芳香核,可被取代,并可包含脂肪族或脂环族基团或烷芳基或杂原子作为桥联部分。
优选地,式(2)中,Z表示式(3)的基团
Figure GPA00001151536700061
其中
R6和R7各自独立地表示H、C1-C18烷基、C1-C18烷氧基、卤素如Cl或Br,或在每种情况下任选取代的芳基或芳烷基,优选H或C1-C12烷基,特别优选H或C1-C8烷基,和更加特别优选H或甲基,和
X表示单键、-SO2-、-CO-、-O-、-S-、C1-至C6-亚烷基、C2-至C5-烷叉基或C5-至C6-环烷叉基,其可用C1-至C6-烷基,优选甲基或乙基取代,或还表示C6-至C12-亚芳基,其可任选地与其它含杂原子的芳香环缩合。
优选地,X表示单键,C1至C5-亚烷基、C2-至C5-烷叉基、C5至C6-环烷叉基、-O-、-SO-、-CO-、-S-、-SO2-,
或式(3a)或(3b)的基团
Figure GPA00001151536700071
其中
R8和R9可基于各X1独立地选择,并相互独立地表示氢或C1-C6烷基,优选氢、甲基或乙基,和
X’表示碳,和
n表示4-7的整数,优选4或5,条件是在至少一个X1上,R8和R9同时为烷基。
二羟基芳基化合物的例子为二羟基苯、二羟基联苯、双(羟基苯基)烷、双(羟基苯基)环烷、双(羟基苯基)芳基、双(羟基苯基)醚、双(羟基苯基)酮、双(羟基苯基)硫化物、双(羟基苯基)砜、双(羟基苯基)亚砜、1,1’-双(羟基苯基)二异丙基苯及其核经烷基化及核经卤化的化合物。
本发明使用的适用于聚碳酸酯制备的二酚类为例如对苯二酚、间苯二酚、二羟基联苯、双(羟基苯基)烷、双(羟基苯基)环烷、双(羟基苯基)硫化物、双(羟基苯基)醚、双(羟基苯基)酮、双(羟基苯基)砜、双(羟基苯基)亚砜、α,α’-双(羟基苯基)二异丙基苯及其烷基化、核经烷基化及核经卤化的化合物。
优选的二酚类为4,4’-二羟基联苯、2,2-双-(4-羟基苯基)-1-苯基丙烷、1,1-双-(4-羟基苯基)苯基乙烷、2,2-双-(4-羟基苯基)丙烷、2,4-双-(4-羟基苯基)-2-甲基丁烷、1,3-双-[2-(4-羟基苯基)-2-丙基]苯(双酚M)、2,2-双-(3-甲基-4-羟基苯基)丙烷、双-(3,5-二甲基-4-羟基苯基)甲烷、2,2-双-(3,5-二甲基-4-羟基苯基)丙烷、双-(3,5-二甲基-4-羟基苯基)砜、2,4-双-(3,5-二甲基-4-羟基苯基)-2-甲基丁烷、1,3-双-[2-(3,5-二甲基-4-羟基苯基)-2-丙基]苯和1,1-双-(4-羟基苯基)-3,3,5-三甲基环己烷(双酚TMC)。
特别优选的二酚类为4,4’-二羟基联苯、1,1-双-(4-羟基苯基)-苯乙烷、2,2-双-(4-羟基苯基)丙烷、2,2-双(3,5-二甲基-4-羟基苯基)丙烷、1,1-双-(4-羟基苯基)-环己烷和1,1-双-(4-羟基苯基)-3,3,5-三甲基环己烷(双酚TMC)。
这些和其它适宜的双酚描述于例如US-A 2999835、3148172、2991273、3271367、4982014和2999846,德国公报(GermanOffenlegungsschriften)1570703、2063050、2036052、2211956和3832396,法国专利说明书1561518,专著“H.Schnell,Chemistry and Physicsof Polycarbonate,Interscience Publishers,New York 1964,从第28页起;从第102页起”,和“D.G.Legrand,J.T.Bendler,Handbook of PolycarbonateScience and Technology,Marcel Dekker New York 2000,从第72页起”。
