CN101849236A - 利用基因组测序诊断胎儿染色体非整倍性 - Google Patents

利用基因组测序诊断胎儿染色体非整倍性 Download PDF

Info

Publication number
CN101849236A
CN101849236A CN200880108377A CN200880108377A CN101849236A CN 101849236 A CN101849236 A CN 101849236A CN 200880108377 A CN200880108377 A CN 200880108377A CN 200880108377 A CN200880108377 A CN 200880108377A CN 101849236 A CN101849236 A CN 101849236A
Authority
CN
China
Prior art keywords
sequence
biological sample
chromosomal
nucleic acid
chromosome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880108377A
Other languages
English (en)
Inventor
卢煜明
赵慧君
陈君赐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39798126&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101849236(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chinese University of Hong Kong CUHK filed Critical Chinese University of Hong Kong CUHK
Priority to CN201710198531.XA priority Critical patent/CN107083425A/zh
Priority to CN201710197441.9A priority patent/CN107083424A/zh
Priority to CN201710103299.7A priority patent/CN106834481A/zh
Priority to CN201710089355.6A priority patent/CN106886688B/zh
Priority to CN201710089357.5A priority patent/CN106834474B/zh
Priority to CN201710089366.4A priority patent/CN106676188A/zh
Publication of CN101849236A publication Critical patent/CN101849236A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/10Ploidy or copy number detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/38Pediatrics
    • G01N2800/385Congenital anomalies
    • G01N2800/387Down syndrome; Trisomy 18; Trisomy 13
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Saccharide Compounds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明的实施方案提供了确定从孕妇获得的生物样品中是否存在胎儿染色体非整倍性的方法、***和装置。对生物样品的核酸分子进行测序,以便对基因组部分进行测序。临床相关染色体和背景染色体的各自量根据测序结果来确定。将由这些量获得的参数(如比值),与一个或多个截止值进行比较,据此确定胎儿染色体非整倍性分类是否存在。

