CN101582302A - 碳纳米管/导电聚合物复合材料 - Google Patents

碳纳米管/导电聚合物复合材料 Download PDF

Info

Publication number
CN101582302A
CN101582302A CNA2008100671693A CN200810067169A CN101582302A CN 101582302 A CN101582302 A CN 101582302A CN A2008100671693 A CNA2008100671693 A CN A2008100671693A CN 200810067169 A CN200810067169 A CN 200810067169A CN 101582302 A CN101582302 A CN 101582302A
Authority
CN
China
Prior art keywords
carbon nano
tube
conducting polymer
composite material
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100671693A
Other languages
English (en)
Other versions
CN101582302B (zh
Inventor
孟垂舟
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2008100671693A priority Critical patent/CN101582302B/zh
Priority to US12/317,147 priority patent/US7972537B2/en
Priority to JP2009116798A priority patent/JP2009275225A/ja
Publication of CN101582302A publication Critical patent/CN101582302A/zh
Application granted granted Critical
Publication of CN101582302B publication Critical patent/CN101582302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种碳纳米管/导电聚合物复合材料,其包括:多个碳纳米管。其中,所述碳纳米管/导电聚合物复合材料进一步包括多个导电聚合物纤维,所述多个碳纳米管相互连接形成一网络结构,所述多个导电聚合物纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。