在均聚碳酸酯的情况下,仅采用一种二酚,和在共聚碳酸酯的情况下,采用两种或多种二酚。使用的二酚与加入合成中的其它化学品和助剂一样,可能被源自其自身合成、处理和存储中的杂质污染。然而,期望采用尽可能纯净的原料生产。
将用于调节分子量所需的单官能链终止剂与一种或多种双酚盐一起供给至反应中,或者在合成过程中任意期望的点添加,只要光气或氯甲酸端基始终存在于反应混合物中即可,或者在采用酰氯和氯甲酸酯作为链终止剂的情况下,只要形成的聚合物能够具有充足的酚端基即可;其中,所述单官能链终止剂例如为苯酚或烷基酚,特别是苯酚、对叔丁基苯酚、异辛基苯酚、枯基苯酚、及其氯甲酸酯或单羧酸的酰氯或这些链终止剂的混合物。然而,优选一种或多种链终止剂在光气化反应后于不再存在光气、但尚未计量加入催化剂的地点或时间加入,或者将其在所述催化剂之前、与催化剂一起或并行地加入。
在同样方式中,可将可能使用的支化剂或支化剂混合物添加至合成中,但通常在链终止剂之前加入。通常使用三酚、四酚或三或四羧酸的酰氯,或者使用多酚或酰氯的混合物。
可使用的一些具有三个或多于三个酚羟基的化合物为例如:
间苯三酚,
4,6-二甲基-2,4,6-三(4-羟苯基)庚-2-烯,
4,6-二甲基-2,4,6-三(4-羟苯基)庚烷,
1,3,5-三(4-羟苯基)苯,
1,1,1-三(4-羟苯基)乙烷,
三(4-羟苯基)苯甲烷,
2,2-双[4,4-双(4-羟苯基)环己基]丙烷,
2,4-双(4-羟苯基异丙基)苯酚,
四(4-羟苯基)甲烷。
一些其它三官能化合物为2,4-二羟基苯甲酸、均苯三酸、氰尿酰氯和3,3-双(3-甲基-4-羟苯基)-2-氧代-2,3-二氢吲哚。
优选的支化剂为3,3-双(3-甲基-4-羟苯基)-2-氧代-2,3-吲哚满和1,1,1-三(4-羟苯基)乙烷。
用于相界面合成的催化剂为叔胺,特别是三乙胺、三丁胺、三辛胺、N-乙基哌啶、N-甲基哌啶或N-异/正丙基哌啶;季铵盐,如氢氧化/氯化/溴化/硫酸氢/四氟硼酸的四丁铵/三丁基苯甲铵/四乙铵;和对应于所述铵化合物的磷鎓化合物。这些化合物在文献中作为典型的相界面催化剂描述,可商购获得并为所属领域技术人员熟知。所述催化剂可单独地或以混合物形式添加至合成中,或还可同时或相继地添加,并任选地在光气化作用之前,但优选在光气引入之后计量加入,除非采用鎓盐化合物或鎓盐化合物的混合物作为催化剂。从而,优选在计量加入光气之前添加。一种或多种催化剂的计量添加可以以物质形式、在惰性溶剂中实施,所述惰性溶剂优选用于聚碳酸酯合成的溶剂,或在叔胺以及其经酸处理的铵盐情况下,还可作为水溶液实施,所述酸为无机酸,特别是盐酸。如果使用多种催化剂,或者计量添加全部催化剂中的一部分,则显然还可在不同位点或不同时间实施不同的计量添加方法。基于所用的双酚摩尔量,使用的催化剂总量为0.001-10mol%,优选0.01-8mol%,特别优选0.05-5mol%。
还可将用于聚碳酸酯的常规添加剂以常规用量添加至本发明的聚碳酸酯中。添加剂的加入起到延长使用寿命或颜色的作用(稳定剂),简化加工(如脱模剂,流动助剂,抗静电剂)或调节聚合物在经受特定负荷下的性质(冲击改性剂,如橡胶;阻燃剂,着色剂,玻璃纤维)。
这些添加剂可独立地,或以任意期望的混合物或多种不同混合物形式,添加至聚合物熔体中,特别地可在聚合物分离或在所谓配混步骤中颗粒熔融后直接加入。就此而言,添加剂或其混合物可以以固体(即,粉末)或熔融形式添加至聚合物熔体中。另一类计量添加为使用添加剂或添加剂混合物的母料或母料混合物。
适宜的添加剂例如描述于“Additives for Plastics Handbook,JohnMurphy,Elsevier,Oxford 1999”或“Plastics Additives Handbook,HansZweifel,Hanser,慕尼黑2001”中。
优选的热稳定剂为例如有机亚磷酸盐、膦酸盐和膦配体,其通常为其中有机基团完全或部分地由任选取代的芳族基团构成的那些。采用的UV稳定剂为例如取代的苯并***。这些和其它稳定剂可单独或组合使用,并以前述形式添加至聚合物中。
