CN101192647B - 包括无定形合金金属氧化物层的非易失性存储装置 - Google Patents

包括无定形合金金属氧化物层的非易失性存储装置 Download PDF

Info

Publication number
CN101192647B
CN101192647B CN2006101636363A CN200610163636A CN101192647B CN 101192647 B CN101192647 B CN 101192647B CN 2006101636363 A CN2006101636363 A CN 2006101636363A CN 200610163636 A CN200610163636 A CN 200610163636A CN 101192647 B CN101192647 B CN 101192647B
Authority
CN
China
Prior art keywords
nonvolatile memory
coating
amorphous alloy
memory devices
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101636363A
Other languages
English (en)
Other versions
CN101192647A (zh
Inventor
赵重来
赵成逸
柳寅儆
李殷洪
文昌郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101192647A publication Critical patent/CN101192647A/zh
Application granted granted Critical
Publication of CN101192647B publication Critical patent/CN101192647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

提供了包括无定形合金金属氧化物层的非易失性存储装置。所述非易失性存储器装置包括底电极、布置在所述底电极上的包括无定形合金金属氧化物的氧化物层和布置在所述氧化物层上的二极管结构体。

Description

包括无定形合金金属氧化物层的非易失性存储装置
技术领域
本发明涉及非易失性存储装置,更特别地,涉及包括无定形合金金属氧化物层的非易失性存储装置,通过组合具有不同晶体结构的材料并形成无定形薄膜,其可由低功率驱动并具有高运行速度。
背景技术
近年来,对于增加单位面积的存储单元数量(即集成密度(integrationdensity))、提高运行速度和能被低功率驱动的半导体存储装置进行了大量研究。
通常地,半导体存储装置包括通过电路连接的多个存储单元。在代表半导体存储装置的动态随机存储器(DRAM)中,单位存储单元典型地包含一个开关和一个电容器。该DRAM具有高集成密度和高运行速度的优点。然而,当切断电源时,DRAM丢失了所有的存储数据。
非易失性存储装置如闪存装置即使在电源突然中断时也能保留所存储的数据。闪存装置具有永久特征,但比易失存储装置具有更低的集成密度和更慢的运行速度。
现在,正对非易失性存储装置如磁性随机存取存储(MRAM)装置、铁电体随机存取存储(FRAM)装置、相变随机存取存储(PRAM)装置和电阻随机存取存储(RRAM)装置进行深入研究。
RRAM装置使用过渡金属氧化物(TMO)的电阻根据电压而改变的特性(可变电阻特性)。
图1A示例了使用具有常规结构的电阻变化材料(resistence variationmaterial)的RRAM装置的结构。参考图1A,所述RRAM装置包括可顺序层叠的基底10、底电极12、氧化物层14和顶电极16。所述底电极12和顶电极16由常规导电材料形成。所述氧化物层14由具有电阻变化(可变电阻)特性的TMO形成。具体地,所述氧化物层14可由ZnO、TiO2、Nb2O5、ZrO2或NiO形成。
钙钛矿-RRAM装置使用钙钛矿氧化物作为开关材料组(switchingmaterial group)、使用PCMO(PrCaMnO3)或Cr-STO(SrTiO3)作为氧化物层,并使用Schottky势垒应变(barrier deformation)原理,实现了根据施加到存储节点(memory node)上的极性的存储特性。