Description

利用基因组测序诊断胎儿染色体非整倍性
优先权声明
本申请要求2007年7月23日提交的题目为“DETERMINING ANUCLEIC ACID SEQUENCE IMBALANCE(确定核酸序列失衡)”的美国临时申请第60/951438号(Attorney Docket No.016285-005200US)的优先权,并且是其正式申请,在此将该临时申请的全部内容通过引用并入并用于各种目的。
相关申请的交叉引用
本申请还涉及同时提交的题目为“DETERMINING A NUCLEICACID SEQUENCE IMBALANCE(确定核酸序列失衡)”的正式申请(Attorney Docket No.016285-005210US),在此将该申请内的全部内容通过引用并入并用于各种目的。
发明领域
本发明一般涉及通过确定不同核酸序列间的失衡来诊断检测胎儿染色体非整倍性,更具体而言,涉及经由检测母体样品(如血液)来确定21三体性(trisomy 21)(唐氏综合征)和其他染色体非整倍性。
发明背景
胎儿染色体非整倍性是由异常剂量的染色体或染色体区的存在导致的。异常剂量可以是异常地高,如在21三体性中存在额外的21号染色体或染色体区;或异常地低,如在特纳综合征中缺乏X染色体的拷贝。
胎儿染色体非整倍性如21三体性的常规产前诊断方法涉及,通过侵入性方法如羊膜穿刺或绒毛膜绒毛取样对胎儿的材料进行取样,但这造成胎儿流失(fetal loss)的有限风险。无创方法,如通过超声波扫描术或生物化学标记物的筛查,已用于在确定的侵入性诊断方法前,将孕妇进行风险分级。然而,这些筛查方法通常测量与染色体非整倍性如21三体性有关的副现象,而不是核心染色体异常,因此诊断的准确性未达最佳标准,且具有诸如受孕龄(gestational age)过度影响等的其他缺点。
1997年,在母体血浆中发现了循环的无细胞胎儿DNA,这为无创产前诊断提供了新的可能性(Lo,YMD and Chiu,RWK 2007 Nat Rev Genet 8,71-77)。尽管这种方法易于应用于伴性病症(Costa,JM et al.2002 N Engl JMed 346,1502)和某些单基因病症(Lo,YMD et al.1998 N Engl J Med 339,1734-1738)的产前诊断,但是,该方法的产前检测胎儿染色体非整倍性的应用依然代表相当大的挑战(Lo,YMD and Chiu,RWK 2007,同上)。首先,胎儿核酸和母体来源的高背景核酸共存于母体血浆中,而母体来源的高背景核酸经常干扰胎儿核酸的分析(Lo,YMD et al.1998 Am J Hum Genet62,768-775)。其次,胎儿核酸主要以无细胞的形式在母体血浆中循环,这使得难以获得胎儿基因组的基因或染色体的剂量信息。
近年来,已取得了克服这些挑战的显著发展(Benachi,A & Costa,JM2007 Lancet 369,440-442)。一种方法是,检测母体血浆中的胎儿特异性核酸,因而克服了母体背景干扰的问题(Lo,YMD and Chiu,RWK 2007,同上)。21号染色体的剂量由胎盘来源的DNA/RNA分子中多态性等位基因的比值来推断。然而,当样品中含有较低量的靶核酸时,这种方法的准确性较低,并且仅可适用于对靶多态性是杂合的胎儿,如果使用一种多态性,则该靶核酸仅是群体的一个亚群。
Dhallan等(Dhallan,R,et al.2007,同上,Dhallan,R,et al.2007 Lancet369,474-481)描述了通过向母体血浆中添加甲醛富集循环的胎儿DNA比例的替代策略。母体血浆中胎儿所提供的21号染色体序列的比例,通过评估21号染色体上单核苷酸多态性(SNP)的父本遗传的胎儿特异性等位基因与非胎儿特异性等位基因的比值来确定。同样,计算参照染色体的SNP比值。随后,通过检测21号染色体的SNP比值和参照染色体的SNP比值间的统计学显著差异来推断胎儿21号染色体的失衡,其中利用小于等于0.05的固定p值来定义显著。为了确保高度的群体覆盖度,每条染色体靶向多于500的SNP。然而,存在有关甲醛将胎儿DNA富集至高比例的效率的争论(Chung,GTY,et al.2005 Clin Chem 51,655-658),因此,该方法的再现性需要进一步评估。另外,由于每个胎儿和母亲会提供每条染色体的许多不同的SNP,所以SNP比值比较的统计学检验的效力会因情况不同而不同(Lo YMD & Chiu,RWK.2007 Lancet 369,1997)。此外,由于这些方法依赖于遗传多态性的检测,因此它们限于对这些多态性是杂合的胎儿。
利用由21三体性和整倍体胎儿获得的羊水细胞培养物中21号染色体基因座和参照基因座的聚合酶链式反应(PCR)和DNA定量,Zimmermann等(2002 Clin Chem 48,362-363)基于21三体性胎儿的羊水细胞培养物的21号染色体DNA序列增加1.5倍,能区分这两组胎儿。因为DNA模板浓度中的2倍差异仅构成了一个阈值循环(Ct)的差异,所以1.5倍的差异的区分是常规实时PCR的极限。为了实现较好程度的定量区分,需要替代策略。
已经研发了检测核酸样品中等位基因比值偏移(allelic ratio skewing)的数字PCR(Chang,HW et al.2002 J Natl Cancer Inst 94,1697-1703)。数字PCR是基于扩增的核酸分析技术,其要求将含有核酸的样品分布于大量离散的样品中,在所述离散样品中,每个样品平均含有不多于约1个靶序列。通过数字PCR,用序列特异性引物扩增特异性核酸靶标来产生特异性扩增子。在核酸分析前,确定或选择待靶向的核酸基因座和待包括于反应中的序列特异性引物的种类或组。
临床上,已经证明,数字PCR可以用于检测肿瘤DNA样品中的杂合性丢失(LOH)(Zhou,W.et al.2002 Lancet 359,219-225)。为了分析数字PCR的结果,以前的研究采用序贯概率比检验(sequential probability ratiotesting,SPRT)来将实验结果分类为表示样品中存在或不存在LOH(E1Karoui et al.2006 Stat Med 25,3124-3133)。
在以前的研究所用的方法中,由数字PCR所收集的数据的量相当低。因此,少量的数据点和典型的统计性涨落使得准确性受到损害。
因此期望具有高度敏感性和特异性的无创检测,以便分别将假阴性和假阳性减少到最低限度。然而,胎儿DNA以低的绝对浓度存在,并代表母体血浆和血清中全部DNA序列的较少部分。因此,也期望具有通过使遗传信息的量最大化以允许胎儿染色体非整倍性的无创检测的方法,所述遗传信息的量可由含有母体背景核酸的生物样品中作为较少部分存在的数量有限的胎儿核酸推断。
发明概述
本发明的实施方案提供了确定从孕妇获得的生物样品中是否存在核酸序列失衡(如染色体失衡)的方法、***和装置。利用与生物样品中其他非临床相关染色体区(背景区)有关的临床相关染色体区的量的参数,可以进行这种确定。一方面,通过对母体样品,如尿、血浆、血清和其他合适的生物样品中的核酸分子进行测序来确定染色体的量。对生物样品中的核酸分子进行测序,以便对基因组部分进行测序。为了确定与参照数量相比的变化(即失衡)是否存在,选择了一个或多个截止值(cutoff value),例如关于两个染色体区(或染色体区组)的量的比值。
根据一示例性的实施方案,分析从孕妇接收的生物样品来进行胎儿染色体非整倍性的产前诊断。生物样品包括核酸分子。对含于生物样品中的一部分核酸分子进行测序。一方面,所获得的遗传信息的量对诊断的准确性是足够的,然而并未过量,以便控制成本和所需的生物样品的输入量。
基于测序,由鉴定为来源于第一染色体的序列,确定第一染色体的第一量。由鉴定为来源于第二染色体之一的序列,确定一条或多条第二染色体的第二量。随后,将第一量和第二量的参数与一个或多个截止值进行比较。基于比较,确定对于第一染色体,是否存在胎儿染色体非整倍性的分类。测序有利于使遗传信息的量最大化,所述遗传信息的量可由数量有限的作为较少部分存在于含有母体背景核酸的生物样品中的胎儿核酸推断。
根据一示例性的实施方案,分析从孕妇接收的生物样品来实施胎儿染色体非整倍性的产前诊断。生物样品包括核酸分子。确定生物样品中胎儿DNA的百分比。基于该百分比,基于期望的准确性,计算待分析的序列的数量N。对生物样品中所含有的至少N个核酸分子进行随机测序。
基于随机测序,由鉴定为来源于第一染色体的序列,确定第一染色体的第一量。由鉴定为来源于第二染色体之一的序列,确定一条或多条第二染色体的第二量。随后,将第一量和第二量的参数,与一个或多个截止值进行比较。基于比较,确定对于第一染色体,是否存在胎儿染色体非整倍性的分类。随机测序有利于使可由数量有限的作为较少部分存在于含有母体背景核酸的样品中的胎儿核酸推断的遗传信息的量最大化。
本发明的其他实施方案涉及与本文所述方法相关的***和计算机可读介质。
参考下文详细的描述和附图,可获得对本发明的特征和优点的更好理解。
附图简述
图1是本发明实施方案的方法100的流程图,该方法100用于在从孕妇个体获得的生物样品中进行胎儿染色体非整倍性的产前诊断。
图2是本发明实施方案的方法200的流程图,该方法200用于利用随机测序进行胎儿染色体非整倍性的产前诊断。
图3A表示本发明的实施方案的,与21三体性或整倍体胎儿有关的母体血浆样品中21号染色体序列的百分比表现度(percentagerepresentation)的图表。
图3B表示本发明的实施方案的,通过大规模并行测序和微流体数字PCR(microfluidics digital PCR)所确定的母体血浆胎儿DNA分数浓度间(fractional fetal DNA concentration)的相关性。
图4A表示本发明的实施方案的,每条染色体的比对的序列百分比表现度的图表。
图4B表示图4A所示的21体情况和整倍体情况间,每条染色体的百分比表现度中的差异(%)的图表。
图5表示本发明的实施方案的,与21三体性胎儿有关的母体血浆中,21号染色体序列过度表现(over-representation)的程度和胎儿DNA分数浓度间的相关性。
图6表示根据本发明的实施方案分析的一部分人类基因组的表。T21表示从与21三体性胎儿有关的妊娠获得的样品。
图7表示本发明的实施方案的,从21三体性胎儿中区分整倍体所需的序列数量的表。
图8A表示本发明的实施方案的,与21号染色体比对的被测序的标签的前10个起始位置的表。
图8B表示本发明的实施方案的,与22号染色体比对的被测序的标签的前10个起始位置的表。
图9表示可与本发明实施方案的***和方法一起使用的示例性计算机装置的方框图。
定义
本文所用术语“生物样品”指从个体(如诸如孕妇的人)采集的含有一个或多个感兴趣的核酸分子的任何样品。
术语“核酸”或“多核苷酸”指单链或双链形式的脱氧核糖核酸(DNA)或核糖核酸(RNA)和其多聚体,除非另有限制,该术语包括含有天然核苷酸的已知类似物的核酸,所述类似物具有与参照核酸类似的结合特性,并且以与天然存在的核苷酸类似的方式代谢。除非另有说明,特定的核酸序列还隐含地包括其保守修饰的变体(如简并密码子取代)、等位基因、直系同源物(orthologs)、SNP和互补序列以及明确表示的序列。具体来说,简并密码子的取代可以通过产生如下的序列实现:其中一个或多个选择的(或全部)密码子的第三位被混合碱基和/或脱氧次黄苷残基取代(Batzeret al.,Nucleic Acid Res.19:5081(1991);Ohtsuka et al.,J.Biol.Chem.260:2605-2608(1985);以及Rossolini et al.,Mol.Cell.Probes 8:91-98(1994))。术语核酸与基因、cDNA、mRNA、小非编码RNA、微RNA(miRNA)、Piwi-相互作用RNA和基因或基因座编码的短发夹RNA(shRNA)交换地使用。
术语“基因”意指与产生多肽链有关的DNA的片段。其可以包括编码区之前和之后的区域(前导区和非转录尾区),以及单独的编码片段(外显子)间的间插序列(内含子)。
本文所用术语“反应”指与表示感兴趣的特定多核苷酸序列的存在或不存在的化学、酶促或物理作用有关的任何过程。“反应”的实例是诸如聚合酶链式反应(PCR)的扩增反应。“反应”的另一实例是通过合成或通过连接的测序反应。“信息反应”是表示一个或多个感兴趣的特定多核苷酸序列的存在的反应,并且在一种情况下,只存在一种感兴趣的序列。本文所用术语“孔(well)”指在预定位置和有限的结构中的反应,如孔形瓶、小室或PCR阵列中的室(chamber)。
本文所用术语“临床相关核酸序列”可以指对应于潜在的失衡正被检测的更大的基因组序列片段的多核苷酸序列,或指更大的基因组序列本身。一实例是21号染色体的序列。其他的实例包括18号、13号、X和Y染色体。除此以外的其他实例包括,胎儿从其父母之一或两者遗传的突变的基因序列或遗传多态性或拷贝数变异。除此以外的其他实例包括,恶性肿瘤中突变、缺失或扩增的序列,如发生了杂合性丢失或基因重复的序列。在某些实施方案中,多种临床相关核酸序列,或临床相关核酸序列等同的多种标记,可用于提供用来检测失衡的数据。例如,来自21号染色体的5个不连续序列的数据,能够以累加的方式(additivefashion)用于确定可能的21号染色体失衡,从而将所需的样品体积有效地减少至1/5。
本文所用术语“背景核酸序列”指与临床相关核酸序列的正常比值是已知的核酸序列,如1∶1的比值。作为一实例,背景核酸序列和临床相关核酸序列是来自相同染色体,由于杂合性而不同的两个等位基因。在另一实例中,背景核酸序列是与另一等位基因杂合的一等位基因,该另一等位基因是临床相关核酸序列。而且,某些背景核酸序列和临床相关核酸序列的每一种可以来自不同的个体。
本文所用术语“参照核酸序列”指每个反应的平均浓度是已知的或已经等同地测量的核酸序列。
本文所用术语“过度表现的(overrepresented)核酸序列”指两种感兴趣的序列(如临床相关序列和背景序列)中的核酸序列,该过度表现的核酸序列比生物样品中的其他序列更丰富。
本文所用术语“基于”意指“至少部分地基于”,并指确定另一值所用的一个值(或结果),如存在于方法的输入和该方法的输出的关系中的值。本文所用术语“获得”还指方法的输入和该方法的输出的关系,如该当获得是公式的计算时存在的关系。
本文所用术语“定量数据”意指,由一个或多个反应获得的并且提供一个或多个数值的数据。例如,表示特定序列的荧光标记的孔的数目是定量数据。
本文所用术语“参数”意指,表征定量数据集和/或定量数据集间数值关系的数值。例如,第一核酸序列的第一量和第二核酸序列的第二量之间的比值(或比值的函数)是参数。
本文所用术语“截止值”意指,其值用于在生物样品的两个或多个分类状态(例如患病和非患病)间进行裁定(arbitrate)的数值。例如,如果参数大于截止值,将定量数据分为第一类(例如,患病状态),或者如果该参数小于该截止值,则将定量数据分为另一类(例如,未患病状态)。
本文所用术语“失衡”意指,与参考量的任何显著偏差,其是由临床相关核酸序列的量中的至少一个截止值所定义的。例如,参考量的比值为3/5,因此如果测量的比值是1∶1,则存在失衡。
本文所用术语“染色体非整倍性”意指,染色体的定量数量与二倍体基因组的染色体数量的变化。这种变化可以是增加或丢失。该变化可以包括一个染色体的全部或染色体的区域。
本文所用术语“随机测序”意指测序,由此被测序的核酸片段在测序程序前并未特异地鉴定或靶向。不需要靶向特定基因座位的序列特异性引物。被测序的核酸池随样品的不同而不同,甚至对于相同样品随分析的不同而不同。被测序的核酸的特征仅由所产生的测序输出揭示。在本发明的某些实施方案中,用共享某些共有特征的核酸分子的特定群体富集生物样品的程序,可先于随机测序。在一实施方案中,生物样品中的每个片段都具有相等的被测序的概率。
本文所用术语“人类基因组部分(fraction of the human genome)”或“人类基因组的一部分(portion of the human genome)”意指,小于100%的人类基因组的核苷酸序列,该人类基因组由约30亿个核苷酸碱基对组成。在测序的背景下,该术语指小于1倍覆盖度的人类基因组核苷酸序列。该术语可以表示为核苷酸/碱基对的百分比或绝对值。作为用途实例,该术语可以用来表示进行的测序的实际量。实施方案可以确定获得准确的诊断的人类基因组被测序部分所需的最小值。作为另一用途实例,该术语指用来获得疾病分类的参数或量的测序数据的量。
本文所用术语“被测序的标签”意来自核酸分子的任何部分或全部的被测序的核苷酸串(string)。例如,被测序的标签可以是来自核酸片段的被测序的一短串核苷酸,位于核酸片段两端的一短串核苷酸,或存在于生物样品中的完整核酸片段的测序。核酸片段是更大的核酸分子的任何部分。片段(如基因)可以与更大核酸分子的其他部分分离地存在(即不连接)。
发明详述
本发明的实施方案提供了,确定与非患病状态相比,临床相关染色体的存在增加还是减少(患病状态)的方法、***和装置。这种确定可以通过利用与生物样品中其他非临床相关染色体区(背景区)有关的临床相关染色体区的量的参数来进行。对生物样品的核酸分子进行测序,以便对基因组部分进行测序,并可以由测序结果确定量。选择一个或多个截止值,用于确定是否存在与参照量相比的变化(即失衡),例如,关于两个染色体区(或染色体区组)的量的比值。
在参照量中所检测的变化可以是,与其他非临床相关序列相比的,与临床相关核酸序列有关的任何偏差(向上或向下)。因此,参照状态可以是任何比值或其他量(如除了1-1对应外),并且如通过一个或多个截止值所确定的,表示变化的测量状态可以是不同于参考量的任何比值或其他量。
临床相关染色体区(也称为临床相关核酸序列)和背景核酸序列,可以来自第一类型的细胞和一种或多种第二类型的细胞。例如,来自胎儿/胎盘细胞的胎儿核酸序列存在于生物样品中,如含有来自母体细胞的母体核酸序列的背景的母体血浆。在一实施方案中,至少部分地基于生物样品中第一类型细胞的百分比来确定截止值。需要指出的是,样品中胎儿序列的百分比可以通过任何胎儿来源的基因座确定,并且不限于测量临床相关核酸序列。在另一实施方案中,至少部分地基于生物样品中肿瘤序列的百分比来确定截止值,所述生物样品,如血浆、血清、唾液或尿,含有来自体内非恶性细胞的核酸序列的背景。
I.一般方法
图1是本发明实施方案的方法100的流程图,该方法100用于在从孕妇个体获得的生物样品中进行胎儿染色体非整倍性的产前诊断。
在步骤110中,接收来自孕妇的生物样品。该生物样品可以是血浆、尿、血清或任何其他合适的样品。样品含有胎儿和孕妇的核酸分子。例如,核酸分子可以是染色体的片段。
在步骤120中,对含于生物样品中的多个核酸分子的至少一部分进行测序。被测序的一部分代表人类基因组的部分。在一实施方案中,核酸分子是各自染色体的片段。可以对一端(如35个碱基对(bp))、两端或完整的片段进行测序。可以对样品中全部核酸分子进行测序,或仅对亚群进行测序。如下文更详细描述的,该亚群可以是随机选择的。
在一实施方案中,测序利用大规模并行测序进行。大规模并行测序,如可通过454平台(Roche)(Margulies,M.et al.2005 Nature 437,376-380)、Illumina基因组分析仪(Illumina Genome Analyzer)(或Solexa平台)或SOLiD System(Applied Biosystems)或Helicos真实单分子DNA测序技术(the Helicos True Single Molecule DNA sequencing technology,Harris TD etal.2008 Science,320,106-109)、Pacific Biosciences的单分子实时(SMRTM)技术和纳米孔测序(nanopore sequencing,Soni GV and Meller A.2007 ClinChem 53:1996-2001)实现,允许对分离自样品的许多核酸分子在并行方式下,以高阶多路进行测序(Dear Brief Funct Genomic Proteomic 2003;1:397-416)。这些平台的每一种可以对无性扩充的或者甚至未扩增的核酸片段的单个分子进行测序。
因为在每次运行中,由每个样品产生了数十万到数百万甚至可能数亿或数十亿的级别的大量测序读取,所以所得的测序读取形成了原始样品中核酸种类的混合物的代表性特征。例如,测序读取的单元型、转录物组(trascriptome)和甲基化特征与原始样品的这些代表性特征相似(Brenner et al Nat Biotech 2000;18:630-634;Taylor et al Cancer Res 2007;67:8511-8518)。由于从每个样品中对序列进行大量取样,相同序列的数量,如以几倍覆盖度或高冗余度由核酸池的测序所产生的相同序列的数量,也是原始样品中特定核酸种类或基因座计数的良好定量体现。
在步骤130中,基于测序(如来自测序的数据),确定第一染色体(如临床相关染色体)的第一量。第一量由鉴定为来自第一染色体的序列确定。例如,随后可用生物信息学程序将这些DNA序列中的每一个序列定位于人类基因组。有可能从随后的分析中放弃一部分此类序列,因为它们存在于人类基因组的重复区域中,或存在于经历了个体间变异(inter-individual variation)如拷贝数变异的区域中。因此,可以确定感兴趣的染色体的量或一条或多条其他染色体的量。
在步骤140中,基于测序,由鉴定为来自第二染色体之一的序列,确定一条或多条第二染色体的第二量。在一实施方案中,第二染色体是除第一染色体(即被检测的染色体)以外的所有其他染色体。在另一实施方案中,第二染色体就是单条其他染色体。
存在许多确定染色体量的方式,包括但不限于计数被测序的标签的数量、被测序的核苷酸(碱基对)的数量或来自特定染色体或染色体区的被测序的核苷酸(碱基对)的累积长度。
在另一实施方案中,可以将规则施加于测序结果来确定哪些被计数了。一方面,可以基于一部分测序输出来获得量。例如,对应于指定大小范围的核酸片段的测序输出,可以在生物信息学分析后进行选择。大小范围的实例是约<300bp、<200bp或<100bp。
在步骤150中,由第一量和第二量确定参数。参数可以是,例如,第一量与第二量的简单比值,或第一量与第二量加第一量的比值。一方面,每个量可以是一个函数或不同函数的自变量,其中,随后可以获得这些不同函数的比值。本领域技术人员应当理解不同的合适参数的数量。
在一实施方案中,潜在地与染色体非整倍性,如21号染色体或18号染色体或13号染色体的非整倍性有关的染色体的参数(如分数表现度),可以随后由生物信息学程序的结果来计算。基于所有序列的量(如包括临床相关染色体在内的所有染色体的某些测量)或染色体特定亚群的量(如只除开被检测的染色体以外的一个其他染色体)的量,可以获得分数表现度。
在步骤150中,将参数与一个或多个截止值进行比较。截止值可以由任何数量的适宜方式来确定。此类方式包括贝叶斯型似然方法(Bayesian-type likelihood method)、序贯概率比检验、假发现(falsediscovery)、置信区间、受试者工作特性(receiver operating characteristic,ROC)。这些方法和样品特异性方法应用的实例描述于同时提交的申请″DETERMINING A NUCLEIC ACID SEQUENCE IMBALANCE(确定核酸序列失衡)″(Attorney Docket No.016285-005210US)中,将该申请通过引用并入。
在一实施方案中,随后将参数(如临床相关染色体的分数表现度)与涉及正常(即整倍体)胎儿的妊娠中所建立的参照范围进行比较。可能的是,在程序的某些变体中,参照范围(即截止值)可以根据特定母体血浆样品中胎儿DNA的分数浓度(f)进行调整。如果胎儿是男性,例如利用可在Y染色体上定位的序列,可以由测序数据集来确定f值。f值也可以例如利用胎儿外遗传标记(Chan KCA et al 2006 Clin Chem 52,2211-8),或由单核苷酸多态性的分析,在单独的分析中确定。
在步骤160中,基于比较,确定对于第一染色体,是否存在胎儿染色体非整倍性的分类。在一实施方案中,分类是明确的存在(yes)或不存在(no)。在另一实施方案中,分类可以是不可分类的或不确定的。在又一个实施方案中,分类可以是例如由医生以后解释的评分。
II.测序、比对以及量的确定
如上文所述,仅对基因组的部分进行测序。一方面,甚至当以小于100%的基因组覆盖度而不是以几倍的覆盖度对样品中的核酸池进行测序时,并且在一部分所捕获的核酸分子中,大多数每个核酸种类仅测序一次。还可以定量地确定特定染色体或染色体区的剂量失衡。换言之,由样品的其他可定位的被测序的标签中的所述基因座的百分比表现度来推断染色体或染色体区的剂量失衡。
这与下述情况相反,即对相同池的核酸进行多次测序,以便获得冗余度或几倍的覆盖度,据此将每个核酸种类测序多次。在此情况下,相对于另一核酸种类的已被测序的特定核酸种类的次数,与它们在原始样品中的相对浓度相关。随着实现核酸种类准确表现度所需的覆盖度倍数的增加,测序的成本增加。
在一实例中,此类序列的一部分可以来自与非整倍性有关的染色体,如本示例性实例中的21号染色体。然而,此类测序作业(sequencingexercise)的其他序列可来自其他染色体。通过考虑与其他染色体相比的21号染色体的相对大小,可以在参照范围内,获得此类测序作业的21号染色体特异性序列的标准化频率。如果胎儿具有21三体性,则此类测序作业的获得自21号染色的标准化频率将增加,因而允许检测21三体性。标准化频率变化的程度,将依赖于分析的样品中胎儿核酸的分数浓度。