还可添加加工助剂如脱模剂,其通常为长链脂肪酸的衍生物。优选例如季戊四醇四硬脂酸酯和甘油单硬脂酸酯。基于组合物的质量,其优选以0.02-1重量%的量单独或以混合物形式使用。
适宜的阻燃添加剂为磷酸酯,即,磷酸三苯酯、间苯二酚二磷酸酯;含溴化合物,如溴化磷酸酯、溴化低聚碳酸酯和聚碳酸酯,以及优选地为氟化有机磺酸盐。
适宜的冲击改性剂为例如接枝聚合物,其包含一个或多个选自聚丁二烯橡胶、丙烯酸酯橡胶(优选丙烯酸乙酯或丁酯橡胶)和乙丙橡胶中至少一种的接枝基础,和选自苯乙烯、丙烯腈和甲基丙烯酸烷基酯(优选甲基丙烯酸甲酯)中至少一种单体的接枝单体,或具有接枝上的甲基丙烯酸甲酯或苯乙烯/丙烯腈的互穿硅氧烷和丙烯酸酯网络。
还可独立地或以混合物形式,或以与稳定剂、玻璃纤维、玻璃(中空)珠或无机填料组合的形式添加着色剂,所述着色剂例如为有机染料或颜料,或无机颜料,IR吸收剂。
采用所述新方法,使得在聚碳酸酯基质中分离碳纳米管成为可能。然而,这些复合材料可进一步使用,以生产用聚碳酸酯涂覆的孤立的碳纳米管。
事实上,本发明还另外提供一种生产用聚碳酸酯涂覆的碳纳米管的方法,特征在于将能够由上述新方法获得的聚碳酸酯-碳纳米管复合材料溶解在溶剂中,离心分离得到的溶液,并从溶液中分离孤立的用聚碳酸酯涂覆的碳纳米管。
就此而言,优选的方法特征在于所述溶剂选自如下:二氯甲烷、氯仿、单氯苯、二氯苯、N-甲基吡咯烷酮和二甲基甲酰胺,优选二甲基甲酰胺。
实施例
原料:(配方)
a)碳纳米管(CNT)
生产:
将碳纳米管(
Figure GPA00001151536700111
CNT WFA 147型;生产商:BayerMaterialScience AG)用65%浓度的硝酸在回流下处理1小时,然后水洗数次,直至洗涤水为中性,然后干燥。以此方式生产的碳纳米管具有1meq.酸基团/克的定量酸官能度,并以下述六种浓度(基于聚合物+碳纳米管的混合物)使用:
0.01重量%、0.1重量%、1.0重量%、2.0重量%、5.0重量%和10重量%
b)聚碳酸酯(PC)
使用的聚碳酸酯组分为聚(双酚A碳酸酯)(
Figure GPA00001151536700113
2808型;生产商:Bayer MaterialSciece AG)。
c)酯交换反应催化剂
关于酯化或酯交换反应催化,在每种情况下,基于聚合物+碳纳米管+酯交换反应催化剂的全部混合物,均以0.1重量%的量使用丁醇Ti(IV)(Ti(OBu)4,CAS:5593-70-4)。
实验过程
将具有相对旋转的双螺杆挤出单元和50ml容量的挤出机(生产商:Haake,Haake Rheomix R600P型)预热至220℃的适宜起始温度。当达到该温度时,启动挤出机,并将聚碳酸酯、碳纳米管和催化剂的混合物(约45g)由上部经料斗在30s内添加至旋转捏合钩(drehend Knethaken)之间。捏合机轴的转速为100转每分。
当所述三种组分(聚碳酸酯,碳纳米管和Ti(OBu)4)添加结束时,开始计时。反应时间,加工时间和混合时间设定为30min。反应时间超过30分钟可能导致较高的接枝度,但同时也会导致聚合物更大程度的降解。相反,更短的加工时间导致较少的接枝和较少的材料损伤。
30分钟反应时间后,停止捏合操作,并打开捏合机。将形成的复合材料采用刮刀在熔融状态下从捏合室和捏合钩中机械刮除。该刮除过程持续约10分钟,在此期间产物在环境温度下保持为熔融态。关于更短时间和/或惰性气氛的刮除工艺优化在大工业规模上是必要的。
刮除后,材料自然冷却至室温,并可在冷却状态下进一步分析。
透射电子显微镜(TEM)照片显示了六组实验中在80μm纳米复合材料薄切片上碳纳米管的分布。可以发现,纳米管特别均匀地分散,并相互孤立地存在。在纳米管生产工艺期间形成的团聚体破碎,并成功抑制了新团聚体形成的趋势。纳米技术的优势以最佳方式得到了应用。