Description

碳纳米管/导电聚合物复合材料
技术领域
本发明涉及一种碳纳米管/聚合物复合材料,尤其涉及一种碳纳米管/导电聚合物复合材料。
背景技术
自1991年日本NEC公司的Iijima发现碳纳米管(Carbon Nanotube,CNT)以来(Iilima S.,Nature,1991,354,56-58),立即引起科学界及产业界的极大重视。碳纳米管具有优良的机械和光电性能,被认为是复合材料的理想添加物。碳纳米管/聚合物复合材料已成为世界科学研究的热点(Ajjayan P.M.,StephanO.,Colliex C.,Tranth D.Science.1994,265,1212-1215:Calvert P.,Nature,1999,399,210-211)。碳纳米管作为增强体和导电体,形成的复合材料具有抗静电,微波吸收和电磁屏蔽等性能,具有广泛的应用前景。
现有技术中的碳纳米管/导电聚合物复合材料中的碳纳米管多为棒状物,而导电聚合物以颗粒的形式分布在碳纳米管的间隙中。当所述碳纳米管/导电聚合物复合材料在应用于超级电容器、太阳能电池的电极时,其中的导电聚合物充放电时会引起得体积收缩和膨胀,而碳纳米管的中空结构可缓解由上述导电聚合物的体积收缩和膨胀引起的碳纳米管/导电聚合物复合材料的体积收缩和膨胀,而且碳纳米管的高导电性可降低导电聚合物的电阻。因此,现有技术中的碳纳米管/导电聚合物复合材料具有较好的导电性和较高的比电容量(大于200法拉/克)。然而,现有技术中的碳纳米管/导电聚合物复合材料通过采用将碳纳米管分散于硫酸及硝酸等强氧化性酸或表面活性剂中进行分散,之后再与导电聚合物的单体进行电化学反应,并最终在工作电极上得到一碳纳米管/导电聚合物复合材料的薄膜。通过强酸处理,会使得所述碳纳米管受到一定程度的破坏,而使用表面活性剂处理会使得表面活性剂在最终的碳纳米管/导电聚合物材料中不易除去。因而,经强氧化性酸或表面活性剂处理后得到的碳纳米管/导电聚合物复合材料的性能会受到影响。另外,由于碳纳米管易团聚,目前一直不能很好的分散,故,现有技术所制备得到的碳纳米管/导电聚合物复合材料中的碳纳米管间通常没有形成良好的导电网络,且有些相邻碳纳米管之间间距较大,相互间接触性较差,因而不能充分发挥碳纳米管的优良导电性及导热性能,造成所述碳纳米管/导电聚合物复合材料的内阻较大、比电容量较低。
有鉴于此,确有必要提供一种内阻较小、比电容量较大的碳纳米管/导电聚合物复合材料。
发明内容
一种碳纳米管/导电聚合物复合材料,其包括:多个碳纳米管。其中,所述碳纳米管/导电聚合物复合材料还进一步包括多个导电聚合物纤维,所述多个碳纳米管相互连接形成一网络结构,所述多个导电聚合物纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
与现有技术相比较,所述的碳纳米管/导电聚合物复合材料具有以下优点:其一,由于所述碳纳米管/导电聚合物复合材料中的碳纳米管相互连接形成一网络结构,该网络结构中的碳纳米管无序排列或有序排列,使得碳纳米管/导电聚合物复合材料的比电容量大幅度提高。克服了碳纳米管在现有技术中的碳纳米管/导电聚合物复合材料易团聚的缺点。其二,由于采用碳纳米管网络结构作为骨架,从而使得所述的碳纳米管/导电聚合物材料的内阻较小。其三,由于所述的碳纳米管网络结构具有很好的柔性,可以任意卷曲、弯折,从而所述的碳纳米管/导电聚合物复合材料也具有较好的柔性,进一步地,使用上述的碳纳米管/导电聚合物复合材料有利于使得相应地储能元件具有较好的柔性。
附图说明
图1是本技术方案第一实施例的包含无序碳纳米管的碳纳米管/导电聚合物复合材料的结构示意图。
图2是本技术方案第一实施例制备的碳纳米管/聚苯胺复合材料的扫描电镜照片。
图3是本技术方案第一实施例制备的碳纳米管/聚苯胺复合材料的充放电曲线图。
图4是本技术方案第二实施例的包含有序碳纳米管的碳纳米管/导电聚合物复合材料的结构示意图。
具体实施方式
以下将结合附图详细说明本技术方案的碳纳米管/导电聚合物复合材料。
请参阅图1,本技术方案第一实施例所提供一种碳纳米管/导电聚合物复合材料10,其包括多个碳纳米管12及多个导电聚合物纤维14。所述多个碳纳米管12相互连接形成一网络结构16,多个导电聚合物纤维14复合在所述碳纳米管12的表面或/和附着在所述碳纳米管12的管壁上。在上述的碳纳米管/导电聚合物复合材料10中,碳纳米管12形成的网络结构16起到了骨架作用,导电聚合物纤维14依附在所述的碳纳米管网络结构骨架上。进一步地,所述碳纳米管12和导电聚合物纤维14均匀分布于所述碳纳米管/导电聚合物复合材料中。
本实施例中,所述碳纳米管12形成的网络结构16为一无序排列的碳纳米管网络结构16。
所述无序排列的碳纳米管网络结构16中的碳纳米管12为无序或各向同性排列。该无序排列的碳纳米管通过范德华力相互吸引、相互缠绕、均匀分布,该各向同性排列的碳纳米管通过范德华力相互吸引且平行于碳纳米管网络结构16的表面。
所述碳纳米管12包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或几种。单壁碳纳米管的直径为0.5纳米~50纳米,双壁碳纳米管的直径为1.0纳米~50纳米,多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管的长度在100纳米到10毫米之间。
所述导电聚合物纤维14包括聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚对苯及聚对苯撑乙烯中的一种或几种。所述导电聚合物纤维14的长度在100纳米到10毫米之间,直径在30纳米到120纳米之间。所述导电聚合物纤维在所述碳纳米管/导电聚合物复合材料中的质量百分含量为20%~80%。可以理解,所述导电聚合物纤维14的长度与所述碳纳米管12的长度相当,有利于所述导电聚合物物纤维14和所述碳纳米管12相互吸附及均匀分布。
本技术方案第一实施例制备的碳纳米管/聚苯胺复合材料的扫描电镜图片如图2所示。该碳纳米管/聚苯胺复合材料采用聚苯胺纤维作为导电聚合物纤维14与无序碳纳米管网络结构16进行复合。其中,聚苯胺纤维依附在上述的无序碳纳米管网络结构上。聚苯胺纤维的直径在30纳米~120纳米之间,长度为500纳米左右。为了便于测量所述碳纳米管/聚苯胺复合材料的比电容量,将碳纳米管/聚苯胺复合材料裁剪成两个圆形的碳纳米管/聚苯胺复合材料薄片。每个碳纳米管/聚苯胺复合材料薄片的直径为13毫米、厚度为55微米、质量为3.95毫克(mg)。
用Potentiostat/Galvanostat model 1273A电化学工作站对第一实施例中包含有无序碳纳米管的碳纳米管/聚苯胺复合材料薄片进行恒流充放电测量。其中,CELGARD隔膜纸(聚乙烯薄膜)作隔膜,1mol/L(摩尔每升)的硫酸溶液作电解液,恒流电流为1mA(毫安),电压范围为0-0.6V(伏)。测量数据曲线如图3所示,从充放电部分曲线可知,所述碳纳米管/聚苯胺复合材料的放电时间大约为550s。
在对上述的碳纳米管/聚苯胺复合材料薄片的放电过程中,流过电路中的电荷总量与碳纳米管/聚苯胺复合材料上存储的电荷量相等可知:
C×ΔU=I×t    (1)
其中,C代表电路中的电容量,ΔU代表电路中的电压降,I代表上述电路中的电流,t为放电时间。每个碳纳米管/聚苯胺复合材料薄片的电容量为C′,因此,整个充电电路中的电容量为:
1 C ′ + 1 C ′ = 1 C , 故C′=2C    (2)
根据比电容的定义可知,每个碳纳米管/聚苯胺复合材料薄片的比电容量CS为:
C S = C ′ m - - - ( 3 )
其中,m为每一个碳纳米管/聚苯胺复合材料薄片的质量。
将上述的公式(1)和公式(2)分别代入公式(3)中,可得:
C S = 2 I × t m × ΔU - - - ( 4 )
本实施例中,电流I为1mA,放电时间t为550s,每个碳纳米管/聚苯胺复合材料薄片的质量m为3.95mg,施加的电压ΔU为0.6V,将上述的数据代入公式(4)计算可知,每个碳纳米管/聚苯胺复合材料薄片的比电容量CS约为464F/g(法拉每克)。
可以理解,由于聚苯胺具有的法拉第电容明显地大于碳纳米管的双电层电容,因此,所述碳纳米管/聚苯胺复合材料的比电容量随着其中的聚苯胺的质量分数的增加而增加。具体地,在本实施例中,随着聚苯胺在所述碳纳米管/聚苯胺复合材料中所占的质量分数从20%~80%增加,所得的碳纳米管/聚苯胺复合材料的比电容量也相应地在200F/g~600F/g范围内增加。
本技术方案第一实施例所获得的碳纳米管/聚苯胺复合材料的比电容量有了明显的提高。进而,所述的碳纳米管/导电聚合物复合材料可用作超级电容器、太阳能电池、燃料电池、锂离子电池等储能元件的电极材料。
请参阅图4,本技术方案第二实施例所提供的一种碳纳米管/导电聚合物复合材料20,该碳纳米管/导电聚合物复合材料20包括多个碳纳米管22及多个导电聚合物24,所述多个碳纳米管22相互连接形成一有序排列的网络结构26。所述碳纳米管/导电聚合物复合材料20与第一实施例所提供的碳纳米管/导电聚合物复合材料10结构大体相同,其不同之处在于,第二实施例中的碳纳米管/导电聚合物复合材料20包括一有序排列的碳纳米管网络结构26,该有序排列的碳纳米管网络结构26中的碳纳米管22沿一个方向或多个方向择优取向排列。导电聚合物纤维24依附在所述有序排列的碳纳米管网络结构26上。
具体地,所述有序排列的碳纳米管网络结构为一有序排列的碳纳米管层。该碳纳米管层包括至少一有序碳纳米管薄膜,该有序碳纳米管薄膜通过直接拉伸一碳纳米管阵列获得。该有序碳纳米管薄膜包括沿同一方向择优取向排列的碳纳米管。所述相邻的碳纳米管之间通过范德华力紧密结合。可以理解,所述有序碳纳米管层可以进一步包括至少两个重叠设置的有序碳纳米管薄膜。相邻的两个有序碳纳米管薄膜中的碳纳米管沿同一方向或沿不同方向排列,具体地,相邻的两个有序碳纳米管薄膜中的碳纳米管具有一交叉角度α,且0度≤α≤90度,具体可依据实际需求制备。可以理解,由于有序排列的碳纳米管层中的有序碳纳米管薄膜可重叠设置,故,上述有序碳纳米管层的厚度不限,可根据实际需要制成具有任意厚度的有序排列的碳纳米管层。
本技术方案实施例所述的碳纳米管/导电聚合物复合材料具有以下优点:其一,由于所述碳纳米管/导电聚合物复合材料中的碳纳米管相互连接形成一网络结构,该网络结构中的碳纳米管无序排列或有序排列,使得碳纳米管/导电聚合物复合材料的比电容量大幅度提高。克服了碳纳米管在现有技术中的碳纳米管/导电聚合物复合材料易团聚的缺点。其二,由于采用碳纳米管网络结构作为骨架,从而使得所述的碳纳米管/导电聚合物材料的内阻较小。其三,由于所述的碳纳米管网络结构具有很好的柔性,可以任意卷曲、弯折,从而所述的碳纳米管/导电聚合物复合材料也具有较好的柔性,进一步地,使用上述的碳纳米管/导电聚合物复合材料有利于使得相应地储能元件具有较好的柔性。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (11)

1.一种碳纳米管/导电聚合物复合材料,其包括:多个碳纳米管,其特征在于,该碳纳米管/导电聚合物复合材料进一步包括多个导电聚合物纤维,所述多个碳纳米管相互连接形成一网络结构,所述多个导电聚合物纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
2.如权利要求1所述的碳纳米管/导电聚合物复合材料,其特征在于,所述的网络结构包括无序排列的碳纳米管网络结构或有序排列的碳纳米管网络结构。
3.如权利要求2所述的碳纳米管/导电聚合物复合材料,其特征在于,所述无序排列的网络结构包括多个无序或各向同性排列的碳纳米管,该无序排列的碳纳米管通过范德华力相互吸引、相互缠绕、均匀分布,该各向同性排列的多个碳纳米管通过范德华力相互吸引且平行于碳纳米管网络结构的表面。
4.如权利要求2所述的碳纳米管/导电聚合物复合材料,其特征在于,所述有序排列的网络结构包括沿一个方向或多个方向择优取向排列的碳纳米管。
5.如权利要求4所述的碳纳米管/导电聚合物复合材料,其特征在于,所述有序排列的网络结构为一有序排列的碳纳米管层,该碳纳米管层包括至少一个有序碳纳米管薄膜。
6.如权利要求5所述的碳纳米管/导电聚合物复合材料,其特征在于,所述有序碳纳米管薄膜包括沿同一方向择优取向排列的碳纳米管,且相邻的碳纳米管之间通过范德华力紧密结合。
7.如权利要求6所述的碳纳米管/导电聚合物复合材料,其特征在于,所述有序碳纳米管层包括至少两个重叠设置的有序碳纳米管薄膜,相邻的两个有序碳纳米管薄膜中的碳纳米管具有一交叉角度α,且0度≤α≤90度。
8.如权利要求1所述的碳纳米管/导电聚合物复合材料,其特征在于,所述碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或几种,单壁碳纳米管的直径为0.5纳米~50纳米,双壁碳纳米管的直径为1.0纳米~50纳米,多壁碳纳米管的直径为1.5纳米~50纳米。
9.如权利要求1所述的碳纳米管/导电聚合物复合材料,其特征在于,所述碳纳米管的长度为100纳米~10毫米。
10.如权利要求1所述的碳纳米管/导电聚合物复合材料,其特征在于,所述导电聚合物纤维为聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚对苯及聚对苯撑乙烯中的一种或几种。
11.如权利要求1所述的碳纳米管/导电聚合物复合材料,其特征在于,所述导电聚合物纤维的长度为100纳米~10毫米,直径为30纳米~120纳米。
CN2008100671693A 2008-05-14 2008-05-14 碳纳米管/导电聚合物复合材料 Active CN101582302B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008100671693A CN101582302B (zh) 2008-05-14 2008-05-14 碳纳米管/导电聚合物复合材料
US12/317,147 US7972537B2 (en) 2008-05-14 2008-12-19 Carbon nanotube-conductive polymer composite
JP2009116798A JP2009275225A (ja) 2008-05-14 2009-05-13 カーボンナノチューブ/ポリマー複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100671693A CN101582302B (zh) 2008-05-14 2008-05-14 碳纳米管/导电聚合物复合材料

Publications (2)

Publication Number Publication Date
CN101582302A true CN101582302A (zh) 2009-11-18
CN101582302B CN101582302B (zh) 2011-12-21

Family

ID=41364405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100671693A Active CN101582302B (zh) 2008-05-14 2008-05-14 碳纳米管/导电聚合物复合材料

Country Status (3)

Country Link
US (1) US7972537B2 (zh)
JP (1) JP2009275225A (zh)
CN (1) CN101582302B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010577A (zh) * 2010-12-01 2011-04-13 南昌航空大学 稀土掺杂铁氧体/聚噻吩/碳纳米管微波吸收剂的制备方法
CN102053739A (zh) * 2010-12-27 2011-05-11 清华大学 触摸屏输入指套
CN102372266A (zh) * 2010-08-23 2012-03-14 清华大学 碳纳米管复合结构及其制备方法
CN102593436A (zh) * 2012-02-27 2012-07-18 清华大学 一种锂离子电池用自支撑柔性碳纳米管纸复合电极材料
CN102614031A (zh) * 2011-01-28 2012-08-01 清华大学 神经移植体
CN102648155A (zh) * 2009-12-08 2012-08-22 应用纳米结构方案公司 热塑性基体中cnt并入的纤维
CN103187572A (zh) * 2011-12-28 2013-07-03 清华大学 薄膜锂离子电池
CN103187573A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池电极
CN103187586A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池
CN103450682A (zh) * 2013-08-23 2013-12-18 清华大学 一种碳纳米管/聚吡咯复合海绵及其制备方法
US8662449B2 (en) 2009-11-23 2014-03-04 Applied Nanostructured Solutions, Llc CNT-tailored composite air-based structures
CN103718665A (zh) * 2011-08-04 2014-04-09 诺基亚公司 用于提供电磁屏蔽的合成物
US8900866B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming nerve graft
US8900867B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming culture medium
US8999453B2 (en) 2010-02-02 2015-04-07 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN104900672A (zh) * 2015-04-27 2015-09-09 电子科技大学 一种钙钛矿太阳能电池-超级电容器结合的集成器件
US9233190B2 (en) 2011-01-28 2016-01-12 Tsinghua University Culture substrate comprising carbon nanotube structure
CN105692584A (zh) * 2016-01-18 2016-06-22 清华大学 一种碳纳米管线团及其制备方法
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
US9552107B2 (en) 2010-12-27 2017-01-24 Tsinghua University Inputting fingertip sleeve
US9774028B2 (en) 2011-12-28 2017-09-26 Tsinghua University Method for making thin film lithium ion battery
CN108169304A (zh) * 2017-12-29 2018-06-15 运城学院 一种修饰电极的制备及其应用
CN111129427A (zh) * 2019-12-24 2020-05-08 桑德新能源技术开发有限公司 一种硅碳负极及其制备方法
CN112501938A (zh) * 2020-12-01 2021-03-16 南京玻璃纤维研究设计院有限公司 一种高容尘、静电耗散玻纤滤材及其制备方法
CN115403033A (zh) * 2022-10-09 2022-11-29 清华大学 一种锂离子电池用导电剂、负极和制备方法以及锂离子电池

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771873B2 (ja) * 2006-05-04 2015-09-02 エルジー・ケム・リミテッド 伝導性(導電性)高分子複合体を用いた高容量/高出力の電気化学エネルギー貯蔵素子
CN101654555B (zh) * 2008-08-22 2013-01-09 清华大学 碳纳米管/导电聚合物复合材料的制备方法
WO2011068391A2 (ko) * 2009-12-04 2011-06-09 주식회사 루트제이제이 나노 중공 섬유형 탄소를 포함하는 리튬 이차전지용 양극 활물질 전구체, 활물질 및 그 제조방법
JP5733938B2 (ja) * 2009-12-08 2015-06-10 キヤノン株式会社 アクチュエータ
JP2011216775A (ja) * 2010-04-01 2011-10-27 Mitsubishi Rayon Co Ltd 電気二重層キャパシタ用塗布ペースト
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
FR2962450B1 (fr) * 2010-07-07 2014-10-31 Commissariat Energie Atomique Procede de preparation d'un materiau composite, materiau ainsi obtenu et ses utilisations
GB201013939D0 (en) 2010-08-20 2010-10-06 Airbus Operations Ltd Bonding lead
CN103155065A (zh) * 2010-10-15 2013-06-12 横滨橡胶株式会社 导电性高分子/多孔质碳材料复合体及使用了该复合体的电极材料
US20120162146A1 (en) * 2010-12-27 2012-06-28 Hon Hai Precision Industry Co., Ltd. Touch pen
CN102856495B (zh) * 2011-06-30 2014-12-31 清华大学 压力调控薄膜晶体管及其应用
CN102443274B (zh) * 2011-09-21 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管/高分子复合膜的制备方法
KR101356791B1 (ko) 2012-01-20 2014-01-27 한국과학기술원 박막형 수퍼커패시터 및 그의 제조 방법
WO2013133688A1 (en) 2012-03-09 2013-09-12 Mimos Berhad Nanocomposite casting composition
JP2013196910A (ja) * 2012-03-20 2013-09-30 Denso Corp 非水電解液二次電池
KR101384324B1 (ko) * 2012-09-26 2014-04-10 롯데케미칼 주식회사 칸덕티브 수지 조성물
US11639425B2 (en) * 2014-05-12 2023-05-02 The Trustees Of The University Of Pennsylvania Nanocomposite films and methods for producing the same
US20160160001A1 (en) * 2014-11-06 2016-06-09 Northrop Grumman Systems Corporation Ultrahigh loading of carbon nanotubes in structural resins
US9947431B2 (en) * 2015-04-21 2018-04-17 The Florida International University Board Of Trustees Anisotropic films templated using ultrasonic focusing
US10199653B2 (en) 2015-10-30 2019-02-05 Nissan North America, Inc. Three dimensional electrode having electron directing members and method of making the same
US9780362B2 (en) 2015-10-30 2017-10-03 Nissan North America, Inc. Electrode having a selectively loaded matrix and method of manufacturing
US10177371B2 (en) 2015-10-30 2019-01-08 Nissan North America, Inc. Electrode having current correcting layers
US9985275B2 (en) 2015-10-30 2018-05-29 Nissan North America, Inc. Three dimensional electrode having electron directing members and method of making the same
US10825614B2 (en) 2015-12-17 2020-11-03 Samsung Electronics Co., Ltd. Energy harvesting device using electroactive polymer nanocomposites
US10153494B2 (en) 2015-12-21 2018-12-11 Nissan North America, Inc. Electrode having electrically actuated fibers for electron conduction
US10573893B2 (en) 2015-12-22 2020-02-25 Nissan North America, Inc. Electrodes with directionally restrained active materials and methods of restraint
US11344241B2 (en) 2017-09-13 2022-05-31 Allegheny Singer Research Institute Conductive fiber with polythiophene coating
KR102618544B1 (ko) 2018-09-14 2023-12-27 삼성전자주식회사 저주파 운동이 갖는 에너지를 수집하는 장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800155B2 (en) * 2000-02-24 2004-10-05 The United States Of America As Represented By The Secretary Of The Army Conductive (electrical, ionic and photoelectric) membrane articlers, and method for producing same
EP1307339A1 (en) * 2000-06-14 2003-05-07 Hyperion Catalysis International, Inc. Multilayered polymeric structure
WO2002016257A2 (en) * 2000-08-24 2002-02-28 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6599446B1 (en) * 2000-11-03 2003-07-29 General Electric Company Electrically conductive polymer composite compositions, method for making, and method for electrical conductivity enhancement
US20030077515A1 (en) * 2001-04-02 2003-04-24 Chen George Zheng Conducting polymer-carbon nanotube composite materials and their uses
AU2002332422C1 (en) * 2001-07-27 2008-03-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
US7001556B1 (en) * 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US6811724B2 (en) * 2001-12-26 2004-11-02 Eastman Kodak Company Composition for antistat layer
US6936653B2 (en) * 2002-03-14 2005-08-30 Carbon Nanotechnologies, Inc. Composite materials comprising polar polymers and single-wall carbon nanotubes
US20030213939A1 (en) 2002-04-01 2003-11-20 Sujatha Narayan Electrically conductive polymeric foams and elastomers and methods of manufacture thereof
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
CN1315139C (zh) * 2002-07-12 2007-05-09 四川工业学院 碳纳米管复合电极超大容量电容器及其制造方法
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
JP4222048B2 (ja) * 2003-02-13 2009-02-12 東レ株式会社 カーボンナノチューブ含有樹脂コンポジットとその製造方法および高弾性フィルム
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7354532B2 (en) * 2004-04-13 2008-04-08 E.I. Du Pont De Nemours And Company Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids
US20060054866A1 (en) * 2004-04-13 2006-03-16 Zyvex Corporation. Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
CN1296436C (zh) * 2004-06-07 2007-01-24 清华大学 一种基于碳纳米管的复合材料的制备方法
JP4807817B2 (ja) * 2004-08-05 2011-11-02 三菱レイヨン株式会社 導電性成形体の製造方法、及び導電性成形体
KR100638616B1 (ko) * 2004-09-14 2006-10-26 삼성전기주식회사 전계방출 에미터전극 제조방법
US7462656B2 (en) * 2005-02-15 2008-12-09 Sabic Innovative Plastics Ip B.V. Electrically conductive compositions and method of manufacture thereof
CN101283027A (zh) * 2005-08-08 2008-10-08 卡伯特公司 包含纳米管的聚合物组合物
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
CN101090586B (zh) * 2006-06-16 2010-05-12 清华大学 纳米柔性电热材料及包括该纳米柔性电热材料的加热装置
JP4969363B2 (ja) * 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
CN101121791B (zh) 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法
JP2008072079A (ja) * 2006-08-18 2008-03-27 Yokohama Rubber Co Ltd:The ポリアニリン/多孔性炭素複合体及びそれを用いた電気二重層キャパシタ
CN101480858B (zh) * 2008-01-11 2014-12-10 清华大学 碳纳米管复合材料及其制备方法
US9039938B2 (en) * 2008-02-05 2015-05-26 The Trustees Of Princeton University Coatings containing functionalized graphene sheets and articles coated therewith
CN101712468B (zh) * 2008-09-30 2014-08-20 清华大学 碳纳米管复合材料及其制备方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8662449B2 (en) 2009-11-23 2014-03-04 Applied Nanostructured Solutions, Llc CNT-tailored composite air-based structures
CN102648155A (zh) * 2009-12-08 2012-08-22 应用纳米结构方案公司 热塑性基体中cnt并入的纤维
US8999453B2 (en) 2010-02-02 2015-04-07 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
CN102372266B (zh) * 2010-08-23 2013-11-06 清华大学 碳纳米管复合结构及其制备方法
CN102372266A (zh) * 2010-08-23 2012-03-14 清华大学 碳纳米管复合结构及其制备方法
US9907174B2 (en) 2010-08-30 2018-02-27 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN102010577B (zh) * 2010-12-01 2012-05-02 南昌航空大学 稀土掺杂铁氧体/聚噻吩/碳纳米管微波吸收剂的制备方法
CN102010577A (zh) * 2010-12-01 2011-04-13 南昌航空大学 稀土掺杂铁氧体/聚噻吩/碳纳米管微波吸收剂的制备方法
US9575598B2 (en) 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
US9552107B2 (en) 2010-12-27 2017-01-24 Tsinghua University Inputting fingertip sleeve
CN102053739B (zh) * 2010-12-27 2013-03-20 清华大学 触摸屏输入指套
CN102053739A (zh) * 2010-12-27 2011-05-11 清华大学 触摸屏输入指套
CN102614031A (zh) * 2011-01-28 2012-08-01 清华大学 神经移植体
US8900866B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming nerve graft
US8900867B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming culture medium
US9370607B2 (en) 2011-01-28 2016-06-21 Tsinghua University Nerve graft
US9233190B2 (en) 2011-01-28 2016-01-12 Tsinghua University Culture substrate comprising carbon nanotube structure
CN102614031B (zh) * 2011-01-28 2015-06-03 清华大学 神经移植体
CN103718665A (zh) * 2011-08-04 2014-04-09 诺基亚公司 用于提供电磁屏蔽的合成物
CN103187573A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池电极
US9774028B2 (en) 2011-12-28 2017-09-26 Tsinghua University Method for making thin film lithium ion battery
CN103187572A (zh) * 2011-12-28 2013-07-03 清华大学 薄膜锂离子电池
US9577265B2 (en) 2011-12-28 2017-02-21 Tsinghua University Thin film lithium ion battery
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
US9537151B2 (en) 2011-12-28 2017-01-03 Tsinghua University Lithium ion battery electrode
CN103187586A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池
CN102593436A (zh) * 2012-02-27 2012-07-18 清华大学 一种锂离子电池用自支撑柔性碳纳米管纸复合电极材料
CN103450682A (zh) * 2013-08-23 2013-12-18 清华大学 一种碳纳米管/聚吡咯复合海绵及其制备方法
CN104900672A (zh) * 2015-04-27 2015-09-09 电子科技大学 一种钙钛矿太阳能电池-超级电容器结合的集成器件
CN104900672B (zh) * 2015-04-27 2019-03-05 电子科技大学 一种钙钛矿太阳能电池-超级电容器结合的集成器件
CN105692584A (zh) * 2016-01-18 2016-06-22 清华大学 一种碳纳米管线团及其制备方法
CN105692584B (zh) * 2016-01-18 2018-03-06 清华大学 一种碳纳米管线团及其制备方法
CN108169304A (zh) * 2017-12-29 2018-06-15 运城学院 一种修饰电极的制备及其应用
CN111129427A (zh) * 2019-12-24 2020-05-08 桑德新能源技术开发有限公司 一种硅碳负极及其制备方法
CN112501938A (zh) * 2020-12-01 2021-03-16 南京玻璃纤维研究设计院有限公司 一种高容尘、静电耗散玻纤滤材及其制备方法
CN112501938B (zh) * 2020-12-01 2022-09-09 南京玻璃纤维研究设计院有限公司 一种高容尘、静电耗散玻纤滤材及其制备方法
CN115403033A (zh) * 2022-10-09 2022-11-29 清华大学 一种锂离子电池用导电剂、负极和制备方法以及锂离子电池
CN115403033B (zh) * 2022-10-09 2024-01-30 清华大学 一种锂离子电池用导电剂、负极和制备方法以及锂离子电池

Also Published As

Publication number Publication date
JP2009275225A (ja) 2009-11-26
US7972537B2 (en) 2011-07-05
CN101582302B (zh) 2011-12-21
US20100019209A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
CN101582302B (zh) 碳纳米管/导电聚合物复合材料
Pan et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor
Chen et al. Carbon-based supercapacitors for efficient energy storage
Iqbal et al. Recent development of carbon based materials for energy storage devices
Zhang et al. Electrically conductive hydrogels for flexible energy storage systems
Ma et al. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor
Hyder et al. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications
Zhao et al. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application
Huang et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor
CN101659789B (zh) 碳纳米管/导电聚合物复合材料的制备方法
Wang et al. Enhanced electrical and mechanical properties of chemically cross-linked carbon-nanotube-based fibers and their application in high-performance supercapacitors
Chen et al. Integration of ultrathin MoS2/PANI/CNT composite paper in producing all-solid-state flexible supercapacitors with exceptional volumetric energy density
He et al. Significant enhancement of electrochemical behaviour by incorporation of carboxyl group functionalized carbon nanotubes into polyaniline based supercapacitor
Ahmad et al. Nanocomposite supercapacitor electrode from sulfonated graphene oxide and poly (pyrrole-(biphenyldisulfonic acid)-pyrrole)
Yang et al. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers
Chen et al. The preparation and electrochemical properties of MnO2/poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor
Guo et al. Hybrid pseudocapacitor materials from polyaniline@ multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell
Sun et al. Interfacial synthesis and supercapacitive performance of hierarchical sulfonated carbon nanotubes/polyaniline nanocomposites
Wang et al. Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode
Patel et al. Carbon nanotube/reduced graphene oxide/aramid nanofiber structural supercapacitors
CN102103935A (zh) 超级电容器
Ulaganathan et al. Photopolymerization of diacetylene on aligned multiwall carbon nanotube microfibers for high-performance energy devices
Niu et al. Facile fabrication of flexible, bendable and knittable electrode with PANI in the well-defined porous rEGO/GP fiber for solid state supercapacitors
Shao et al. Binary nanosheet frameworks of graphene/polyaniline composite for high-areal flexible supercapacitors
Srikanth et al. Perspectives on state-of-the-art carbon nanotube/polyaniline and graphene/polyaniline composites for hybrid supercapacitor electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant