CN101346302B - 用于重整含氧化合物的催化剂及方法 - Google Patents

用于重整含氧化合物的催化剂及方法 Download PDF

Info

Publication number
CN101346302B
CN101346302B CN2006800485985A CN200680048598A CN101346302B CN 101346302 B CN101346302 B CN 101346302B CN 2006800485985 A CN2006800485985 A CN 2006800485985A CN 200680048598 A CN200680048598 A CN 200680048598A CN 101346302 B CN101346302 B CN 101346302B
Authority
CN
China
Prior art keywords
carbon
reforming
catalyzer
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800485985A
Other languages
English (en)
Other versions
CN101346302A (zh
Inventor
兰迪·D·寇特莱特
尼古拉斯·W·沃伦道夫
查尔斯·C·霍尔内曼
肖恩·P·麦克马洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virent Energy Systems Inc
Virent Inc
Original Assignee
Virent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virent Inc filed Critical Virent Inc
Publication of CN101346302A publication Critical patent/CN101346302A/zh
Application granted granted Critical
Publication of CN101346302B publication Critical patent/CN101346302B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/656Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

所公布的是可以重整诸如乙二醇、甘油、糖醇和糖的含氧化合物的水溶液以便产生诸如氢气和烷烃的产物的催化剂和方法。在一些实施方案中,含有至少20wt%含氧化合物的水溶液可以在包括VIII族过渡金属和VIIB族过渡金属的催化剂上(优选地在载于活性炭载体的催化剂上)被重整。在其他实施方案中,催化剂被用于在低于300℃的反应温度生成氢气或烷烃。

Description

用于重整含氧化合物的催化剂及方法
联邦政府赞助研究或开发 
在由商业部国家标准技术研究所更替项目计划(DOC NIST ATP)拨款第70NANB3H3014号和能源部(DOE)拨款第DE-FG36-04GO14258号授予的美国政府援助下进行本发明。美国具有本发明的特定权利。 
技术领域
本发明涉及用于重整包括生物质衍生化合物在内的含氧化合物以便经由例如水相重整的重整方法生成例如氢气或烷烃的产物的催化剂和方法。例如,可以使用在此所公布的催化剂和方法来重整甘油、糖醇、糖、或诸如乙二醇和丙二醇的多元醇以及羟基羧酸的水溶液。 
背景 
存在有限量的当前被用于产生能量的不可再生的化石燃料,例如原油和天然气。生物质(植物衍生材料)是一种最重要的可再生能源。生物质转化为燃料、化学药品、材料和电力,减少了对外国石油和天然气的依赖性。目前,生物质提供了液体运输燃料的唯一的可再生替代品。生物质的使用加强了农村经济、减少了美国对进口石油的依赖性、减少了空气和水的污染、减少了温室气体的排放。 
促进和维持工业部门的活力和增长的关键性挑战是开发有效的和环境友好的技术,用于从可再生资源产生诸如氢气的燃料。从诸如生物质的可再生资源产生能量,降低了二氧化碳的净产出率生成,而二氧化碳是使全球变暖的重要温室气体。这是因为生物质本身在其生命周期内消耗二氧化碳。 
水相重整(APR)是从由生物质(甘油、糖、糖醇)获得的含氧化合物产生富氢燃气的催化重整方法。所得到的燃气可以被用作燃料源,用于经由PEM燃料电池、固体-氧化物燃料电池、内燃机发电机组或燃气轮机发电机组发电。APR方法可以在低温下(例如,低于300℃)通过含氧化合物与液态水的反应产生轻质烃类(例如甲烷、乙烷、丙烷、丁烷和己烷)和/或氢气。APR方法的关键性突破是可以在液相中进行重整。可以在有利于水气转化反应的温度(例如,150℃到270℃)下进行APR方法,这使得在单个化学反应器中用少量CO产生氢气成为可能。APR方法的优点包括:(i)在压力(通常为15到50巴)下进行反应,其中富氢流出物可以被有效地提纯;(ii)在低温下产生富氢燃气而不需要挥发水,这提供了一种主要的节能方法;(iii)在有利于水气转化反应的温度下操作,使得在单个化学反应器中用少量CO产生高质量的燃气成为可能,(iv)在使得碳水化合物被加热到高温时通常遇到的不需要的分解反应减到最小的温度下操作,以及(v)利用美国的农业衍生原料。 
APR方法利用包含化学计量为1∶1的C∶O的含氧化合物的热力学性质,以便在单步反应中在相对低温下从这些含氧化合物中产生氢气(见图1),其不同于用于经由烃的蒸汽重整生成氢气的特定多重反应器***。图1是根据从化学品性质手册(Chemical Properties Handbook,C.L.Yaws,McGraw Hill,1999)得到的热力学数据作图。 
用于从烃生成氢气的反应条件可以由烷烃的蒸汽重整以生成CO和H2(反应1)以及水气转化反应从CO生成CO2和H2(反应2)的热力学指定。 
Figure DEST_PATH_GSB00000334605600012
图1示出一系列烷烃(CH4、C2H6、C3H8、C6H14)与反应1关联的、用每摩尔所生成的CO归一化的标准吉布斯自由能(ΔG°/RT)的变化。在高于大约675K的温度下,热力学上有利于烷烃的蒸汽重整(即,ΔG°/RT为负值)。C∶0比为1∶1的氧化处理烃根据反应3生成CO和H2。 
Figure S2006800485985D00031
C∶O比为1∶1的相应氧化处理烃包括甲醇(CH3OH)、乙二醇(C2H4(OH)2)、甘油(C3H5(OH)3)和山梨糖醇(C6H8(OH)6)。在图1中,虚线示出CH3(OH)、C2H4(OH)2、C3H5(OH)3和C6H8(OH)6的蒸气压的ln(P)值(压力单位为atm)与温度。图1示出,在显著低于具有相似碳原子数的烷烃所需要的温度下,热力学上有利于这些氧化处理烃蒸汽重整生成CO和H2。因此,C∶O比为1∶1的氧化处理烃蒸汽重整将提供用于生成CO和H2的低温途径。图1还示出,在较低的温度下更有利于CO到CO2和H2的水气转化的ΔG°/RT值。因为在可以进行烃的蒸汽重整的同样低温下,有利于水气转化反应,因此,利用单步催化方法可以从含氧化合物的蒸汽重整生成H2和CO2。 
虽然图1示出在这一低温下非常有利于在水的存在下将含氧化合物转化为H2和CO2,但是在低温下也非常有利于H2和CO2后续反应生成烷烃(CnH2n+2)和水。例如,在500K时,CO2和H2转化为甲烷(反应4)的平衡常数是每摩尔CO21010级数。 
Figure S2006800485985D00032
可以优化重整反应,使其不仅产生氢气,也产生烃。例如,山梨糖醇的完全重整每产生6摩尔CO2,则产生13摩尔的氢气: 
C6H14O6+6H2O→6CO2+13H2    (5) 
然而,热力学上更有利的反应消耗氢气以产生水和烃的混合物: 
C6H14O6+xH2→aH2O+bCH4+cC2H6+dC3H8+eC4H10+fC5H12+gC6H14(6) 
参见图2,在该曲线图中所呈现的整个温度范围内,生成甲烷、乙烷和己烷的单个反应全都是热力学上有利的(即,ΔG°/RT<0)。而且,这些烃的生成比山梨糖醇和水反应生成氢气更有利。丙烷、丁烷和戊烷的生成的热力学平滑地拟合在同系列(在乙烷和己烷之间)内,但是为了清晰起见,图2中已经省略这些迹线。因此,如下面所详细描述,可以优化该反应以生成几乎排他性地包括烃而不是氢气的产物混合物。图2是根据从化学品性质手册(Chemical Properties HandbookC.L.Yaws,McGraw Hill, 1999)得到的热力学数据作图。 
通过引用结合入本文的Cortright等人的美国专利第6,699,457号和于2005年5月9日递交的、序列号为11/124,717的已公布美国专利申请US2005/0207971 A1公开了从氧化处理烃反应物生成氢气的方法,该方法包括示出将包含可达10%的甘油、葡萄糖或山梨糖醇在内的原料转化为氢气的实施例。该方法可以在蒸气相或在冷凝液相中进行。该方法可以包括在含有金属的催化剂的存在下由水和具有至少两个碳原子的水溶性氧化处理烃反应的诸步骤。催化剂包括选自由以下所组成的组的金属:VIII族过渡金属、其合金及其混合物。所公布的方法可以在低于常规的烷烃水蒸气重整中所使用的温度下进行。 
通过引用结合入本文的Cortright等人的美国专利第6,953,873号公布了从诸如甘油、葡萄糖或山梨糖醇的氧化处理烃反应物生成烃的方法。该方法可以在蒸气相或在冷凝液相(优选地在冷凝液相)中进行。该方法可以包括在含有金属的催化剂的存在下由水和具有至少两个碳原子的水溶性氧化处理烃反应的诸步骤。催化剂可以包括选自由以下所组成的组的金属:VIIIB族过渡金属、其合金及其混合物。这些金属可以载于显示出酸性的载体上,或在酸性pH的液相条件下进行反应。所公布的方法允许由水与生物质衍生的含氧化合物的液相反应生成烃。 
通过引用结合入本文的Cortright等人的美国专利第6,964,757和6,964,758号公布了从诸如甲醇、甘油、糖(例如葡萄糖和木糖)或糖醇(例如山梨糖醇)的氧化处理烃反应物生成氢气的方法。该方法可以在冷凝液相中进行。该方法可以包括在含有金属的催化剂的存在下由水和水溶性氧化处理烃反应的诸步骤。催化剂包括选自由以下所组成的组的金属:VIIIB族过渡金属、其合金和其混合物。所公布的方法可以在低于常规的烷烃水蒸气重整中所使用的温度下进行。 
Novotny等人的美国专利第4,223,001号公布了在水相中使用包括VIII族金属的催化剂例如均相的含有铑的催化剂(例如RhCl3·3H2O)从包含诸如甲醇或乙二醇的水溶性醇的含水原料产生氢气的方法。 
Cortright等描述了经由在3%Pt/Al2O3催化剂上的水相重整的含氧化 合物(甲醇、乙二醇、甘油、山梨糖醇和葡萄糖)的转化。反应温度在从498K到538K的范围内,***压力介于29巴和56巴之间,进料浓度为1wt%的含氧化合物。Cortright,R.D.;Davda,R.R.;Dumesic J.A.,Nature,第418卷,第964页,2002。 
Davda等描述了在二氧化硅负载金属催化剂上的10wt%乙二醇溶液的水相重整的反应动力学研究。该实验的反应温度是483K和498K,反应压力是22巴。从该论文得到的结果示出了这些催化剂的总催化活性以下列顺序降低:Pt~Ni>Ru>Rh~Pd>Ir。Davda,R.R.;Shabaker J.W.;Huber,G.W.;Cortright,R.D.;Dumesic,J.A.;Appl.Cat.B:Environmental,第43卷,第13页,2003。 
Shabaker等描述了在载于TiO2、Al2O3、活性炭、SiO2、SiO2-Al2O3、ZrO2、CeO2和ZnO的铂黑和铂上10wt%乙二醇溶液的水相重整的反应动力学研究。反应温度分别是483K和498K,反应压力分别是22.4巴和29.3巴。观察到了在载于TiO2、碳和Al2O3的铂黑或铂上的水相重整生成H2 的高活性;载于SiO2-Al2O3和ZrO2的铂呈现了生成氢气的中等催化活性;载于CeO2、ZnO和SiO2的铂示出较低的催化活性。载于Al2O3和其次的ZrO2的铂显示出从乙二醇的水相重整生成H2和CO2的高度选择性。Shabaker,J.W.;Huber,G.W.;Davda,R.R.;Cortright,R.D.;Dumesic,J.A.;Catalysis Letters,第88卷,第1页,2003。 
Davda等描述了用3%Pt/Al2O3催化剂经由乙二醇的水相重整用低浓度的CO产生氢气所需要的反应条件。反应温度的范围为从498K到512K,***压力在25.8巴到36.2巴之间,乙烯原料浓度在2wt%和10wt%之间。Davda,R.R;Dumesic J.A.;Angew.Chem.Int.Ed.,第42卷,第4068页,2003。 
Huber等描述了在基于铂的催化剂上用作为共进料添加的变化的量的氢气与山梨糖醇反应生成C1到C6的烷烃。在该论文中,铂被载入到氧化铝或二氧化硅-氧化铝上。该论文讨论了该方法通过包括酸催化的脱水反应、接着是金属催化的加氢反应的双功能路线的机理。反应温度在498和538K之间,压力在25.8到60.7巴之间,进料浓度为5wt%的山梨糖醇。Huber,G.W.;Cortright,R.D.;Dumesic,J.A.,Angew.Chem.Int.Ed.,卷43,第 1549页,2004。 
Davda等评论了含氧化合物的水相重整。所讨论的是载体、负载金属、反应条件和反应器构造的影响。在该论文中,含氧化合物的浓度小于10%。Davda,R.R.;Shabaker J.W.;Huber,G.W.;Cortright,R.D.;Dumesic,J.A.;Appl.Cat.B:Environmental,第56卷,第171页,2005。 
Huber等描述了在498K和538K下,对于诸如乙二醇、甘油和山梨糖醇的含氧化合物的水相重整,由锡改性的基于镍的催化剂的作用。在该研究论文中所研究的含氧化合物的浓度小于5wt%。Huber,G.W.;Shabaker,J.W.;Dumesic,J.A.;Science,第300卷,第2075页,2003。 
先前的专利文献描述了在10wt%或更低的浓度下水溶性含氧化合物的水相重整的方法。在APR***中的能量平衡指出,由于在反应器***中水的汽化以便维持在反应器中形成的氢气泡中的水的分压,可以发生显著的能量损失。 
因此,存在具有高活性水平的催化剂***和方法的需求,以便支持在水重整***中的高浓度氧化处理烃原料的高度转化。 
概述 
本发明提供了一种重整氧化处理烃(oxygenated hydrocarbons)的方法,其包括在有效生成氢气体和烷烃的反应温度和反应压力的条件下原料溶液与重整催化剂接触的步骤,所述原料溶液包括水和总原料溶液的至少30%重量的氧化处理烃,其中所述氧化处理烃具有至少一个氧原子,并且其中所述重整催化剂包括载于水稳定性载体上的铼和VIII族过渡金属,所述水稳定性载体包括经钛、钒、钨或氧化锆改性的碳。 
进一步地,所述重整催化剂包括Re和至少一种选自下述组的过渡金属:Ir、Ni、Pd、Pt、Rh和Ru。 
进一步地,所述重整催化剂进一步包括Ce或La。 
进一步地,所述水稳定性载体包括一种或多种选自下述组的物质:碳、 氧化锆、二氧化钛、铈土及其组合。 
进一步地,所述重整催化剂中Re与VIII族金属的原子比是从0.25∶1到10∶1,并且所述重整催化剂和所述载体的组合包括从0.25wt%到10wt%的VIII族金属。 
进一步地,所述重整催化剂选自:Re1.0Rh3.8、Re1.0Rh1.0、Ni1.0Re16.0、Re1.0Rh2.0Ce2.0、Re1.0Rh1.0Ce1.0、Re1.0Rh1.0La3.0和Re2.5Pt1.0。 
进一步地,所述原料溶液包括至少50%的含氧化合物。 
进一步地,所述反应温度是在大约80℃和大约300℃之间,并且所述反应压力是在大约10巴(145psi)和大约50巴(725psi)之间。 
本发明还提供了一种水相重整载体催化剂,其包括: 
(a)碳载体,其经二氧化钛、氧化钒、钨或氧化锆改性;以及 
(b)催化组合物,其被附着于所述碳载体上,所述催化组合物包括Re和选自Ir、Ni、Pd、Pt、Rh和Ru的第二金属;以及 
(c)附着于碳载体或所述催化组合物的Ce或La。 
进一步地,所述催化组合物选自:Re1.0Rb3.8、Ni1.0Re16.0、Re1.0Rh2.0Ce2.0、Re1.0Rh1.0Ce1.0、Re1.0Rh1.0La3.0和Re2.5Pt1.0。 
本发明还提供了一种物质组合物,其包括: 
(a)重整催化剂,其包括铼、VIII族金属以及Ce或La; 
(b)气相,其包括氢气、甲烷、二氧化碳以及一种或多种选自乙烷和丙烷的化合物;和 
(c)液相,其包括C1-C6的氧化处理烃。 
进一步地,所述液相包括含有己烷、戊烷和丙烷的有机相和含有山梨糖醇的水相。 
进一步地,所述液相包括含有丙烷的有机相和含有甘油的水相。 
进一步地,所述VIII族金属包括一种或多种选自Ir、Ni、Pd、Pt、Rh和Ru的物质。 
在第一实施方案中,提供了重整催化剂。重整催化剂优选地包括VIIB族过渡金属的混合物和VIII族过渡金属的混合物及其混合物。优选地,重整催化剂包括Re和至少一种选自下述组的过渡金属:Ir、Ni、Pd、Pt、Rh和Ru。可选地,该催化剂进一步包括Ce或La。适当的双金属催化剂的例子包括:IrRe、NiRe、PdRe、PtRe、Rh3Re、RhRe和RuRe。Pt1.0Re2.5是一种特别优选的催化剂的例子。 
重整催化剂可以被附着于水稳定性载体上。例如,催化剂可以被附着于包括一种或多种选自下述组的物质的载体上:碳、氧化锆、二氧化钛或铈土。优选地,催化剂被附着于碳载体上。可以用诸如钛、钒、钨或铼的其他物质来改性碳载体。在一个具体的方面中,催化剂可以被附着于载体上,以使得所述催化剂和所述载体的组合包括0.25%-10%重量的在催化剂上的VIII族金属,催化剂包括Re和VIII族金属。Re与VIII族金属的原子比优选地是在0.25到10之间。一种优选的催化剂包括被附着于碳载体上的Pt1.0Re2.5。 
在第二实施方案中,提供了重整来自氧化处理烃原料溶液中的氧化处理烃的方法,其包括所述原料溶液与重整催化剂接触的步骤。氧化处理烃优选地是水溶性烃,其包括具有任何适当的碳原子数的多元醇化合物,例如具有1到12个碳原子、优选地1到6个碳原子的水溶性氧化处理烃。优选的氧化处理烃的例子包括乙二醇、甘油和山梨糖醇。重整氧化处理烃的方法包括从原料中的一种或多种氧化处理烃生成氢气的方法以及生成氢气和烷烃的混合物的方法。原料溶液可以是含有总原料溶液的至少20%重量的氧化处理烃的水溶液,其中该氧化处理烃具有至少一个氧。例如,原料溶液可以包括至少大约20%、30%、40%或50%的氧化处理烃。 
如在此所描述,原料溶液可以在有效生成氢气体的反应温度和反应压力的条件下与重整催化剂接触。反应温度和反应压力被优选地选择为使原料维持为液相。例如,反应温度可以是在大约80℃和大约300℃之间,反应压力可以是在大约10巴(145psi)和大约90巴(1300psi)之间。更优选地,反应温度可以是在大约120℃和大约300℃之间,甚至更优选地是在大约150℃和大约300℃之间,反应压力可以是在10巴(145psi)和大约50巴(725psi)之间。诸如碱金属或碱土金属的水溶性盐的液相改性剂可以可选地在水溶液的0.1wt%到10wt%之间的范围被添加到原料中以最佳化反应产物。例如,添加化合物以增加原料的pH可以增加反应产物中的氢气生成量。 
重整氧化处理烃的方法可以从包括山梨糖醇或甘油的原料生成多种有用的反应产物,例如氢气、二氧化碳和/或轻质烃(例如甲烷、乙烷、丙烷、丁烷和戊烷)。在一个方面,提供了烷烃生成的方法,其包括原料溶液与重整催化剂接触。原料可以包括水溶液,所述水溶液具有大约10-60%的一种或多种C1-C6的氧化处理烃,优选地是甘油、乙二醇和/或山梨糖醇。原料可以与包括一种或多种选自铂、铑和铼的金属的催化剂接触。在另一方面,提供了氢气生成的方法,其包括原料溶液与如在此所描述的适当的 重整催化剂接触。 
在第三实施方案中,提供了制备重整催化剂的方法。在一个方面,制备催化剂的方法可以包括如下步骤:通过将碳载体加热到大约450℃的温度而氧化碳载体,引入空气以生成活性炭载体,和使碳载体与催化剂接触。例如,活性炭可以在例如氮气的惰性气体流中被加热到所需要的温度,然后,与以适当流速被添加到氮气中的空气流接触。碳可以被处理一段适当的时间,然后被允许在流动的氮气下冷却。制备催化剂的方法进一步包括通过用含有金属醇盐的溶液初始润湿(incipient wetting)活性炭载体来将金属氧化物掺入活性炭载体中的步骤,所述金属醇盐包括金属氧化物。优选地,金属氧化物被掺入,而没有让碳载体悬浮在溶剂中。例如,可以通过在浸渍催化剂前体之前浸渍金属氧化物来改性功能化碳表面。适当的金属氧化物的有机溶液,例如在无水异丙醇中的正丁氧化钛或氧化钒、三异丙醇盐(triisopropoxide),可以通过初始润湿法来将其添加到空气氧化功能化碳,随后,可以干燥被润湿的碳。 
附图简述 
图1是描述烃和氧化处理烃转化为一氧化碳和氢气(H2)的热力学曲线; 
图2是描述山梨糖醇转化为氢气、二氧化碳、水和各种烃的热力学曲线; 
图3是描述进料组合物在水相重整***中100%转化时对热效率的影响的曲线; 
图4是可以被用于评价依照本发明的实施方案的催化剂的水相重整活性的反应器***的示意图;以及 
图5是描述使用依照本发明的一个实施方案的水相重整将甘油转化为气相产物的曲线。 
详述 
在此描述了用于在低温下且在液相中用水重整高浓度氧化处理烃的各种方法。除非另外指出,将如下面所指出的那样在此定义下列术语。 
术语“重整”类属上表示使氧化处理烃和水产生包括烃和/或氢气以及CO2的产物混合物的总反应,而不管反应是否发生在气相还是在冷凝液相中。如果区别是重要的,其将被如此注解。 
术语“VIII族”过渡金属指任何氧化态的选自Fe、Co、Ni、Ru、Rh、Pd、Hs、Ir、Pt、Hs、Mt和Ds的元素。 
术语“VIIB族”过渡金属指任何氧化态的选自Mn、Tc、Re和Bh的元素。 
当在液相中进行氧化处理烃重整时,本发明使得从具有有限的挥发性的氧化处理烃水溶液生成烃成为可能,所述氧化处理烃例如糖(葡萄糖和木糖)和较大分子量的多元醇,所述多元醇例如木糖醇和山梨糖醇。 
缩写及定义: 
“GC”=气相色谱仪或气相色谱法。 
“GHSV”=气时空速。 
“psig”=相对于大气压的磅/平方英寸(即表压)。 
“空速”=每单位时间的每单位催化剂的反应物的质量/体积。 
“TOF”=周转频率。 
“WHSV”=重时空速=每小时每质量催化剂的含氧化合物的质量。 
“WGS”=水气转化。 
氧化处理烃
在此所描述的用于重整方法的氧化处理烃优选地是水溶性的。所希望的是,氧化处理烃具有从1到12个碳原子,更优选地具有从1到6个碳原子。对于原料浓度,特别优选的是大约30%的具有1到6个碳原子的氧化处理烃。优选的氧化处理烃在所述氧化处理烃中至少包含1个氧原子, 且氧碳比的范围为0.5∶1.00到1.50∶1.00,其包括0.25∶1.00、0.33∶1.00、0.66∶1.00、0.75∶1.00、1.00∶1.00、1.25∶1.00、1.5∶1.00以及其之间的比例。优选地,氧化处理烃具有1∶1的氧碳比。氧化处理烃也可以是多元醇。优选的水溶性氧化处理烃的非限制性例子选自:甲醇、乙醇、乙二醇、乙二酮、乙酸、丙醇、丙二醇、丙酸、甘油、甘油醛、二羟基丙酮、乳酸、丙酮酸、丙二酸、丁二醇、丁酸、丁醛糖、酒石酸(tautaric acid)、戊醛糖、己醛糖、丁酮糖、戊酮糖、己酮醣和糖醇。在6个碳的氧化处理烃中,特别优选的是己醛糖和相应的糖醇,其中最优选的是葡萄糖和山梨糖醇。木糖、阿糖、***醇(arabinol)和木糖醇是特别优选的具有5个碳原子的含氧化合物。蔗糖是优选的具有多于6个碳原子的氧化处理烃。 
蒸气相重整要求氧化处理烃反应物在反应温度下具有足够高的蒸气压,以使得反应物存在蒸气相中。具体地,本发明的蒸气相重整中使用的优选的氧化处理烃化合物包括但不限于甲醇、乙醇、乙二醇、甘油和甘油醛。当反应是在液相中发生时,最优选的氧化处理烃是诸如蔗糖、葡萄糖、木糖的糖和诸如木糖醇和山梨糖醇的多元醇。 
在本发明的方法中,氧化处理烃化合物优选地与水混合以形成水溶液。在溶液中的水碳比优选地是从大约0.5∶1到大约7∶1,包括其之间的比,例如1∶1、2∶1、3∶1、4∶1、5∶1、6∶1以及这些值之间的任何比。这一范围被提供为非限制性的优选范围的一个例子。在这个范围之外的水碳比也被包括在本发明的范围内。原料溶液可以是含有总原料溶液的至少20%重量的氧化处理烃的水溶液,其中所述氧化处理烃具有至少一个氧。例如,原料溶液可以包括至少大约20%、30%、40%、50%或60%的一种或多种氧化处理烃。除非另外说明,对原料中的氧化处理烃的百分数的提及是指氧化处理烃类在原料溶液中的总量,原料溶液可以包括多种氧化处理烃类的混合物。 
优选地,原料溶液的平衡是水。在一些实施方案中,原料溶液基本由下述组成:水、一种或多种氧化处理烃以及可选地一种或多种在此所描述的原料改性剂,例如碱或碱土盐或酸。原料溶液可以优选地包含可忽略不计的氢气,优选地少于大约1巴分压。在优选的实施方案中,氢气不被添加到原料中。 
可以使用不同催化剂以这个范围的进料浓度进行水重整方法。例如,Shabaker等描述了用NiSn催化剂对5wt%和63wt%的乙二醇溶液的水相重整。Shabaker,J.W;Simonetti,D.A.;Cortright,R.D.;Dumesic,J.A.;J.Catal.,第231卷,第67页,2005。如图3所示,通过用较高浓度的原料来运转该***可以改善***的热效率。图3示出在乙二醇100%转化时,随着进料浓度从10wt%增加到60wt%,计算出的***效率从低于10%增加到高于80%。图3是根据从化学品性质手册(Chemical Properties Handbook,C.L.Yaws,McGraw Hill,1999)得到的热力学蒸气压数据作图。 
催化剂
在本发明中优选使用的金属催化剂***包括与一种或多种VIIB族金属混合的一种或多种VIII族金属。优选的VIIB族金属是铼或锰。优选的VIII族金属是铂、铑、钌、钯、镍或其组合。VIII族金属的优选载入量是在碳的0.25wt%到25wt%的范围内,该范围包括在这些值之间的重量百分比为0.10%和0.05%的增量,例如1.00%、5.00%、10.00%、12.50%、15.00%和20.00%。VIIB族金属与VIII族金属的优选原子比是在0.25∶1到10∶1的范围内,包括在其之间的比,例如0.50∶1、1.00∶1、2.50∶1、5.00∶1、7.50∶1。 
通过添加IIIB族的氧化物和缔合的稀土氧化物进一步得到优选的催化剂组合物。在这种情况中,优选的组分是镧或铈的氧化物。IIIB族化合物与VIII族金属的优选原子比是在0.25∶1到10∶1的范围内,包括在其之间的比,例如0.50∶1、1.00∶1、2.50∶1、5.00∶1、7.50∶1。 
除非另外说明,在此表述为“X∶Y”的催化剂组合物(其中X和Y是金属)是指至少包括以任何适当的化学计量学组合的金属X和Y并任选地包括其他物质的催化剂组合物的组。同样地,表述为“X1.0Y1.0”的催化剂组合物在此是指至少包括1∶1的化学计量摩尔比的金属X和Y的组合物。因此,特别优选的催化组合物是由式X∶Y描述的双金属的金属组合物,其中X是VIII族金属,Y是VIIB族金属。例如,被指定为“Re∶Pt”的催化剂包括双金属催化剂Re1.0Pt1.0和Re2.5Pt1.0。此外,表述为X∶Y的双金属催化剂可以包括除了X和Y的另外的物质,例如La或Ce。例如,在此被指定为“Re∶Rh” 的催化剂包括诸如Re1.0Rh1.0、Re1.0Rh3.8、Re1.0Rh2.0Ce2.0、Re1.0Rh1.0Ce1.0和Re1.0Rh1.0La3.0的催化剂。 
在一些实施方案中,可以与适当的载体一起提供催化剂。催化剂***可以载于在所选择的反应条件下是稳定的载体形式。可以使用任何适当的载体,但优选地,载体在例如原料水溶液的原料溶液中稳定得足以在所希望的水平上起作用。一种特别优选的催化剂载体是碳。优选地,这样的碳载体具有相对高的表面积(大于100平方米/克)。这样的碳包括活性炭(颗粒状的、粉状的或粒状的)、活性炭布、毡或纤维、碳纳米管或纳米角(nanohorn)、富勒烯碳、高表面积碳蜂窝、碳泡沫(网状碳泡沫)和碳块。可以经由泥炭、木材、褐煤、煤、椰子壳、橄榄核和基于碳的油的化学或蒸汽活化来生成碳。一种优选的载体是产自椰子的颗粒状的活性炭。用于实践本发明的其他有用的催化剂载体包括但不限于:二氧化硅、二氧化硅-氧化铝和氧化铝。优选地,催化剂***是在二氧化硅或二氧化硅-氧化铝上的铂,其中铂被进一步与镍或钌熔合或混合。也可以例如通过表面改性来处理载体,以改性诸如氢和羟基的表面部分。表面的氢和羟基基团可以引起局部pH变化,这将会影响催化效率。例如,通过用选自硫酸盐、磷酸盐、钨酸盐(tun gstenate)和硅烷的改性剂处理载体而使载体改性。 
优选地,可以使用蒸汽、氧气(来自空气)、无机酸或过氧化氢预处理所选择的碳以便提供更多的表面氧位置。优选的预处理是使用氧气(来自空气)或过氧化氢。 
可以通过添加IVB族和VB族的氧化物来改性被预处理的碳。优选地,使用钛、钒的氧化物、氧化锆及其混合物。 
可以通过本领域技术人员已知的常规方法制备本发明的催化剂体系。这些方法包括蒸发浸渍法、初始润湿法、化学蒸气沉积法、修补基面涂层法、磁控管溅射法等。所选择的制备催化剂的方法对本发明的作用来说不是特别关键,条件是不同的催化剂将会得到不同的结果,这取决于诸如总表面积、孔隙率等考虑事项。 
重整方法
通常在有利于所提议的反应的热力学的温度下进行本发明的液相重整方法。所选择的反应压力随温度而变化。对于冷凝相液体反应,在反应器内的压力必须足以使在反应器入口的反应物维持在冷凝液相。 
应该在氧化处理烃化合物的蒸汽压力至少是大约0.1atm(优选地,高得多的压力)以及有利于反应的热力学的温度下进行本发明的蒸气相重整方法。这个温度将根据所使用的具体氧化处理烃化合物而改变,但对于在蒸气相中发生的反应来说,通常是在从大约100℃到大约450℃的范围内,对于蒸气相反应来说更优选从大约100℃到大约300℃。对于在冷凝液相中发生的反应,优选的反应温度不应超过大约300℃。 
也可以任选地使用增加催化剂体系的活性和/或稳定性的改性剂来完成本发明的冷凝液相方法。优选地,水和氧化处理烃在适当pH下反应,该适当pH从大约1.0到大约10.0,并包括在其间0.1和0.05增量的pH值。通常,相对于所使用的催化剂体系的总重量,将按重量计算的从大约0.1%到大约10%范围的量的改性剂添加到原料溶液中,尽管这个范围之外的量被包括在本发明内。 
任选地,碱或碱土盐可以被添加到原料溶液中以使得反应产物中氢气的比例最佳化。适当的水溶性的盐的例子包括一种或多种选自下述组的盐:碱金属或碱土金属的氢氧化物、碳酸盐、硝酸盐或氯化物盐。例如,添加碱(碱性的)盐以提供大约pH4到大约pH10的pH,可以改善重整反应的氢选择性。 
提供了烷烃生成的方法,其包括原料溶液与重整催化剂接触。原料可以包括水溶液,该水溶液具有大约10-60%(优选地,20%或30%或更多)的一种或多种C1-C6氧化处理烃(优选地,甘油、乙二醇和/或山梨糖醇)。原料可以与包括一种或多种选自由铂、铑和铼组成的组的金属催化剂接触。如在诸实施例中所描述,在生成烷烃方法中使用的适当催化剂包括具有各不相同量的每种金属的PtRe和RhRe催化剂。烷烃生成的优选方法提供了在产物流中含有大约3-50%、5-25%或10-20%烷烃的产物。优选地,所生成的烷烃具有1、2、3、4、5、6、7、8或更多个碳,并且可以是直链烃或支链烃。 
任选地,可以将酸性化合物添加到原料或反应器***,以增加重整反应的烷烃选择性。优选地,水溶性酸选自:硝酸盐、磷酸盐、硫酸盐和氯化物盐及其混合物。如果使用任选的酸性改性剂,优选地,应存在足以把水原料流的pH降低到大约pH1和大约pH4之间的酸性改性剂的量。以这种方式降低原料流的pH可以增加反应产物中烷烃的比例。 
下面所描述的是经由含有至少一个碳和一个氧的氧化处理烃的水相重整来生成氢气和烷烃的方法。这些方法利用载于从椰子产生的活性炭的VIIB族和VIII族金属的组合,通过酸处理、用过氧化氢处理或用氧气处理可以进一步功能化所述碳,可以通过添加钛、钒、钨、钼的任一种的氧化物进一步使碳载体起作用。通过添加IIIB族和缔合的稀土金属的氧化物来进一步提高性能。如果在含氧化合物的原料浓度大于20wt%、优选地大于30wt%、更优选地大于40wt%或50wt%下进行该方法,则该方法在热学上是有效的。 
一方面,提供了物质的优选组合物。该组合物可以在进行在此所描述的一种或多种方法或方法之前、期间或之后被离析,并且可以在反应器***的一部分内被离析。在一种或多种相中的一种优选的组合物包括:APR催化剂组合物、山梨糖醇、氢气、二氧化碳和诸如甲烷、乙烷、丙烷、丁烷、戊烷和己烷的烃。在一种或多种相中的另一优选组合物包含:APR催化剂组合物、甘油、氢气、二氧化碳和诸如甲烷、乙烷、丙烷、丁烷和戊烷的轻质烃。在两种组合物中的催化剂组合物优选地包括一种或多种选自铂、铼和铑组成的组的金属。具体地,组合物包含:包括含有铂、铼和/或铑的催化剂的固相、包括山梨糖醇的水相、包括氢气、二氧化碳和甲烷的气相以及包括乙烷、丙烷、丁烷、戊烷和己烷的有机相或气相。另一组合物包含:包括含有铂、铼和/或铑的催化剂的固相、包括甘油的水相、包括氢气、二氧化碳和甲烷的气相以及包括乙烷和丙烷的有机相或气相。 
实施例
下列实施例将被认为是本发明各方面的说明,而不应被解释为限定由所附的权利要求所定义的本发明的范围。 
实施例2(载于C的5%wt.Pt) 
依照实施例1的一般方法制备载于活性炭的5wt%铂催化剂。将含有3.34g六水合二氢六氯合铂酸(IV)的22.49g水溶液添加到22.49g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例3(载于C的5%Ru) 
依照实施例1的一般方法制备载于活性炭的5wt%钌催化剂。将含有0.98g亚硝酰基硝酸钌(III)(Alfa Aesar,1.5%Ru)的38mL水溶液添加到47.52g活性炭中(Calgon OLC-AW,以18-40目过筛)。在100℃真空下干燥所得混合物。使用38mL的这种溶液进行三次额外的施加,然后,使用14mL的这种溶液稀释到38mL,进行最后一次的施加。在每次加入之间在100℃真空下干燥碳混合物。 
实施例4(载于C的5%wt.Rh) 
依照实施例1的一般方法制备活性炭负载的5wt%铑催化剂。将含有18.54g硝酸铑溶液(Alfa Aesar,13.84%Rh)的38mL水溶液添加到47.51g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例5(载于C的5%wt.Re) 
依照实施例1的一般方法制备以活性炭为负载的5wt%铼催化剂。将含有0.882 g高铼酸溶液(Alfa Aesar,76.41%HReO4)的7.6mL水溶液添加到9.502g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真 空下干燥所得混合物。 
实施例6(载于C的5%wt.Pd) 
依照实施例1的一般方法制备活性炭负载的5wt%钯催化剂。将含有5.916g硝酸钯(II)(Alfa Aesar,8.5%Pd)的7.6mL水溶液添加到9.501g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例7(载于C的5%wt.Ir) 
依照实施例1的一般方法制备载于活性炭的5wt%铱催化剂。将含有5.03g水化二氢六氯铱酸盐(IV)(Strem,47.64%Ir)的62mL水溶液添加到44.87g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例8(载于C的15%wt.Ni) 
依照实施例1的一般方法制备载于活性炭的15wt%镍催化剂。将含有7.807g六水合硝酸镍(II)(Alfa Aesar,19.4%Ni)的7.3mL水溶液添加到8.587g活性炭(Calgon OLC-AW,以12-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例9 
使用图4中所例示的测试***评价催化剂的APR活性。 
催化剂被载入到安装在铝块加热器2中的不锈钢管反应器1内以维持等温条件。通过温度控制子***控制反应温度。温度控制子***(在图4中未示出)的关键组件是被***到管反应器内的热电偶、安装在铝块上的电阻加热器和PID控制器。 
使用HPLC泵3将底物溶液(即原料溶液)连续地注入反应器内。离开反应器的物质在进入分相器5之前通过热交换器4时被冷却。 
由压力控制子***维持在恒压的气体经由气体管线6离开分相器。压力控制子***的关键组件是压力传感器7、压力控制阀8以及PID控制器9。由质量流量计10测量经由压力控制阀8放出的气体量。通过气相色谱 法检测此气体的组合物。 
在分相器5中的液体水平由水平控制子***维持在恒定水平。水平控制子***的组件包括在分相器中的水平传感器11、水平调节阀12以及PID控制器13。收集在催化剂评价实验期间从分相器排出的水溶液,并且用重量分析法测定所收集的量。该溶液的分析可以包括pH、总有机碳浓度、GC,以便测定未反应的底物、具体中间产物和副产物的浓度。 
实施例10 
在实施例9中所描述的仪器中测试在实施例1到8中所描述的单金属催化剂体系。在含有10wt%乙二醇的液体进料在230℃下被引到催化剂之前,在250℃的流动氢气下处理催化剂。下面的表1描述了在430psig下用催化剂重整乙二醇溶液的结果。表1示出载于碳的VIII族单金属催化物质(铂和钌)显示出明显的活性。载于碳的铼也显示出一定重整活性。 
表1.单金属催化剂对10%乙二醇APR的活性 
Figure S2006800485985D00171
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
实施例11(5%wtIr、1∶1摩尔比Re∶Ir的ReIr双金属催化剂)用去离子水将0.87g高铼酸溶液(Alfa Aesar,76.41%HReO4)稀释到 7.6mL,并且通过初始润湿法将其添加到10.00g从实施例7得到的载于碳的5wt%Ir催化剂上。在100℃真空下干燥所得混合物。 
实施例12(5%wt.Ni、1∶16摩尔比Re∶Ni的ReNi双金属催化剂) 
将2.577g六水合硝酸镍(II)(Alfa Aesar,19.4%Ni)和0.163g高铼酸溶液(Alfa Aesar,76.4%HReO4)溶解在足量的去离子水中以便得到7.6mL的溶液。通过初始润湿法将这一溶液添加到9.409g活性炭(CalgonOLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例13(5%wt.Pd、1∶1摩尔比Re∶Pd的RePd双金属催化剂) 
通过初始润湿法将含有4.577g高铼酸溶液(Alfa Aesar,76.4%HReO4)和5.906g硝酸钯(II)(Alfa Aesar,8.5%Pd)的7.6mL水溶液添加到9.503g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例14(5%wt.Pt、1∶1摩尔比Re∶Pt的RePt双金属催化剂) 
依照实施例1的一般方法制备载于活性炭的5wt%铂催化剂。将含有4.261g六水合二氢六氯合铂酸(IV)(Alfa Aesar,39.85%Pt)的大约26mL水溶液添加到32.34 g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。将含有0.87g高铼酸溶液(Alfa Aesar,76.41%HReO4)的额外加入的7.6mL水溶液添加到10.03g干燥的铂/碳混合物中。在100℃真空下干燥所得混合物。 
实施例15(5%wt.Rh、1∶3.8摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有3.55 g硝酸铑(III)(Alfa Aesar,13.93%Rh)的大约7.6mL水溶液添加到9.51g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。完成含有0.42g高铼酸溶液(AlfaAesar,76.41%HReO4)的7.6mL水溶液的额外加入。在100℃真空下干燥所得混合物。 
实施例16(5%wt.Rh、1∶1摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有1.60g高铼酸溶液(Alfa Aesar,76.41%HReO4) 的24.2mL水溶液添加到10.01g干燥Degussa催化剂(G106NB/W,5wt%Rh)中。在100℃真空下干燥所得混合物。 
实施例17(5%wt.Ru、1∶1摩尔比Re∶Ru的ReRu双金属催化剂) 
用去离子水将1.63g高铼酸溶液(Alfa Aesar,76.41%HReO4)稀释到7.3mL,并且通过初始润湿法将其添加到10.01g从实施例3得到的载于碳上的5wt%Ru催化剂中。在100℃真空下干燥所得混合物。 
实施例18 
在实施例9所描述的设备中测试在实施例11至17中所描述的由铼改性的催化剂体系。在含有10wt%乙二醇的液体进料在230℃下被引到催化剂之前,在250℃的流动氢气下处理催化剂。下面的表2描述了在430psig下用催化剂重整乙二醇溶液的结果。与实施例10的结果对比,表2示出载于活性炭的铼和VIII族金属的组合显著提高了乙二醇的重整活性。 
表2.双金属催化剂对10%乙二醇APR的活性 
Figure DEST_PATH_G200680048598501D00081
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
实施例19(5%wt.Rh、1∶2∶2摩尔比Re∶Rh∶Ce的RhReCe催化剂)通过初始润湿法将含有3.64g硝酸铑(III)(Alfa Aesar,13.93%Rh)、0.82 g高铼酸溶液(Alfa Aesar,76.49%HReO4)、2.18硝酸铈(III)的7.6mL水溶液添加到9.50g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例20 
已经使用过氧化氢功能化活性炭以便为APR催化剂提供改良的载体。S.R.de Miguel,O.A.Scelza,M.C.Roman-Martinez,C.Salinas Martinez deLecea,D.Cazorla-Amoros,A.Linares-Solano,Applied Catalysis A:General170(1998)93。将45g活性炭缓慢地添加到1200mL的30%过氧化氢溶液中。在完成碳的添加之后,混合物被放置过夜。水相被倾析,用1200mL的去离子水对碳洗涤三次,然后在100℃真空下干燥。 
实施例21(5%wt.Rh、1∶1∶1摩尔比Re∶Rh∶Ce的RhReCe催化剂) 
使用在实施例20所描述的方法制备过氧化氢功能化的碳(CalgonOLC-AW,以18-40目过筛)。在功能化之后,在100℃真空下干燥所述碳。通过初始润湿法将含有2.12g硝酸铈(III)的7.6mL水溶液添加到9.46g被过氧化氢功能化的碳中。在100℃真空下干燥所得混合物。进行含有3.64g硝酸铑(III)(Alfa Aesar,12%Rh)和1.61g高铼酸溶液的7.6mL水溶液的额外加入。在100℃真空下干燥所得混合物。 
实施例22(5%wt.Rh、1∶1∶3摩尔比Re∶Rh∶La的RhReLa催化剂) 
依照实施例1的一般方法制备载于活性炭的5wt%铑催化剂。将含有3.72硝酸铑(III)(Alfa Aesar,13.65wt%Rh)的大约7.6mL水溶液添加到9.5g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。进行含有1.60g高铼酸溶液(Alfa Aesar,76.41%HReO4)和6.33g六水化硝酸镧(III)(Alfa Aesar,99.9%La(NO3)3)的7.6mL水溶液的额外加入。在100℃真空下干燥所得混合物。 
实施例23 
在实施例9所描述的设备中测试在实施例19至22中由所描述的IIIB族化合物改性的Rh/Re催化剂。在含有10wt%乙二醇的液体进料在230℃下被引到催化剂之前,在250℃的流动氢气下处理催化剂。下面的表3描述了在430psig下用催化剂重整乙二醇溶液的结果。表3示出添加这些IIIB族化合物提高了到氢气的选择性。 
表3.Ce或La削弱的RhRe催化剂对10%乙二醇APR的活性 
Figure DEST_PATH_G200680048598501D00101
a重时空速(WHSV)是基于氧化处理底物的进料速度 
实施例24 
利用在水中的各种浓度的甘油测试载于碳的Pt/Fe催化剂(DegussaCF105)。该催化剂包含5wt%Pt和0.5wt%Fe的载入量。在含有甘油的液体进料在230℃下被引到催化剂之前,在250℃的流动氢气下预处理催化剂。表4示出用该Pt/Fe催化剂重整不同的甘油溶液的结果。 
表4.载于活性炭的5wt%Pt/0.5wt%Fe的活性 
Figure DEST_PATH_G200680048598501D00102
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
实施例25(5%wt.Pt、2.5∶1摩尔比Re∶Pt的PtRe催化剂) 
1.18g六水合二氢六氯合铂酸(IV)(Alfa Aesar,39.85%Pt)和1.92g高铼酸溶液(Alfa Aesar,79.18%HReO4)被稀释到10.75mL。通过初始润湿法将该溶液添加至8.95g由过氧化氢功能化的(实施例20)UU 60x120目的碳中,然后在100℃真空下干燥。 
实施例26 
空气氧化已经被用来功能化活性炭以便为APR催化剂提供改良的载体。23g活性炭被放在石英U型管内,然后在150mL/min的氮气流中被加热到450℃。一旦温度稳定下来,将50mL/min空气流添加到所述氮气中。碳被处理10小时,然后被允许在流动的氮气下冷却。 
实施例27(5%wt.Rh、1∶1∶1摩尔比Re∶Rh∶Ce的RhReCe催化剂) 
铑、铼和铈土被添加到已经使用实施例26的方法来空气氧化的活性炭中。通过初始润湿法将含有4.34g硝酸铑(III)溶液(Alfa Aesar,13.82%Rh)、1.85g高铼酸溶液(Alfa Aesar,79.18%HReO4)、2.53硝酸铈(III)的9.3mL水溶液添加到11.4g空气氧化的碳(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例28(5%wt .Pt、2.5∶1摩尔比Re∶Pt的PtRe催化剂) 
1.18g六水合二氢六氯合铂酸(IV)(Alfa Aesar,39.85%Pt)和1.92g高铼酸溶液(Alfa Aesar,79.18%HReO4)被稀释到10.75mL。通过初始润湿法将该溶液添加到8.95g空气氧化的UU 60x120目的碳中,然后在100℃真空下干燥。 
实施例29(5%wt.Rh、1∶1∶1摩尔比Re∶Rh∶Ce的RhReCe催化剂) 
1.37g二水合硝酸铑(III)(Alfa Aesar,31.91%Rh)、高铼酸溶液(AlfaAesar,79.18%HReO4)和1.85g六水合硝酸铈(III)被稀释到13.2mL。通过初始润湿法将该溶液添加到8.31g UU 120x200目的活性炭中,然后在100℃真空下干燥。 
实施例30 
在浸渍催化剂前体之前,通过浸渍金属氧化物来改性功能化碳表面。用无水异丙醇将1.95g正丁氧化钛稀释到12mL。通过初始润湿法将该溶液添加到10g空气氧化功能化的碳(见上述实施例26)中。被润湿的碳在100℃真空下干燥过夜。 
实施例31(5%wt.Rh、1∶1∶1摩尔比Re∶Rh∶Ce的RhReCe催化剂) 
3.86g硝酸铑(III)、1.64g高铼酸和2.21g六水合硝酸铈(III)被溶解在足量的去离子水中以便得到12mL的溶液。通过初始润湿法将该溶液添加到从实施例30得到的由二氧化钛改性的碳中,然后在100℃真空下干燥过夜。 
实施例32 
含有含氧化合物的液体进料在所想要的反应温度下被引到催化剂之前,在250℃的流动氢气下预处理实施例25至31中的催化剂。表5示出用这些催化剂重整不同溶液的结果。当与在实施例24中所给出的高浓度甘油的转化结果相比时,表5示出载于活性炭的铼和VIII族金属的组合显著地提高了重整较高浓度含氧化合物的活性。 
表5.APR催化剂重整高浓度底物的活性 
Figure S2006800485985D00231
Figure S2006800485985D00241
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
实施例33 
在浸渍催化剂前体之前,可以通过浸渍金属氧化物来改性功能化碳表面。用无水异丙醇将0.67g氧化钒三异丙醇盐(triisopropoxide)稀释到12mL。通过初始润湿法将该溶液添加到10g由过氧化氢功能化的碳(见上述实施例20)中。被润湿的碳在100℃真空下干燥过夜。 
实施例34(5%wt.Rh、1∶1∶1摩尔比Re∶Rh∶Ce的RhReCe催化剂) 
3.82g硝酸铑(III)、1.69g高铼酸和2.21g六水合硝酸铈(III)被溶解在足量的去离子水中以便得到12mL的溶液。通过初始润湿法将该溶液添加到由氧化钒改性的碳中,然后在100℃真空下干燥过夜。 
实施例35 
在含有含氧化合物的液体进料在所想要的反应温度下被引到催化剂之前,在250℃的流动氢气下预处理实施例29、31和34中的催化剂。表6示出在240℃和495psig下重整30wt%山梨糖醇的结果。该表示出加入Ti或V显著地提高了山梨糖醇的转化率。 
表6.载于改性碳的APR催化剂对30%山梨糖醇的活性。 
Figure S2006800485985D00242
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
实施例36 
已经发现,添加碱显著地增加在水相重整期间所生成的氢气的量。表7示出添加各种量的NaOH和KOH的影响。 
表7.把碱添加到进料中对APR催化剂的活性和选择性的影响。 
Figure S2006800485985D00251
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
b在任何实施例中均没有描述这种催化剂(载于H2O2钒改性的碳上)的制备方法,但是其过程类似于实施例34。 
实施例37 
依照实施例1的一般方法制备载于活性炭的3wt%铂催化剂。将含有0.75g六水合二氢六氯合铂酸(IV)(Alfa Aesar,39.85%Pt)和1.22g高铼酸溶液(Alfa Aesar,79.18%HReO4)的大约9.5mL水溶液添加到10.0g由过氧化物功能化的碳(Calgon UU,以60-120目过筛,用实施例20的方法功能化)中。在100℃真空下干燥所得混合物。 
实施例38 
在含有含氧化合物的液体进料在所想要的反应温度下被引到催化剂之前,在350℃的流动氢气下预处理实施例37中的催化剂。图5示出在260℃、600psig和0.55的基于甘油进料速度的WHSV下,重整50wt%甘油的到气体的分数转化率随时间变化的结果。 
实施例39(5%wt.Rh、1∶2摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有0.85g高铼酸溶液(Alfa Aesar,76.41%HReO4)的7.6mL水溶液添加到10.0g实施例4的5%wt Rh催化剂中。在100℃真空下干燥所得混合物。 
实施例40(5%wt.Rh、1∶1摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有1.61g高铼酸溶液(Alfa Aesar,76.41%HReO4)的7.6mL水溶液添加到10.0g实施例4的5%wt Rh催化剂中。在100℃真空下干燥所得混合物。 
实施例41(5%wt.Rh、1∶1摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有3.15g硝酸铑(III)(Alfa Aesar)的15mL水溶液添加到19.0g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。进行含有3.14 g高铼酸溶液(Alfa Aesar,79.2%HReO4)的15.2mL水溶液的额外加入。在100℃真空下干燥所得混合物。 
实施例42(5%wt.Rh、2∶1摩尔比Re∶Rh的ReRh双金属催化剂) 
通过初始润湿法将含有1.57g硝酸铑(III)(Alfa Aesar)和3.11g高铼酸溶液(Alfa Aesar,76.41%HReO4)的7.6mL水溶液添加到9.53g活性炭(Calgon OLC-AW,以18-40目过筛)中。在100℃真空下干燥所得混合物。 
实施例43 
已经发现,增加铼的载入量将会提高烷烃产物的生成。表8示出用不同比例的Re∶Rh的催化剂重整两种浓度的乙二醇的结果。在产物气体中的烷烃的浓度随所述比例的增加而增加。 
表8.增加Re∶Rh比对APR催化剂的活性和选择性的影响。 
Figure S2006800485985D00271
a重时空速(WHSV)是基于氧化处理底物的进料速度。 
所描述的实施方案和实施例在各方面均被认为仅仅是说明性的而非限制性的,因此,本发明的范围是由所附的权利要求而不是由以上描述指示。落入在权利要求的等效含义和范围内的所有改变将被包含在其范围内。 

Claims (14)

1.一种重整氧化处理烃的方法,其包括在有效生成氢气体和烷烃的反应温度和反应压力的条件下原料溶液与重整催化剂接触的步骤,所述原料溶液包括水和总原料溶液的至少30%重量的氧化处理烃,
其中所述氧化处理烃具有至少一个氧原子,并且
其中所述重整催化剂包括载于水稳定性载体上的铼和VIII族过渡金属,所述水稳定性载体包括经钛、钒、钨或氧化锆改性的碳。
2.如权利要求1所述的方法,其中所述重整催化剂包括Re和至少一种选自下述组的过渡金属:Ir、Ni、Pd、Pt、Rh和Ru。
3.如权利要求1至2任一项所述的方法,其中所述重整催化剂进一步包括Ce或La。
4.如权利要求1至3任一项所述的方法,其中所述水稳定性载体包括一种或多种选自下述组的物质:碳、氧化锆、二氧化钛、铈土及其组合。
5.如权利要求1至4任一项所述的方法,其中所述重整催化剂中Re与VIII族金属的原子比是从0.25∶1到10∶1,并且所述重整催化剂和所述载体的组合包括从0.25wt%到10wt%的VIII族金属。
6.如权利要求1至5任一项所述的方法,其中所述重整催化剂选自:Re1.0Rh3.8、Re1.0Rh1.0、Ni1.0Re16.0、Re1.0Rh2.0Ce2.0、Re1.0Rh1.0Ce1.0、Re1.0Rh1.0La3.0和Re2.5Pt1.0
7.如权利要求1至6任一项所述的方法,其中所述原料溶液包括至少50%的含氧化合物。
8.如权利要求1至7任一项所述的方法,其中所述反应温度是在80℃和300℃之间,并且所述反应压力是在10巴和50巴之间。
9.一种水相重整载体催化剂,其包括:
(a)碳载体,其经二氧化钛、氧化钒、钨或氧化锆改性;
(b)催化组合物,其被附着于所述碳载体上,所述催化组合物包括Re和选自Ir、Ni、Pd、Pt、Rh和Ru的第二金属;以及
(c)附着于碳载体或所述催化组合物的Ce或La。
10.如权利要求9所述的水相重整载体催化剂,其中所述催化组合物选自:Re1.0Rh3.8、Ni1.0Re16.0、Re1.0Rh2.0Ce2.0、Re1.0Rh1.0Ce1.0、Re1.0Rh1.0La3.0和Re2.5Pt1.0
11.一种物质组合物,其包括:
(a)重整催化剂,其包括铼、VIII族金属以及Ce或La;
(b)气相,其包括氢气、甲烷、二氧化碳以及一种或多种选自乙烷和丙烷的化合物;和
(c)液相,其包括C1-C6的氧化处理烃。
12.如权利要求11所述的组合物,其中所述液相包括含有己烷、戊烷和丙烷的有机相和含有山梨糖醇的水相。
13.如权利要求11或12所述的组合物,其中所述液相包括含有丙烷的有机相和含有甘油的水相。
14.如权利要求11至13任一项所述的组合物,其中所述VIII族金属包括一种或多种选自Ir、Ni、Pd、Pt、Rh和Ru的物质。
CN2006800485985A 2005-12-21 2006-12-18 用于重整含氧化合物的催化剂及方法 Expired - Fee Related CN101346302B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US75248505P 2005-12-21 2005-12-21
US60/752,485 2005-12-21
PCT/US2006/048030 WO2007075476A2 (en) 2005-12-21 2006-12-18 Catalysts and methods for reforming oxygenated compounds

Publications (2)

Publication Number Publication Date
CN101346302A CN101346302A (zh) 2009-01-14
CN101346302B true CN101346302B (zh) 2013-07-10

Family

ID=38218481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800485985A Expired - Fee Related CN101346302B (zh) 2005-12-21 2006-12-18 用于重整含氧化合物的催化剂及方法

Country Status (14)

Country Link
US (1) US8231857B2 (zh)
EP (1) EP1968887A2 (zh)
JP (1) JP5377975B2 (zh)
KR (1) KR101364280B1 (zh)
CN (1) CN101346302B (zh)
AU (1) AU2006332008C1 (zh)
BR (1) BRPI0621101A2 (zh)
CA (1) CA2634712C (zh)
MY (1) MY148259A (zh)
NZ (1) NZ569246A (zh)
RU (2) RU2438968C2 (zh)
UA (1) UA100362C2 (zh)
WO (1) WO2007075476A2 (zh)
ZA (1) ZA200806015B (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2634712C (en) 2005-12-21 2015-11-24 Virent Energy Systems, Inc. Catalysts and methods for reforming oxygenated compounds
BRPI0709156B1 (pt) * 2006-03-24 2016-08-02 Virent Energy Systems Inc método para fabricar hidrocarbonetos e hidrocarbonetos oxigenados, hidrocarbonetos lineares ou ramificados de c2 a c36
KR101460807B1 (ko) 2006-05-08 2014-11-11 바이렌트, 아이엔씨. 폴리올을 제조하는 방법 및 시스템
JP5013396B2 (ja) * 2006-09-01 2012-08-29 独立行政法人産業技術総合研究所 炭素数3の多価アルコールの脱水/水素化用触媒及びそれを用いた炭化水素の製造方法
MX2009006509A (es) * 2006-12-20 2009-10-28 Virent Energy Systems Inc Sistema reactor para la produccion de productos gaseosos.
AU2013203267B2 (en) * 2007-03-08 2015-04-30 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
AU2008222628B2 (en) * 2007-03-08 2013-05-23 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
MY154790A (en) 2007-03-08 2015-07-31 Virent Inc Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
DE102008021084A1 (de) * 2008-04-28 2009-10-29 Süd-Chemie AG Verwendung eines Katalysators auf Edelmetallbasis zur Verringerung des Teergehalts in Gasen aus Vergasungsprozessen
JP5315801B2 (ja) * 2008-06-11 2013-10-16 株式会社Ihi 改質装置
EP2331486A2 (en) * 2008-08-27 2011-06-15 Virent Energy Systems Inc. Synthesis of liquid fuels from biomass
US8697924B2 (en) * 2008-09-05 2014-04-15 Shell Oil Company Liquid fuel compositions
US8741258B2 (en) 2008-09-18 2014-06-03 University Of Massachusetts Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils
JP5330808B2 (ja) * 2008-11-14 2013-10-30 花王株式会社 水性ガス用原料
CN102292283B (zh) * 2008-12-23 2014-07-09 国际壳牌研究有限公司 用于制备氢气的催化剂
DK177205B1 (da) * 2009-01-07 2012-06-11 Aquarden Technologies Aps Fremgangsmåde og apparat til produktion af hydrogen fra methanol
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
CA2763777C (en) 2009-06-13 2017-10-17 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
CN102803194B (zh) 2009-06-13 2016-01-20 莱诺维亚公司 由含碳水化合物的物质生产戊二酸和衍生物
KR20120098584A (ko) 2009-06-30 2012-09-05 바이렌트, 아이엔씨. 당분 및 당알코올을 변환하기 위한 공정 및 반응기 시스템
KR20120124427A (ko) 2009-12-30 2012-11-13 바이렌트, 아이엔씨. 폴리올의 산소환원 수소처리를 위한 개선된 촉매
US9303226B2 (en) 2009-12-31 2016-04-05 Shell Oil Company Direct aqueous phase reforming of bio-based feedstocks
US9447347B2 (en) * 2009-12-31 2016-09-20 Shell Oil Company Biofuels via hydrogenolysis-condensation
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
US9193593B2 (en) 2010-03-26 2015-11-24 Dioxide Materials, Inc. Hydrogenation of formic acid to formaldehyde
KR101732121B1 (ko) * 2010-03-31 2017-05-08 한국화학연구원 메조다공성 탄소를 담체로 하고, 복합금속을 담지한 수상개질반응의 촉매, 및 그의 제조 방법
WO2011127869A1 (en) * 2010-04-15 2011-10-20 G.F. Agro A.S. Method for processing of a mixture of waste substances containing glycerol as a prevailing component
WO2011143392A1 (en) 2010-05-12 2011-11-17 Shell Oil Company Process including hydrogenolysis of biomass followed by dehydrogenation and aldol condensation for producing alkanes
EP2569265A1 (en) 2010-05-12 2013-03-20 Shell Oil Company Process including hydrogenolysis of biomass followed by dehydrogenation aldol condensation to produce alkanes
WO2012138802A1 (en) 2011-04-07 2012-10-11 Hcl Cleantech Ltd. Lignin compositions, methods of producing the compositions, methods of using lignin compositions, and products produced thereby
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
KR101764924B1 (ko) * 2010-06-14 2017-08-04 에스케이이노베이션 주식회사 글리세롤 수상개질용 촉매 및 촉매 제조 방법
WO2011161685A2 (en) 2010-06-26 2011-12-29 Hcl Cleantech Ltd. Sugar mixtures and methods for production and use thereof
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
JP5825027B2 (ja) * 2010-10-06 2015-12-02 宇部興産株式会社 ジオール化合物の製造方法
JP5193274B2 (ja) * 2010-11-29 2013-05-08 国立大学法人群馬大学 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
US9212315B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Methods for biomass deconstruction and purification
US9157031B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass to produce aqueous and organic products
CA2820757C (en) 2010-12-30 2019-01-08 Virent, Inc. Reductive biomass liquefaction
EP4223731A3 (en) 2010-12-30 2023-10-11 Virent, Inc. Solvolysis of biomass using solvent from a bioreforming process
CN103298770B (zh) 2010-12-30 2016-09-07 维仁特公司 有机催化降解生物质
WO2012092431A1 (en) 2010-12-30 2012-07-05 Virent, Inc. Catalytic biomass deconstruction
US9157030B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass and stabilization of biomass hydrolysate
US9212316B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Serial deconstruction of biomass
WO2012109241A1 (en) 2011-02-07 2012-08-16 Virent, Inc. Method and systems for making distillate fuels from biomass
US9593054B2 (en) 2011-02-07 2017-03-14 Virent, Inc. Production of distillate fuels from biomass-derived polyoxygenates
EP3401322B1 (en) 2011-04-07 2022-06-08 Virdia, LLC Lignocellulose conversion processes and products
WO2012151275A1 (en) 2011-05-02 2012-11-08 Virent, Inc. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes
WO2012155074A1 (en) 2011-05-12 2012-11-15 Virent, Inc. Process for purifying lignocellulosic feedstocks
CA2835287C (en) 2011-05-23 2019-04-30 Virent, Inc. Production of chemicals and fuels from biomass
CN102417160B (zh) * 2011-08-25 2013-07-10 天津大学 以来源于纤维素的乙二醇蒸汽重整制氢气的方法
US8962902B2 (en) 2011-11-23 2015-02-24 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
US8969640B2 (en) 2011-11-23 2015-03-03 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
WO2013103392A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Hydrogenation catalyst and process for producing ethanol using the catalyst
CN104672468B (zh) 2012-05-03 2019-09-10 威尔迪亚公司 用于处理木质纤维素材料的方法
US9493851B2 (en) 2012-05-03 2016-11-15 Virdia, Inc. Methods for treating lignocellulosic materials
FR2991336B1 (fr) * 2012-05-30 2014-08-08 IFP Energies Nouvelles Procede de transformation de polyols en phase aqueuse en presence d'un catalyseur a base d'oxyde de titane tungste
US10131604B2 (en) 2012-08-15 2018-11-20 Virent, Inc. Catalysts for hydrodeoxygenation of oxygenated hydrocarbons
US8946458B2 (en) 2012-08-15 2015-02-03 Virent, Inc. Catalysts for hydrodeoxygenation of oxygenated hydrocarbons
DK2970775T3 (da) 2013-03-14 2022-11-21 Virent Inc Produktion af aromater ud af di- og poly-oxygenater
RU2677641C2 (ru) * 2014-02-10 2019-01-18 Арчер Дэниелс Мидлэнд Компани Улучшенные многофазные способы с плохим смешиванием реагентов
JP6651196B2 (ja) * 2015-06-17 2020-02-19 出光興産株式会社 C5+化合物の製造方法
DE102017001561B4 (de) * 2017-02-20 2021-09-02 Diehl Aerospace Gmbh Verwendung eines Katalysators für die Propylenglykol-Reformierung
JP7372815B2 (ja) * 2018-12-25 2023-11-01 出光興産株式会社 C5+化合物の製造方法及びこれに用いられる触媒
US11118121B2 (en) 2019-12-19 2021-09-14 Saudi Arabian Oil Company Catalyst and process of upgrading heavy oil in the presence of steam
EP4237515A1 (en) 2020-10-29 2023-09-06 Marathon Petroleum Company L.P. Systems and methods for separating water and removing solids from pre-treated and unfiltered feedstock
CN114442685A (zh) * 2020-11-03 2022-05-06 中国石油化工股份有限公司 液相选择加氢反应中的控制方法、控制***及反应***
CN117881476A (zh) 2021-08-19 2024-04-12 维仁特公司 用于催化剂的湿空气氧化再生的***和方法
US11613715B1 (en) 2021-10-12 2023-03-28 Marathon Petroleum Company Lp Systems and methods of converting renewable feedstocks into intermediate hydrocarbon blend stocks and transportation fuels
CA3234105A1 (en) 2021-10-14 2023-04-20 Paul G. Blommel Methods for reforming a heavy aromatic stream
CN114436806B (zh) * 2022-01-07 2024-01-09 浙江大学 一步法低温转化pet聚酯废塑料制备对苯二甲酸二钠和氢气的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107148A (zh) * 1985-09-12 1987-03-11 埃克森研究工程公司 改进的钴催化剂及其应用

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965679A (en) 1960-12-20 Process for the production of glycerol
US3894107A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US4013734A (en) * 1973-12-14 1977-03-22 Exxon Research And Engineering Company Novel catalyst and its use for steam hydroconversion and dealkylation processes
US4223001A (en) * 1978-06-20 1980-09-16 Allied Chemical Corporation Production of hydrogen from carbon monoxide and water
BE884720A (fr) * 1980-08-11 1981-02-11 Catalysts & Chem Europ Procede de reformage de methanol et dispositif mis en oeuvre
US4433184A (en) 1981-04-27 1984-02-21 Hri, Inc. Multi-stage catalytic conversion of aldoses to alditols
US4401823A (en) * 1981-05-18 1983-08-30 Uop Inc. Hydrogenolysis of polyhydroxylated compounds
US4382150A (en) * 1982-01-19 1983-05-03 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4487980A (en) 1982-01-19 1984-12-11 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4476331A (en) 1982-02-11 1984-10-09 Ethyl Corporation Two stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
US4380679A (en) * 1982-04-12 1983-04-19 Uop Inc. Hydrogenation of saccharides
US4380680A (en) * 1982-05-21 1983-04-19 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4541836A (en) * 1982-12-09 1985-09-17 Union Carbide Corporation Fuel compositions
US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4496780A (en) 1983-06-22 1985-01-29 Uop Inc. Hydrocracking of polyols
US4503274A (en) * 1983-08-08 1985-03-05 Uop Inc. Ruthenium hydrogenation catalyst with increased activity
CA1201080A (en) 1983-12-13 1986-02-25 Le H. Dao Process for converting biomass into hydrocarbons
FR2560531B1 (fr) * 1984-03-02 1988-04-08 Inst Francais Du Petrole Procede de fabrication de catalyseurs contenant du cuivre, du zinc, de l'aluminium et au moins un metal du groupe forme par les terres rares et le zirconium et utilisation des catalyseurs obtenus pour les reactions mettant en jeu un gaz de synthese
US4554260A (en) 1984-07-13 1985-11-19 Exxon Research & Engineering Co. Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
JPS6182842A (ja) * 1984-09-27 1986-04-26 Mitsubishi Heavy Ind Ltd メタン含有ガス製造用触媒
AU576030B2 (en) * 1984-12-31 1988-08-11 Mobil Oil Corporation Process for producing high boiling jet fuel
US4543435A (en) * 1985-01-17 1985-09-24 Mobil Oil Corporation Multistage process for converting oxygenates to liquid hydrocarbons with ethene recycle
GB8511587D0 (en) 1985-05-08 1985-06-12 Shell Int Research Producing hydrocarbon-containing liquids
US5006131A (en) * 1985-06-27 1991-04-09 Stone & Webster Engineering Corporation Apparatus for production of synthesis gas using convective reforming
US4642394A (en) * 1985-07-16 1987-02-10 Celanese Corporation Production of propanediols
DE3612213A1 (de) * 1986-04-11 1987-10-15 Basf Ag Rohrbuendelreaktor, dessen verwendung bei exothermen organischen reaktionen und verfahren zur herstellung von ketonen und aldehyden mit hilfe des rohrbuendelreaktors
US5019135A (en) * 1987-10-13 1991-05-28 Battelle Memorial Institute Method for the catalytic conversion of lignocellulosic materials
US4885421A (en) 1987-12-08 1989-12-05 Harandi Mohsen N Multistage reactor system for production of fuels
US5001292A (en) * 1987-12-08 1991-03-19 Mobil Oil Corporation Ether and hydrocarbon production
GB8729555D0 (en) 1987-12-18 1988-02-03 Shell Int Research Alkylation process
US4919896A (en) * 1987-12-28 1990-04-24 Mobil Oil Corporation Multistage catalytic reactor system for production of heavy hydrocarbons
US4828812A (en) * 1987-12-29 1989-05-09 Mobil Oil Corporation Titanosilicates of enhanced ion exchange capacity and their preparation
US4935568A (en) * 1988-12-05 1990-06-19 Mobil Oil Corporation Multistage process for oxygenate conversion to hydrocarbons
US5130101A (en) * 1989-04-28 1992-07-14 Mobil Oil Corporation Reactor system for conversion of alcohols to ether-rich gasoline
US5026927A (en) * 1989-11-16 1991-06-25 The United States Of America As Represented By The United States Department Of Energy Hydrocracking of carbohydrates making glycerol, glycols and other polyols
US5105044A (en) * 1989-12-29 1992-04-14 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
US5238898A (en) * 1989-12-29 1993-08-24 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
US5567398A (en) 1990-04-03 1996-10-22 The Standard Oil Company Endothermic reaction apparatus and method
US5177279A (en) * 1990-10-23 1993-01-05 Mobil Oil Corporation Integrated process for converting methanol to gasoline and distillates
US5139002A (en) * 1990-10-30 1992-08-18 Hydrogen Consultants, Inc. Special purpose blends of hydrogen and natural gas
US5344849A (en) * 1990-10-31 1994-09-06 Canada Chemical Corporation Catalytic process for the production of hydrocarbons
US5095159A (en) * 1990-11-21 1992-03-10 Mobil Oil Corporation Ether and hydrocarbon production
IT1249955B (it) * 1991-07-10 1995-03-30 Menon S R L Procedimento di idrogenazione della glicerina
DE4138792A1 (de) * 1991-11-26 1993-05-27 Basf Ag Verfahren zur herstellung von 1,2-propylenglykol
IT1256800B (it) * 1992-01-31 1995-12-15 Novamont Spa Procedimento per la produzione di polioli inferiori e nuovo catalizzatore a base di rutenio utilizzato in tale procedimento.
IT1256802B (it) 1992-01-31 1995-12-15 Novamont Spa Catalizzatore di idrogenazione, procedimento per la sua preparazione ed impiego, particolarmente per l'drogenazione e/o idrogenolisi di carboidrati e polioli.
IT1256801B (it) * 1992-01-31 1995-12-15 Novamont Spa Catalizzatore di idrogenazione, procedimento per la sua preparazione ed impiego, particolarmente per l'idrogenazione e/o idrogenolisi di carboidrati e polioli.
CA2137261C (en) * 1992-06-05 2003-08-19 Douglas C. Elliott Method for the catalytic conversion of organic materials into a product gas
US5504259A (en) * 1992-10-29 1996-04-02 Midwest Research Institute Process to convert biomass and refuse derived fuel to ethers and/or alcohols
US5666923A (en) * 1994-05-04 1997-09-16 University Of Central Florida Hydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
WO1995030825A1 (en) * 1994-05-04 1995-11-16 University Of Central Florida Hydrogen-natural gas motor fuel
US5635145A (en) * 1994-08-23 1997-06-03 Shell Oil Company Multi-bed downflow reactor
JP2671944B2 (ja) * 1994-08-25 1997-11-05 工業技術院長 セルロース系バイオマスからの水素の製造方法
DE4442124A1 (de) * 1994-11-26 1996-05-30 Basf Ag Verfahren zur Herstellung von Propandiol-1,2
US5817589A (en) 1996-04-02 1998-10-06 Intevep, S.A. Regeneration of catalyst comprising flushing with inert gas followed by flushing with hydrogen
US5578647A (en) 1994-12-20 1996-11-26 Board Of Regents, The University Of Texas System Method of producing off-gas having a selected ratio of carbon monoxide to hydrogen
US5787864A (en) * 1995-04-25 1998-08-04 University Of Central Florida Hydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
IL119613A (en) * 1996-11-14 1998-12-06 Riskin Yefim Method and apparatus for the generation of ions
US5977013A (en) 1996-12-19 1999-11-02 Battelle Memorial Institute Catalyst and method for aqueous phase reactions
DE19725009C1 (de) * 1997-06-13 1999-03-04 Dbb Fuel Cell Engines Gmbh Verfahren zur Behandlung eines Methanolreformierungskatalysators
DE19725006C2 (de) * 1997-06-13 1999-04-29 Dbb Fuel Cell Engines Gmbh Methanolreformierungsreaktor und Behandlungsverfahren für einen Katalysator hierfür
US5959167A (en) 1997-08-25 1999-09-28 The University Of Utah Research Foundation Process for conversion of lignin to reformulated hydrocarbon gasoline
US6361757B1 (en) * 1997-10-07 2002-03-26 Nkk Corporation Catalyst for manufacturing hydrogen or synthesis gas and manufacturing method of hydrogen or synthesis gas
US6429167B1 (en) * 1997-11-27 2002-08-06 Idemitsu Kosan Co., Ltd. Alumina-supported ruthenium catalyst
EP0931762B1 (en) * 1998-01-21 2005-05-04 Haldor Topsoe A/S Process for the preparation of hydrogen-rich gas
JPH11217343A (ja) 1998-01-30 1999-08-10 Sangi Co Ltd 化学工業原料及びハイオク燃料の合成法
US6054041A (en) * 1998-05-06 2000-04-25 Exxon Research And Engineering Co. Three stage cocurrent liquid and vapor hydroprocessing
GR1003235B (el) 1998-05-22 1999-10-13 Διεργασια παραγωγης υδρογονου και ηλεκτρικης ενεργειας απο αναμορφωση βιο-αιθανολης, με χρηση κυψελιδων καυσιμου και με μηδενικη εκπομπη ρυπων
KR100600218B1 (ko) * 1998-06-09 2006-07-13 이데미쓰 고산 가부시키가이샤 탄화수소 개질용 촉매 및 탄화수소의 개질방법
US6479428B1 (en) 1998-07-27 2002-11-12 Battelle Memorial Institute Long life hydrocarbon conversion catalyst and method of making
US6440895B1 (en) * 1998-07-27 2002-08-27 Battelle Memorial Institute Catalyst, method of making, and reactions using the catalyst
US6172272B1 (en) * 1998-08-21 2001-01-09 The University Of Utah Process for conversion of lignin to reformulated, partially oxygenated gasoline
JP3559456B2 (ja) * 1998-09-18 2004-09-02 株式会社日本触媒 接触気相酸化方法及び多管式反応器
US6207132B1 (en) * 1998-12-04 2001-03-27 Chinese Petroleum Corporation Process for producing high purity hydrogen
US6562762B2 (en) 1998-12-28 2003-05-13 Venture Chemicals, Inc. Method of and composition for reducing the loss of fluid during well drilling, completion or workover operations
US7273957B2 (en) 1999-05-04 2007-09-25 Catalytic Distillation Technologies Process for the production of gasoline stocks
DE59900542D1 (de) * 1999-05-22 2002-01-24 Omg Ag & Co Kg Verwendung eines Katalysators für die Dampfreformierung von Methanol
US6372680B1 (en) * 1999-07-27 2002-04-16 Phillips Petroleum Company Catalyst system for converting oxygenated hydrocarbons to aromatics
US6969506B2 (en) 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
US6570043B2 (en) * 1999-09-03 2003-05-27 Battelle Memorial Institute Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
US6235797B1 (en) * 1999-09-03 2001-05-22 Battelle Memorial Institute Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
US6291725B1 (en) * 2000-03-03 2001-09-18 Board Of Trustees Operating Michigan State University Catalysts and process for hydrogenolysis of sugar alcohols to polyols
US6397790B1 (en) * 2000-04-03 2002-06-04 R. Kirk Collier, Jr. Octane enhanced natural gas for internal combustion engine
US6508209B1 (en) * 2000-04-03 2003-01-21 R. Kirk Collier, Jr. Reformed natural gas for powering an internal combustion engine
US6632765B1 (en) 2000-06-23 2003-10-14 Chervon U.S.A. Inc. Catalyst regeneration via reduction with hydrogen
JP2002105467A (ja) * 2000-09-29 2002-04-10 Osaka Gas Co Ltd 水素−メタン系燃料ガスの製造方法
JP2002105466A (ja) * 2000-09-29 2002-04-10 Osaka Gas Co Ltd 燃料ガスの製造方法
WO2002048286A1 (en) * 2000-12-11 2002-06-20 Shell Internationale Research Maatschappij B.V. Mixing device comprising a swirl chamber for mixing liquid
AU2002240870A1 (en) 2000-12-23 2002-07-08 Degussa Ag Method for producing alcohols by hydrogenating carbonyl compounds
US7112312B2 (en) * 2001-04-02 2006-09-26 Tai-Sheng Chou Quench box for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor
US6765101B1 (en) * 2001-05-01 2004-07-20 Union Carbide Chemicals & Plastics Technology Corporation Synthesis of lower alkylene oxides and lower alkylene glycols from lower alkanes and/or lower alkenes
DE10128203A1 (de) * 2001-06-11 2002-12-12 Basf Ag Verfahren zur Herstellung von Sorbit
US6670300B2 (en) * 2001-06-18 2003-12-30 Battelle Memorial Institute Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
US6607707B2 (en) * 2001-08-15 2003-08-19 Ovonic Battery Company, Inc. Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
US20030100807A1 (en) * 2001-10-05 2003-05-29 Shabtai Joseph S Process for converting lignins into a high octane additive
US20030115792A1 (en) * 2001-10-05 2003-06-26 Shabtai Joseph S Process for converting lignins into a high octane blending component
US6479713B1 (en) 2001-10-23 2002-11-12 Battelle Memorial Institute Hydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen
US6841085B2 (en) 2001-10-23 2005-01-11 Battelle Memorial Institute Hydrogenolysis of 6-carbon sugars and other organic compounds
BR0214560A (pt) 2001-11-29 2004-11-09 Wisconsin Alumni Res Found Produção de hidrogênio à baixa temperatura a partir de hidrocarbonetos oxigenados
US6699457B2 (en) * 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
EP2361899B1 (en) 2002-01-11 2015-07-22 Mitsubishi Chemical Corporation Vapor phase catalytic oxidation method using a multitube reactor of the heat-exchange type
US20030175561A1 (en) * 2002-03-18 2003-09-18 Lightner Gene E. Production of electricity from fuel cells achieved by biomass gasification
US8017816B2 (en) 2002-04-22 2011-09-13 The Curators Of The University Of Missouri Method of producing lower alcohols from glycerol
US7663004B2 (en) * 2002-04-22 2010-02-16 The Curators Of The University Of Missouri Method of producing lower alcohols from glycerol
NZ536672A (en) 2002-05-10 2007-01-26 Wisconsin Alumni Res Found Low-temperature hydrocarbon production from oxygenated hydrocarbons
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US6739125B1 (en) * 2002-11-13 2004-05-25 Collier Technologies, Inc. Internal combustion engine with SCR and integrated ammonia production
BR0316829A (pt) 2002-12-11 2005-10-18 Basf Ag Processo contìnuo para a preparação de álcoois de açúcar
US7199250B2 (en) * 2002-12-20 2007-04-03 Battelle Memorial Institute Process for producing cyclic compounds
US6982328B2 (en) * 2003-03-03 2006-01-03 Archer Daniels Midland Company Methods of producing compounds from plant material
EP1454671A1 (en) 2003-03-07 2004-09-08 Karsten Pedersen A catalyst for use in production of hydrogen by conversion of organic matter in water
JP2004275833A (ja) * 2003-03-13 2004-10-07 Nippon Oil Corp 水性ガスシフト反応用触媒、水素製造装置および燃料電池システム
JP4398670B2 (ja) * 2003-05-20 2010-01-13 出光興産株式会社 酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システム
FR2857003B1 (fr) * 2003-07-02 2006-08-11 Inst Francais Du Petrole Nouveau catalyseur pour le vaporeformage de l'ethanol
US20050203195A1 (en) * 2003-08-05 2005-09-15 Yong Wang Tailored Fischer-Tropsch synthesis product distribution
US20050135978A1 (en) 2003-10-14 2005-06-23 Mourad Hamedi Method and apparatus for optimizing throughput in a trickle bed reactor
GB0325386D0 (en) * 2003-10-30 2003-12-03 Davy Process Techn Ltd Process
JP4408214B2 (ja) * 2003-12-09 2010-02-03 勝 市川 水素含有ガス製造方法及び水素含有ガス製造装置
JP4488759B2 (ja) * 2004-02-10 2010-06-23 大阪瓦斯株式会社 燃料ガスの製造方法
JP4182220B2 (ja) * 2004-03-09 2008-11-19 独立行政法人産業技術総合研究所 水素製造用予備改質触媒及びそれを用いた水素の製造方法
FR2867464B1 (fr) 2004-03-10 2006-06-09 Inst Francais Du Petrole Procede de production d'hydrogene a tres haute purete a partir d'alcools comportant au moins deux atomes de carbone
EP1753694A2 (en) * 2004-06-03 2007-02-21 Charles J. Rogers Low temperature methods for hydrogen production
US20060013759A1 (en) * 2004-07-13 2006-01-19 Conocophillips Company Systems and methods for hydrogen production
US20060024539A1 (en) * 2004-07-29 2006-02-02 Dumesic James A Catalytic method to remove CO and utilize its energy content in CO-containing streams
BRPI0609771A2 (pt) 2005-03-21 2011-10-18 Univ Ben Gurion processo para produzir uma composição de combustìvel lìquida, composição de combustìvel diesel, e, composição de combustìvel misturada
DE102005023601B4 (de) 2005-05-18 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur kontinuierlichen oder teilkontinuierlichen Konvertierung von fett- oder ölhaltigen Roh- und Abfallstoffen in Gemische mit hohem Kohlenwasserstoffanteil, mit diesem Verfahren hergestellte Produkte und deren Verwendung
US7288685B2 (en) 2005-05-19 2007-10-30 Uop Llc Production of olefins from biorenewable feedstocks
GB0514593D0 (en) * 2005-07-15 2005-08-24 Davy Process Techn Ltd Process
WO2007027832A2 (en) 2005-08-30 2007-03-08 Cargill, Incorporated A method for the production of propylene glycol
JP2009515679A (ja) * 2005-11-14 2009-04-16 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 高分散金属触媒
US7987885B2 (en) * 2005-12-01 2011-08-02 Saint-Gobain Performance Plastics Corporation System and die for forming a continuous filament reinforced structural plastic profile by pultrusion/coextrusion
US20070135301A1 (en) * 2005-12-08 2007-06-14 Sud-Chemie Inc. Catalyst for the production of polyols by hydrogenolysis of carbohydrates
CA2634712C (en) 2005-12-21 2015-11-24 Virent Energy Systems, Inc. Catalysts and methods for reforming oxygenated compounds
US7615652B2 (en) 2006-01-26 2009-11-10 Battelle Memorial Institute Two-stage dehydration of sugars
US7649099B2 (en) * 2006-01-26 2010-01-19 Battelle Memorial Institute Method of forming a dianhydrosugar alcohol
EP1993985B1 (en) 2006-03-03 2017-10-04 Basf Se Process for the preparation of 1,2-propanediol
KR101460807B1 (ko) * 2006-05-08 2014-11-11 바이렌트, 아이엔씨. 폴리올을 제조하는 방법 및 시스템
US7578927B2 (en) * 2006-08-31 2009-08-25 Uop Llc Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
AU2008222628B2 (en) 2007-03-08 2013-05-23 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
MY154790A (en) 2007-03-08 2015-07-31 Virent Inc Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
EP2331486A2 (en) * 2008-08-27 2011-06-15 Virent Energy Systems Inc. Synthesis of liquid fuels from biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107148A (zh) * 1985-09-12 1987-03-11 埃克森研究工程公司 改进的钴催化剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-344721A 2004.12.09

Also Published As

Publication number Publication date
UA100362C2 (uk) 2012-12-25
RU2008127066A (ru) 2010-01-27
US8231857B2 (en) 2012-07-31
NZ569246A (en) 2011-06-30
CN101346302A (zh) 2009-01-14
KR101364280B1 (ko) 2014-02-18
AU2006332008A1 (en) 2007-07-05
MY148259A (en) 2013-03-29
WO2007075476A3 (en) 2008-03-20
BRPI0621101A2 (pt) 2011-11-29
AU2006332008C1 (en) 2014-02-20
CA2634712A1 (en) 2007-07-05
JP2009521387A (ja) 2009-06-04
KR20080078911A (ko) 2008-08-28
RU2438968C2 (ru) 2012-01-10
WO2007075476A2 (en) 2007-07-05
RU2011137332A (ru) 2013-03-10
ZA200806015B (en) 2009-07-29
CA2634712C (en) 2015-11-24
US20090211942A1 (en) 2009-08-27
EP1968887A2 (en) 2008-09-17
AU2006332008B2 (en) 2012-09-06
JP5377975B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
CN101346302B (zh) 用于重整含氧化合物的催化剂及方法
Davda et al. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts
Ciambelli et al. Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts
RU2454391C2 (ru) Способы и системы для получения многоатомных спиртов
Luo et al. Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst–Effect of catalyst composition and reaction conditions
Davda et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts
JP5322497B2 (ja) 酸化炭化水素からの低温水素生成
Kirilin et al. Aqueous phase reforming of xylitol and sorbitol: Comparison and influence of substrate structure
CN101454423A (zh) 结合来自碳-碳键形成反应的热以驱动生物质气化反应的生物燃料生产方法
Buitrago-Sierra et al. Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of the addition of Zn and Pt
Soyal-Baltacıoğlu et al. Steam reforming of ethanol over Pt–Ni Catalysts
Inokawa et al. Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming
Ebshish et al. Review of hydrogen production via glycerol reforming
KR20080026643A (ko) 과산화수소 및 유기화합물 간의 반응의 개시
Mishra et al. Synthesis of Cu-based catalysts for hydrogenolysis of glycerol to 1, 2-propanediol with in-situ generated hydrogen
Pothu et al. Sustainable conversion of biodiesel-waste glycerol to acrolein over Pd-modified mesoporous catalysts
JP5744539B2 (ja) 燃料ガスを製造するための触媒および同触媒を用いる燃料ガスの製造方法
JP5706175B2 (ja) 高発熱量燃料ガスの製造方法
MX2008008205A (es) Catalizadores y metodos para reformar compuestos oxigenados
Ghita et al. Hydrogen production by steam reforming of bioethanol over Pt based catalysts
Dolgikh et al. Conceptual design of an autonomous catalytic generator based on bioethanol steam reforming over the ferrite catalyst
Nagy et al. The effect of flow conditions on the activity and stability of Pt/LaAlO3 perovskite catalyst during aqueous phase reforming of glycerol
Ponnala et al. Engineering acidic and Pt sites on WO3-doped H-mordenite supported Pt catalyst for hydrogenation of γ-valerolactone to methyl tetra hydrofuran
Fajín et al. Glycerol conversion into added-value products on Ni-Cu based catalysts: Investigating mechanistic variations via catalyst modulation
Song et al. Hydrogen Production from Bio-Ethanol Steam Reforming over Co-based Catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Wisconsin

Applicant after: Virent, Inc.

Address before: Wisconsin

Applicant before: Virent Energy Systems Inc.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: VIRENT ENERGY SYSTEMS INC. TO: WEIRENTE CO.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130710

Termination date: 20171218

CF01 Termination of patent right due to non-payment of annual fee