Claims (7)

1.用于制备导电碳纳米管-聚碳酸酯复合材料的方法,特征在于,在第一步骤中,将碳纳米管用氧化剂处理,以在CNT上形成酸基;在第二步骤中,将酸官能化的CNT与聚碳酸酯以及酯交换反应催化剂混合;和在第三步骤中,将该混合物熔融并经受剪切力。
2.根据权利要求1的方法,特征在于使用硝酸、过氧化氢、高锰酸钾和硫酸或者这些试剂的可行的混合物作为氧化剂。
3.根据权利要求1或2之一的方法,特征在于所述酯交换反应催化剂选自四丁醇钛、BF3、AlCl3、SiCl4、PF5、Ti4+、Cr3+、Fe3+、Cu2+、SiF4和Na+
4.根据权利要求1-3之一的方法,特征在于在第二和第三步骤中,所述组分的混合、熔融和经受剪切力在一个反应空间内发生。
5.根据权利要求1-4之一的方法,特征在于在第三步骤中,所述经受剪切力在超过所述聚碳酸酯的玻璃化转变温度至多100℃,优选至多80℃的温度实施。
6.用于制备用聚碳酸酯涂覆的碳纳米管的方法,特征在于将能够由根据权利要求1-5之一的方法得到的聚碳酸酯-碳纳米管复合材料溶解在溶剂中,离心分离得到的溶液,和从该溶液中分离孤立的用聚碳酸酯涂覆的碳纳米管。
7.根据权利要求6的方法,特征在于所述溶剂选自:二氯甲烷、氯仿、单氯苯、二氯苯、N-甲基吡咯烷酮和二甲基甲酰胺,优选二甲基甲酰胺。
CN2008801195565A 2007-12-07 2008-11-25 用于制备导电聚碳酸酯复合材料的方法 Expired - Fee Related CN101889044B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007058992.3 2007-12-07
DE102007058992A DE102007058992A1 (de) 2007-12-07 2007-12-07 Verfahren zur Herstellung eines leitfähigen Polycarbonatverbundmaterials
PCT/EP2008/009969 WO2009071220A2 (de) 2007-12-07 2008-11-25 Verfahren zur herstellung eines leitfähigen polycarbonatverbundmaterials