在一实施方案中,我们使用Illumina基因组分析仪,进行人类基因组DNA和人类血浆DNA样品的单末端测序。Illumina基因组分析仪可以对捕获于称为流动池(flow cell)的固体表面上的无性扩充的单个DNA分子进行测序。每个流动池具有8个泳道来用于对8个单独的样品或样品池进行测序。每个泳道能产生约200Mb的序列,其仅是人类基因组中30亿个碱基对的序列的部分。利用流动池的一条泳道,对每个基因组DNA或血浆DNA样品进行测序。将所产生的短序列标签与人类参照基因组序列进行比对,并标明染色体来源。将与每条染色体比对的单独被测序的标签的总数制成表格,并与参照人类基因组或非疾病表现样品所预期的每条染色体的相对大小进行比较。然后确定了染色体增加或丢失。
所述方法仅仅是目前所述的基因/染色体的剂量策略的一范例。可选地,可进行配对末端(paired-end)测序。计数比对的被测序的标签的数量并根据染色***置进行分类,而不是如Campbell等所述(Nat Genet 2008;40:722-729)地比较参照基因组中所预期的被测序片段的长度。通过比较标签计数与参照基因组中的预期染色体大小或非疾病表现样品的预期染色体大小来确定染色体区或全部染色体的增加或丢失。因为配对末端测序允许推断原始核酸片段的大小,因而一实例致力于计数对应于指定大小的核酸片段的被配对测序的标签的数量,所述指定大小如<300bp、<200bp或<100bp。
在另一实施方案中,在测序前,还对在运行中被测序的核酸池的部分进行次级选择(sub-select)。例如,基于杂交的技术,如寡核苷酸阵列可用来首先对来自某些染色体的核酸序列进行次级选择,所述染色体如潜在的非整倍体染色体和与检测的非整倍性无关的其他染色体。另一实例是,在测序前,对样品池的核酸序列的某些亚群进行次级选择或富集。例如,如上文所讨论的,已报道,母体血浆中胎儿DNA分子由比母体背景DNA分子短的片段组成(Chan et al Clin Chem 2004;50:88-92)。因此,例如,通过凝胶电泳或尺寸排除柱(size exclusion column)或通过基于微流体的方法(microfluidics-based approach),可以根据分子大小,利用本领域技术人员已知的一种或多种方法,对样品中的核酸序列进行分级。此外,可选地,在分析母体血浆中无细胞胎儿DNA的实例中,通过抑制母体背景的方法,如通过加入甲醛,可以富集胎儿的核酸部分(Dhallan et al JAMA2004;291:1114-9)。在一实施方案中,对核酸的预选的池的一部分或亚群进行随机测序。
同样,其他单分子测序策略也可以用于本申请中,如Roche 454平台、Applied Biosystems SOLiD平台、Helicos真实单分子DNA测序技术、Pacific Biosciences的单分子实时技术(SMRTTM)以及纳米孔测序。
III.由测序的输出确定染色体的量
大规模并行测序后,实施生物信息学分析,以便定位被测序的标签的染色体来源。该程序后,将鉴定为来自潜在的非整倍体染色体,即本研究中的21号染色体的标签,与全部被测序的标签或来自与非整倍性无关的一条或多条染色体的标签进行定量比较。将检测样品的21号染色体和其他非21号染色体的测序输出间的相互关系,与由上节所述的方法获得的截止值进行比较,以确定样品是否由与整倍体或21三体性胎儿有关的妊娠获得。
许多不同的量,包括但不限于下述可以由被测序的标签获得的量。例如,能够将和特定染色体比对的被测序的标签的数量,即绝对计数,与和其他染色体比对的被测序的标签的绝对计数进行比较。可选地,参照全部或某些其他被测序的标签,21号染色体的被测序的标签的量的分数计数(fractional count),可以与其他非非整倍体染色体的分数计数进行比较。在本实验中,因为对每个DNA片段的36bp进行了测序,因而,特定染色体的被测序的核苷酸的数量,能够容易地由被测序的标签的计数乘以36bp获得。
此外,因为利用仅能对人类基因组的部分进行测序的一个流动池,仅对每个母体血浆样品进行测序,因而,根据统计,大多数母体血浆DNA片段种类只被测序了一次,从而产生一个被测序的标签的计数。换言之,以小于1倍的覆盖度,对存在于母体血浆样品中的核酸片段进行了测序。因此,对于任何特定的染色体,被测序的核苷酸的总数,通常符合部分已被测序的所述染色体的量、比例或长度。因此,潜在的非整倍体染色体表现度的定量确定,能够参照其他染色体的同样获得的数量,由该潜在的非整倍体染色体的被测序的核苷酸的部分数量或相当的长度获得。
IV.用于测序的核酸池的富集
如上文所提到以及下节的实施例中所建立的,仅需要对一部分人类基因组进行测序来从整倍体情况区分21三体性。因此,可能并且节约成本的是,在对富集的池的部分进行随机测序前,富集待测序的核酸池。例如,母体血浆中的胎儿DNA分子由比母体背景DNA分子短的片段组成(Chan et al Clin Chem 2004;50:88-92)。因此,例如,通过凝胶电泳或尺寸排除柱或通过基于微流体的方法,根据分子大小,可以利用本领域技术人员已知的一种或多种方法对样品中的核酸序列进行分级。
此外,可选地,在分析母体血浆中无细胞胎儿DNA的实例中,胎儿核酸部分可以通过如加入甲醛的抑制母体背景的方法来富集(Dhallan etal JAMA 2004;291:1114-9)。获得自胎儿的序列的比例将在由更短的片段组成的核酸池中得以富集。根据图7,区分整倍体和21三体性情况所需的被测序的标签的数量,将随着胎儿DNA分数浓度的增加而减少。
可选地,来自潜在的非整倍体染色体和与非整倍性无关的一条或多条染色体的序列,可以通过例如寡核苷酸微阵列的杂交技术富集。核酸的富集池随后进行随机测序。这将降低测序的成本。
V.随机测序
图2是本发明实施方案的,利用随机测序进行胎儿染色体非整倍性的产前诊断的方法200的流程图。在大规模并行测序方法的一方面,可以同时产生所有染色体的代表性数据。不提前选择特定片段的来源。随机地进行测序,随后进行数据库搜索,以查明特定片段来自何处。这与扩增21号染色体的特异性片段和1号染色体的另一特异性片段的情况相反。
在步骤210中,接收来自孕妇的生物样品。在步骤220中,对于期望的准确性,计算待分析的序列数量N。在一实施方案中,首先测定生物样品中胎儿DNA的百分比。这可通过本领域技术人员已知的任何合适方式进行。测定可以是简单地读取由另一实体所测量的值。在本实施方案中,待分析的序列的数量N的计算,以百分比为基础。例如,当胎儿DNA的百分比降低时,需要分析的序列的数量将增加,而当胎儿DNA升高时,需要分析的序列的数量可以减少。数量N可以是固定数,或相对数,如百分比。在另一实施方案中,可以测序已知对准确的疾病诊断足够的数量N。即使在具有正常范围下限(lower end)的胎儿DNA浓度的妊娠中,也可以使数量N充分。
在步骤230中,对含于生物样品中的多个核酸分子中的至少N个进行随机测序。所述方法的特征是,在样品分析即测序前,待测序的核酸不是特定地确定的或靶向的。测序不需要靶向具体基因座的序列特异性引物。被测序的核酸池随样品的不同而不同,甚至对于相同样品随分析的不同而不同。此外,根据下文描述(图6),情况诊断所需的测序输出的量,能够在所检测的样品和参照群体间不同。这些方面与大多数分子诊断方法明显不同,如原位杂交中基于荧光的方法、定量荧光PCR、定量实时PCR、数字PCR、比较基因组杂交、微阵列比较基因组杂交等,其中待靶向的基因座需要在先的预确定,因此需要使用基因座特异性引物或基因座特异性探针对或组(panel)。
在一实施方案中,对存在于孕妇血浆中的DNA片段进行随机测序,并且获得原本来自胎儿或母亲的基因组序列。随机测序包括对存在于生物样品中的核酸分子的随机部分进行取样(测序)。因为测序是随机的,因而在每次分析中,可以对核酸分子(因此基因组)的不同亚群(部分)进行测序。即使当该亚群随样品或分析的不同而不同时,该实施方案依然有效。部分的实例是约0.1%、0.5%,、1%、5%、10%、20%或30%的基因组。在另一实施方案中,部分是至少这些值中的任一值。
可以通过与方法100相似的方式,进行剩余的步骤240-270。
VI.被测序的标签池的测序后选择
如下文实施例II和III所述,测序数据的亚群足以区分21三体性和非整倍体的情况。测序数据的亚群可以是一定比例的传递某些性质参数的被测序的标签。例如,在实施例II中,使用唯一与重复屏蔽的(repeat-masked)参照人类基因组比对的被测序的标签。可选地,可以对所有染色体的核酸片段的代表性池进行测序,但是致力于有关潜在的非整倍体染色体的数据和有关许多非非整倍体染色体的数据间的比较。
此外,可选地,在测序后的分析过程中,可以对测序输出的亚群进行次级选择,所述亚群包括对应于原始样品中指定大小窗口的核酸片段所产生的被测序的标签。例如,利用Illumina基因组分析仪,可使用涉及核酸片段两个末端测序的配对末端测序。随后比对每个配对末端的测序数据和参照人类基因组序列。随后可以推导跨越两个末端间的核苷酸的距离或数量。也可以推导原始核酸片段的全长。可选地,诸如454平台的测序平台,以及可能的某些单分子测序技术,能对全长的短核酸片度,如20bp进行测序。以此方式,可以由测序数据直接获知核酸片段的实际长度。
利用其他的测序平台,如Applied Biosystems SOLiD***(AppliedBiosystems SOLiD system),此类配对末端分析也是可能的。对于Roche454平台,因为与其他大规模并行测序***相比,该454平台的读取长度增加,因而确定片段的全序列的片段长度也是可能的。
将数据分析集中于对应于原始母体血浆样品中的短核酸片段的被测序的标签的亚群具有优点,因为来自胎儿的DNA序列有效地富集了数据集。这是因为,母体血浆中的胎儿DNA分子由比母体背景DNA分子短的片段组成(Chan et al Clin Chem 2004;50:88-92)。根据图7,区分整倍体和21三体性情况所需的被测序的标签的数量,将随胎儿DNA分数浓度的增加而降低。
核酸池亚群测序后的选择不同于在样品分析前实施的其他核酸富集策略,所述策略如用于选择特定大小的核酸分子的凝胶电泳或尺寸排除柱,并且所述策略需要从核酸背景池中物理分离富集的池。物理程序可以引入更多的实验步骤,因而可以招致诸如污染等问题。取决于疾病确定所需的敏感性和特异性,测序输出亚群的测序后计算机选择(post-sequencing in silico selection)也可以允许改变选择。
用于确定母体血浆样品是否获得自怀有21三体性或整倍体胎儿的孕妇的生物信息学、计算和统计方法,可以编译成计算机程序产品,用于确定测序输出的参数。计算机程序的运行包括确定潜在的非整倍体染色体的定量数量以及一个或多个其他染色体的量。确定参数,并与适当的截止值比较,以确定对于潜在的非整倍体染色体,是否存在胎儿染色体非整倍性。
实施例
为了示例而非限制所要求保护的本发明,提供了下面的实施例。
I.胎儿21三体性的产前诊断
本研究募集8名孕妇。所有的孕妇都处于妊娠首三月或妊娠中三月,并是单胎妊娠。其中的4名,每个都怀有21三体性胎儿,其他的4名,每个都怀有整倍体胎儿。从每个个体采集20毫升外周静脉血。在1600×g下离心10分钟后,收获母体血浆,并16000×g进一步离心10分钟。随后由5-10ml每个血浆样品提取DNA。通过Illumina基因组分析仪,根据制造商的说明书,将母体血浆DNA用于大规模并行测序。在测序和序列数据分析过程中,进行测序的技术人员不了解胎儿的诊断情况。
简而言之,将约50ng母体血浆DNA用于制备DNA文库。可以以较少的量如15ng或10ng母体血浆DNA开始。将母体血浆DNA片段平末端化,与Solexa连接物(adaptor)连接,并通过凝胶纯化选择150-300bp的片段。可选地,可以将平末端化和连接物连接的母体血浆DNA片段通过柱(如AMPure,Agencourt),以便除去未连接的连接物,而无需在簇产生(clusters genearation)前进行大小选择。将连接物连接的DNA与流动池的表面杂交,并利用Illumina簇站(cluster station)产生DNA簇,随后在Illumina基因组分析仪上进行36个循环的测序。通过一个流动池对每个母体血浆样品的DNA进行测序。利用Solexa Analysis Pipeline编辑测序读取。随后利用Eland应用软件,将所有的读取与重复屏蔽的参照人类基因组序列,即NCBI汇编36(NCBI 36 assembly)(GenBank登录号:NC_000001至NC_000024)进行比对。
在本研究中,为了减少数据分析的复杂性,仅进一步考虑了已经定位于重复屏蔽的人类基因组参照的唯一位置的序列。可选地,可以使用测序数据的其他亚群或整套测序数据。计数每一样品的唯一可定位(mappable)的序列的总数。将唯一地与21号染色体比对的序列的数量表示为,与每一样品的比对的序列的总计数的比例。因为母体血浆含有母体来源的背景DNA中的胎儿DNA,因此,由于在胎儿基因组中存在21号染色体的额外拷贝,21三体性胎儿提供了来自21号染色体的额外的被测序的标签。因此,在来自怀有21三体性胎儿的妊娠的母体血浆中,21号染色体序列的百分比,比来自怀有整倍体胎儿的妊娠的21号染色体的百分比高。分析不需要靶向胎儿特异性序列。分析也不需要从母体核酸中在先地以物理方式分离胎儿核酸。分析也不需要在测序后,从母体序列中区分或鉴定胎儿序列。
图3A表示8个母体血浆DNA样品中每一个的定位于21号染色体的序列的百分比(21号染色体的百分比表现度)。21三体性妊娠的母体血浆中的21号染色体的百分比表现度,明显地高于整倍体妊娠的21号染色体的百分比表现度。这些数据表明,胎儿非整倍性无创产前诊断,可以通过确定与参照群体的百分比表现度相比的非整倍体染色体的百分比表现度来实现。可选地,21号染色体的过度表现度可通过以下方法来检测:将以实验方式获得的21号染色体的百分比表现度与预期为整倍体人类基因组的21号染色体序列的百分比表现度进行比较。这可通过屏蔽或不屏蔽人类基因组中的重复区进行。
8名孕妇中的5名,每个都怀有男性胎儿。定位于Y染色体的序列可以是胎儿特异性的。将定位于Y染色体的序列的百分比用于计算原始母体血浆样品中胎儿DNA分数浓度。而且,胎儿DNA分数浓度也通过利用微流体数字PCR来确定,所述微流体数字PCR涉及锌指蛋白、X连锁的(ZFX)和锌指蛋白、Y连锁的(ZFY)共生同源基因。
图3B表示由经测序的Y染色体的百分比表现度推断的胎儿DNA分数浓度和通过ZFY/ZFX微流体数字PCR所确定的胎儿DNA分数浓度间的相关性。这两种方法确定的母体血浆中胎儿DNA分数浓度间存在正相关性。正相关性系数(r)在Pearson相关性分析中为0.917。
对于两种代表性情况,与24条染色体(22条常染色体和X染色体以及Y染色体)中的每一条比对的母体血浆DNA序列的百分比显示于图4A中。一名孕妇怀有21三体性胎儿,其他的孕妇怀有整倍体胎儿。与怀有正常胎儿的孕妇相比,定位于21号染色体的序列的百分比表现度在怀有21三体性胎儿的孕妇中更高。
上述两种情况的母体血浆DNA样品间每条染色体的百分比表现度的差异(%)显示于图4B中。特定染色体的百分比差异用下述公式计算:
百分比差异(%)=(P21-PE)/PE×100%,其中
P21=在怀有21三体性胎儿的孕妇中,与特定染色体比对的血浆DNA序列的百分比;以及
PE=在怀有整倍体胎儿的孕妇中,与特定染色体比对的血浆DNA序列的百分比。
如图4B所示,与怀有整倍体胎儿的孕妇相比,怀有21三体性胎儿的孕妇血浆中有21号染色体序列的11%的过度表现度。对于与其他染色体比对的序列,两种情况间的差异在5%以内。因为与整倍体母体血浆样品相比,21三体性中,21号染色体的百分比表现度增加了,因此,差异(%)可选地称为21号染色体过度表现的程度。除了21号染色体百分比表现度间的差异(%)和绝对差异以外,还能够计算检测样品和参照样品计数的比值,并且该比值表示与整倍体样品相比的21三体性中21号染色体过度表现的程度。
对于每个都怀有整倍体胎儿的4名孕妇,将她们平均1.345%的血浆DNA序列,与21号染色体进行比对。在怀有21三体性胎儿的4名孕妇中,她们的胎儿中有3名是男性。计算这三种情况下每一种情况的21号染色体的百分比表现度。如上文所述,根据获得自4个整倍体情况的值的21号染色体的平均百分比表现度,确定这三种21三体性情况的21号染色体百分比表现度中的差异(%)。换言之,在本计算中,将4个怀有整倍体胎儿的情况的平均值用作参照。这三种男性21三体性情况的胎儿DNA分数浓度,由他们各自的Y染色体序列的百分比表现度来推断。
21号染色体序列过度表现的程度和胎儿DNA分数浓度间的相关性显示于图5中。两个参数间存在显著的正相关性。相关性系数(r)在Pearson相关性分析中为0.898。这些结果表明,母体血浆中21号染色体序列过度表现的程度与母体血浆样品中胎儿DNA的分数浓度相关。因此,可以确定与胎儿DNA分数浓度相关的21号染色体序列过度表现程度中的截止值,以鉴定与21三体性胎儿有关的妊娠。
母体血浆中胎儿DNA分数浓度的确定,也可以独立于测序运行进行。例如,Y染色体DNA浓度可以利用实时PCR、微流体PCR或质谱法来预定。例如,我们已经在图3B中证明,基于测序运行过程中所产生的Y染色体计数所估计的胎儿DNA浓度和在测序运行外所产生的ZFY/ZFX比值间存在良好的相关性。实际上,胎儿DNA浓度可以利用除Y染色体以外的基因座确定,并适用于女性胎儿。例如,Chan等证明,在母体来源的未甲基化的RASSF1A序列的背景下,可以在孕妇血浆中检测到胎儿来源的甲基化的RASSF1A序列(Chan et al,Clin Chem2006;52:2211-8)。因此,胎儿DNA分数浓度可以用甲基化的RASSF1A序列的量除以全部RASSF1A(甲基化和未甲基化的)序列的量来确定。
对于实施我们的发明,预期母体血浆比母体血清优选,因为在血液凝固过程中,母体血细胞释放了DNA。因此,如果使用血清,则预期胎儿DNA的分数浓度在母体血浆中将比在母体血清中低。换言之,如果使用母体血清,对于待诊断的胎儿染色体非整倍性,与同时从同一孕妇获得的血浆样品相比,预期需要产生更多的序列。
此外,确定胎儿DNA的分数浓度的另一可选方式是,经由定量孕妇和胎儿间多态性差异(Dhallan R,et al.2007 Lancet,369,474-481)。本方法的实例是,靶向多态性位点,在该位点孕妇是纯合的,而胎儿是杂合的。将胎儿特异性等位基因的量与共同等位基因的量进行比较,以便确定胎儿DNA的分数浓度。
与检测染色体畸变的现有技术相反,所述现有技术包括检测和定量一个或多个特异性序列的比较基因组杂交、微阵列比较基因组杂交、定量实时聚合酶链式反应,大规模并行测序不依赖于预定或预限定的DNA序列组的检测或分析。对样品池DNA分子的随机代表性部分进行测序。在含有或不含有感兴趣的DNA种类的样品间比较与各种染色体区比对的不同的被测序的标签的数量。染色体畸变将由与样品中任何给定的染色体区比对的序列的数量(或百分比)中的差异来揭示。
在另一实施方案中,可以将血浆无细胞DNA的测序技术用于检测血浆DNA中的染色体畸变来检测具体的癌症。不同的癌症具有一套典型的染色体畸变。可以使用多个染色区中的变化(扩增和缺失)。因此,与扩充的区域比对的序列的比例将增加,而与减少的区域比对的序列的比例将减少。每条染色体的百分比表现度可以与参照基因组中每条相应染色体的大小进行比较,所述大小表示为相对于全基因组的任何给定染色体的基因组表现度的百分比。也可以使用与参照染色体直接比较或比较。
II.仅对人类基因组部分进行测序
在上文实施例I所述的实验中,仅利用一个流动池,对每个单独样品的母体血浆DNA进行测序。经测序运行,由每个检测的样品所产生的被测序的标签的数量显示于图6中。T21表示由与21三体性胎儿有关的妊娠所获得的样品。
因为对每个被测序的母体血浆DNA片段的36bp进行测序,因此,每个样品的被测序的核苷酸/碱基对的数量可以用被测序的标签的计数乘以36bp来确定,并且也显示于图6中。因为人类基因组中有大约30亿个碱基对,因此,由每个母体血浆样品所产生的测序数据的量,仅代表约10%至13%的部分。
此外,在本研究中,如上文实施例I所述,仅将唯一可定位的被测序的标签,在Eland软件的命名法中称为U0,用于证明,在来自怀有21三体性胎儿的妊娠的每一个的母体血浆样品中,存在21号染色体序列的量的过度表现。如图6所示,U0序列仅代表由每个样品所产生的全部被测序的标签的亚群,并且还代表甚至更小比例的,约2%的人类基因组。这些数据表明,仅对存在于检测的样品中的人类基因组序列的一部分进行测序,就足以实现胎儿非整倍性的诊断。
III.所需序列的数量的确定
本次分析使用来自怀有整倍体男性胎儿的孕妇的血浆DNA的测序结果。可以无错配地定位至参照人类基因组序列的被测序的标签的数量为1,990,000。从这些1,990,000标签中随机地选择序列的亚群,并在每个亚群中计算与21号染色体比对的序列的百分比。亚群中序列的数量在60,000-540,000条序列变动。对于每个亚群大小,相同数量的被测序的标签的多个亚群,通过从总的池中随机地选择被测序的标签进行编辑,直到没有其他可能的组合。随后,在每个亚群大小内,由多个亚群计算与21号染色体比对的序列的平均百分比和其标准偏差(SD)。跨越不同亚群大小比较这些数据,以便确定亚群大小对与21号染色体比对的序列的百分比分布的影响。随后根据平均值和SD,计算百分比的第5和第95个百分点。
当孕妇怀有21三体性胎儿时,由于来自胎儿的21号染色体的额外剂量,与21号染色体比对的被测序的标签在母体血浆中应当是过度表现的。过度表现的程度依赖于母体血浆DNA样品中胎儿DNA百分比,并采用下述等式计算:
PerT21=PerEu×(1+f/2),其中,
PerT21表示怀有21三体性胎儿的女性中与21号染色体比对的序列的百分比;并且
PerEu表示怀有整倍体胎儿的女性中与21号染色体比对的序列的百分比;以及
f表示母体血浆DNA中胎儿DNA的百分比。
如图7所示,与21号染色体比对的序列百分比的SD,随每个亚群中序列数量的增加而降低。因此,当每个亚群中序列的数量增加时,第5和第95个百分点间的区间降低。当整倍体和21三体性情况的5%-95%区间不重叠时,则区分这两组情况是可能的,并且准确性大于95%。
如图7所示,区分21三体性情况和整倍体情况的最小亚群大小依赖于胎儿DNA百分比。对于20%、10%和5%的胎儿DNA百分比,区分21三体性和整倍体情况的最小亚群大小分别为120,000、180,000和540,000条序列。换言之,当母体血浆DNA样品含有20%的胎儿DNA时,对于确定胎儿是否具有21三体性,需要分析的序列的数量为120,000。当胎儿DNA百分比降低为5%时,需要分析的序列的数量将增加到540,000。
因为利用36碱基对测序产生数据,因而120,000、180,000和540,000条序列分别对应于0.14%、0.22%和0.65%的人类基因组。因为据报道,从早期妊娠获得的母体血浆中较低范围的胎儿DNA浓度为约5%(Lo,YMD et al.1998 Am J Hum Genet 62,768-775),因而对约0.6%的人类基因组进行测序,可以代表,在检测任何妊娠的胎儿染色体非整倍性中,准确性至少为95%的诊断所需的测序的最小量。
IV.随机测序
为了示例被测序的DNA片段在测序运行过程中是随机选择的,我们获得了由实施例I所分析的8个母体血浆样品产生的被测序的标签。对于每个母体血浆样品,相对于参照人类基因组序列即NCBI汇编36,我们确定了每个36bp被测序的标签的起始位置,该标签唯一地与21号染色体进行了比对,而无错配。我们随后按升序对来自每个样品的比对的被测序的标签池的起始位置数进行了排序。我们对22号染色体进行了相似的分析。出于示例的目的,将每个母体血浆样品的21号染色体和22号染色体的前10个起始位置分别显示于图8A和图8B中。由这些表可知,DNA片段的被测序的池在样品间是不同的。
利用任何合适的计算机语言,如Java、C++或使用例如常规或面向对象技术的Perl,本申请所述的任何软件组件或函数可以作为由处理器运行的软件代码来执行。软件代码可在用于存储和/或传输的计算机可读介质上存储为一系列指令或命令,合适的介质包括随机存取存储器(RAM)、只读存储器(ROM)、诸如硬盘或软盘的磁性介质或诸如光盘(CD)或DVD(多功能数码光盘)的光学介质、闪存等。计算机可读介质可以是此类存储或传输装置的任何组合。
此类程序也可以利用适合通过有线、光学和/无线网络传播的载波信号来编码和传输,该网络符合包括国际互联网在内的各种协议。因此,本发明实施方案的计算机可读介质,可以利用此类程序编码的数据信号产生。用程序代码编码的计算机可读介质可以与兼容的装置组装,或由其他装置(如经由互联网下载)独立地提供。任何此类计算机可读介质可以位于一个计算机程序产品上或在该产品内(例如,硬盘或整个计算机***),并且可以存在于***或网络内不同计算机程序产品上或在该产品内内。计算机***可以包括显示屏、打印机或向用户提供本文所提到的任何结果的其他合适的显示器。
计算机***的实例显示于图9中。图9中所示的子***经由***总线975相互连接。图9显示了其他子***,如打印机974、键盘978、硬盘979、与显示适配器982连接的显示屏976等。与I/O控制器971连接的***装置和输入/输出(I/O)装置,可以通过本领域已知的任何数量的方式连接至计算机***,如串行端口977。例如,串行端口977或外部界面981可用于将计算机装置连接至诸如互联网的广域网、鼠标输入装置或扫描仪。经由***总线互联允许中央处理器973与每个子***通讯,并控制***内存972或硬盘979的指令的执行以及子***间信息的交换。***内存972和/或硬盘979是计算机可读介质的具体表现。
出于示例和描述的目的,上文呈现了本发明示例性实施方案的描述。不意图是全面的或将本发明限制为所述的准确形式,并且根据上文的教导,可以做出许多修饰和变化。为了最好地解释本发明的原理及其实践应用而选择和描述了实施方案,由此使本领域技术人员在各种实施方案中,并且通过适于所考虑的具体用途的各种修饰来最佳地利用本发明。
出于各种目的,将本文所引用的所有出版物、专利和专利申请通过引用全文并入。