使用TMO的所述RRAM装置具有使其作为存储装置的开关特性。然而,使用TMO的晶体薄膜存储装置局限于微-节点(micro-node)。
图2A是使用X-射线衍射(XRD)示例在Si基底上形成的ZnO(其为TMO)的结晶。参见图2A,Si(100)峰、ZnO(0002)峰和ZnO(10-12)峰显示了ZnO的结晶过程。
图2B是ZnO表面的扫描电子显微镜(SEM)照片,在图2A中实例了其结晶图示。参见图2B,当RRAM装置的氧化物层14结晶时,因为颗粒很大,所以难以实现具有均匀特性的存储装置。
发明内容
本发明提供了包括作为过渡金属氧化物(TMO)层的无定形合金金属氧化物层的非易失性存储装置,从而当使用晶体薄膜作为电阻存储装置时克服微-节点的局限。
根据本发明的一方面,提供了包括无定形合金金属氧化物层的非易失性存储装置,其包括:底电极;布置在所述底电极上的包括无定形合金金属氧化物的氧化物层;和布置在所述氧化物层上的二极管结构体。
所述氧化物层可包含第一过渡金属和具有与所述第一过渡金属不同的晶体特性的第二金属。
所述第一过渡金属可为选自Ni、Ti、Hf、Zr、Zn、W、Co和Nb中的一种。
所述第二金属可为Al和In中的一种。
所述底电极和顶电极中的至少一个可与所述氧化物层形成Schottky-连接(Schottky-junction)。
当所述氧化物层由n-型氧化物形成时,底电极和顶电极中的一个可由选自Pt、Ir、Ru,以及Pt、Ir和Ru的氧化物中的一种形成。
当所述氧化物层由p-型氧化物形成时,所述底电极和顶电极中的一个可由Ti和Ag中的一种形成。
附图说明
参考附图,通过详细描述其示例性实施方式,本发明的上述及其他特征与优点将更为明显,其中:
图1A图解了使用具有常规结构的可变电阻材料的电阻随机存取存储(RRAM)装置的结构。
图2A是使用X-射线衍射(XRD)在硅基底上形成的ZnO(其为过渡金属氧化物(TMO))的结晶图示;
图2B是ZnO表面的扫描电子显微镜(SEM)照片,在图2A中说明了其结晶图表;
图3示例了根据本发明实施方式的包括无定形合金金属氧化物层的非易失性存储装置的结构;
图4A是对于由InZnOx(0.5<x<1.5)形成的氧化物层样品,使用XRD表征的In2O3-ZnO(IZO)薄膜的结晶图示;
图4B是所述IZO薄膜的横截面与表面的SEM照片,在图4A中示例了其结晶图示;
图5示出根据本发明实施方式的包括无定形合金金属氧化物层的非易失性存储装置的开关特性;
图6A示出根据本发明实施方式的包括无定形合金金属氧化物层的非易失性存储装置的耐久特性;和
图6B示出根据本发明实施方式的包括无定形合金金属氧化物层的非易失性存储装置的保留特性。
具体实施方式
下面参考附图更详细地描述包括根据本发明的无定形合金金属氧化物层的非易失性存储装置,其中显示了本发明的示例性实施方式。在附图中,为了清晰起见,放大了层和区域的厚度。
图3图解了包括根据本发明实施方式的无定形合金金属氧化物层的非易失性存储装置的结构。
参见图3,所述存储装置包括顺序层叠的基底30、底电极32、由无定形物质形成的氧化物层34和顶电极36。
为任选组件的所述基底30可由用于通常半导体装置的基底的材料形成而无限制。基底30可由Si、SiO2、SiC等形成。
所述无定形氧化物层34可由可变电阻材料形成,且基本上由包括具有不同晶体特性的至少两种金属的合金金属氧化物形成。所述两种金属中的至少一种可为过渡金属。所述过渡金属是Ni、Ti、Hf、Zr、Zn、W、Co或Nb,且所述过渡金属氧化物是NiO、TiO2、HfO、ZrO、ZnO、WO3、CoO或Nb2O5。其他金属是与所述过渡金属具有不同晶体特性的Al(Al2O3)或In(In2O3)。
所述底电极和顶电极32与36由导电材料形成。所述底电极和顶电极32与36中的至少一个可与所述氧化物层34形成Schottky-连接。例如,当所述氧化物层34是由n-型氧化物如InZnOx等形成时,所述底电极和顶电极32与36中的至少一个可由选自Pt、Ir、Ru,和Pt、Ir与Ru的氧化物中的一种形成。当所述氧化物层34是由p-型氧化物如NiO等形成时,所述底电极和顶电极32与36中的至少一种可由具有低功函的材料如Ti或Ag形成。
如上所述,当前实施方式的包括无定形合金金属氧化物层的非易失性存储装置包括由无定形合金金属氧化物形成的所述氧化物层34。
图4A是关于由InZnOx(0.5<x<1.5)形成的氧化物层34的样品,使用X-射线衍射(XRD)表征的In2O3-ZnO(IZO)薄膜的结晶图示。图4B是所述IZO薄膜的横截面与表面的SEM照片,在图4A中示例了其结晶图示。