Publications (2)

Publication Number Publication Date
CN101889044A true CN101889044A (zh) 2010-11-17
CN101889044B CN101889044B (zh) 2013-01-02

Family

ID=40621200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801195565A Expired - Fee Related CN101889044B (zh) 2007-12-07 2008-11-25 用于制备导电聚碳酸酯复合材料的方法

Country Status (9)

Country Link
US (1) US20100255185A1 (zh)
EP (1) EP2220147B1 (zh)
JP (1) JP2011505476A (zh)
KR (1) KR20100099692A (zh)
CN (1) CN101889044B (zh)
AT (1) ATE551382T1 (zh)
DE (1) DE102007058992A1 (zh)
RU (1) RU2010127735A (zh)
WO (1) WO2009071220A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480863A (zh) * 2018-05-15 2019-11-22 东芝机械株式会社 导电性复合材料的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064579B4 (de) * 2008-12-22 2012-03-15 Siemens Aktiengesellschaft Verfahren und Trägerzylinder zur Herstellung einer elektrischen Wicklung
JP5603059B2 (ja) 2009-01-20 2014-10-08 大陽日酸株式会社 複合樹脂材料粒子及びその製造方法
TWI543197B (zh) * 2009-12-12 2016-07-21 大陽日酸股份有限公司 複合樹脂材料粒子及其製造方法
WO2012107991A1 (ja) 2011-02-07 2012-08-16 大陽日酸株式会社 複合樹脂材料粒子、複合樹脂材料粒子の製造方法、複合樹脂成形体及びその製造方法
EP2913348B1 (en) * 2012-10-24 2017-09-20 Asahi Kasei Kabushiki Kaisha Method of producing hydrogenation catalyst composition and hydrogenation catalyst composition
JP2014101401A (ja) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp 多層カーボンナノチューブを含むポリアミド樹脂組成物
MX2015010622A (es) * 2013-02-20 2015-12-15 Tesla Nanocoatings Inc Materiales grafiticos funcionalizados.

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007996B (de) 1955-03-26 1957-05-09 Bayer Ag Verfahren zur Herstellung thermoplastischer Kunststoffe
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
GB1122003A (en) 1964-10-07 1968-07-31 Gen Electric Improvements in aromatic polycarbonates
NL152889B (nl) 1967-03-10 1977-04-15 Gen Electric Werkwijze ter bereiding van een lineair polycarbonaatcopolymeer, alsmede orienteerbare textielvezel van dit copolymeer.
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050C3 (de) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Verseifungsbeständige Polycarbonate, Verfahren zu deren Herstellung und deren Verwendung
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
CA1175616A (en) 1981-01-05 1984-10-09 Exxon Research And Engineering Company Production of iron monoxide and carbon filaments therefrom
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
NO170326C (no) 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
US5227458A (en) * 1988-08-12 1993-07-13 Bayer Aktiengesellschaft Polycarbonate from dihydroxydiphenyl cycloalkane
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
DE4118232A1 (de) * 1991-06-04 1992-12-10 Bayer Ag Kontinuierliche herstellung von polycarbonaten
JP4345308B2 (ja) * 2003-01-15 2009-10-14 富士ゼロックス株式会社 ポリマーコンポジットおよびその製造方法
CN100556962C (zh) * 2003-01-20 2009-11-04 帝人株式会社 被芳香族缩合系高分子包覆的碳纳米管
JP3995696B2 (ja) * 2003-01-20 2007-10-24 帝人株式会社 芳香族縮合系高分子により被覆されたカーボンナノチューブ
DE102004054959A1 (de) 2004-11-13 2006-05-18 Bayer Technology Services Gmbh Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator
DE102006037185A1 (de) * 2005-09-27 2007-03-29 Electrovac Ag Verfahren zur Behandlung von Nanofasermaterial sowie Zusammensetzung aus Nanofasermaterial
DE102006007147A1 (de) * 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Verfahren zur kontinuierlichen Herstellung von Katalysatoren
DE102007044031A1 (de) 2007-09-14 2009-03-19 Bayer Materialscience Ag Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480863A (zh) * 2018-05-15 2019-11-22 东芝机械株式会社 导电性复合材料的制造方法
CN110480863B (zh) * 2018-05-15 2023-07-28 芝浦机械株式会社 导电性复合材料的制造方法

Also Published As

Publication number Publication date
US20100255185A1 (en) 2010-10-07
WO2009071220A3 (de) 2009-08-13
JP2011505476A (ja) 2011-02-24
RU2010127735A (ru) 2012-01-20
CN101889044B (zh) 2013-01-02
DE102007058992A1 (de) 2009-06-10
EP2220147A2 (de) 2010-08-25
ATE551382T1 (de) 2012-04-15
EP2220147B1 (de) 2012-03-28
KR20100099692A (ko) 2010-09-13
WO2009071220A2 (de) 2009-06-11

Similar Documents

Publication Publication Date Title
CN101889044B (zh) 用于制备导电聚碳酸酯复合材料的方法
Kotsilkova et al. Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly (lactic) acid-based filament for 3D printing
Grady Carbon nanotube-polymer composites: manufacture, properties, and applications
CN102186927B (zh) 抗静电或导电聚氨酯,及其制备方法
Kumar et al. Nanoscale particles for polymer degradation and stabilization—trends and future perspectives
KR100991394B1 (ko) 분말 집괴로부터 나노입자, 특히 나노입자 복합체의 제조
Badamshina et al. Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application
JP2012520355A (ja) カーボンナノチューブを充填した、uv硬化性で耐摩耗性の帯電防止コーティング
ES2382135T3 (es) Copolímeros de bloque reactivos para la preparación de compuestos de túbulos inorgánicos-polímeros
US20120104329A1 (en) Method for dispersing graphite-like nanoparticles
CN104603184A (zh) 具有非常低浓度的碳纳米填料的复合材料、其制备方法和所述材料的用途
Gong et al. Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly (lactic acid)
CN101514257A (zh) 导电性树脂成型用材料
CN102348758A (zh) 填充有官能化的碳纳米管的环氧树脂的改善的机械性能
Niu et al. The structure of microencapsulated carbon microspheres and its flame retardancy in poly (ethylene terephthalate)
TW201536853A (zh) 在殼中包含低體密度碳的核殼粒子
WO2017074199A1 (en) Graphene-reinforced polymer, additive for producing graphene-reinforced polymers, process for producing graphene-reinforced polymers and the use of said additive
Chen et al. Selective laser sintering of functionalized carbon nanotubes and inorganic fullerene-like tungsten disulfide reinforced polyamide 12 nanocomposites with excellent fire safety and mechanical properties
Kashiwagi Progress in flammability studies of nanocomposites with new types of nanoparticles
Al-Zu'bi et al. Effect of incorporating carbon-and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive
Yang et al. Extremely high reinforcement of high‐density polyethylene by low loading of unzipped multi‐wall carbon nanotubes
KR20210057240A (ko) 무수당 알코올의 고체 분산체를 이용한 폴리카보네이트 복합체 및 이의 제조 방법, 및 이를 포함하는 성형품
Magniez et al. Nanocomposites of poly (m‐xylene diamide) with polyhedral oligomeric silsesquioxane, montmorillonite, and their combination: Structure and properties
Gavrila-Florescu et al. Laser-synthesized carbon nanopowders for nanoscale reinforced hybrid composites
Barick et al. Preparation, characterization, and properties of organoclay, carbon nanofiber, and carbon nanotube based thermoplastic polyurethane nanocomposites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: FUTURE CARBON GMBH

Free format text: FORMER OWNER: BAYER AG

Effective date: 20140709

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140709

Address after: Bayreuth

Patentee after: FUTURECARBON GmbH

Address before: Germany Leverkusen

Patentee before: BAYER MATERIALSCIENCE AG

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20201125