Claims (23)

1.在从孕妇个体获得的生物样品中进行胎儿染色体非整倍性产前诊断的方法,其中所述生物样品包括核酸分子,所述方法包括:
接收所述生物样品;
对含于所述生物样品中的多个核酸分子的至少一部分进行测序,其中被测序的一部分代表人类基因组的部分;
基于所述测序:
由鉴定为来自第一染色体的序列确定所述第一染色体的第一量;
由鉴定为来自第二染色体之一的序列确定一条或多条所述第二染色体的第二量;
由所述第一量和所述第二量确定参数;
将所述参数与一个或多个截止值进行比较;以及
基于所述比较,确定对于所述第一染色体,是否存在胎儿染色体非整倍性的分类。
2.如权利要求1所述的方法,其中对含于所述生物样品中的所述核酸分子的一部分随机地进行所述测序。
3.如权利要求1所述的方法,其中所述生物样品是母体血液、血浆、血清、尿或唾液。
4.如权利要求1所述的方法,其中所述生物样品是宫颈灌洗液。
5.如权利要求1所述的方法,其中所述第一染色体是21号染色体、18号染色体、13号染色体、X染色体或Y染色体。
6.如权利要求1所述的方法,其中所述参数是来自所述第一染色体的序列的比值。
7.如权利要求6所述的方法,其中所述比值是由被测序的标签数量的分数计数、被测序的核苷酸的分数数量以及累积的序列的分数长度的任何一个或多个来获得的。
8.如权利要求6所述的方法,其中所述来自所述第一染色体的序列经选择,小于指定数量的碱基对。
9.如权利要求8所述的方法,其中所述指定数量的碱基对是300bp、200bp或100bp。
10.如权利要求1所述的方法,其中对于来自至少一条特定染色体的序列,已经富集所述生物样品的所述核酸分子。
11.如权利要求1所述的方法,其中对于小于300bp的序列,已经富集所述生物样品的所述核酸分子。
12.如权利要求1所述的方法,其中对于小于200bp的序列,已经富集所述生物样品的所述核酸分子。
13.如权利要求1所述的方法,其中已经利用聚合酶链式反应扩增所述生物样品的所述核酸分子。
14.如权利要求1所述的方法,其中所述被测序的一部分代表人类基因组的至少预定的部分。
15.如权利要求1所述的方法,其中所述部分代表至少0.1%的人类基因组。
16.如权利要求1所述的方法,其中所述部分代表至少0.5%的人类基因组。
17.如权利要求1所述的方法,其中至少一个所述截止值与所述生物样品中所述胎儿DNA的分数浓度有关。
18.如权利要求17所述的方法,其中所述生物样品中所述胎儿DNA的分数浓度通过Y染色体序列的比例、胎儿外遗传标记或利用单核苷酸多态性分析中的任何一个或多个确定。
19.如权利要求1所述的方法,其中截止值是在正常生物样品中建立的参照值。
20.如权利要求1所述的方法,还包括:
鉴定所述生物样品中胎儿DNA的量;以及
基于期望的准确性,计算待分析的序列的数量N。
21.计算机程序产品,包括用多个控制计算***的指令编码的计算机可读介质,以便在从孕妇个体获得的生物样品中进行胎儿染色体非整倍性产前诊断的操作,其中所述生物样品包括核酸分子,所述操作包括下述步骤:
接收含于从孕妇个体获得的所述生物样品中的所述核酸分子的一部分的随机测序的数据;其中所述生物样品包括核酸分子,其中所述一部分代表人类基因组的部分;
基于所述随机测序的数据:
由鉴定为来自第一染色体的序列确定所述第一染色体的第一量;
由鉴定为来自第二染色体之一的序列确定一条或多条所述第二染色体的第二量;
由所述第一量和所述第二量确定参数;
将所述参数与一个或多个截止值进行比较;以及
基于所述比较,确定对于所述第一染色体,是否存在胎儿染色体非整倍性的分类。
22.在从孕妇个体获得的生物样品中进行胎儿染色体非整倍性产前诊断的方法,其中所述生物样品包括核酸分子,所述方法包括:
接收所述生物样品;
基于期望的准确性,计算待分析的序列的数量N;
对含于所述生物样品的至少N个所述核酸分子进行随机测序;
基于所述随机测序:
由鉴定为来自第一染色体的序列确定所述第一染色体的第一量;
由鉴定为来自第二染色体之一的序列确定一条或多条所述第二染色体的第二量;
由所述第一量和所述第二量确定参数;
将所述参数与一个或多个截止值进行比较;以及
基于所述比较,确定对于所述第一染色体,是否存在胎儿染色体非整倍性分类。
23.如权利要求22所述的方法,还包括:
确定生物样品中胎儿DNA的百分比,其中基于期望的准确性的待分析的序列的数量N的计算以所述百分比为基础。
CN200880108377A 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性 Pending CN101849236A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201710198531.XA CN107083425A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710197441.9A CN107083424A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710103299.7A CN106834481A (zh) 2007-07-23 2008-07-23 用于分析遗传变异的方法
CN201710089355.6A CN106886688B (zh) 2007-07-23 2008-07-23 用于分析癌症相关的遗传变异的***
CN201710089357.5A CN106834474B (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710089366.4A CN106676188A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US95143807P 2007-07-23 2007-07-23
US60/951,438 2007-07-23
PCT/GB2008/002530 WO2009013496A1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing

Related Child Applications (6)

Application Number Title Priority Date Filing Date
CN201710089357.5A Division CN106834474B (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710103299.7A Division CN106834481A (zh) 2007-07-23 2008-07-23 用于分析遗传变异的方法
CN201710089355.6A Division CN106886688B (zh) 2007-07-23 2008-07-23 用于分析癌症相关的遗传变异的***
CN201710089366.4A Division CN106676188A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710197441.9A Division CN107083424A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710198531.XA Division CN107083425A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性

Publications (1)

Publication Number Publication Date
CN101849236A true CN101849236A (zh) 2010-09-29

Family

ID=39798126

Family Applications (11)

Application Number Title Priority Date Filing Date
CN201710089366.4A Pending CN106676188A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201410052009.7A Pending CN103849684A (zh) 2007-07-23 2008-07-23 利用靶向扩增和测序的非侵入性胎儿基因组筛查
CN201410051659.XA Active CN103902809B (zh) 2007-07-23 2008-07-23 利用多个标记物确定核酸序列失衡
CN200880108377A Pending CN101849236A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710103299.7A Pending CN106834481A (zh) 2007-07-23 2008-07-23 用于分析遗传变异的方法
CN201410051950.7A Active CN103853916B (zh) 2007-07-23 2008-07-23 利用部分胎儿浓度确定核酸序列失衡
CN201710197441.9A Pending CN107083424A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710089355.6A Active CN106886688B (zh) 2007-07-23 2008-07-23 用于分析癌症相关的遗传变异的***
CN201710089357.5A Active CN106834474B (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710198531.XA Pending CN107083425A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN200880108126.3A Active CN101971178B (zh) 2007-07-23 2008-07-23 核酸序列失衡的确定

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201710089366.4A Pending CN106676188A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201410052009.7A Pending CN103849684A (zh) 2007-07-23 2008-07-23 利用靶向扩增和测序的非侵入性胎儿基因组筛查
CN201410051659.XA Active CN103902809B (zh) 2007-07-23 2008-07-23 利用多个标记物确定核酸序列失衡

Family Applications After (7)

Application Number Title Priority Date Filing Date
CN201710103299.7A Pending CN106834481A (zh) 2007-07-23 2008-07-23 用于分析遗传变异的方法
CN201410051950.7A Active CN103853916B (zh) 2007-07-23 2008-07-23 利用部分胎儿浓度确定核酸序列失衡
CN201710197441.9A Pending CN107083424A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710089355.6A Active CN106886688B (zh) 2007-07-23 2008-07-23 用于分析癌症相关的遗传变异的***
CN201710089357.5A Active CN106834474B (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN201710198531.XA Pending CN107083425A (zh) 2007-07-23 2008-07-23 利用基因组测序诊断胎儿染色体非整倍性
CN200880108126.3A Active CN101971178B (zh) 2007-07-23 2008-07-23 核酸序列失衡的确定

Country Status (26)

Country Link
US (10) US8706422B2 (zh)
EP (15) EP2183692B1 (zh)
JP (16) JP5736170B2 (zh)
KR (23) KR20160113145A (zh)
CN (11) CN106676188A (zh)
AU (1) AU2008278839B2 (zh)
BR (1) BRPI0814670B8 (zh)
CA (10) CA2694007C (zh)
CY (3) CY1114773T1 (zh)
DK (6) DK2527471T3 (zh)
EA (6) EA202192446A1 (zh)
ES (6) ES2820866T3 (zh)
FI (1) FI2557517T3 (zh)
HK (5) HK1177768A1 (zh)
HR (4) HRP20230033T3 (zh)
HU (3) HUE061020T2 (zh)
IL (2) IL203311A (zh)
LT (2) LT2557520T (zh)
MX (3) MX2010000846A (zh)
NZ (2) NZ582702A (zh)
PL (4) PL2514842T3 (zh)
PT (3) PT2557517T (zh)
SG (1) SG183062A1 (zh)
SI (4) SI2557517T1 (zh)
WO (2) WO2009013496A1 (zh)
ZA (1) ZA201000524B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003447A (zh) * 2011-07-26 2013-03-27 维里纳塔健康公司 用于确定样品中存在或不存在不同非整倍性的方法
WO2013053182A1 (zh) * 2011-10-14 2013-04-18 深圳华大基因研究院 检测核酸样本中预定事件的方法和***以及捕获芯片
CN103403182A (zh) * 2010-11-30 2013-11-20 香港中文大学 与癌症相关的遗传或分子畸变的检测
WO2015006932A1 (zh) * 2013-07-17 2015-01-22 深圳华大基因科技有限公司 一种染色体非整倍性检测方法及装置
WO2015089726A1 (zh) * 2013-12-17 2015-06-25 深圳华大基因科技有限公司 一种染色体非整倍性检测方法及装置
CN104951671A (zh) * 2015-06-10 2015-09-30 东莞博奥木华基因科技有限公司 基于单样本外周血检测胎儿染色体非整倍性的装置
CN105051209A (zh) * 2013-01-10 2015-11-11 香港中文大学 母体血浆的无创性产前分子染色体核型分析
CN105074011A (zh) * 2013-06-13 2015-11-18 阿瑞奥萨诊断公司 用于非入侵性性染色体非整倍性确定的统计分析
CN105132572A (zh) * 2015-09-25 2015-12-09 邯郸市康业生物科技有限公司 一种无创产前筛查21-三体综合征试剂盒
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
US9323888B2 (en) 2010-01-19 2016-04-26 Verinata Health, Inc. Detecting and classifying copy number variation
CN105830077A (zh) * 2013-10-21 2016-08-03 维里纳塔健康公司 用于在确定拷贝数变异中改善检测的灵敏度的方法
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
US9547748B2 (en) 2011-06-29 2017-01-17 Bgi Health Service Co., Ltd. Method for determining fetal chromosomal abnormality
US9657342B2 (en) 2010-01-19 2017-05-23 Verinata Health, Inc. Sequencing methods for prenatal diagnoses
CN107208155A (zh) * 2015-01-23 2017-09-26 香港中文大学 用于检测胎儿亚染色体畸变的母体血浆的组合的基于尺寸和基于计数的分析
CN107630070A (zh) * 2012-03-08 2018-01-26 香港中文大学 母体血浆中胎儿dna分数的基于大小的分析
CN107779506A (zh) * 2012-06-21 2018-03-09 香港中文大学 用于癌症检测的血浆dna突变分析
CN108282396A (zh) * 2018-02-13 2018-07-13 湖南快乐阳光互动娱乐传媒有限公司 一种im集群中的多级消息广播方法及***
CN108377651A (zh) * 2015-06-24 2018-08-07 牛津生物动力有限公司 染色体互相作用的检测
CN109074427A (zh) * 2015-12-22 2018-12-21 普瑞梅萨有限公司 染色体异常的检测
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
CN110770341A (zh) * 2017-01-11 2020-02-07 奎斯特诊断投资有限责任公司 非整倍性无创产前筛查方法
US10586610B2 (en) 2010-01-19 2020-03-10 Verinata Health, Inc. Detecting and classifying copy number variation
CN111073962A (zh) * 2012-03-26 2020-04-28 约翰霍普金斯大学 快速非整倍性检测
US11332774B2 (en) 2010-10-26 2022-05-17 Verinata Health, Inc. Method for determining copy number variations

Families Citing this family (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024128B2 (en) * 2004-09-07 2011-09-20 Gene Security Network, Inc. System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data
EP1712639B1 (en) 2005-04-06 2008-08-27 Maurice Stroun Method for the diagnosis of cancer by detecting circulating DNA and RNA
WO2007044091A2 (en) * 2005-06-02 2007-04-19 Fluidigm Corporation Analysis using microfluidic partitioning devices
US20070027636A1 (en) * 2005-07-29 2007-02-01 Matthew Rabinowitz System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US20070178501A1 (en) * 2005-12-06 2007-08-02 Matthew Rabinowitz System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US8515679B2 (en) 2005-12-06 2013-08-20 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US8532930B2 (en) 2005-11-26 2013-09-10 Natera, Inc. Method for determining the number of copies of a chromosome in the genome of a target individual using genetic data from genetically related individuals
DK3002338T3 (da) * 2006-02-02 2019-08-05 Univ Leland Stanford Junior Ikke-invasiv føtal genetisk screening ved digital analyse
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
WO2007147074A2 (en) 2006-06-14 2007-12-21 Living Microsystems, Inc. Use of highly parallel snp genotyping for fetal diagnosis
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US20100112590A1 (en) 2007-07-23 2010-05-06 The Chinese University Of Hong Kong Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment
KR20160113145A (ko) * 2007-07-23 2016-09-28 더 차이니즈 유니버시티 오브 홍콩 핵산 서열 불균형의 결정
US7888127B2 (en) 2008-01-15 2011-02-15 Sequenom, Inc. Methods for reducing adduct formation for mass spectrometry analysis
WO2009105531A1 (en) * 2008-02-19 2009-08-27 Gene Security Network, Inc. Methods for cell genotyping
US8709726B2 (en) * 2008-03-11 2014-04-29 Sequenom, Inc. Nucleic acid-based tests for prenatal gender determination
DE102008019132A1 (de) * 2008-04-16 2009-10-22 Olympus Life Science Research Europa Gmbh Verfahren zur quantitativen Bestimmung der Kopienzahl einer vorbestimmten Sequenz in einer Probe
US20110092763A1 (en) * 2008-05-27 2011-04-21 Gene Security Network, Inc. Methods for Embryo Characterization and Comparison
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
AU2009279734A1 (en) * 2008-08-04 2010-02-11 Natera, Inc. Methods for allele calling and ploidy calling
WO2010028288A2 (en) 2008-09-05 2010-03-11 Aueon, Inc. Methods for stratifying and annotating cancer drug treatment options
US8962247B2 (en) 2008-09-16 2015-02-24 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
US8476013B2 (en) 2008-09-16 2013-07-02 Sequenom, Inc. Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
CA2737643C (en) 2008-09-20 2020-10-06 Hei-Mun Fan Noninvasive diagnosis of fetal aneuploidy by sequencing
AU2015202167B2 (en) * 2008-09-20 2017-12-21 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US8563242B2 (en) * 2009-08-11 2013-10-22 The Chinese University Of Hong Kong Method for detecting chromosomal aneuploidy
EP2854056A3 (en) 2009-09-30 2015-06-03 Natera, Inc. Methods for non-invasive pre-natal ploidy calling
EP2494065B1 (en) 2009-10-26 2015-12-23 Lifecodexx AG Means and methods for non-invasive diagnosis of chromosomal aneuploidy
WO2011053790A2 (en) * 2009-10-30 2011-05-05 Fluidigm Corporation Assay of closely linked targets in fetal diagnosis and coincidence detection assay for genetic analysis
PL3241914T3 (pl) 2009-11-05 2019-08-30 The Chinese University Of Hong Kong Analiza genomowa płodu z matczynej próbki biologicznej
MX357692B (es) 2009-11-06 2018-07-19 Univ Hong Kong Chinese Analisis genomico a base de tamaño.
GB2488289A (en) 2009-11-06 2012-08-22 Univ Leland Stanford Junior Non-invasive diagnosis of graft rejection in organ transplant patients
JP2013514079A (ja) * 2009-12-17 2013-04-25 キージーン・エン・フェー 制限酵素に基づく全ゲノムシーケンシング
CA2785020C (en) * 2009-12-22 2020-08-25 Sequenom, Inc. Processes and kits for identifying aneuploidy
CA2786564A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic dna by whole genome sequencing
AU2015203579B2 (en) * 2010-01-19 2017-12-21 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
WO2011090556A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acid in maternal samples
AU2015204302B2 (en) * 2010-01-19 2017-10-05 Verinata Health, Inc. Method for determining copy number variations
US20110312503A1 (en) 2010-01-23 2011-12-22 Artemis Health, Inc. Methods of fetal abnormality detection
WO2011092592A2 (en) * 2010-01-26 2011-08-04 Nipd Genetics Ltd Methods and compositions for noninvasive prenatal diagnosis of fetal aneuploidies
EP2534267B1 (en) * 2010-02-12 2018-04-11 Raindance Technologies, Inc. Digital analyte analysis
CN102753703B (zh) * 2010-04-23 2014-12-24 深圳华大基因健康科技有限公司 胎儿染色体非整倍性的检测方法
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
WO2013052557A2 (en) * 2011-10-03 2013-04-11 Natera, Inc. Methods for preimplantation genetic diagnosis by sequencing
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
EP2854058A3 (en) 2010-05-18 2015-10-28 Natera, Inc. Methods for non-invasive pre-natal ploidy calling
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
JP2013530727A (ja) * 2010-07-23 2013-08-01 エソテリックス ジェネティック ラボラトリーズ, エルエルシー 差次的に提示される胎児のゲノム領域もしくは母親のゲノム領域の同定およびそれらの使用
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US20140342940A1 (en) 2011-01-25 2014-11-20 Ariosa Diagnostics, Inc. Detection of Target Nucleic Acids using Hybridization
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US20120077185A1 (en) * 2010-08-06 2012-03-29 Tandem Diagnostics, Inc. Detection of genetic abnormalities and infectious disease
US11031095B2 (en) 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
US10533223B2 (en) 2010-08-06 2020-01-14 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US10167508B2 (en) 2010-08-06 2019-01-01 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US20130040375A1 (en) * 2011-08-08 2013-02-14 Tandem Diagnotics, Inc. Assay systems for genetic analysis
US8700338B2 (en) 2011-01-25 2014-04-15 Ariosa Diagnosis, Inc. Risk calculation for evaluation of fetal aneuploidy
ES2552343T3 (es) * 2010-08-13 2015-11-27 Bgi Genomics Co., Ltd. Un procedimiento para el análisis de cromosomas de células
US9309556B2 (en) 2010-09-24 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target DNA using immobilized primers
CN103534591B (zh) * 2010-10-26 2016-04-06 利兰·斯坦福青年大学托管委员会 通过测序分析进行的非侵入性胎儿遗传筛选
WO2012078792A2 (en) 2010-12-07 2012-06-14 Stanford University Non-invasive determination of fetal inheritance of parental haplotypes at the genome-wide scale
BR112013016193B1 (pt) 2010-12-22 2019-10-22 Natera Inc método ex vivo para determinar se um suposto pai é o pai biológico de um feto que está em gestação em uma gestante e relatório
AU2012204748C1 (en) 2011-01-05 2021-12-23 The Chinese University Of Hong Kong Noninvasive prenatal genotyping of fetal sex chromosomes
US20120190021A1 (en) * 2011-01-25 2012-07-26 Aria Diagnostics, Inc. Detection of genetic abnormalities
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
US8756020B2 (en) 2011-01-25 2014-06-17 Ariosa Diagnostics, Inc. Enhanced risk probabilities using biomolecule estimations
US11270781B2 (en) 2011-01-25 2022-03-08 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
US9994897B2 (en) 2013-03-08 2018-06-12 Ariosa Diagnostics, Inc. Non-invasive fetal sex determination
EP3760730A1 (en) * 2011-02-09 2021-01-06 Natera, Inc. Methods for non-invasive prenatal ploidy calling
AU2011358564B9 (en) 2011-02-09 2017-07-13 Natera, Inc Methods for non-invasive prenatal ploidy calling
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US10900080B2 (en) * 2011-02-24 2021-01-26 The Chinese University Of Hong Kong Molecular testing of multiple pregnancies
EP2689029A1 (en) * 2011-03-22 2014-01-29 Life Technologies Corporation Identification of linkage using multiplex digital pcr
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
EP2691544B1 (en) * 2011-03-30 2017-09-13 Verinata Health, Inc Method for verifying bioassay samples
RS63008B1 (sr) 2011-04-12 2022-03-31 Verinata Health Inc Rešavanje frakcija genoma koristeći brojanje polimorfizma
GB2484764B (en) 2011-04-14 2012-09-05 Verinata Health Inc Normalizing chromosomes for the determination and verification of common and rare chromosomal aneuploidies
CN103717750B (zh) 2011-04-29 2017-03-08 塞昆纳姆股份有限公司 少数核酸物质的定量
WO2012177792A2 (en) 2011-06-24 2012-12-27 Sequenom, Inc. Methods and processes for non-invasive assessment of a genetic variation
SG194959A1 (en) * 2011-06-30 2013-12-30 Univ Singapore Foetal nucleated red blood cell detection
US20130157875A1 (en) * 2011-07-20 2013-06-20 Anthony P. Shuber Methods for assessing genomic instabilities
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
WO2013040583A2 (en) * 2011-09-16 2013-03-21 Complete Genomics, Inc Determining variants in a genome of a heterogeneous sample
WO2013040773A1 (zh) * 2011-09-21 2013-03-28 深圳华大基因科技有限公司 确定单细胞染色体非整倍性的方法和***
CA2850785C (en) 2011-10-06 2022-12-13 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
ES2886508T3 (es) 2011-10-06 2021-12-20 Sequenom Inc Métodos y procedimientos para la evaluación no invasiva de variaciones genéticas
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
DK2766496T3 (en) 2011-10-11 2017-05-15 Sequenom Inc METHODS AND PROCESSES FOR NON-INVASIVE ASSESSMENT OF GENETIC VARIATIONS
US8688388B2 (en) 2011-10-11 2014-04-01 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN103946394A (zh) 2011-10-18 2014-07-23 姆提普力科姆公司 胎儿染色体非整倍性诊断
US9845552B2 (en) 2011-10-27 2017-12-19 Verinata Health, Inc. Set membership testers for aligning nucleic acid samples
EP2602733A3 (en) * 2011-12-08 2013-08-14 Koninklijke Philips Electronics N.V. Biological cell assessment using whole genome sequence and oncological therapy planning using same
CA2861856C (en) 2012-01-20 2020-06-02 Sequenom, Inc. Diagnostic processes that factor experimental conditions
WO2013131021A1 (en) 2012-03-02 2013-09-06 Sequenom Inc. Methods and processes for non-invasive assessment of genetic variations
CN104640997B (zh) * 2012-04-06 2017-12-19 香港中文大学 通过使用靶向大规模并行测序的等位基因比率分析进行的胎儿三体性的非侵入性产前诊断
WO2013159035A2 (en) * 2012-04-19 2013-10-24 Medical College Of Wisconsin, Inc. Highly sensitive surveillance using detection of cell free dna
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
DK2852680T3 (da) 2012-05-21 2020-03-16 Sequenom Inc Fremgangsmåder og processer til ikke-invasiv evaluering af genetiske variationer
US10289800B2 (en) 2012-05-21 2019-05-14 Ariosa Diagnostics, Inc. Processes for calculating phased fetal genomic sequences
WO2013177206A2 (en) 2012-05-21 2013-11-28 Fluidigm Corporation Single-particle analysis of particle populations
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
JP2015521862A (ja) * 2012-07-13 2015-08-03 セクエノム, インコーポレイテッド 非侵襲性の出生前診断に有用な母体サンプル由来の胎児核酸のメチル化に基づく富化のためのプロセスおよび組成物
CN104583421A (zh) 2012-07-19 2015-04-29 阿瑞奥萨诊断公司 遗传变体的基于多重的顺序连接的检测
DE202013012824U1 (de) 2012-09-04 2020-03-10 Guardant Health, Inc. Systeme zum Erfassen von seltenen Mutationen und einer Kopienzahlvariation
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
EP3839065A1 (en) 2012-09-20 2021-06-23 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US9732390B2 (en) 2012-09-20 2017-08-15 The Chinese University Of Hong Kong Non-invasive determination of methylome of fetus or tumor from plasma
US10706957B2 (en) 2012-09-20 2020-07-07 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US20150275300A1 (en) * 2012-09-26 2015-10-01 Agency For Science, Technology And Research Biomarkers for down syndrome prenatal diagnosis
EP2904534B1 (en) 2012-10-04 2021-12-15 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP2728014B1 (en) * 2012-10-31 2015-10-07 Genesupport SA Non-invasive method for detecting a fetal chromosomal aneuploidy
US20130309666A1 (en) 2013-01-25 2013-11-21 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN105229168B (zh) * 2013-02-20 2020-07-17 生物纳米基因有限公司 纳米流体中分子的表征
JP6525894B2 (ja) 2013-02-28 2019-06-05 ザ チャイニーズ ユニバーシティ オブ ホンコン 超並列rna配列決定による母体血漿のトランスクリプトーム解析
KR101614471B1 (ko) * 2013-02-28 2016-04-21 주식회사 테라젠이텍스 유전체 서열분석을 이용한 태아 염색체 이수성의 진단 방법 및 장치
US20130189684A1 (en) 2013-03-12 2013-07-25 Sequenom, Inc. Quantification of cell-specific nucleic acid markers
US9305756B2 (en) 2013-03-13 2016-04-05 Agena Bioscience, Inc. Preparation enhancements and methods of use for MALDI mass spectrometry
EP2971100A1 (en) 2013-03-13 2016-01-20 Sequenom, Inc. Primers for dna methylation analysis
AU2014231358A1 (en) 2013-03-15 2015-09-24 The Chinese University Of Hong Kong Determining fetal genomes for multiple fetus pregnancies
EP4187543A1 (en) 2013-04-03 2023-05-31 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20140336055A1 (en) 2013-05-07 2014-11-13 Sequenom, Inc. Genetic markers for macular degeneration disorder treatment
KR102385062B1 (ko) 2013-05-24 2022-04-12 시쿼넘, 인코포레이티드 유전적 변이의 비침습 평가를 위한 방법 및 프로세스
DK3011051T3 (en) 2013-06-21 2019-04-23 Sequenom Inc Method for non-invasive evaluation of genetic variations
US10174375B2 (en) 2013-09-20 2019-01-08 The Chinese University Of Hong Kong Sequencing analysis of circulating DNA to detect and monitor autoimmune diseases
WO2015048535A1 (en) 2013-09-27 2015-04-02 Natera, Inc. Prenatal diagnostic resting standards
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
IL295860B2 (en) * 2013-10-04 2024-01-01 Sequenom Inc Methods and processes for the non-invasive evaluation of genetic variations
EP3495496B1 (en) 2013-10-07 2020-11-25 Sequenom, Inc. Methods and processes for non-invasive assessment of chromosome alterations
SG11201604923XA (en) 2013-12-28 2016-07-28 Guardant Health Inc Methods and systems for detecting genetic variants
EP3736344A1 (en) 2014-03-13 2020-11-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP3561075A1 (en) 2014-04-21 2019-10-30 Natera, Inc. Detecting mutations in tumour biopsies and cell-free samples
RU2602366C2 (ru) * 2014-05-21 2016-11-20 Общество С Ограниченной Ответственностью "Тестген" Способ получения днк-праймеров и зондов для малоинвазивной пренатальной пцр-диагностики трисомии 21-й хромосомы у плода по крови беременной женщины и диагностический набор для ее осуществления
KR101663171B1 (ko) * 2014-05-27 2016-10-14 이원 다이애그노믹스 게놈센타(주) 다운증후군 진단을 위한 바이오마커 및 그의 용도
KR20160003547A (ko) * 2014-07-01 2016-01-11 바이오코아 주식회사 디지털 pcr을 이용하여 임부의 혈액 또는 혈장으로부터 태아의 유전자 정보를 분석하는 방법
EP3889272A1 (en) 2014-07-18 2021-10-06 The Chinese University of Hong Kong Methylation pattern analysis of tissues in dna mixture
WO2016010401A1 (ko) * 2014-07-18 2016-01-21 에스케이텔레콘 주식회사 산모의 혈청 dna를 이용한 태아의 단일유전자 유전변이의 예측방법
KR20160010277A (ko) * 2014-07-18 2016-01-27 에스케이텔레콤 주식회사 산모의 무세포 dna의 차세대 서열분석을 통한 태아의 단일유전자 유전변이의 예측방법
US20160026759A1 (en) * 2014-07-22 2016-01-28 Yourgene Bioscience Detecting Chromosomal Aneuploidy
WO2016015058A2 (en) 2014-07-25 2016-01-28 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free dna, and methods of identifying a disease or disorder using same
US20160034640A1 (en) 2014-07-30 2016-02-04 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN107750277B (zh) 2014-12-12 2021-11-09 维里纳塔健康股份有限公司 使用无细胞dna片段大小来确定拷贝数变化
US10364467B2 (en) * 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
CN107771221B (zh) * 2015-02-10 2021-11-02 香港中文大学 用于癌症筛查和胎儿分析的突变检测
CN104789466B (zh) * 2015-05-06 2018-03-13 安诺优达基因科技(北京)有限公司 检测染色体非整倍性的试剂盒和装置
CN104789686B (zh) * 2015-05-06 2018-09-07 浙江安诺优达生物科技有限公司 检测染色体非整倍性的试剂盒和装置
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US10395759B2 (en) 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
US11111538B2 (en) 2015-05-22 2021-09-07 Nipd Genetics Public Company Ltd Multiplexed parallel analysis of targeted genomic regions for non-invasive prenatal testing
AU2016293025A1 (en) 2015-07-13 2017-11-02 Agilent Technologies Belgium Nv System and methodology for the analysis of genomic data obtained from a subject
EP3118323A1 (en) 2015-07-13 2017-01-18 Cartagenia N.V. System and methodology for the analysis of genomic data obtained from a subject
HUE059407T2 (hu) 2015-07-20 2022-11-28 Univ Hong Kong Chinese Szövetekben lévõ haplotípusok metilációs mintázatelemzése DNS-keverékekben
HUE064231T2 (hu) 2015-07-23 2024-02-28 Univ Hong Kong Chinese Sejtmentes DNS fragmentációs mintázatának elemzése
US11319586B2 (en) 2015-08-12 2022-05-03 The Chinese University Of Hong Kong Single-molecule sequencing of plasma DNA
AU2016321204B2 (en) 2015-09-08 2022-12-01 Cold Spring Harbor Laboratory Genetic copy number determination using high throughput multiplex sequencing of smashed nucleotides
WO2017049180A1 (en) 2015-09-18 2017-03-23 Agena Bioscience, Inc. Methods and compositions for the quantitation of mitochondrial nucleic acid
WO2017051996A1 (ko) * 2015-09-24 2017-03-30 에스케이텔레콤 주식회사 비침습적 태아 염색체 이수성 판별 방법
KR101848438B1 (ko) * 2015-10-29 2018-04-13 바이오코아 주식회사 디지털 pcr을 이용한 산전진단 방법
WO2017106768A1 (en) 2015-12-17 2017-06-22 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
KR101817180B1 (ko) * 2016-01-20 2018-01-10 이원다이애그노믹스(주) 염색체 이상 판단 방법
US10095831B2 (en) 2016-02-03 2018-10-09 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
KR101879329B1 (ko) * 2016-06-13 2018-07-17 충북대학교 산학협력단 유전자 차별 발현 분석을 위한 RNA-seq 발현량 데이터 시뮬레이션 방법 및 이를 기록한 기록매체
WO2018022890A1 (en) 2016-07-27 2018-02-01 Sequenom, Inc. Genetic copy number alteration classifications
CA3037366A1 (en) 2016-09-29 2018-04-05 Myriad Women's Health, Inc. Noninvasive prenatal screening using dynamic iterative depth optimization
CA3126055A1 (en) 2016-09-30 2018-04-05 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
WO2018081130A1 (en) 2016-10-24 2018-05-03 The Chinese University Of Hong Kong Methods and systems for tumor detection
EP3548632A4 (en) 2016-11-30 2020-06-24 The Chinese University Of Hong Kong ANALYSIS OF CELLULAR DNA IN URINE AND OTHER SAMPLES
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
JP7237003B2 (ja) 2017-01-24 2023-03-10 セクエノム, インコーポレイテッド 遺伝子片の評価のための方法およびプロセス
TW202348802A (zh) 2017-01-25 2023-12-16 香港中文大學 使用核酸片段之診斷應用
CA3049139A1 (en) 2017-02-21 2018-08-30 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
CA3067637A1 (en) 2017-06-20 2018-12-27 The Medical College Of Wisconsin, Inc. Assessing transplant complication risk with total cell-free dna
LT3658689T (lt) 2017-07-26 2021-06-25 Trisomytest, S.R.O. Neinvazinis prenatalinis vaisiaus chromosomos aneuploidijos nustatymo būdas iš motinos kraujo remiantis bajeso tinklu
EP3662479A1 (en) 2017-08-04 2020-06-10 Trisomytest, s.r.o. A method for non-invasive prenatal detection of fetal sex chromosomal abnormalities and fetal sex determination for singleton and twin pregnancies
WO2019028462A1 (en) 2017-08-04 2019-02-07 Billiontoone, Inc. TARGET-ASSOCIATED MOLECULES FOR CHARACTERIZATION ASSOCIATED WITH BIOLOGICAL TARGETS
US11519024B2 (en) 2017-08-04 2022-12-06 Billiontoone, Inc. Homologous genomic regions for characterization associated with biological targets
SK862017A3 (sk) 2017-08-24 2020-05-04 Grendar Marian Doc Mgr Phd Spôsob použitia fetálnej frakcie a chromozómovej reprezentácie pri určovaní aneuploidného stavu v neinvazívnom prenatálnom testovaní
WO2019043656A1 (en) * 2017-09-01 2019-03-07 Genus Plc METHODS AND SYSTEMS FOR ASSESSING AND / OR QUANTIFYING POPULATIONS OF SPERMATOZOIDS WITH SEXUAL ASYMMETRY
JP2021500883A (ja) 2017-10-27 2021-01-14 ジュノ ダイアグノスティックス,インク. 超微量リキッドバイオプシーのためのデバイス、システム、および方法
US11168356B2 (en) 2017-11-02 2021-11-09 The Chinese University Of Hong Kong Using nucleic acid size range for noninvasive cancer detection
CN109979529B (zh) * 2017-12-28 2021-01-08 北京安诺优达医学检验实验室有限公司 Cnv检测装置
CA3087046A1 (en) 2018-01-05 2019-07-11 Billiontoone, Inc. Quality control templates for ensuring validity of sequencing-based assays
KR102099151B1 (ko) * 2018-03-05 2020-04-10 서강대학교산학협력단 마이크로웰 어레이를 이용한 dPCR 분석방법 및 분석장치
AU2019247652A1 (en) 2018-04-02 2020-10-15 Enumera Molecular, Inc. Methods, systems, and compositions for counting nucleic acid molecules
EP3775278A1 (en) 2018-04-02 2021-02-17 Illumina Inc. Compositions and methods for making controls for sequence-based genetic testing
KR20210014111A (ko) * 2018-05-03 2021-02-08 더 차이니즈 유니버시티 오브 홍콩 세포-무함유 혼합물의 특성을 측정하기 위한 크기-태깅된 바람직한 말단 및 배향-인지 분석
TWI822789B (zh) 2018-06-01 2023-11-21 美商格瑞爾有限責任公司 用於資料分類之卷積神經網路系統及方法
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
WO2020096691A2 (en) * 2018-09-04 2020-05-14 Guardant Health, Inc. Methods and systems for detecting allelic imbalance in cell-free nucleic acid samples
EP3847280A1 (en) 2018-09-07 2021-07-14 Sequenom, Inc. Methods, and systems to detect transplant rejection
DE112019005108T5 (de) 2018-10-12 2021-07-15 Nantomics, Llc Pränatale Reinheitsbeurteilungen mit Bambam
SG11202103486YA (en) * 2018-10-31 2021-05-28 Guardant Health Inc Methods, compositions and systems for calibrating epigenetic partitioning assays
CN109545379B (zh) * 2018-12-05 2021-11-09 易必祥 基于基因大数据的治疗***
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
JP2020108548A (ja) * 2019-01-04 2020-07-16 株式会社大一商会 遊技機
JP6783437B2 (ja) * 2019-01-04 2020-11-11 株式会社大一商会 遊技機
CN113661249A (zh) 2019-01-31 2021-11-16 夸登特健康公司 用于分离无细胞dna的组合物和方法
US20220093208A1 (en) 2019-02-19 2022-03-24 Sequenom, Inc. Compositions, methods, and systems to detect hematopoietic stem cell transplantation status
KR20200109544A (ko) * 2019-03-13 2020-09-23 울산대학교 산학협력단 공통 유전자 추출에 의한 다중 암 분류 방법
EP3947717A4 (en) 2019-03-25 2022-12-28 The Chinese University Of Hong Kong DETERMINATION OF LINEAR AND ROUND SHAPES OF CIRCULATION NUCLEIC ACIDS
EP3947718A4 (en) 2019-04-02 2022-12-21 Enumera Molecular, Inc. METHODS, SYSTEMS AND COMPOSITIONS FOR COUNTING NUCLEIC ACID MOLECULES
US11931674B2 (en) 2019-04-04 2024-03-19 Natera, Inc. Materials and methods for processing blood samples
RU2717023C1 (ru) * 2019-04-24 2020-03-17 Общество с ограниченной ответственностью "ГЕНОТЕК ИТ" Способ определения кариотипа плода беременной женщины на основании секвенирования гибридных прочтений, состоящих из коротких фрагментов внеклеточной ДНК
TWI724710B (zh) * 2019-08-16 2021-04-11 財團法人工業技術研究院 建構數位化疾病模組的方法及裝置
CN116694746A (zh) 2019-08-16 2023-09-05 香港中文大学 测定核酸的碱基修饰
EP4041307A4 (en) * 2019-09-30 2023-10-18 Myome, Inc. POLYGENIC RISK SCORE FOR IN VITRO FERTILIZATION
CN114585749A (zh) * 2019-10-16 2022-06-03 斯蒂拉科技公司 核酸序列浓度的确定
WO2021137770A1 (en) 2019-12-30 2021-07-08 Geneton S.R.O. Method for fetal fraction estimation based on detection and interpretation of single nucleotide variants
EP4087942A4 (en) * 2020-01-08 2024-01-24 The Chinese University Of Hong Kong TYPES OF BITERMINAL DNA FRAGMENTS IN CELL SAMPLES AND THEIR USES
US11475981B2 (en) 2020-02-18 2022-10-18 Tempus Labs, Inc. Methods and systems for dynamic variant thresholding in a liquid biopsy assay
US11211147B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing
US11211144B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Methods and systems for refining copy number variation in a liquid biopsy assay
CA3173571A1 (en) 2020-02-28 2021-09-02 Laboratory Corporation Of America Holdings Compositions, methods, and systems for paternity determination
JP7424476B2 (ja) 2020-05-11 2024-01-30 日本電気株式会社 判定装置、判定方法およびプログラム
WO2021229654A1 (ja) * 2020-05-11 2021-11-18 日本電気株式会社 判定装置、判定方法および記録媒体
WO2021237105A1 (en) * 2020-05-22 2021-11-25 Invitae Corporation Methods for determining a genetic variation
CN114645080A (zh) * 2020-12-21 2022-06-21 高嵩 一种利用多态性位点和靶位点测序检测胎儿遗传变异的方法
WO2022246291A1 (en) * 2021-05-21 2022-11-24 Invitae Corporation Methods for determining a genetic variation
CN113981062B (zh) * 2021-10-14 2024-02-20 武汉蓝沙医学检验实验室有限公司 以非生父和母亲dna评估胎儿dna浓度的方法及应用
WO2024058850A1 (en) * 2022-09-16 2024-03-21 Myriad Women's Health, Inc. Rna-facs for rare cell isolation and detection of genetic variants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209299A1 (en) * 2003-03-07 2004-10-21 Rubicon Genomics, Inc. In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA
US20050221341A1 (en) * 2003-10-22 2005-10-06 Shimkets Richard A Sequence-based karyotyping

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641628A (en) * 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
WO1993007296A1 (en) * 1991-10-03 1993-04-15 Indiana University Foundation Method for screening for alzheimer's disease
US6100029A (en) * 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
US20010051341A1 (en) * 1997-03-04 2001-12-13 Isis Innovation Limited Non-invasive prenatal diagnosis
GB9704444D0 (en) * 1997-03-04 1997-04-23 Isis Innovation Non-invasive prenatal diagnosis
US6143496A (en) * 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US6558901B1 (en) * 1997-05-02 2003-05-06 Biomerieux Vitek Nucleic acid assays
US6566101B1 (en) * 1997-06-16 2003-05-20 Anthony P. Shuber Primer extension methods for detecting nucleic acids
US20030022207A1 (en) 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
WO2000050642A1 (en) * 1999-02-23 2000-08-31 Caliper Technologies Corp. Sequencing by incorporation
AUPQ008799A0 (en) * 1999-04-30 1999-05-27 Tillett, Daniel Genome sequencing
US6818395B1 (en) * 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6440706B1 (en) * 1999-08-02 2002-08-27 Johns Hopkins University Digital amplification
EP2088209B1 (en) * 1999-10-13 2017-05-31 Sequenom, Inc. Methods for generating databases for identifying polymorphic genetic markers
GB0009784D0 (en) * 2000-04-20 2000-06-07 Simeg Limited Methods for clinical diagnosis
GB0016742D0 (en) * 2000-07-10 2000-08-30 Simeg Limited Diagnostic method
US6664056B2 (en) * 2000-10-17 2003-12-16 The Chinese University Of Hong Kong Non-invasive prenatal monitoring
US8898021B2 (en) * 2001-02-02 2014-11-25 Mark W. Perlin Method and system for DNA mixture analysis
US20020164816A1 (en) * 2001-04-06 2002-11-07 California Institute Of Technology Microfluidic sample separation device
US6960437B2 (en) * 2001-04-06 2005-11-01 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US7118907B2 (en) * 2001-06-06 2006-10-10 Li-Cor, Inc. Single molecule detection systems and methods
US20050037388A1 (en) * 2001-06-22 2005-02-17 University Of Geneva Method for detecting diseases caused by chromosomal imbalances
US6927028B2 (en) * 2001-08-31 2005-08-09 Chinese University Of Hong Kong Non-invasive methods for detecting non-host DNA in a host using epigenetic differences between the host and non-host DNA
GT200200183A (es) * 2001-09-28 2003-05-23 Procedimiento para preparar derivados de heterocicloalquilsulfonil pirazol
DK1448205T3 (da) 2001-10-05 2011-12-12 Zalicus Inc Kombinationer til behandling af immunoinflammatoriske sygdomme
EP1456648B8 (en) * 2001-11-20 2009-07-08 EXACT Sciences Corporation Automated sample preparation methods and devices
US7118910B2 (en) 2001-11-30 2006-10-10 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20030180765A1 (en) 2002-02-01 2003-09-25 The Johns Hopkins University Digital amplification for detection of mismatch repair deficient tumor cells
KR20040102024A (ko) 2002-03-01 2004-12-03 라브겐, 인코퍼레이티드 유전적 장애의 검출 방법
US6977162B2 (en) * 2002-03-01 2005-12-20 Ravgen, Inc. Rapid analysis of variations in a genome
US7727720B2 (en) 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US20070178478A1 (en) * 2002-05-08 2007-08-02 Dhallan Ravinder S Methods for detection of genetic disorders
US7442506B2 (en) * 2002-05-08 2008-10-28 Ravgen, Inc. Methods for detection of genetic disorders
KR100500697B1 (ko) 2002-10-21 2005-07-12 한국에너지기술연구원 다단계 열회수형 물유동층 열교환기
US7704687B2 (en) * 2002-11-15 2010-04-27 The Johns Hopkins University Digital karyotyping
CA2513292C (en) * 2003-01-17 2016-04-05 The Chinese University Of Hong Kong Circulating mrna as diagnostic markers for pregnancy-related disorders
AU2003268333A1 (en) 2003-02-28 2004-09-28 Ravgen, Inc. Methods for detection of genetic disorders
WO2004078999A1 (en) 2003-03-05 2004-09-16 Genetic Technologies Limited Identification of fetal dna and fetal cell markers in maternal plasma or serum
WO2004083816A2 (en) 2003-03-14 2004-09-30 John Wayne Cancer Institute Loss of heterozygosity of the dna markers in the 12q22-23 region
EP1615721B1 (en) * 2003-04-03 2014-06-18 Fluidigm Corporation Microfluidic devices and methods of using same
US7604965B2 (en) * 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7476363B2 (en) * 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US20050145496A1 (en) * 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US20040197832A1 (en) * 2003-04-03 2004-10-07 Mor Research Applications Ltd. Non-invasive prenatal genetic diagnosis using transcervical cells
RU2249820C1 (ru) * 2003-08-18 2005-04-10 Лактионов Павел Петрович Способ ранней диагностики заболеваний, связанных с нарушением функционирования генетического аппарата клетки
EP1664077B1 (en) 2003-09-05 2016-04-13 Trustees of Boston University Method for non-invasive prenatal diagnosis
US20050282213A1 (en) * 2003-09-22 2005-12-22 Trisogen Biotechnology Limited Partnership Methods and kits useful for detecting an alteration in a locus copy number
EP2395111B1 (en) * 2003-10-08 2015-05-13 Trustees of Boston University Methods for prenatal diagnosis of chromosomal abnormalities
ATE435301T1 (de) * 2003-10-16 2009-07-15 Sequenom Inc Nicht invasiver nachweis fötaler genetischer merkmale
US20070212689A1 (en) * 2003-10-30 2007-09-13 Bianchi Diana W Prenatal Diagnosis Using Cell-Free Fetal DNA in Amniotic Fluid
US20100216151A1 (en) * 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US20060046258A1 (en) * 2004-02-27 2006-03-02 Lapidus Stanley N Applications of single molecule sequencing
US20100216153A1 (en) * 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US7709194B2 (en) 2004-06-04 2010-05-04 The Chinese University Of Hong Kong Marker for prenatal diagnosis and monitoring
DE102004036285A1 (de) 2004-07-27 2006-02-16 Advalytix Ag Verfahren zum Bestimmen der Häufigkeit von Sequenzen einer Probe
WO2006034215A2 (en) * 2004-09-20 2006-03-30 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Multiple mode multiplex reaction quenching method
CN1779688A (zh) * 2004-11-22 2006-05-31 寰硕数码股份有限公司 交互式医疗信息***及方法
WO2006097051A1 (en) 2005-03-18 2006-09-21 The Chinese University Of Hong Kong Markers for prenatal diagnosis and monitoring
EP1859050B1 (en) * 2005-03-18 2012-10-24 The Chinese University Of Hong Kong A method for the detection of chromosomal aneuploidies
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
WO2007044091A2 (en) 2005-06-02 2007-04-19 Fluidigm Corporation Analysis using microfluidic partitioning devices
WO2007001259A1 (en) * 2005-06-16 2007-01-04 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Methods and materials for identifying polymorphic variants, diagnosing susceptibilities, and treating disease
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US20070122823A1 (en) 2005-09-01 2007-05-31 Bianchi Diana W Amniotic fluid cell-free fetal DNA fragment size pattern for prenatal diagnosis
US20070184511A1 (en) * 2005-11-18 2007-08-09 Large Scale Biology Corporation Method for Diagnosing a Person Having Sjogren's Syndrome
WO2007062164A2 (en) * 2005-11-26 2007-05-31 Gene Security Network Llc System and method for cleaning noisy genetic data and using data to make predictions
DK3002338T3 (da) * 2006-02-02 2019-08-05 Univ Leland Stanford Junior Ikke-invasiv føtal genetisk screening ved digital analyse
CA2647793C (en) 2006-02-28 2016-07-05 University Of Louisville Research Foundation Detecting fetal chromosomal abnormalities using tandem single nucleotide polymorphisms
WO2007112418A2 (en) * 2006-03-28 2007-10-04 Baylor College Of Medicine Screening for down syndrome
US8058055B2 (en) * 2006-04-07 2011-11-15 Agilent Technologies, Inc. High resolution chromosomal mapping
US7754428B2 (en) 2006-05-03 2010-07-13 The Chinese University Of Hong Kong Fetal methylation markers
US7901884B2 (en) * 2006-05-03 2011-03-08 The Chinese University Of Hong Kong Markers for prenatal diagnosis and monitoring
US20080124721A1 (en) * 2006-06-14 2008-05-29 Martin Fuchs Analysis of rare cell-enriched samples
WO2007147074A2 (en) * 2006-06-14 2007-12-21 Living Microsystems, Inc. Use of highly parallel snp genotyping for fetal diagnosis
EP2589668A1 (en) * 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
WO2009035447A1 (en) * 2006-06-14 2009-03-19 Living Microsystems, Inc. Diagnosis of fetal abnormalities by comparative genomic hybridization analysis
EP3406736B1 (en) 2006-06-14 2022-09-07 Verinata Health, Inc. Methods for the diagnosis of fetal abnormalities
US8137912B2 (en) * 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
WO2007147073A2 (en) 2006-06-14 2007-12-21 Living Microsystems, Inc. Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
JP2009540802A (ja) * 2006-06-16 2009-11-26 セクエノム, インコーポレイテッド サンプルからの核酸を増幅、検出および定量するための方法および組成物
US20080113358A1 (en) * 2006-07-28 2008-05-15 Ravi Kapur Selection of cells using biomarkers
SG177986A1 (en) * 2007-01-30 2012-02-28 Interdigital Tech Corp Implicit drx cycle length adjustment control in lte_active mode
WO2008098142A2 (en) * 2007-02-08 2008-08-14 Sequenom, Inc. Nucleic acid-based tests for rhd typing, gender determination and nucleic acid quantification
US20100094562A1 (en) * 2007-05-04 2010-04-15 Mordechai Shohat System, Method and Device for Comprehensive Individualized Genetic Information or Genetic Counseling
BRPI0811906A2 (pt) 2007-05-24 2014-11-18 Apceth Gmbh & Co Kg Composições e métodos relacionados a célula-tronco cd34
KR20160113145A (ko) 2007-07-23 2016-09-28 더 차이니즈 유니버시티 오브 홍콩 핵산 서열 불균형의 결정
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
PL2200622T5 (pl) 2007-09-19 2016-08-31 Pluristem Ltd Adherentne komórki z tkanki tłuszczowej i łożyska i ich zastosowanie w terapii
CA2737643C (en) * 2008-09-20 2020-10-06 Hei-Mun Fan Noninvasive diagnosis of fetal aneuploidy by sequencing
MX357692B (es) 2009-11-06 2018-07-19 Univ Hong Kong Chinese Analisis genomico a base de tamaño.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209299A1 (en) * 2003-03-07 2004-10-21 Rubicon Genomics, Inc. In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA
US20050221341A1 (en) * 2003-10-22 2005-10-06 Shimkets Richard A Sequence-based karyotyping

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
易萍 等: "孕妇血浆中游离胎儿DNA测定在产前诊断中的应用", 《中华妇产科杂志》 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415089B2 (en) 2010-01-19 2019-09-17 Verinata Health, Inc. Detecting and classifying copy number variation
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US10482993B2 (en) 2010-01-19 2019-11-19 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US9657342B2 (en) 2010-01-19 2017-05-23 Verinata Health, Inc. Sequencing methods for prenatal diagnoses
US11884975B2 (en) 2010-01-19 2024-01-30 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
US11875899B2 (en) 2010-01-19 2024-01-16 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US11697846B2 (en) 2010-01-19 2023-07-11 Verinata Health, Inc. Detecting and classifying copy number variation
US10941442B2 (en) 2010-01-19 2021-03-09 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
US9323888B2 (en) 2010-01-19 2016-04-26 Verinata Health, Inc. Detecting and classifying copy number variation
US10586610B2 (en) 2010-01-19 2020-03-10 Verinata Health, Inc. Detecting and classifying copy number variation
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
US11332774B2 (en) 2010-10-26 2022-05-17 Verinata Health, Inc. Method for determining copy number variations
CN105243295A (zh) * 2010-11-30 2016-01-13 香港中文大学 与癌症相关的遗传或分子畸变的检测
CN103403182B (zh) * 2010-11-30 2015-11-25 香港中文大学 与癌症相关的遗传或分子畸变的检测
TWI786520B (zh) * 2010-11-30 2022-12-11 香港中文大學 與癌症有關之基因或分子變異之檢測
US12002544B2 (en) 2010-11-30 2024-06-04 The Chinese University Of Hong Kong Determining progress of chromosomal aberrations over time
US9965585B2 (en) 2010-11-30 2018-05-08 The Chinese University Of Hong Kong Detection of genetic or molecular aberrations associated with cancer
CN103403182A (zh) * 2010-11-30 2013-11-20 香港中文大学 与癌症相关的遗传或分子畸变的检测
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
US9547748B2 (en) 2011-06-29 2017-01-17 Bgi Health Service Co., Ltd. Method for determining fetal chromosomal abnormality
CN103003447A (zh) * 2011-07-26 2013-03-27 维里纳塔健康公司 用于确定样品中存在或不存在不同非整倍性的方法
CN103003447B (zh) * 2011-07-26 2020-08-25 维里纳塔健康公司 用于确定样品中存在或不存在不同非整倍性的方法
CN105392893A (zh) * 2011-10-14 2016-03-09 深圳华大基因医学有限公司 检测核酸样本中预定事件的方法和***以及捕获芯片
WO2013053182A1 (zh) * 2011-10-14 2013-04-18 深圳华大基因研究院 检测核酸样本中预定事件的方法和***以及捕获芯片
CN107630081B (zh) * 2012-03-08 2021-03-05 香港中文大学 母体血浆中胎儿dna分数的基于大小的分析
CN107630081A (zh) * 2012-03-08 2018-01-26 香港中文大学 母体血浆中胎儿dna分数的基于大小的分析
CN107630070B (zh) * 2012-03-08 2021-04-30 香港中文大学 母体血浆中胎儿dna分数的基于大小的分析
CN107630070A (zh) * 2012-03-08 2018-01-26 香港中文大学 母体血浆中胎儿dna分数的基于大小的分析
CN111073962A (zh) * 2012-03-26 2020-04-28 约翰霍普金斯大学 快速非整倍性检测
CN107779506A (zh) * 2012-06-21 2018-03-09 香港中文大学 用于癌症检测的血浆dna突变分析
CN107779506B (zh) * 2012-06-21 2022-07-15 香港中文大学 用于癌症检测的血浆dna突变分析
CN113151474A (zh) * 2012-06-21 2021-07-23 香港中文大学 用于癌症检测的血浆dna突变分析
CN105051209A (zh) * 2013-01-10 2015-11-11 香港中文大学 母体血浆的无创性产前分子染色体核型分析
US11923046B2 (en) 2013-01-10 2024-03-05 The Chinese University Of Hong Kong Noninvasive prenatal molecular karyotyping from maternal plasma
CN112037860B (zh) * 2013-06-13 2024-02-23 豪夫迈·罗氏有限公司 用于非入侵性性染色体非整倍性确定的统计分析
CN105074011A (zh) * 2013-06-13 2015-11-18 阿瑞奥萨诊断公司 用于非入侵性性染色体非整倍性确定的统计分析
CN105074011B (zh) * 2013-06-13 2020-10-02 阿瑞奥萨诊断公司 用于非入侵性性染色体非整倍性确定的统计分析
CN112037860A (zh) * 2013-06-13 2020-12-04 阿瑞奥萨诊断公司 用于非入侵性性染色体非整倍性确定的统计分析
WO2015006932A1 (zh) * 2013-07-17 2015-01-22 深圳华大基因科技有限公司 一种染色体非整倍性检测方法及装置
CN105830077A (zh) * 2013-10-21 2016-08-03 维里纳塔健康公司 用于在确定拷贝数变异中改善检测的灵敏度的方法
CN105830077B (zh) * 2013-10-21 2019-07-09 维里纳塔健康公司 用于在确定拷贝数变异中改善检测的灵敏度的方法
WO2015089726A1 (zh) * 2013-12-17 2015-06-25 深圳华大基因科技有限公司 一种染色体非整倍性检测方法及装置
CN107208155B (zh) * 2015-01-23 2021-12-28 香港中文大学 用于检测胎儿亚染色体畸变的母体血浆的组合的基于尺寸和基于计数的分析
CN107208155A (zh) * 2015-01-23 2017-09-26 香港中文大学 用于检测胎儿亚染色体畸变的母体血浆的组合的基于尺寸和基于计数的分析
CN104951671B (zh) * 2015-06-10 2017-09-19 东莞博奥木华基因科技有限公司 基于单样本外周血检测胎儿染色体非整倍性的装置
CN104951671A (zh) * 2015-06-10 2015-09-30 东莞博奥木华基因科技有限公司 基于单样本外周血检测胎儿染色体非整倍性的装置
CN108377651A (zh) * 2015-06-24 2018-08-07 牛津生物动力有限公司 染色体互相作用的检测
CN105132572A (zh) * 2015-09-25 2015-12-09 邯郸市康业生物科技有限公司 一种无创产前筛查21-三体综合征试剂盒
CN105132572B (zh) * 2015-09-25 2018-03-02 邯郸市康业生物科技有限公司 一种无创产前筛查21‑三体综合征试剂盒
CN109074427A (zh) * 2015-12-22 2018-12-21 普瑞梅萨有限公司 染色体异常的检测
CN110770341A (zh) * 2017-01-11 2020-02-07 奎斯特诊断投资有限责任公司 非整倍性无创产前筛查方法
CN108282396A (zh) * 2018-02-13 2018-07-13 湖南快乐阳光互动娱乐传媒有限公司 一种im集群中的多级消息广播方法及***
CN108282396B (zh) * 2018-02-13 2022-02-22 湖南快乐阳光互动娱乐传媒有限公司 一种im集群中的多级消息广播方法及***

Also Published As

Publication number Publication date
US20190136323A1 (en) 2019-05-09
JP2015142588A (ja) 2015-08-06
KR102147626B1 (ko) 2020-08-24
JP7026303B2 (ja) 2022-02-28
EA017966B1 (ru) 2013-04-30
DK2557519T3 (da) 2020-09-21
KR101829565B1 (ko) 2018-03-29
CN107083425A (zh) 2017-08-22
EA201791612A2 (ru) 2017-11-30
US10208348B2 (en) 2019-02-19
PL2557517T3 (pl) 2023-03-06
CA2900927A1 (en) 2009-01-29
MX341573B (es) 2016-08-25
HRP20140009T1 (hr) 2014-03-14
HUE054639T2 (hu) 2021-09-28
EA201300072A1 (ru) 2014-11-28
SI2557520T1 (sl) 2021-08-31
JP5736170B2 (ja) 2015-06-17
AU2008278839A1 (en) 2009-01-29
CN106834474B (zh) 2019-09-24
CY1114773T1 (el) 2016-12-14
EP2514842A3 (en) 2012-12-26
ES2792802T3 (es) 2020-11-12
KR102222378B1 (ko) 2021-03-04
CA3127930A1 (en) 2009-01-29
KR20210130269A (ko) 2021-10-29
WO2009013496A1 (en) 2009-01-29
JP2022103371A (ja) 2022-07-07
KR102128960B1 (ko) 2020-07-02
SI2557517T1 (sl) 2023-03-31
PL2183693T3 (pl) 2014-03-31
EP2183692B1 (en) 2017-08-23
ES2441807T3 (es) 2014-02-06
CA3009992A1 (en) 2009-01-29
CA2900927C (en) 2018-08-14
CA3176319A1 (en) 2009-01-29
EP3770275A1 (en) 2021-01-27
JP2016185162A (ja) 2016-10-27
SI2183693T1 (sl) 2014-02-28
ES2820866T3 (es) 2021-04-22
EP2183693B2 (en) 2018-11-14
US9051616B2 (en) 2015-06-09
KR102076438B1 (ko) 2020-02-11
EP2557518B1 (en) 2017-03-15
MX346069B (es) 2017-03-06
EP2557517B1 (en) 2022-10-26
US20140045181A1 (en) 2014-02-13
JP7081829B2 (ja) 2022-06-07
HK1224033A1 (zh) 2017-08-11
CN107083424A (zh) 2017-08-22
CA3076159A1 (en) 2009-01-29
KR102516709B1 (ko) 2023-04-03
KR102060911B1 (ko) 2019-12-30
CN106886688A (zh) 2017-06-23
CA2694007C (en) 2019-02-26
SG183062A1 (en) 2012-08-30
PT2557517T (pt) 2023-01-04
EP2557520B1 (en) 2021-04-07
EP3745405A1 (en) 2020-12-02
EP2527471A3 (en) 2012-12-26
KR101829564B1 (ko) 2018-02-14
EA039167B1 (ru) 2021-12-13
EA035451B1 (ru) 2020-06-18
JP2020031663A (ja) 2020-03-05
CA3029497C (en) 2023-08-08
KR101646978B1 (ko) 2016-08-09
PL2183693T4 (pl) 2015-11-30
KR20210006468A (ko) 2021-01-18
KR102561664B1 (ko) 2023-07-28
JP7457399B2 (ja) 2024-03-28
JP2023178477A (ja) 2023-12-14
WO2009013492A1 (en) 2009-01-29
HK1144024A1 (en) 2011-01-21
US20140329696A1 (en) 2014-11-06
ES2441807T5 (es) 2019-04-25
JP2020031664A (ja) 2020-03-05
ES2571738T3 (es) 2016-05-26
JP2010534069A (ja) 2010-11-04
US20230323462A1 (en) 2023-10-12
PL2557520T3 (pl) 2021-10-11
KR20100075826A (ko) 2010-07-05
EP2514842A2 (en) 2012-10-24
EP2557518A3 (en) 2014-10-08
EA201791612A3 (ru) 2018-03-30
US20090029377A1 (en) 2009-01-29
EP3067807A1 (en) 2016-09-14
KR20230047215A (ko) 2023-04-06
DK2183693T3 (da) 2014-01-20
EP3656870A1 (en) 2020-05-27
EA035451B9 (ru) 2020-09-09
HRP20230033T3 (hr) 2023-03-03
DK2527471T3 (da) 2020-05-18
JP6522554B2 (ja) 2019-05-29
CN103902809B (zh) 2017-11-28
EP4134960A1 (en) 2023-02-15
EP2514842B1 (en) 2016-02-24
KR20200100860A (ko) 2020-08-26
JP2020115887A (ja) 2020-08-06
LT2557520T (lt) 2021-05-25
KR20210028263A (ko) 2021-03-11
KR20170127073A (ko) 2017-11-20
KR102458210B1 (ko) 2022-10-24
EP2557520A3 (en) 2015-04-29
EP2557519B1 (en) 2020-08-19
IL203311A (en) 2014-07-31
ZA201000524B (en) 2011-03-30
HUE061020T2 (hu) 2023-05-28
JP2022173465A (ja) 2022-11-18
KR20220146689A (ko) 2022-11-01
EP2183693A1 (en) 2010-05-12
US8706422B2 (en) 2014-04-22
US20200056242A1 (en) 2020-02-20
EP2527471B1 (en) 2020-03-04
BRPI0814670B8 (pt) 2021-07-27
EP2183693B1 (en) 2014-01-01
EP2557519A3 (en) 2014-07-23
US20140256560A1 (en) 2014-09-11
BRPI0814670A2 (pt) 2015-02-18
CN106676188A (zh) 2017-05-17
JP2010534068A (ja) 2010-11-04
PT2557520T (pt) 2021-05-06
JP2019000113A (ja) 2019-01-10
LT2557517T (lt) 2023-01-10
JP2019013245A (ja) 2019-01-31
JP2017148073A (ja) 2017-08-31
NZ582702A (en) 2012-07-27
IL233261A0 (en) 2014-08-31
PT2183693E (pt) 2014-01-14
DK2557517T3 (da) 2022-11-28
CY1124357T1 (el) 2022-07-22
MX2010000846A (es) 2010-04-21
US8972202B2 (en) 2015-03-03
KR20160030404A (ko) 2016-03-17
EP2557519A2 (en) 2013-02-13
JP6383837B2 (ja) 2018-08-29
KR20160113146A (ko) 2016-09-28
CN101971178B (zh) 2014-03-26
IL233261A (en) 2016-07-31
HK1182195A1 (zh) 2013-11-22
AU2008278843A1 (en) 2009-01-29
FI2557517T3 (fi) 2022-11-30
KR20220127377A (ko) 2022-09-19
EP2527471A2 (en) 2012-11-28
CY1117525T1 (el) 2017-04-26
KR20180114251A (ko) 2018-10-17
KR102197512B1 (ko) 2021-01-04
CN103853916B (zh) 2018-07-27
ES2933486T3 (es) 2023-02-09
CN103849684A (zh) 2014-06-11
EA201600280A1 (ru) 2016-07-29
HRP20140009T4 (hr) 2019-03-08
KR102112438B1 (ko) 2020-06-04
HK1177768A1 (zh) 2013-08-30
CA3076142A1 (en) 2009-01-29
KR20180121695A (ko) 2018-11-07
HRP20160493T1 (hr) 2016-07-15
KR20190143494A (ko) 2019-12-30
CN101971178A (zh) 2011-02-09
EP2557517A2 (en) 2013-02-13
EP2557518A2 (en) 2013-02-13
KR20180100713A (ko) 2018-09-11
KR20160113145A (ko) 2016-09-28
US11725245B2 (en) 2023-08-15
SI2514842T1 (sl) 2016-06-30
US20140256559A1 (en) 2014-09-11
EP2557517A3 (en) 2014-11-05
JP5519500B2 (ja) 2014-06-11
SI2183693T2 (sl) 2019-02-28
EA201201551A1 (ru) 2013-08-30
JP6695392B2 (ja) 2020-05-20
KR101896167B1 (ko) 2018-09-07
JP2014073134A (ja) 2014-04-24
AU2008278839B2 (en) 2013-04-04
EA201000231A1 (ru) 2010-06-30
CA3076159C (en) 2022-05-24
KR101972994B1 (ko) 2019-04-29
DK2514842T3 (en) 2016-05-30
PL2183693T5 (pl) 2019-04-30
JP2022040312A (ja) 2022-03-10
BRPI0814670B1 (pt) 2019-10-01
HRP20210983T1 (hr) 2021-09-17
JP6151739B2 (ja) 2017-06-21
DK2557520T3 (da) 2021-05-31
KR102339760B1 (ko) 2021-12-14
HK1199067A1 (zh) 2015-06-19
JP7381116B2 (ja) 2023-11-15
ES2869347T3 (es) 2021-10-25
EA202192446A1 (ru) 2022-01-31
JP7490219B2 (ja) 2024-05-27
PL2514842T3 (pl) 2016-08-31
EP2557520A2 (en) 2013-02-13
CN103853916A (zh) 2014-06-11
DK2183693T5 (en) 2019-02-18
EP3892736A1 (en) 2021-10-13
EP3540739A1 (en) 2019-09-18
US20090087847A1 (en) 2009-04-02
CA3009992C (en) 2021-10-19
KR20160113147A (ko) 2016-09-28
US20140329695A1 (en) 2014-11-06
KR20190114039A (ko) 2019-10-08
CN106834481A (zh) 2017-06-13
CA3076142C (en) 2023-01-03
CN106886688B (zh) 2020-07-10
CN103902809A (zh) 2014-07-02
JP6629940B2 (ja) 2020-01-15
EA028642B1 (ru) 2017-12-29
EP2183692A1 (en) 2010-05-12
KR20230117256A (ko) 2023-08-07
KR101916456B1 (ko) 2018-11-07
CA2693081A1 (en) 2009-01-29
CA3029497A1 (en) 2009-01-29
CA2693081C (en) 2016-01-26
KR20200055151A (ko) 2020-05-20
KR20160113148A (ko) 2016-09-28
CN106834474A (zh) 2017-06-13
CA3200589A1 (en) 2009-01-29
KR102443163B1 (ko) 2022-09-14
HUE030510T2 (hu) 2017-05-29
JP2024056078A (ja) 2024-04-19
KR20190114041A (ko) 2019-10-08
KR20100058503A (ko) 2010-06-03
NZ600407A (en) 2013-12-20
CA2694007A1 (en) 2009-01-29
DK2183693T4 (en) 2019-02-11
KR101966262B1 (ko) 2019-04-08

Similar Documents

Publication Publication Date Title
JP7490219B2 (ja) ゲノム配列決定を使用する胎児染色体異数性の診断
US20120208708A1 (en) Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
AU2013203077B2 (en) Diagnosing fetal chromosomal aneuploidy using genomic sequencing
AU2013200581B2 (en) Diagnosing cancer using genomic sequencing
AU2008278843B2 (en) Diagnosing fetal chromosomal aneuploidy using genomic sequencing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100929