参见图4A,所述IZO薄膜并非完全结晶,其表明作为所述氧化物层34沉积的IZO薄膜是完全无定形的。参见图4B的所述SEM照片,所述IZO薄膜的横截面与表面的材料特征表明并非完全形成了晶粒,因为所述IZO薄膜是无定形的。
已知IZO薄膜在In和Zn的全部组成的比例中并不具有无定形特性,但在In的组成为约45at%-80at%的范围内具有无定形特性。因此,IZO薄膜可用作在In的组成为约45at%-80at%的范围内具有无定形特性的无定形过渡金属氧化物。
图5示出根据本发明实施方式的包括无定形合金金属氧化物层的非易失性存储装置的开关特性的图解表。参见图5,在测试中,通过对由IrOx形成的底电极32、由InZnOx形成的氧化物层34和由IrOx形成的顶电极36的样品,逐渐地施加从-3V到+3V和再次从+3V返回到-3V的电压十次,来测量所述氧化物层34的单位为mA的电流值。
当对样品渐增地施加-3V到0V的电压时,所述氧化物层34的单位为mA的电流值增大,如第一曲线。当对样品渐增地施加0V到+3V的电压时,所述氧化物层34的单位为mA的电流值增大,如第二曲线。当对样品渐减地施加+3V到0V的电压时,所述氧化物层34的单位为mA的电流值减小,如第三曲线。当对样品渐减地施加0V到-3V的电压时,所述氧化物层34的单位为mA的电流值减小,如第四曲线。
在-2V到0V的电压范围内,所述氧化物层34在第一和第四曲线中具有不同电流值。在0V到1V的电压范围内,所述氧化物层34在第二和第三曲线中具有不同电流值。例如,当对样品施加-1V电压时,所述氧化物层34具有根据第一曲线或第四曲线的电阻状态(resistance state)。所述第一和第二曲线处于低电阻状态(LRS),及所述第三和第四曲线处于高电阻状态(HRS)。
通过重复该测试十次,得到了一致结果,因此通过使用存储装置的开关特性是满意的。
图6A示出根据本发明实施方式的包括无定形合金层的非易失性存储装置的耐久特性。使用由IrOx形成的底电极32、由InZnOx形成的氧化物层34和由IrOx形成的顶电极36的样品进行测试。参见图6A,当所述氧化物层34处于LRS和HRS时,通过对样品施加约-3V到+3V和再次从+3V返回到-3V的电压100次的扫描法,来测量每个样品的电阻值。
该图表显示尽管重复性扫描法,但在LRS和HRS下的每个样品的电阻值保持一致。使用所述无定形过渡金属氧化物,当前实施方式的非易失性存储装置具有优异的再现性。
图6B示出包括根据本发明实施方式的无定形合金金属氧化物层的非易失性存储装置的保留特性。使用由IrOx形成的底电极32、由InZnOx形成的氧化物层34和由IrOx形成的顶电极36的样品用于如图5和6A中图解的测试。参见图6B,为了检测包括所述无定形合金金属氧化物层的非易失性存储装置的保留特性,在约100℃下测量在LRS和HRS下的样品电阻值达10小时。结果,样品的电阻值在LRS下保持一致。在HRS下样品的电阻值有轻微改变,因此不同于在LRS下的样品的电阻值。因此,包括所述无定形合金金属氧化物层的非易失性存储装置的保留特性保持稳定。
当前实施方式的包括无定形合金金属氧化物层的非易失性存储装置包括底电极32、由无定形合金金属形成的氧化物层34,和顶电极36,并为使用包括作为存储节点的过渡金属的氧化物层34的金属-绝缘体-金属(MIM)存储装置。所述底电极和顶电极32与36中的至少一个可与氧化物层34形成Schottky-连接。
所述存储结构可为连接到晶体管结构的源极(source)或漏极(drain)上的1T(晶体管)-1R(电阻)结构、连接到二极管结构上的1D(二极管)-1R结构或为交叉点形式的阵列结构。
使用常规DRAM制备方法可容易地形成当前实施方式的包括无定形合金金属氧化物层的非易失性存储装置。
本发明具有下面的优点。
首先,因为非易失性存储装置具有简单结构,所以当非易失性存储装置具有阵列结构时,使用半导体制备方法(如常规DRAM制备方法)可容易地形成所述非易失性存储装置。
其次,所述存储节点由无定形过渡金属氧化物形成,由于所述存储节点尺寸的减小而具有高密度,并相对于施加电压在电流值方面具有稳定变化(电阻变化),因此可实现所述存储节点作为可靠存储装置。
尽管参考示例性实施方式已特别显示和描述了本发明,但本领域熟练技术人员可以理解,可在形式和细节上作出多种改变而不脱离权利要求书所限定的本发明的精神和范围。

Claims (6)

1.包括无定形合金金属氧化物层的非易失性存储装置,其包含:
底电极;
布置在所述底电极上的由无定形合金金属氧化物形成的氧化物层;和
布置在所述氧化物层上的二极管结构体,
其中所述氧化物层包含第一过渡金属和与所述第一过渡金属具有不同晶体特性的第二金属。
2.权利要求1的非易失性存储装置,其中所述第一过渡金属是选自Ni、Ti、Hf、Zr、Zn、W、Co和Nb中的一种。
3.权利要求1的非易失性存储装置,其中所述第二金属是Al和In中的一种。
4.权利要求1的非易失性存储装置,其中底电极和顶电极中的至少一个与所述氧化物层形成Schottky-连接。
5.权利要求4的非易失性存储装置,其中当所述氧化物层由n-型氧化物形成时,底电极和顶电极中的一个由选自Pt、Ir、Ru,以及Pt、Ir和Ru的氧化物中的一种形成。
6.权利要求4非易失性存储装置,其中当所述氧化物层由p-型氧化物形成时,所述底电极和顶电极中的一个由Ti和Ag中的一种形成。
CN2006101636363A 2006-02-20 2006-12-01 包括无定形合金金属氧化物层的非易失性存储装置 Active CN101192647B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060016224A KR100723420B1 (ko) 2006-02-20 2006-02-20 비정질 합금 산화층을 포함하는 비휘발성 메모리 소자
KR16224/06 2006-02-20

Publications (2)

Publication Number Publication Date
CN101192647A CN101192647A (zh) 2008-06-04
CN101192647B true CN101192647B (zh) 2012-05-02

Family

ID=38278732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101636363A Active CN101192647B (zh) 2006-02-20 2006-12-01 包括无定形合金金属氧化物层的非易失性存储装置

Country Status (4)

Country Link
US (1) US8455854B2 (zh)
JP (1) JP4938489B2 (zh)
KR (1) KR100723420B1 (zh)
CN (1) CN101192647B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857014B2 (ja) * 2006-04-19 2012-01-18 パナソニック株式会社 抵抗変化素子とそれを用いた抵抗変化型メモリ
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置
KR101307253B1 (ko) 2007-06-29 2013-09-11 재단법인서울대학교산학협력재단 저항변화기록소자의 정보기록방법, 저항변화기록소자의제조방법 및 이를 이용한 저항변화기록소자
US8294219B2 (en) 2007-07-25 2012-10-23 Intermolecular, Inc. Nonvolatile memory element including resistive switching metal oxide layers
JP5229892B2 (ja) * 2007-10-30 2013-07-03 独立行政法人産業技術総合研究所 整流素子及びその製造方法
WO2009057671A1 (ja) * 2007-10-30 2009-05-07 National Institute Of Advanced Industrial Science And Technology 整流素子及びその製造方法
US7768812B2 (en) 2008-01-15 2010-08-03 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8034655B2 (en) * 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9385314B2 (en) 2008-08-12 2016-07-05 Industrial Technology Research Institute Memory cell of resistive random access memory and manufacturing method thereof
US8362454B2 (en) 2008-08-12 2013-01-29 Industrial Technology Research Institute Resistive random access memory having metal oxide layer with oxygen vacancies and method for fabricating the same
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8289763B2 (en) 2010-06-07 2012-10-16 Micron Technology, Inc. Memory arrays
US8351242B2 (en) 2010-09-29 2013-01-08 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8526213B2 (en) 2010-11-01 2013-09-03 Micron Technology, Inc. Memory cells, methods of programming memory cells, and methods of forming memory cells
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
CN102214674B (zh) * 2011-06-10 2013-02-13 清华大学 一种基于soi材料的具有自整流效应的阻变存储器
US8787066B2 (en) 2011-10-26 2014-07-22 Intermolecular, Inc. Method for forming resistive switching memory elements with improved switching behavior
US8866118B2 (en) 2012-12-21 2014-10-21 Intermolecular, Inc. Morphology control of ultra-thin MeOx layer
CN105453272B (zh) * 2013-08-19 2020-08-21 出光兴产株式会社 氧化物半导体基板及肖特基势垒二极管元件
US9246094B2 (en) 2013-12-26 2016-01-26 Intermolecular, Inc. Stacked bi-layer as the low power switchable RRAM
US20160181517A1 (en) * 2014-12-23 2016-06-23 Silicon Storage Technology, Inc. Geometrically Enhanced Resistive Random Access Memory (RRAM) Cell And Method Of Forming Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641879A (zh) * 2004-01-14 2005-07-20 夏普株式会社 非易失性半导体存储器件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020681B2 (ja) * 1991-09-13 2000-03-15 三菱化学株式会社 ダイコーティング方法およびこれに使用する塗布幅調節治具
JP3224604B2 (ja) * 1992-07-31 2001-11-05 三菱化学株式会社 ダイコータ
US5554564A (en) * 1994-08-01 1996-09-10 Texas Instruments Incorporated Pre-oxidizing high-dielectric-constant material electrodes
JP3850605B2 (ja) * 1999-10-29 2006-11-29 文雄 岡田 固相エキシマデバイス及びその製造方法
JP3711539B2 (ja) * 2002-07-16 2005-11-02 サミー株式会社 遊技機の制御装置
US6881351B2 (en) * 2003-04-22 2005-04-19 Freescale Semiconductor, Inc. Methods for contacting conducting layers overlying magnetoelectronic elements of MRAM devices
JP2005123361A (ja) * 2003-10-16 2005-05-12 Sony Corp 抵抗変化型不揮発性メモリおよびその製造方法ならびに抵抗変化層の形成方法
JP2007536680A (ja) * 2004-05-03 2007-12-13 ユニティ・セミコンダクター・コーポレーション 不揮発性プログラマブルメモリ
WO2006013819A1 (ja) * 2004-08-02 2006-02-09 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とそれを用いた抵抗変化型メモリ
JP2006083071A (ja) * 2004-09-14 2006-03-30 Takasago Internatl Corp 香粧品用固形製剤
JP4516812B2 (ja) * 2004-09-15 2010-08-04 立川ブラインド工業株式会社 横型ブラインドのスラット駆動装置及び日射遮蔽装置の遮蔽材昇降装置
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7241631B2 (en) * 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641879A (zh) * 2004-01-14 2005-07-20 夏普株式会社 非易失性半导体存储器件

Also Published As

Publication number Publication date
JP2007227922A (ja) 2007-09-06
CN101192647A (zh) 2008-06-04
US20070257257A1 (en) 2007-11-08
US8455854B2 (en) 2013-06-04
JP4938489B2 (ja) 2012-05-23
KR100723420B1 (ko) 2007-05-30

Similar Documents

Publication Publication Date Title
CN101192647B (zh) 包括无定形合金金属氧化物层的非易失性存储装置
JP5154138B2 (ja) n+界面層を備えた可変抵抗ランダムアクセスメモリ素子
JP4698630B2 (ja) 下部電極上に形成されたバッファ層を備える可変抵抗メモリ素子
CN101106171B (zh) 包括可变电阻材料的非易失存储器
KR100718155B1 (ko) 두 개의 산화층을 이용한 비휘발성 메모리 소자
KR101176542B1 (ko) 비휘발성 메모리 소자 및 이를 포함하는 메모리 어레이
KR101275800B1 (ko) 가변 저항 물질을 포함하는 비휘발성 메모리 소자
Ielmini et al. Thermochemical resistive switching: materials, mechanisms, and scaling projections
US7935953B2 (en) Nonvolatile memory device, array of nonvolatile memory devices, and methods of making the same
KR100738116B1 (ko) 가변 저항 물질을 포함하는 비휘발성 메모리 소자
KR101783086B1 (ko) 저항-전환층들을 가진 메모리 셀의 구성
US8791444B2 (en) Resistive random access memory (RRAM) using stacked dielectrics and method for manufacturing the same
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
KR20130097139A (ko) 저항-스위칭 층들을 구비한 메모리 셀의 구성
KR102464065B1 (ko) 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치
Ji SiOx-based resistive switching memory integrated in nanopillar structure fabricated by nanosphere lithography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant