WO2024135182A1 - Connection device - Google Patents

Connection device Download PDF

Info

Publication number
WO2024135182A1
WO2024135182A1 PCT/JP2023/041389 JP2023041389W WO2024135182A1 WO 2024135182 A1 WO2024135182 A1 WO 2024135182A1 JP 2023041389 W JP2023041389 W JP 2023041389W WO 2024135182 A1 WO2024135182 A1 WO 2024135182A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection device
wiring
connection
layer
conductor
Prior art date
Application number
PCT/JP2023/041389
Other languages
French (fr)
Japanese (ja)
Inventor
英章 吉見
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Publication of WO2024135182A1 publication Critical patent/WO2024135182A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a connection device.
  • connection devices have been developed for electrically connecting an object to be inspected, such as an integrated circuit (IC), to an inspection board, such as a printed circuit board (PCB).
  • IC integrated circuit
  • PCB printed circuit board
  • a connection device is disposed between the object to be inspected and the inspection board.
  • the connection device described in Patent Document 1 includes a support board through which connection wiring passes, a plurality of wiring patterns located on the surface of the support board facing the object to be inspected, and a plurality of probes mounted on the plurality of wiring patterns. Some of the probes are electrically connected to each other via some of the wiring patterns.
  • a wiring pattern may be located on the surface of the support substrate that faces the object to be inspected.
  • a wiring pattern is located on the surface of the support substrate that faces the object to be inspected, it may be difficult to ensure flatness on the surface of the connection device that faces the object to be inspected.
  • One object of the present invention is to ensure the flatness of the surface of the connection device that faces the object to be inspected.
  • Other objects of the present invention will become apparent from the description of this specification.
  • connection device for electrically connecting an object to be inspected and an inspection board, A substrate; a connection conductor located on a predetermined surface side of the board facing the inspection board;
  • a connection device comprising:
  • the above aspect of the present invention ensures flatness on the side of the connection device that faces the object to be inspected.
  • FIG. 2 is a cross-sectional view of a connection device according to an embodiment.
  • 11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment.
  • 11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment.
  • 11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment.
  • FIG. 1 is a cross-sectional view of a connection device 10 according to an embodiment.
  • an inspection object 20, an inspection board 30, and a pin block 200 are illustrated together with the connection device 10.
  • FIG. 1 shows a Z axis indicating the Z direction.
  • the Z direction is a direction parallel to an imaginary line connecting the inspection object 20 and the inspection board 30.
  • the side indicated by the arrow on the Z axis will be referred to as the +Z side
  • the side opposite to the side indicated by the arrow on the Z axis will be referred to as the -Z side.
  • the +Z side and the -Z side are the upper and lower sides in the vertical direction, respectively.
  • the direction perpendicular to the Z direction will be referred to as the horizontal direction (lateral direction).
  • connection device 10 electrically connects the test object 20 and the test board 30.
  • the connection device 10 is disposed between the test object 20 and the test board 30 in the Z direction.
  • a pin block 200 is disposed between the connection device 10 and the test board 30 in the Z direction.
  • the connection device 10 includes a board 100, a plurality of lands 110, a plurality of probes 120, an insulating layer 130, a connection conductor 140, and a plurality of pads 150.
  • the test object 20 is, for example, an IC.
  • the test board 30 is, for example, a PCB.
  • the substrate 100 is a ceramic substrate, specifically an LTCC (Low Temperature Co-fired Ceramics) substrate.
  • the substrate 100 may be a substrate of a different type than a ceramic substrate.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the first surface 102 is the +Z side surface of the substrate 100.
  • the first surface 102 and the -Z side surface of the inspection object 20 face each other.
  • the second surface 104 is the -Z side surface of the substrate 100.
  • the second surface 104 and the +Z side surface of the inspection substrate 30 face each other via the pin block 200.
  • the substrate 100 defines a plurality of through holes 106.
  • the plurality of through holes 106 are arranged, for example, in a substantially lattice pattern.
  • FIG. 1 shows five through holes 106 arranged in the horizontal direction in the figure.
  • Each through hole 106 penetrates the substrate 100 between the first surface 102 and the second surface 104 substantially parallel to the Z direction.
  • An internal conductor such as a metal is provided on the inner surface around the Z direction of each through hole 106.
  • the internal conductor covers the inner surface around the Z direction of each through hole 106.
  • the internal conductor is not embedded in the entire internal space of each through hole 106.
  • each through hole 106 is hollow.
  • the internal conductor may be embedded in the entire internal space of each through hole 106.
  • each through hole 106 may be solid.
  • the multiple lands 110 are located on the first surface 102 side. When viewed from the +Z side, the multiple lands 110 are arranged, for example, in a substantially lattice pattern. However, the layout of the multiple lands 110 when viewed from the +Z side is not limited to this example.
  • FIG. 1 shows five lands 110 arranged horizontally in the figure. At least a portion of each of the multiple lands 110 and at least a portion of each of the multiple through holes 106 overlap each other in the Z direction.
  • the -Z side surface of each of the multiple lands 110 and the internal conductors at the +Z side end of each of the multiple through holes 106 are electrically connected to each other. In the example shown in FIG. 1, the -Z side surface of each of the multiple lands 110 and the internal conductors at the +Z side end of each of the multiple through holes 106 are in direct contact with each other.
  • each land 110 includes a first land layer 112 and a second land layer 114.
  • the first land layer 112 and the second land layer 114 are stacked in order in the Z direction as they move away from the first surface 102.
  • the first land layer 112 is made of a material that is cheaper than the material of the second land layer 114.
  • the first land layer 112 is made of, for example, copper. Therefore, each land 110 can be formed at a lower cost than when the entire land 110 is made of the material of the second land layer 114.
  • the second land layer 114 is made of a material that is more resistant to oxidation than the material of the first land layer 112.
  • the second land layer 114 is made of, for example, gold.
  • each land 110 can be a land layer of a single material.
  • each land 110 may include three or more land layers.
  • Each of the multiple probes 120 is mounted on the +Z side surface of each of the multiple lands 110.
  • FIG. 1 shows five probes 120 arranged horizontally in the figure.
  • the -Z side end of each of the multiple probes 120 and the +Z side surface of each of the multiple lands 110 are electrically connected to each other.
  • the +Z side end of each of the multiple probes 120 and each of the multiple first electrodes 22 located on the -Z side surface of the test object 20 face each other.
  • each probe 120 has a cantilever structure. Specifically, the +Z side end of each probe 120 is bent in a direction approximately perpendicular to the Z direction. Therefore, the +Z side end of each probe 120 can be biased toward each first electrode 22.
  • the structure of each probe 120 is not limited to this example.
  • the +Z side end of each probe 120 may be biased toward the test object 20 by an elastic body such as a coil spring.
  • the insulating layer 130 is located on the second surface 104 side.
  • the insulating layer 130 includes a first insulating layer 132, a second insulating layer 134, and a third insulating layer 136.
  • the first insulating layer 132, the second insulating layer 134, and the third insulating layer 136 are stacked in order in the Z direction as they move away from the second surface 104.
  • Each of the first insulating layer 132, the second insulating layer 134, and the third insulating layer 136 is, for example, a resin layer such as polyimide.
  • the insulating layer 130 may be a single insulating layer.
  • the insulating layer 130 may include two insulating layers stacked in the Z direction or four or more insulating layers stacked in the Z direction.
  • connection conductor 140 includes a first connection conductor 142 and a second connection conductor 144.
  • the first connection conductor 142 and the second connection conductor 144 include, for example, at least one of copper and a copper alloy.
  • the first, second and fourth connecting conductors 140 from the left in FIG. 1 will be described.
  • the first, second and fourth connecting conductors 140 from the left in FIG. 1 are electrically connected to the internal conductors of the first, second and fifth through holes 106 from the left in FIG. 1, respectively, as follows.
  • the first connection conductor 142 includes a first via 142a and a first wiring 142b.
  • the first via 142a and the first wiring 142b are integrated with each other.
  • the first via 142a penetrates the first insulating layer 132 in a direction substantially parallel to the Z direction.
  • the internal conductors at the +Z side end of the first via 142a and the -Z side end of the through hole 106 are electrically connected to each other.
  • the first wiring 142b extends in a direction substantially parallel to the horizontal direction.
  • the first wiring 142b may extend not only in the lateral direction in FIG. 1, but also toward the front or back of FIG. 1.
  • the first wiring 142b is located on the -Z side surface of the first insulating layer 132.
  • the first wiring 142b is covered by the second insulating layer 134.
  • the +Z side surface of the first wiring 142b and the -Z side end of the first via 142a are electrically connected to each other.
  • the second connection conductor 144 includes a second via 144a and a second wiring 144b.
  • the second via 144a and the second wiring 144b are integrated with each other.
  • the second via 144a penetrates the second insulating layer 134 approximately parallel to the Z direction.
  • the +Z side end of the second via 144a and the -Z side surface of the first wiring 142b are electrically connected to each other.
  • the second wiring 144b extends in a direction approximately parallel to the horizontal direction.
  • the second wiring 144b may extend not only in the lateral direction in FIG. 1, but also toward the front or back of FIG. 1.
  • the second wiring 144b is located on the -Z side surface of the second insulating layer 134.
  • the second wiring 144b is covered by the third insulating layer 136.
  • the +Z side surface of the second wiring 144b and the -Z side end of the second via 144a are electrically connected to each other.
  • connection conductor 140T includes a first connection conductor 142T and a second connection conductor 144T.
  • Connection conductor 140T is similar to the first, second, and fourth connection conductors 140 from the left in FIG. 1, except for the following points.
  • the first connection conductor 142T includes two first vias 142aT and a first wiring 142bT.
  • the +Z side ends of the two first vias 142aT and the internal conductors at the -Z side ends of the third and fourth through holes 106 from the left in FIG. 1 are electrically connected to each other.
  • the two first vias 142aT are electrically connected to the same first wiring 142bT. Therefore, it is possible to supply approximately the same potential to the internal conductors of the third and fourth through holes 106 from the left in FIG. 1 via the connection conductor 140T. In other words, the internal conductors of the third and fourth through holes 106 from the left in FIG. 1 are short-circuited to each other.
  • Examples of potentials supplied to the internal conductors of these through holes 106 include a power supply potential and a ground potential. Similar to the second connection conductors 144 of the first, second, and fourth connection conductors 140 from the left in FIG. 1, the second connection conductor 144T includes a second via 144aT and a second wiring 144bT.
  • the multiple pads 150 are located on the -Z side surface of the insulating layer 130. When viewed from the -Z side, the multiple pads 150 are arranged, for example, in a substantially lattice shape. However, the layout of the multiple pads 150 when viewed from the -Z side is not limited to this example.
  • FIG. 1 shows four pads 150 arranged horizontally in the figure. At least a portion of the -Z side surface of the multiple pads 150 is exposed from the -Z side surface of the third insulating layer 136 toward the pin block 200.
  • the +Z side surface of the pads 150 and the -Z side surface of the second wiring 144b are electrically connected to each other.
  • each pad 150 is made of a material that is more resistant to oxidation than the material of the connection conductor 140.
  • Each pad 150 is made of, for example, gold.
  • each pad 150 covers at least a portion of the -Z side surface of each connection conductor 140. Therefore, the oxidation of the connection conductor 140 can be suppressed by the pad 150.
  • the multiple pogo pins 210 are supported by a pin block 200.
  • the pin block 200 is made of an insulating material such as resin.
  • FIG. 1 shows four pogo pins 210 arranged horizontally in the figure.
  • the +Z side ends of the multiple pogo pins 210 and the -Z side faces of the multiple pads 150 face each other.
  • the -Z side ends of the multiple pogo pins 210 and the multiple second electrodes 32 located on the +Z side face of the inspection board 30 face each other.
  • the -Z side ends of each pogo pin 210 can be biased toward the second electrodes 32 by a coil spring (not shown) provided inside each pogo pin 210.
  • each of the multiple probes 120 and each of the multiple first electrodes 22 of the test object 20 are in contact with each other.
  • the +Z end of each of the multiple pogo pins 210 and the -Z surface of each of the multiple pads 150 are in contact with each other.
  • the -Z end of each of the multiple pogo pins 210 and each of the multiple second electrodes 32 of the test board 30 are in contact with each other. Therefore, each first electrode 22 and each second electrode 32 are electrically connected to each other via each probe 120, each land 110, the internal conductor provided in each through hole 106, each connection conductor 140, and each pogo pin 210.
  • the insulating layer 130 can function as a member that relieves the load on each pad 150. Therefore, the durability of the connection device 10 can be improved compared to when the insulating layer 130 is not provided.
  • connection conductor 140 can make the layout of the electrodes on the test subject 20 side of the connection device 10 different from the layout of the electrodes on the test board 30 side of the connection device 10.
  • the electrodes on the test subject 20 side of the connection device 10 correspond to the lands 110.
  • the electrodes on the test board 30 side of the connection device 10 correspond to the pads 150.
  • each first wiring 142b and each second wiring 144b extend in a direction approximately parallel to the horizontal direction. Therefore, the horizontal position of the -Z side end of the through hole 106 and the horizontal position of the pad 150 electrically connected to the internal conductor provided in the through hole 106 can be shifted from each other in the horizontal direction. Therefore, depending on the structure of the connecting conductor 140, the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be converted into each other.
  • Each connection conductor 140 has a plurality of wirings that at least partially overlap each other in the Z direction.
  • the first wiring 142b and the second wiring 144b at least partially overlap each other in the Z direction.
  • the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be converted into each other by multiple layers of wiring. Therefore, compared to the case where the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 are converted into each other by a single layer of wiring, the degree of freedom in converting the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be improved.
  • the number of lands 110 arranged horizontally in the figure (five) and the number of pads 150 arranged horizontally in the figure (four) are different due to the four connecting conductors 140 arranged horizontally in the figure. In other words, the number of pads 150 is less than the number of lands 110.
  • the internal conductor of the third through hole 106 from the left in the figure and the internal conductor of the fourth through hole 106 from the left in the figure are electrically connected to the connecting conductor 140T.
  • the connecting conductor 140T is electrically connected to the third single pad 150 from the left in the figure. Therefore, the number of pads 150 can be reduced by one compared to the case where separate connecting conductors 140 are provided for these two through holes 106.
  • the relationship between the number of lands 110 and the number of pads 150 is not limited to the example shown in FIG. 1. In order to make the number of lands 110 and the number of pads 150 different from each other, it is sufficient that the internal conductors of the multiple through holes 106 and one connecting conductor 140 are electrically connected to each other. For example, the internal conductors of three through holes 106 and one connecting conductor 140 may be electrically connected to each other.
  • the number of pads 150 is less than the number of lands 110.
  • the number of pads 150 may be greater than the number of lands 110 by using the connection conductors 140. That is, in order to make the number of pads 150 greater than the number of lands 110, one connection conductor 140 and multiple pads 150 may be electrically connected to each other. In this case, the one connection conductor 140 and the internal conductor of one through hole 106 are electrically connected to each other.
  • connection conductor 140 is located on the second surface 104 side, not on the first surface 102 side. Let us consider a state in which the connection conductor 140 is located on the first surface 102 side. In this state, from the -Z side to the +Z side, a plurality of pads 150, the substrate 100, the insulating layer 130, and a plurality of probes 120 are arranged in order. The insulating layer 130 is provided with a plurality of connection conductors 140. In this state, it may be relatively difficult to ensure flatness on the first surface 102 side of the connection device 10.
  • the height of the connection conductor 140 in the Z direction may vary depending on the area of the region where the first wiring 142b and the second wiring 144b overlap each other in the Z direction.
  • the land 110 is located on the first surface 102 side.
  • the land 110 can be regarded as a single-layer wiring by integrating the first land layer 112 and the second land layer 114. Therefore, the land 110 can be formed without providing an insulating layer equivalent to the insulating layer 130.
  • the length or width of the land 110 approximately parallel to the horizontal direction is easily made shorter than the length approximately parallel to the horizontal direction of the wiring used to convert the pitch of the electrodes on the inspection target 20 side of the connection device 10 and the pitch of the electrodes on the inspection board 30 side of the connection device 10, such as the first wiring 142b and the second wiring 144b. Therefore, in the embodiment, it is easier to ensure the flatness of the first surface 102 side of the connection device 10 compared to the case where the connection conductor 140 is located on the first surface 102 side.
  • the layout of the electrodes on the test subject 20 side of the connection device 10 and the layout of the electrodes on the test board 30 side of the connection device 10 are different from each other due to the multiple connection conductors 140. Therefore, the board 100 does not need to have internal wiring to make the layout of the electrodes on the test subject 20 side of the connection device 10 and the layout of the electrodes on the test board 30 side of the connection device 10 different from each other. If the board 100 had the internal wiring, the yield of the board 100 may be relatively low. In contrast, in the embodiment, the board 100 defines the through hole 106. That is, in the embodiment, the board 100 can have a simpler structure than when the board 100 has the above-mentioned internal wiring. Therefore, the yield of the board 100 can be improved compared to when the board 100 has the above-mentioned internal wiring. However, if the improvement of the yield of the board 100 is not taken into consideration, the board 100 may have the above-mentioned internal wiring.
  • the wiring layer having the insulating layer 130 and the connection conductor 140 is located on the second surface 104 side of the substrate 100.
  • the quality of such a wiring layer can be determined by visual inspection.
  • the quality of the internal wiring of the substrate 100 may be determined by electrical inspection. However, this electrical inspection may leave inspection marks on the lands and pads of the substrate 100. If wiring is provided on such inspection marks, the yield of the connection device 10 may deteriorate. In contrast, in the embodiment, the substrate 100 is not subjected to electrical inspection. Therefore, deterioration of the yield of the connection device 10 due to electrical inspection can be suppressed.
  • FIGS. 2 to 4 are diagrams for explaining an example of a manufacturing method for the connection device 10 according to the embodiment.
  • the direction of the Z axis in FIG. 2 to FIG. 4 is opposite to the direction of the Z axis in FIG. 1 in the up-down direction of the paper.
  • the connection device 10 is manufactured as follows.
  • the original substrate 100R is prepared.
  • the original substrate 100R has a plurality of through holes 106 formed therein as described with reference to FIG. 1. To simplify the drawings, the through holes 106 are not shown in FIGS. 2 to 4.
  • the second surface 104 of the original substrate 100R may be roughened beforehand. The roughening treatment can improve the adhesion between the second surface 104 and layers provided on the second surface 104, such as the first insulating layer 132. Similarly, the first surface 102 of the original substrate 100R may also be roughened beforehand.
  • Figures 2 to 4 show two sections S from which two substrates 100 are cut out from the original substrate 100R.
  • one connection conductor 140 is formed in each section S.
  • multiple connection conductors 140 may be formed in each section S.
  • the number of substrates 100 cut out from the original substrate 100R is not limited to two, and may be three or more.
  • a first insulating layer 132 is formed in each section S on the second surface 104 side of the original substrate 100R.
  • the first insulating layer 132 is formed, for example, using lithography technology.
  • the first insulating layer 132 defines a first opening pattern 132a.
  • the first opening pattern 132a exposes a portion of the second surface 104 toward the -Z side.
  • a first seed layer 142s is formed across two sections S on the second surface 104 side of the original substrate 100R.
  • the first seed layer 142s is formed by a method such as sputtering or ion plating.
  • the first seed layer 142s includes, for example, a copper layer and a titanium tungsten alloy layer (TiW/Cu) that are stacked in sequence in the Z direction as they move away from the second surface 104.
  • a first resist 302 is formed.
  • the first resist 302 is formed, for example, using lithography techniques.
  • the first resist 302 defines a first resist opening 302a.
  • a portion of the first resist 302 covers a portion of the first seed layer 142s that extends between two sections S.
  • the first resist opening 302a exposes a portion of the -Z side surface of the first seed layer 142s toward the -Z side.
  • the first plating layer 142p is formed by electrolytic plating using the first seed layer 142s.
  • the first plating layer 142p is, for example, a copper layer.
  • the first plating layer 142p is embedded in the first opening pattern 132a and the first resist opening 302a. Therefore, in each section S, the portion of the first seed layer 142s and the first plating layer 142p embedded in the first opening pattern 132a becomes the first via 142a. In each section S, the portion of the first seed layer 142s and the first plating layer 142p embedded in the first resist opening 302a becomes the first wiring 142b.
  • the first resist 302 is removed.
  • the portion of the first seed layer 142s that does not overlap with the first plating layer 142p in the Z direction is removed by etching.
  • the first connection conductors 142 of each section S are electrically insulated from each other.
  • an etchant is used that selectively etches the first seed layer 142s rather than the first plating layer 142p.
  • the Z-direction thickness of the first seed layer 142s and the Z-direction thickness of the first plating layer 142p are depicted diagrammatically as being approximately equal.
  • the Z-direction thickness of the first plating layer 142p is actually approximately 10 times or more the Z-direction thickness of the first seed layer 142s. Therefore, even if a portion of the first plating layer 142p, together with the portion of the first seed layer 142s that does not overlap with the first plating layer 142p in the Z direction, is removed by etching, the overall Z-direction thickness of the first plating layer 142p remains almost unchanged.
  • a second insulating layer 134 is formed in each section S.
  • the second insulating layer 134 is formed, for example, using lithography technology.
  • the second insulating layer 134 defines a second opening pattern 134a.
  • the second insulating layer 134 covers the first connecting conductor 142 except for the second opening pattern 134a.
  • the second opening pattern 134a exposes a portion of the -Z side surface of the first connecting conductor 142 toward the -Z side.
  • a second seed layer 144s is formed across two sections S on the second surface 104 side of the original substrate 100R.
  • the second seed layer 144s is formed by a method such as sputtering or ion plating.
  • the second seed layer 144s includes, for example, a copper layer and a titanium tungsten alloy layer (TiW/Cu) that are stacked in sequence in the Z direction as they move away from the second surface 104.
  • a second resist 304 is formed.
  • the second resist 304 is formed, for example, using lithography techniques.
  • the second resist 304 defines a second resist opening 304a.
  • a portion of the second resist 304 covers a portion of the second seed layer 144s that extends between two sections S.
  • the second resist opening 304a exposes a portion of the -Z side surface of the second seed layer 144s toward the -Z side.
  • the second plating layer 144p is formed by electrolytic plating using the second seed layer 144s.
  • the second plating layer 144p is, for example, a copper layer.
  • the second plating layer 144p is embedded in the second opening pattern 134a and the second resist opening 304a. Therefore, in each section S, the portion of the second seed layer 144s and the second plating layer 144p embedded in the second opening pattern 134a becomes the second via 144a. In each section S, the portion of the second seed layer 144s and the second plating layer 144p embedded in the second resist opening 304a becomes the second wiring 144b.
  • the second resist 304 is removed.
  • the portion of the second seed layer 144s that does not overlap with the second plating layer 144p in the Z direction is removed by etching.
  • the second connection conductors 144 of each section S are electrically insulated from each other.
  • an etchant is used that selectively etches the second seed layer 144s more than the second plating layer 144p.
  • the overall thickness of the second plating layer 144p in the Z direction remains almost unchanged.
  • a third insulating layer 136 is formed in each section S.
  • the third insulating layer 136 is formed, for example, using lithography technology.
  • the third insulating layer 136 defines a third opening pattern 136a.
  • the third insulating layer 136 covers the second connecting conductor 144 except for the third opening pattern 136a.
  • the third opening pattern 136a exposes a portion of the -Z side surface of the second connecting conductor 144 toward the -Z side.
  • a pad 150 is formed in the third opening pattern 136a of the third insulating layer 136.
  • a land 110 is formed on the first surface 102 side of the original substrate 100R.
  • the pad 150 may be formed after the land 110 is formed.
  • two substrates 100 are cut out from the two sections S of the original substrate 100R by dicing.
  • a probe 120 is mounted on the +Z side surface of the land 110.
  • connection device 10 according to the embodiment is manufactured.
  • multiple substrates 100 are cut out from one original substrate 100R. Therefore, when the original substrate 100R has the above-mentioned internal wiring, it may be relatively difficult to reduce the possibility of cutting out a substrate 100 that is determined to be defective in the quality judgment of the internal wiring. In contrast, in the embodiment, the original substrate 100R does not need to have the above-mentioned internal wiring. Therefore, compared to when the original substrate 100R has internal wiring, it is possible to efficiently cut out a substrate 100 that is determined to be good in the quality judgment from the original substrate 100R more easily.
  • the layout of the lands 110 and the layout of the pads 150 are different from each other.
  • the layout of the lands 110 and the layout of the pads 150 may be the same as each other.
  • connection device having the following aspects.
  • a connection device that electrically connects an object to be inspected and an inspection board includes a board and a connection conductor located on a predetermined surface side of the board that faces the inspection board.
  • the "predetermined surface” corresponds to the "second surface” in the above embodiment.
  • the above-mentioned aspect ensures flatness of the surface of the connection device facing the object to be inspected, compared to when the connection conductor is provided on the surface of the board facing the object to be inspected.
  • the substrate defines a through hole having an inner conductor electrically connected to the connecting conductor.
  • the board can have a simpler structure than when the board has internal wiring for making the layout of the electrodes on the side of the connection device facing the test object and the layout of the electrodes on the side of the connection device facing the test board different from each other. Therefore, the yield of the board can be improved compared to when the board has such internal wiring.
  • the substrate has a plurality of internal conductors electrically connected to the connecting conductors.
  • the number of electrodes on the inspection board can be reduced compared to the case where separate connection conductors are electrically connected to the multiple internal conductors. According to the above-mentioned aspect, it is possible to supply approximately the same potential to the multiple internal conductors via the connection conductors.
  • the connecting conductor has a plurality of wirings that at least partially overlap each other.
  • the pitch of the electrodes on the side of the connection device facing the test object and the pitch of the electrodes on the side of the connection device facing the test board can be converted from each other by using multiple wirings that at least partially overlap each other. Therefore, the degree of freedom in converting the pitch can be improved compared to when the pitch is converted from each other by using multiple wirings that do not overlap each other.
  • connection device further comprises an insulating layer in which at least a portion of the connection conductor is embedded.
  • the insulating layer can function as a member that relieves the load on the electrode. Therefore, the durability of the connection device can be improved compared to when no insulating layer is provided.
  • connection device further includes a land located on another predetermined surface side of the board facing the object to be inspected.
  • the "other specified surface” corresponds to the "first surface” in the above embodiment.
  • the length or width of the land can be easily made shorter than the length of the connection conductor.
  • the land can be formed without providing an insulating layer on the other specified surface side. Therefore, according to the above-mentioned aspect, it is easier to ensure flatness on the other specified surface side of the connection device compared to when the connection conductor is located on the other specified surface side of the board.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A connection device according to the present invention is to electrically connect an inspection target and an inspection substrate and comprises a substrate and a connection conductor that is positioned on a prescribed side of the substrate that is to face the inspection substrate.

Description

接続装置Connecting Devices
 本発明は、接続装置に関する。 The present invention relates to a connection device.
 近年、集積回路(IC)等の検査対象物と、PCB(Printed Circuit Board)等の検査基板と、を電気的に接続するための様々な接続装置が開発されている。例えば、特許文献1に記載されているように、検査対象物が検査される際、接続装置は、検査対象物及び検査基板の間に配置されている。特許文献1に記載の接続装置は、接続配線が貫通する支持基板と、支持基板の検査対象物に対向する面側に位置する複数の配線パターンと、複数の配線パターンに実装された複数のプローブと、を備えている。一部のプローブは、一部の配線パターンを介して電気的に互いに接続されている。 In recent years, various connection devices have been developed for electrically connecting an object to be inspected, such as an integrated circuit (IC), to an inspection board, such as a printed circuit board (PCB). For example, as described in Patent Document 1, when the object to be inspected is inspected, a connection device is disposed between the object to be inspected and the inspection board. The connection device described in Patent Document 1 includes a support board through which connection wiring passes, a plurality of wiring patterns located on the surface of the support board facing the object to be inspected, and a plurality of probes mounted on the plurality of wiring patterns. Some of the probes are electrically connected to each other via some of the wiring patterns.
特開2018-179758号公報JP 2018-179758 A
 例えば、特許文献1に記載されているように、支持基板の検査対象物に対向する面側に配線パターンが位置することがある。しかしながら、支持基板の検査対象物に対向する面側に配線パターンが位置する場合、接続装置の検査対象物に対向する面側の平坦性を確保することが難しいことがある。 For example, as described in Patent Document 1, a wiring pattern may be located on the surface of the support substrate that faces the object to be inspected. However, when a wiring pattern is located on the surface of the support substrate that faces the object to be inspected, it may be difficult to ensure flatness on the surface of the connection device that faces the object to be inspected.
 本発明の目的の一例は、接続装置の検査対象物に対向する面側の平坦性を確保することにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。 One object of the present invention is to ensure the flatness of the surface of the connection device that faces the object to be inspected. Other objects of the present invention will become apparent from the description of this specification.
 本発明の一態様は、
 検査対象物及び検査基板を電気的に接続する接続装置であって、
 基板と、
 前記基板の前記検査基板に対向する所定面側に位置する接続導体と、
を備える接続装置である。
One aspect of the present invention is
A connection device for electrically connecting an object to be inspected and an inspection board,
A substrate;
a connection conductor located on a predetermined surface side of the board facing the inspection board;
A connection device comprising:
 本発明の上記態様によれば、接続装置の検査対象物に対向する面側の平坦性を確保することができる。 The above aspect of the present invention ensures flatness on the side of the connection device that faces the object to be inspected.
実施形態に係る接続装置の断面図である。FIG. 2 is a cross-sectional view of a connection device according to an embodiment. 実施形態に係る接続装置の製造方法の一例を説明するための図である。11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment. 実施形態に係る接続装置の製造方法の一例を説明するための図である。11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment. 実施形態に係る接続装置の製造方法の一例を説明するための図である。11A to 11C are diagrams for explaining an example of a manufacturing method of the connection device according to the embodiment.
 以下、本発明の実施形態について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Below, an embodiment of the present invention will be described with reference to the drawings. In all drawings, similar components are given similar reference symbols and descriptions will be omitted as appropriate.
 図1は、実施形態に係る接続装置10の断面図である。図1には、検査対象物20、検査基板30及びピンブロック200が接続装置10とともに図示されている。 FIG. 1 is a cross-sectional view of a connection device 10 according to an embodiment. In FIG. 1, an inspection object 20, an inspection board 30, and a pin block 200 are illustrated together with the connection device 10.
 図1には、説明のため、Z方向を示すZ軸が図示されている。Z方向は、検査対象物20及び検査基板30を結ぶ仮想線に平行な方向である。以下、必要に応じて、Z軸の矢印が指し示す側を+Z側といい、Z軸の矢印が指し示す側の反対側を-Z側という。例えば、+Z側及び-Z側は、それぞれ、鉛直方向の上側及び下側である。以下、必要に応じて、Z方向に垂直な方向を水平方向(横方向)という。 For the sake of explanation, FIG. 1 shows a Z axis indicating the Z direction. The Z direction is a direction parallel to an imaginary line connecting the inspection object 20 and the inspection board 30. Hereinafter, as necessary, the side indicated by the arrow on the Z axis will be referred to as the +Z side, and the side opposite to the side indicated by the arrow on the Z axis will be referred to as the -Z side. For example, the +Z side and the -Z side are the upper and lower sides in the vertical direction, respectively. Hereinafter, as necessary, the direction perpendicular to the Z direction will be referred to as the horizontal direction (lateral direction).
 接続装置10は、検査対象物20及び検査基板30を電気的に接続している。接続装置10は、Z方向において検査対象物20及び検査基板30の間に配置されている。図1に示す例において、Z方向において接続装置10及び検査基板30の間にはピンブロック200が配置されている。接続装置10は、基板100、複数のランド110、複数のプローブ120、絶縁層130、接続導体140及び複数のパッド150を備えている。検査対象物20は、例えばICである。検査基板30は、例えばPCBである。 The connection device 10 electrically connects the test object 20 and the test board 30. The connection device 10 is disposed between the test object 20 and the test board 30 in the Z direction. In the example shown in FIG. 1, a pin block 200 is disposed between the connection device 10 and the test board 30 in the Z direction. The connection device 10 includes a board 100, a plurality of lands 110, a plurality of probes 120, an insulating layer 130, a connection conductor 140, and a plurality of pads 150. The test object 20 is, for example, an IC. The test board 30 is, for example, a PCB.
 基板100は、セラミックス基板、具体的にはLTCC(Low Temperature Co-fired Ceramics)基板である。ただし、基板100は、セラミックス基板と異なる種類の基板であってもよい。 The substrate 100 is a ceramic substrate, specifically an LTCC (Low Temperature Co-fired Ceramics) substrate. However, the substrate 100 may be a substrate of a different type than a ceramic substrate.
 基板100は、第1面102及び第2面104を有している。第1面102は、基板100の+Z側の面である。第1面102と、検査対象物20の-Z側の面と、は互いに対向している。第2面104は、基板100の-Z側の面である。第2面104と、検査基板30の+Z側の面と、はピンブロック200を介して互いに対向している。 The substrate 100 has a first surface 102 and a second surface 104. The first surface 102 is the +Z side surface of the substrate 100. The first surface 102 and the -Z side surface of the inspection object 20 face each other. The second surface 104 is the -Z side surface of the substrate 100. The second surface 104 and the +Z side surface of the inspection substrate 30 face each other via the pin block 200.
 基板100は、複数のスルーホール106を画定している。+Z側から見て、複数のスルーホール106は、例えば、略格子状に配置されている。ただし、Z方向から見た場合の複数のスルーホール106のレイアウトは、この例に限定されない。図1には、図内の横方向に並ぶ5つのスルーホール106が模式的に図示されている。各スルーホール106は、第1面102及び第2面104の間でZ方向に略平行に基板100を貫通している。各スルーホール106のZ方向の周りの内側面には、金属等の内部導体が設けられている。内部導体は、各スルーホール106のZ方向の周りの内側面を覆っている。内部導体は、各スルーホール106の内部空間の全体に埋め込まれていない。すなわち、各スルーホール106は、中空となっている。ただし、内部導体は、各スルーホール106の内部空間の全体に埋め込まれていてもよい。すなわち、各スルーホール106は、中実であってもよい。 The substrate 100 defines a plurality of through holes 106. When viewed from the +Z side, the plurality of through holes 106 are arranged, for example, in a substantially lattice pattern. However, the layout of the plurality of through holes 106 when viewed from the Z direction is not limited to this example. FIG. 1 shows five through holes 106 arranged in the horizontal direction in the figure. Each through hole 106 penetrates the substrate 100 between the first surface 102 and the second surface 104 substantially parallel to the Z direction. An internal conductor such as a metal is provided on the inner surface around the Z direction of each through hole 106. The internal conductor covers the inner surface around the Z direction of each through hole 106. The internal conductor is not embedded in the entire internal space of each through hole 106. In other words, each through hole 106 is hollow. However, the internal conductor may be embedded in the entire internal space of each through hole 106. In other words, each through hole 106 may be solid.
 複数のランド110は、第1面102側に位置している。+Z側から見て、複数のランド110は、例えば、略格子状に配置されている。ただし、+Z側から見た場合の複数のランド110のレイアウトは、この例に限定されない。図1には、図内の横方向に並ぶ5つのランド110が模式的に図示されている。複数のランド110の各々の少なくとも一部分及び複数のスルーホール106の各々の少なくとも一部分は、Z方向に互いに重なっている。複数のランド110の各々の-Z側の面及び複数のスルーホール106の各々の+Z側の端部の内部導体は、電気的に互いに接続されている。図1に示す例において、複数のランド110の各々の-Z側の面及び複数のスルーホール106の各々の+Z側の端部の内部導体は、互いに直接接触している。 The multiple lands 110 are located on the first surface 102 side. When viewed from the +Z side, the multiple lands 110 are arranged, for example, in a substantially lattice pattern. However, the layout of the multiple lands 110 when viewed from the +Z side is not limited to this example. FIG. 1 shows five lands 110 arranged horizontally in the figure. At least a portion of each of the multiple lands 110 and at least a portion of each of the multiple through holes 106 overlap each other in the Z direction. The -Z side surface of each of the multiple lands 110 and the internal conductors at the +Z side end of each of the multiple through holes 106 are electrically connected to each other. In the example shown in FIG. 1, the -Z side surface of each of the multiple lands 110 and the internal conductors at the +Z side end of each of the multiple through holes 106 are in direct contact with each other.
 実施形態において、各ランド110は、第1ランド層112及び第2ランド層114を含んでいる。第1ランド層112及び第2ランド層114は、第1面102から離れるにつれてZ方向に順に積層されている。第1ランド層112は、第2ランド層114の材料より安価な材料からなっている。第1ランド層112は、例えば、銅からなっている。よって、各ランド110の全体が第2ランド層114の材料からなる場合と比較して、各ランド110を安価に形成することができる。第2ランド層114は、第1ランド層112の材料より耐酸化性が高い材料からなっている。第2ランド層114は、例えば、金からなっている。よって、各ランド110の全体が第1ランド層112の材料からなる場合と比較して、各ランド110の耐酸化性を向上させることができる。ただし、各ランド110は、単一の材料のランド層であってもよい。或いは、各ランド110は、3層以上のランド層を含んでいてもよい。 In the embodiment, each land 110 includes a first land layer 112 and a second land layer 114. The first land layer 112 and the second land layer 114 are stacked in order in the Z direction as they move away from the first surface 102. The first land layer 112 is made of a material that is cheaper than the material of the second land layer 114. The first land layer 112 is made of, for example, copper. Therefore, each land 110 can be formed at a lower cost than when the entire land 110 is made of the material of the second land layer 114. The second land layer 114 is made of a material that is more resistant to oxidation than the material of the first land layer 112. The second land layer 114 is made of, for example, gold. Therefore, the oxidation resistance of each land 110 can be improved compared to when the entire land 110 is made of the material of the first land layer 112. However, each land 110 may be a land layer of a single material. Alternatively, each land 110 may include three or more land layers.
 複数のプローブ120の各々は、複数のランド110の各々の+Z側の面側に実装されている。図1には、図内の横方向に並ぶ5つのプローブ120が模式的に図示されている。複数のプローブ120の各々の-Z側の端部及び複数のランド110の各々の+Z側の面は、電気的に互いに接続されている。複数のプローブ120の各々の+Z側の端部及び検査対象物20の-Z側の面側に位置する複数の第1電極22の各々は、互いに対向している。図1に示す例において、各プローブ120は、カンチレバー構造を有している。具体的には、各プローブ120の+Z側の端部は、Z方向に略垂直な方向に向けて折り曲げられている。よって、各プローブ120の+Z側の端部は、各第1電極22に向けて付勢可能になっている。ただし、各プローブ120の構造は、この例に限定されない。例えば、各プローブ120の+Z側の端部は、巻きばね等の弾性体によって検査対象物20に向けて付勢可能であってもよい。 Each of the multiple probes 120 is mounted on the +Z side surface of each of the multiple lands 110. FIG. 1 shows five probes 120 arranged horizontally in the figure. The -Z side end of each of the multiple probes 120 and the +Z side surface of each of the multiple lands 110 are electrically connected to each other. The +Z side end of each of the multiple probes 120 and each of the multiple first electrodes 22 located on the -Z side surface of the test object 20 face each other. In the example shown in FIG. 1, each probe 120 has a cantilever structure. Specifically, the +Z side end of each probe 120 is bent in a direction approximately perpendicular to the Z direction. Therefore, the +Z side end of each probe 120 can be biased toward each first electrode 22. However, the structure of each probe 120 is not limited to this example. For example, the +Z side end of each probe 120 may be biased toward the test object 20 by an elastic body such as a coil spring.
 絶縁層130は、第2面104側に位置している。図1に示す例において、絶縁層130は、第1絶縁層132、第2絶縁層134及び第3絶縁層136を含んでいる。第1絶縁層132、第2絶縁層134及び第3絶縁層136は、第2面104から離れるにつれてZ方向に順に積層されている。第1絶縁層132、第2絶縁層134及び第3絶縁層136の各々は、例えば、ポリイミド等の樹脂層である。ただし、絶縁層130は、単一の絶縁層であってもよい。或いは、絶縁層130は、Z方向に積層された2層の絶縁層又はZ方向に積層された4層以上の絶縁層を含んでいてもよい。 The insulating layer 130 is located on the second surface 104 side. In the example shown in FIG. 1, the insulating layer 130 includes a first insulating layer 132, a second insulating layer 134, and a third insulating layer 136. The first insulating layer 132, the second insulating layer 134, and the third insulating layer 136 are stacked in order in the Z direction as they move away from the second surface 104. Each of the first insulating layer 132, the second insulating layer 134, and the third insulating layer 136 is, for example, a resin layer such as polyimide. However, the insulating layer 130 may be a single insulating layer. Alternatively, the insulating layer 130 may include two insulating layers stacked in the Z direction or four or more insulating layers stacked in the Z direction.
 複数の接続導体140の少なくとも一部分は、絶縁層130に埋め込まれている。図1には、図内の横方向に並ぶ4つの接続導体140が模式的に図示されている。図1に示す例において、各接続導体140は、第1接続導体142及び第2接続導体144を含んでいる。第1接続導体142及び第2接続導体144は、例えば、銅及び銅合金の少なくとも一方を含んでいる。 At least a portion of the multiple connection conductors 140 is embedded in the insulating layer 130. FIG. 1 shows four connection conductors 140 arranged horizontally in the figure. In the example shown in FIG. 1, each connection conductor 140 includes a first connection conductor 142 and a second connection conductor 144. The first connection conductor 142 and the second connection conductor 144 include, for example, at least one of copper and a copper alloy.
 図1内の左から1つ目、2つ目及び4つ目の接続導体140について説明する。以下のようにして、図1内の左から1つ目、2つ目及び4つ目の接続導体140は、それぞれ、図1内の左から1つ目、2つ目及び5つ目のスルーホール106の内部導体に電気的に接続されている。 The first, second and fourth connecting conductors 140 from the left in FIG. 1 will be described. The first, second and fourth connecting conductors 140 from the left in FIG. 1 are electrically connected to the internal conductors of the first, second and fifth through holes 106 from the left in FIG. 1, respectively, as follows.
 第1接続導体142は、第1ビア142a及び第1配線142bを含んでいる。図1に示す例において、第1ビア142a及び第1配線142bは、互いに一体となっている。第1ビア142aは、第1絶縁層132をZ方向に略平行に貫通している。第1ビア142aの+Z側の端部及びスルーホール106の-Z側の端部の内部導体は、電気的に互いに接続されている。第1配線142bは、水平方向に略平行な方向に延在している。第1配線142bは、図1内の横方向だけでなく、図1の手前又は奥に向けて延在していてもよい。第1配線142bは、第1絶縁層132の-Z側の面側に位置している。第1配線142bは、第2絶縁層134によって覆われている。第1配線142bの+Z側の面及び第1ビア142aの-Z側の端部は、電気的に互いに接続されている。 The first connection conductor 142 includes a first via 142a and a first wiring 142b. In the example shown in FIG. 1, the first via 142a and the first wiring 142b are integrated with each other. The first via 142a penetrates the first insulating layer 132 in a direction substantially parallel to the Z direction. The internal conductors at the +Z side end of the first via 142a and the -Z side end of the through hole 106 are electrically connected to each other. The first wiring 142b extends in a direction substantially parallel to the horizontal direction. The first wiring 142b may extend not only in the lateral direction in FIG. 1, but also toward the front or back of FIG. 1. The first wiring 142b is located on the -Z side surface of the first insulating layer 132. The first wiring 142b is covered by the second insulating layer 134. The +Z side surface of the first wiring 142b and the -Z side end of the first via 142a are electrically connected to each other.
 第2接続導体144は、第2ビア144a及び第2配線144bを含んでいる。図1に示す例において、第2ビア144a及び第2配線144bは、互いに一体となっている。第2ビア144aは、第2絶縁層134をZ方向に略平行に貫通している。第2ビア144aの+Z側の端部及び第1配線142bの-Z側の面は、電気的に互いに接続されている。第2配線144bは、水平方向に略平行な方向に延在している。第2配線144bは、図1内の横方向だけでなく、図1の手前又は奥に向けて延在していてもよい。第2配線144bは、第2絶縁層134の-Z側の面側に位置している。第2配線144bは、第3絶縁層136によって覆われている。第2配線144bの+Z側の面及び第2ビア144aの-Z側の端部は、電気的に互いに接続されている。 The second connection conductor 144 includes a second via 144a and a second wiring 144b. In the example shown in FIG. 1, the second via 144a and the second wiring 144b are integrated with each other. The second via 144a penetrates the second insulating layer 134 approximately parallel to the Z direction. The +Z side end of the second via 144a and the -Z side surface of the first wiring 142b are electrically connected to each other. The second wiring 144b extends in a direction approximately parallel to the horizontal direction. The second wiring 144b may extend not only in the lateral direction in FIG. 1, but also toward the front or back of FIG. 1. The second wiring 144b is located on the -Z side surface of the second insulating layer 134. The second wiring 144b is covered by the third insulating layer 136. The +Z side surface of the second wiring 144b and the -Z side end of the second via 144a are electrically connected to each other.
 図1内の左から3つ目の接続導体140について説明する。以下、必要に応じて、図1内の左から3つ目の接続導体140を接続導体140Tと表記する。接続導体140Tは、第1接続導体142T及び第2接続導体144Tを含んでいる。接続導体140Tは、以下の点を除いて、図1内の左から1つ目、2つ目及び4つ目の接続導体140と同様である。 The third connection conductor 140 from the left in FIG. 1 will be described below. Where necessary, the third connection conductor 140 from the left in FIG. 1 will be referred to as connection conductor 140T. Connection conductor 140T includes a first connection conductor 142T and a second connection conductor 144T. Connection conductor 140T is similar to the first, second, and fourth connection conductors 140 from the left in FIG. 1, except for the following points.
 第1接続導体142Tは、2つの第1ビア142aT及び第1配線142bTを含んでいる。2つの第1ビア142aTの各々の+Z側の端部と、図1内の左から3つ目及び4つ目のスルーホール106の各々の-Z側の端部の内部導体と、は電気的に互いに接続されている。2つの第1ビア142aTは、同一の第1配線142bTに電気的に接続されている。よって、接続導体140Tを介して、図1内の左から3つ目及び4つ目のスルーホール106の内部導体に略同一の電位を供給することができる。すなわち、図1内の左から3つ目及び4つ目のスルーホール106の内部導体は、互いに短絡している。これらのスルーホール106の内部導体に供給される電位としては、電源電位や接地電位が例示される。図1内の左から1つ目、2つ目及び4つ目の接続導体140の第2接続導体144と同様にして、第2接続導体144Tは、第2ビア144aT及び第2配線144bTを含んでいる。 The first connection conductor 142T includes two first vias 142aT and a first wiring 142bT. The +Z side ends of the two first vias 142aT and the internal conductors at the -Z side ends of the third and fourth through holes 106 from the left in FIG. 1 are electrically connected to each other. The two first vias 142aT are electrically connected to the same first wiring 142bT. Therefore, it is possible to supply approximately the same potential to the internal conductors of the third and fourth through holes 106 from the left in FIG. 1 via the connection conductor 140T. In other words, the internal conductors of the third and fourth through holes 106 from the left in FIG. 1 are short-circuited to each other. Examples of potentials supplied to the internal conductors of these through holes 106 include a power supply potential and a ground potential. Similar to the second connection conductors 144 of the first, second, and fourth connection conductors 140 from the left in FIG. 1, the second connection conductor 144T includes a second via 144aT and a second wiring 144bT.
 複数のパッド150は、絶縁層130の-Z側の面に位置している。-Z側から見て、複数のパッド150は、例えば、略格子状に配置されている。ただし、-Z側から見た場合の複数のパッド150のレイアウトは、この例に限定されない。図1には、図内の横方向に並ぶ4つのパッド150が模式的に図示されている。複数のパッド150の-Z側の面の少なくとも一部分は、第3絶縁層136の-Z側の面からピンブロック200に向けて露出されている。パッド150の+Z側の面及び第2配線144bの-Z側の面は、互いに電気的に接続されている。実施形態において、各パッド150は、接続導体140の材料より耐酸化性が高い材料からなっている。各パッド150は、例えば金からなっている。実施形態では、各パッド150が各接続導体140の-Z側の面の少なくとも一部分を覆っている。よって、接続導体140の酸化をパッド150によって抑制することができる。 The multiple pads 150 are located on the -Z side surface of the insulating layer 130. When viewed from the -Z side, the multiple pads 150 are arranged, for example, in a substantially lattice shape. However, the layout of the multiple pads 150 when viewed from the -Z side is not limited to this example. FIG. 1 shows four pads 150 arranged horizontally in the figure. At least a portion of the -Z side surface of the multiple pads 150 is exposed from the -Z side surface of the third insulating layer 136 toward the pin block 200. The +Z side surface of the pads 150 and the -Z side surface of the second wiring 144b are electrically connected to each other. In the embodiment, each pad 150 is made of a material that is more resistant to oxidation than the material of the connection conductor 140. Each pad 150 is made of, for example, gold. In the embodiment, each pad 150 covers at least a portion of the -Z side surface of each connection conductor 140. Therefore, the oxidation of the connection conductor 140 can be suppressed by the pad 150.
 複数のポゴピン210は、ピンブロック200によって支持されている。ピンブロック200は、例えば、樹脂等の絶縁体からなっている。図1には、図内の横方向に並ぶ4つのポゴピン210が模式的に図示されている。複数のポゴピン210の各々の+Z側の端部及び複数のパッド150の各々の-Z側の面は、互いに対向している。複数のポゴピン210の各々の-Z側の端部及び検査基板30の+Z側の面側に位置する複数の第2電極32は、互いに対向している。各ポゴピン210の-Z側の端部は、各ポゴピン210の内部に設けられた不図示の巻きばねによって、第2電極32に向けて付勢可能になっている。 The multiple pogo pins 210 are supported by a pin block 200. The pin block 200 is made of an insulating material such as resin. FIG. 1 shows four pogo pins 210 arranged horizontally in the figure. The +Z side ends of the multiple pogo pins 210 and the -Z side faces of the multiple pads 150 face each other. The -Z side ends of the multiple pogo pins 210 and the multiple second electrodes 32 located on the +Z side face of the inspection board 30 face each other. The -Z side ends of each pogo pin 210 can be biased toward the second electrodes 32 by a coil spring (not shown) provided inside each pogo pin 210.
 図1を参照して、接続装置10を用いての検査対象物20の検査について説明する。 With reference to Figure 1, the inspection of the inspection target 20 using the connection device 10 will be described.
 この検査において、複数のプローブ120の各々の+Z側の端部と、検査対象物20の複数の第1電極22の各々と、は互いに接触している。複数のポゴピン210の各々の+Z側の端部と、複数のパッド150の各々の-Z側の面と、は互いに接触している。複数のポゴピン210の各々の-Z側の端部と、検査基板30の複数の第2電極32の各々と、は互いに接触している。よって、各第1電極22及び各第2電極32は、各プローブ120と、各ランド110と、各スルーホール106に設けられた内部導体と、各接続導体140と、各ポゴピン210と、を介して電気的に互いに接続されている。 In this test, the +Z end of each of the multiple probes 120 and each of the multiple first electrodes 22 of the test object 20 are in contact with each other. The +Z end of each of the multiple pogo pins 210 and the -Z surface of each of the multiple pads 150 are in contact with each other. The -Z end of each of the multiple pogo pins 210 and each of the multiple second electrodes 32 of the test board 30 are in contact with each other. Therefore, each first electrode 22 and each second electrode 32 are electrically connected to each other via each probe 120, each land 110, the internal conductor provided in each through hole 106, each connection conductor 140, and each pogo pin 210.
 実施形態では、検査対象物20の検査において各パッド150の-Z側の面及び各ポゴピン210の+Z側の端部が互いに接触する際、絶縁層130を各パッド150への荷重を緩和する部材として機能させることができる。よって、絶縁層130が設けられていない場合と比較して、接続装置10の耐久性を向上させることができる。 In the embodiment, when the -Z side surface of each pad 150 and the +Z side end of each pogo pin 210 come into contact with each other during inspection of the inspection target 20, the insulating layer 130 can function as a member that relieves the load on each pad 150. Therefore, the durability of the connection device 10 can be improved compared to when the insulating layer 130 is not provided.
 次に、図1を参照して、接続装置10の検査対象物20側の電極のピッチ、数等のレイアウトと、接続装置10の検査基板30側の電極のピッチ、数等のレイアウトと、の関係について説明する。実施形態では、接続導体140によって、接続装置10の検査対象物20側の電極のレイアウトと、接続装置10の検査基板30側の電極のレイアウトと、を互いに異ならせることができる。実施形態において、接続装置10の検査対象物20側の電極は、ランド110に相当している。実施形態において、接続装置10の検査基板30側の電極は、パッド150に相当している。 Next, referring to FIG. 1, the relationship between the layout of the electrodes on the test subject 20 side of the connection device 10 (such as the pitch and number) and the layout of the electrodes on the test board 30 side of the connection device 10 (such as the pitch and number) will be described. In the embodiment, the connection conductor 140 can make the layout of the electrodes on the test subject 20 side of the connection device 10 different from the layout of the electrodes on the test board 30 side of the connection device 10. In the embodiment, the electrodes on the test subject 20 side of the connection device 10 correspond to the lands 110. In the embodiment, the electrodes on the test board 30 side of the connection device 10 correspond to the pads 150.
 実施形態におけるランド110の水平方向のピッチ及びパッド150の水平方向のピッチの関係について説明する。 The relationship between the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 in this embodiment will be explained.
 各接続導体140では、各第1配線142b及び各第2配線144bが水平方向に略平行な方向に延在している。よって、スルーホール106の-Z側の端部の水平方向内の位置と、当該スルーホール106に設けられた内部導体に電気的に接続されたパッド150の水平方向内の位置と、を水平方向に互いにずらすことができる。したがって、接続導体140の構造に応じて、ランド110の水平方向のピッチ及びパッド150の水平方向のピッチを互いに変換することができる。 In each connecting conductor 140, each first wiring 142b and each second wiring 144b extend in a direction approximately parallel to the horizontal direction. Therefore, the horizontal position of the -Z side end of the through hole 106 and the horizontal position of the pad 150 electrically connected to the internal conductor provided in the through hole 106 can be shifted from each other in the horizontal direction. Therefore, depending on the structure of the connecting conductor 140, the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be converted into each other.
 各接続導体140は、少なくとも部分的にZ方向に互いに重なる複数の配線を有している。図1に示す例では、各接続導体140において、第1配線142b及び第2配線144bが少なくとも部分的にZ方向に互いに重なっている。よって、実施形態では、複数層の配線によって、ランド110の水平方向のピッチ及びパッド150の水平方向のピッチを互いに変換することができる。したがって、単層の配線によって、ランド110の水平方向のピッチ及びパッド150の水平方向のピッチを互いに変換する場合と比較して、ランド110の水平方向のピッチ及びパッド150の水平方向のピッチの変換の自由度を向上させることができる。 Each connection conductor 140 has a plurality of wirings that at least partially overlap each other in the Z direction. In the example shown in FIG. 1, in each connection conductor 140, the first wiring 142b and the second wiring 144b at least partially overlap each other in the Z direction. Thus, in the embodiment, the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be converted into each other by multiple layers of wiring. Therefore, compared to the case where the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 are converted into each other by a single layer of wiring, the degree of freedom in converting the horizontal pitch of the lands 110 and the horizontal pitch of the pads 150 can be improved.
 実施形態におけるランド110の数及びパッド150の数の関係について説明する。 The relationship between the number of lands 110 and the number of pads 150 in this embodiment will be explained.
 図1に示す例では、図内の横方向に並ぶランド110の数5個と、図内の横方向に並ぶパッド150の数4個と、が図内の横方向に並ぶ4つの接続導体140によって互いに異なっている。すなわち、パッド150の数がランド110の数より少なくなっている。具体的には、図1に示す例では、図内の左から3つ目のスルーホール106の内部導体と、図内の左から4つ目のスルーホール106の内部導体と、が接続導体140Tに電気的に接続されている。接続導体140Tは、図内の左から3つ目の単一のパッド150に電気的に接続されている。したがって、これら2つのスルーホール106に別々の接続導体140を設ける場合と比較して、パッド150の数を1つだけ少なくすることができる。 In the example shown in FIG. 1, the number of lands 110 arranged horizontally in the figure (five) and the number of pads 150 arranged horizontally in the figure (four) are different due to the four connecting conductors 140 arranged horizontally in the figure. In other words, the number of pads 150 is less than the number of lands 110. Specifically, in the example shown in FIG. 1, the internal conductor of the third through hole 106 from the left in the figure and the internal conductor of the fourth through hole 106 from the left in the figure are electrically connected to the connecting conductor 140T. The connecting conductor 140T is electrically connected to the third single pad 150 from the left in the figure. Therefore, the number of pads 150 can be reduced by one compared to the case where separate connecting conductors 140 are provided for these two through holes 106.
 ランド110の数及びパッド150の数の関係は、図1に示す例に限定されない。ランド110の数及びパッド150の数を互いに異ならせるため、複数のスルーホール106の内部導体と、1つの接続導体140と、が電気的に互いに接続されていればよい。例えば、3つのスルーホール106の内部導体と、1つの接続導体140と、が電気的に互いに接続されていてもよい。 The relationship between the number of lands 110 and the number of pads 150 is not limited to the example shown in FIG. 1. In order to make the number of lands 110 and the number of pads 150 different from each other, it is sufficient that the internal conductors of the multiple through holes 106 and one connecting conductor 140 are electrically connected to each other. For example, the internal conductors of three through holes 106 and one connecting conductor 140 may be electrically connected to each other.
 図1に示す例では、パッド150の数がランド110の数より少なくなっている。しかしながら、接続導体140によって、パッド150の数をランド110の数より多くしてもよい。すなわち、パッド150の数をランド110の数より多くするため、1つの接続導体140と、複数のパッド150と、が電気的に互いに接続されていてもよい。この場合、当該1つの接続導体140と、1つのスルーホール106の内部導体と、が電気的に互いに接続されている。 In the example shown in FIG. 1, the number of pads 150 is less than the number of lands 110. However, the number of pads 150 may be greater than the number of lands 110 by using the connection conductors 140. That is, in order to make the number of pads 150 greater than the number of lands 110, one connection conductor 140 and multiple pads 150 may be electrically connected to each other. In this case, the one connection conductor 140 and the internal conductor of one through hole 106 are electrically connected to each other.
 次に、図1を参照して、接続装置10の第1面102側の平坦性について説明する。 Next, the flatness of the first surface 102 of the connection device 10 will be described with reference to FIG.
 実施形態では、接続導体140が第1面102側でなく第2面104側に位置している。仮に、接続導体140が第1面102側に位置する状態を検討する。この状態では、-Z側から+Z側にかけて、複数のパッド150、基板100、絶縁層130及び複数のプローブ120が順に並んでいる。絶縁層130には、複数の接続導体140が設けられている。この状態においては、接続装置10の第1面102側の平坦性を確保することが比較的難しくなることがある。これは、第1絶縁層132、第2絶縁層134等、水平方向に略平行な方向の長さが比較的長い絶縁層のZ方向の厚さの均一性を確保することが比較的難しいことによる。また、第1配線142bや第2配線144b等、水平方向に略平行な方向の長さが比較的長い配線のZ方向の厚さの均一性を確保することが比較的難しいことによる。また、第1配線142b及び第2配線144bがZ方向に互いに重なり合う領域の面積に応じて、接続導体140のZ方向の高さにばらつきが生じ得ることによる。実施形態では、第1面102側にランド110が位置している。ランド110は、第1ランド層112及び第2ランド層114を一体として単層配線とみなすことができる。よって、絶縁層130に相当する絶縁層を設けることなく、ランド110を形成することができる。また、ランド110の水平方向に略平行な長さ又は幅は、第1配線142bや第2配線144b等、接続装置10の検査対象物20側の電極のピッチ及び接続装置10の検査基板30側の電極のピッチの変換に用いられる配線の水平方向に略平行な長さより短くしやすくなっている。よって、実施形態では、接続導体140が第1面102側に位置する場合と比較して、接続装置10の第1面102側の平坦性を確保しやすくすることができる。 In the embodiment, the connection conductor 140 is located on the second surface 104 side, not on the first surface 102 side. Let us consider a state in which the connection conductor 140 is located on the first surface 102 side. In this state, from the -Z side to the +Z side, a plurality of pads 150, the substrate 100, the insulating layer 130, and a plurality of probes 120 are arranged in order. The insulating layer 130 is provided with a plurality of connection conductors 140. In this state, it may be relatively difficult to ensure flatness on the first surface 102 side of the connection device 10. This is because it is relatively difficult to ensure uniformity in the thickness in the Z direction of insulating layers that are relatively long in a direction approximately parallel to the horizontal direction, such as the first insulating layer 132 and the second insulating layer 134. In addition, it is relatively difficult to ensure uniformity in the thickness in the Z direction of wiring that is relatively long in a direction approximately parallel to the horizontal direction, such as the first wiring 142b and the second wiring 144b. In addition, the height of the connection conductor 140 in the Z direction may vary depending on the area of the region where the first wiring 142b and the second wiring 144b overlap each other in the Z direction. In the embodiment, the land 110 is located on the first surface 102 side. The land 110 can be regarded as a single-layer wiring by integrating the first land layer 112 and the second land layer 114. Therefore, the land 110 can be formed without providing an insulating layer equivalent to the insulating layer 130. In addition, the length or width of the land 110 approximately parallel to the horizontal direction is easily made shorter than the length approximately parallel to the horizontal direction of the wiring used to convert the pitch of the electrodes on the inspection target 20 side of the connection device 10 and the pitch of the electrodes on the inspection board 30 side of the connection device 10, such as the first wiring 142b and the second wiring 144b. Therefore, in the embodiment, it is easier to ensure the flatness of the first surface 102 side of the connection device 10 compared to the case where the connection conductor 140 is located on the first surface 102 side.
 次に、図1を参照して、基板100の歩留まりについて説明する。 Next, the yield of the substrate 100 will be explained with reference to FIG.
 上述したように、実施形態では、複数の接続導体140によって、接続装置10の検査対象物20側の電極のレイアウトと、接続装置10の検査基板30側の電極のレイアウトと、が互いに異なっている。よって、基板100は、接続装置10の検査対象物20側の電極のレイアウトと、接続装置10の検査基板30側の電極のレイアウトと、を互いに異ならせるための内部配線を有する必要がない。仮に、基板100が当該内部配線を有する場合、基板100の歩留まりが比較的低くなることがある。これに対して、実施形態では、基板100は、スルーホール106を画定している。すなわち、実施形態では、基板100が上述の内部配線を有する場合と比較して、基板100を単純な構造にすることができる。よって、基板100が上述の内部配線を有する場合と比較して、基板100の歩留まりを向上させることができる。ただし、基板100の歩留まりの向上を考慮しないのであれば、基板100は、上述の内部配線を有していてもよい。 As described above, in the embodiment, the layout of the electrodes on the test subject 20 side of the connection device 10 and the layout of the electrodes on the test board 30 side of the connection device 10 are different from each other due to the multiple connection conductors 140. Therefore, the board 100 does not need to have internal wiring to make the layout of the electrodes on the test subject 20 side of the connection device 10 and the layout of the electrodes on the test board 30 side of the connection device 10 different from each other. If the board 100 had the internal wiring, the yield of the board 100 may be relatively low. In contrast, in the embodiment, the board 100 defines the through hole 106. That is, in the embodiment, the board 100 can have a simpler structure than when the board 100 has the above-mentioned internal wiring. Therefore, the yield of the board 100 can be improved compared to when the board 100 has the above-mentioned internal wiring. However, if the improvement of the yield of the board 100 is not taken into consideration, the board 100 may have the above-mentioned internal wiring.
 実施形態において、絶縁層130及び接続導体140を有する配線層は、基板100の第2面104側に位置している。このような配線層の良否判定は、外観検査によって行うことができる。さらに、基板100が上述の内部配線を有する場合、基板100の当該内部配線の良否判定は、電気的検査で行われることがある。しかしながら、この電気的検査では、基板100のランドやパッドに検査痕が残る可能性がある。このような検査痕上に配線が設けられると、接続装置10の歩留まりが悪化する可能性がある。これに対して、実施形態では、基板100の、電気的検査を行わない。したがって、電気的検査による接続装置10の歩留まりの悪化を抑制することができる。 In the embodiment, the wiring layer having the insulating layer 130 and the connection conductor 140 is located on the second surface 104 side of the substrate 100. The quality of such a wiring layer can be determined by visual inspection. Furthermore, if the substrate 100 has the above-mentioned internal wiring, the quality of the internal wiring of the substrate 100 may be determined by electrical inspection. However, this electrical inspection may leave inspection marks on the lands and pads of the substrate 100. If wiring is provided on such inspection marks, the yield of the connection device 10 may deteriorate. In contrast, in the embodiment, the substrate 100 is not subjected to electrical inspection. Therefore, deterioration of the yield of the connection device 10 due to electrical inspection can be suppressed.
 図2~図4は、実施形態に係る接続装置10の製造方法の一例を説明するための図である。図2~図4におけるZ軸の向きは、紙面の上下方向において図1におけるZ軸の向きとは逆になっている。この例において、接続装置10は、以下のようにして製造されている。 FIGS. 2 to 4 are diagrams for explaining an example of a manufacturing method for the connection device 10 according to the embodiment. The direction of the Z axis in FIG. 2 to FIG. 4 is opposite to the direction of the Z axis in FIG. 1 in the up-down direction of the paper. In this example, the connection device 10 is manufactured as follows.
 まず、図2に示すように、原基板100Rを準備する。原基板100Rには、図1を用いて説明した複数のスルーホール106が予め形成されている。図2~図4には、図の簡易化のため、スルーホール106は図示されていない。原基板100Rの第2面104には、粗化処理が予め施されていてもよい。粗化処理によって、第2面104と、第1絶縁層132等、第2面104に設けられる層と、の密着性を向上させることができる。原基板100Rの第1面102にも、同様に、粗化処理が予め施されていてもよい。 First, as shown in FIG. 2, the original substrate 100R is prepared. The original substrate 100R has a plurality of through holes 106 formed therein as described with reference to FIG. 1. To simplify the drawings, the through holes 106 are not shown in FIGS. 2 to 4. The second surface 104 of the original substrate 100R may be roughened beforehand. The roughening treatment can improve the adhesion between the second surface 104 and layers provided on the second surface 104, such as the first insulating layer 132. Similarly, the first surface 102 of the original substrate 100R may also be roughened beforehand.
 図2~図4には、原基板100Rから2つの基板100が切り出される2つの区画Sが図示されている。図2~図4では、説明の簡易化のため、各区画Sにおいて1つの接続導体140が形成されている。しかしながら、実際には、各区画Sにおいて複数の接続導体140が形成されることもある。原基板100Rから切り出される基板100の数は、2つに限定されず、3つ以上となることもある。 Figures 2 to 4 show two sections S from which two substrates 100 are cut out from the original substrate 100R. For ease of explanation, in Figures 2 to 4, one connection conductor 140 is formed in each section S. However, in reality, multiple connection conductors 140 may be formed in each section S. The number of substrates 100 cut out from the original substrate 100R is not limited to two, and may be three or more.
 次いで、図2に示すように、原基板100Rの第2面104側の各区画Sにおいて第1絶縁層132を形成する。第1絶縁層132は、例えば、リソグラフィ技術を用いて形成されている。各区画Sにおいて、第1絶縁層132は、第1開口パターン132aを画定している。各区画Sにおいて、第1開口パターン132aは、第2面104の一部分を-Z側に向けて露出している。 Next, as shown in FIG. 2, a first insulating layer 132 is formed in each section S on the second surface 104 side of the original substrate 100R. The first insulating layer 132 is formed, for example, using lithography technology. In each section S, the first insulating layer 132 defines a first opening pattern 132a. In each section S, the first opening pattern 132a exposes a portion of the second surface 104 toward the -Z side.
 次いで、図2に示すように、原基板100Rの第2面104側の2つの区画Sに亘って第1シード層142sを形成する。第1シード層142sは、例えば、スパッタ、イオンプレーティング等の方法によって形成されている。第1シード層142sは、例えば、第2面104から離れるにつれてZ方向に順に積層された銅層及びチタンタングステン合金層(TiW/Cu)を含んでいる。 Next, as shown in FIG. 2, a first seed layer 142s is formed across two sections S on the second surface 104 side of the original substrate 100R. The first seed layer 142s is formed by a method such as sputtering or ion plating. The first seed layer 142s includes, for example, a copper layer and a titanium tungsten alloy layer (TiW/Cu) that are stacked in sequence in the Z direction as they move away from the second surface 104.
 次いで、図2に示すように、第1レジスト302を形成する。第1レジスト302は、例えば、リソグラフィ技術を用いて形成されている。各区画Sにおいて、第1レジスト302は、第1レジスト開口302aを画定している。図2に示す例において、第1レジスト302の一部分は、第1シード層142sにおける2つの区画Sの間で延在する部分を覆っている。各第1レジスト開口302aの少なくとも一部分及び各第1開口パターン132aの少なくとも一部分は、Z方向に互いに重なっている。各区画Sにおいて、第1レジスト開口302aは、第1シード層142sの-Z側の面の一部分を-Z側に向けて露出している。 Next, as shown in FIG. 2, a first resist 302 is formed. The first resist 302 is formed, for example, using lithography techniques. In each section S, the first resist 302 defines a first resist opening 302a. In the example shown in FIG. 2, a portion of the first resist 302 covers a portion of the first seed layer 142s that extends between two sections S. At least a portion of each first resist opening 302a and at least a portion of each first opening pattern 132a overlap each other in the Z direction. In each section S, the first resist opening 302a exposes a portion of the -Z side surface of the first seed layer 142s toward the -Z side.
 次いで、図2に示すように、第1シード層142sを用いた電解めっきによって、第1めっき層142pを形成する。第1めっき層142pは、例えば、銅層である。各区画Sにおいて、第1めっき層142pは、第1開口パターン132a及び第1レジスト開口302aに埋め込まれている。よって、各区画Sにおいて、第1シード層142s及び第1めっき層142pにおける第1開口パターン132aに埋め込まれた部分は、第1ビア142aとなる。各区画Sにおいて、第1シード層142s及び第1めっき層142pにおける第1レジスト開口302aに埋め込まれた部分は、第1配線142bとなる。 Next, as shown in FIG. 2, the first plating layer 142p is formed by electrolytic plating using the first seed layer 142s. The first plating layer 142p is, for example, a copper layer. In each section S, the first plating layer 142p is embedded in the first opening pattern 132a and the first resist opening 302a. Therefore, in each section S, the portion of the first seed layer 142s and the first plating layer 142p embedded in the first opening pattern 132a becomes the first via 142a. In each section S, the portion of the first seed layer 142s and the first plating layer 142p embedded in the first resist opening 302a becomes the first wiring 142b.
 次いで、図3に示すように、第1レジスト302を除去する。 Then, as shown in FIG. 3, the first resist 302 is removed.
 次いで、図3に示すように、第1シード層142sにおける第1めっき層142pとZ方向に重ならない部分をエッチングによって除去する。よって、各区画Sの第1接続導体142が電気的に互いに絶縁される。このエッチングでは、例えば、第1めっき層142pよりも第1シード層142sを選択的にエッチングするエッチャントが用いられている。 Next, as shown in FIG. 3, the portion of the first seed layer 142s that does not overlap with the first plating layer 142p in the Z direction is removed by etching. Thus, the first connection conductors 142 of each section S are electrically insulated from each other. In this etching, for example, an etchant is used that selectively etches the first seed layer 142s rather than the first plating layer 142p.
 図2~図4では、図の簡易化のため、第1シード層142sのZ方向の厚さ及び第1めっき層142pのZ方向の厚さはほぼ等しいように模式的に描写されている。しかしながら、第1めっき層142pのZ方向の厚さは、実際には、第1シード層142sのZ方向の厚さのおおよそ10倍以上となっている。よって、第1シード層142sにおける第1めっき層142pとZ方向に重ならない部分とともに第1めっき層142pの一部分がエッチングによって除去されても、第1めっき層142pのZ方向の全体の厚さはほとんど変化しない。 2 to 4, for the sake of simplicity, the Z-direction thickness of the first seed layer 142s and the Z-direction thickness of the first plating layer 142p are depicted diagrammatically as being approximately equal. However, the Z-direction thickness of the first plating layer 142p is actually approximately 10 times or more the Z-direction thickness of the first seed layer 142s. Therefore, even if a portion of the first plating layer 142p, together with the portion of the first seed layer 142s that does not overlap with the first plating layer 142p in the Z direction, is removed by etching, the overall Z-direction thickness of the first plating layer 142p remains almost unchanged.
 次いで、図3に示すように、各区画Sにおいて第2絶縁層134を形成する。第2絶縁層134は、例えば、リソグラフィ技術を用いて形成されている。各区画Sにおいて、第2絶縁層134は、第2開口パターン134aを画定している。第2絶縁層134は、第2開口パターン134aを除いて、第1接続導体142を覆っている。各区画Sにおいて、第2開口パターン134aは、第1接続導体142の-Z側の面の一部分を-Z側に向けて露出している。 Next, as shown in FIG. 3, a second insulating layer 134 is formed in each section S. The second insulating layer 134 is formed, for example, using lithography technology. In each section S, the second insulating layer 134 defines a second opening pattern 134a. The second insulating layer 134 covers the first connecting conductor 142 except for the second opening pattern 134a. In each section S, the second opening pattern 134a exposes a portion of the -Z side surface of the first connecting conductor 142 toward the -Z side.
 次いで、図3に示すように、原基板100Rの第2面104側の2つの区画Sに亘って第2シード層144sを形成する。第2シード層144sは、例えば、スパッタ、イオンプレーティング等の方法によって形成されている。第2シード層144sは、例えば、第2面104から離れるにつれてZ方向に順に積層された銅層及びチタンタングステン合金層(TiW/Cu)を含んでいる。 Next, as shown in FIG. 3, a second seed layer 144s is formed across two sections S on the second surface 104 side of the original substrate 100R. The second seed layer 144s is formed by a method such as sputtering or ion plating. The second seed layer 144s includes, for example, a copper layer and a titanium tungsten alloy layer (TiW/Cu) that are stacked in sequence in the Z direction as they move away from the second surface 104.
 次いで、図3に示すように、第2レジスト304を形成する。第2レジスト304は、例えば、リソグラフィ技術を用いて形成されている。各区画Sにおいて、第2レジスト304は、第2レジスト開口304aを画定している。図3に示す例において、第2レジスト304の一部分は、第2シード層144sにおける2つの区画Sの間で延在する部分を覆っている。各第2レジスト開口304aの少なくとも一部分及び各第2開口パターン134aの少なくとも一部分は、Z方向に互いに重なっている。各区画Sにおいて、第2レジスト開口304aは、第2シード層144sの-Z側の面の一部分を-Z側に向けて露出している。 Then, as shown in FIG. 3, a second resist 304 is formed. The second resist 304 is formed, for example, using lithography techniques. In each section S, the second resist 304 defines a second resist opening 304a. In the example shown in FIG. 3, a portion of the second resist 304 covers a portion of the second seed layer 144s that extends between two sections S. At least a portion of each second resist opening 304a and at least a portion of each second opening pattern 134a overlap each other in the Z direction. In each section S, the second resist opening 304a exposes a portion of the -Z side surface of the second seed layer 144s toward the -Z side.
 次いで、図3に示すように、第2シード層144sを用いた電解めっきによって、第2めっき層144pを形成する。第2めっき層144pは、例えば、銅層である。各区画Sにおいて、第2めっき層144pは、第2開口パターン134a及び第2レジスト開口304aに埋め込まれている。よって、各区画Sにおいて、第2シード層144s及び第2めっき層144pにおける第2開口パターン134aに埋め込まれた部分は、第2ビア144aとなる。各区画Sにおいて、第2シード層144s及び第2めっき層144pにおける第2レジスト開口304aに埋め込まれた部分は、第2配線144bとなる。 Next, as shown in FIG. 3, the second plating layer 144p is formed by electrolytic plating using the second seed layer 144s. The second plating layer 144p is, for example, a copper layer. In each section S, the second plating layer 144p is embedded in the second opening pattern 134a and the second resist opening 304a. Therefore, in each section S, the portion of the second seed layer 144s and the second plating layer 144p embedded in the second opening pattern 134a becomes the second via 144a. In each section S, the portion of the second seed layer 144s and the second plating layer 144p embedded in the second resist opening 304a becomes the second wiring 144b.
 次いで、図4に示すように、第2レジスト304を除去する。 Then, as shown in FIG. 4, the second resist 304 is removed.
 次いで、図4に示すように、第2シード層144sにおける第2めっき層144pとZ方向に重ならない部分をエッチングによって除去する。よって、各区画Sの第2接続導体144が電気的に互いに絶縁される。このエッチングでは、例えば、第2めっき層144pよりも第2シード層144sを選択的にエッチングするエッチャントが用いられている。第1シード層142s及び第1めっき層142pの上述のエッチングと同様にして、第2シード層144sにおける第2めっき層144pとZ方向に重ならない部分とともに第2めっき層144pの一部分がエッチングによって除去されても、第2めっき層144pのZ方向の全体の厚さはほとんど変化しない。 Next, as shown in FIG. 4, the portion of the second seed layer 144s that does not overlap with the second plating layer 144p in the Z direction is removed by etching. Thus, the second connection conductors 144 of each section S are electrically insulated from each other. In this etching, for example, an etchant is used that selectively etches the second seed layer 144s more than the second plating layer 144p. As with the above-described etching of the first seed layer 142s and the first plating layer 142p, even if a portion of the second plating layer 144p is removed by etching together with the portion of the second seed layer 144s that does not overlap with the second plating layer 144p in the Z direction, the overall thickness of the second plating layer 144p in the Z direction remains almost unchanged.
 次いで、図4に示すように、各区画Sにおいて第3絶縁層136を形成する。第3絶縁層136は、例えば、リソグラフィ技術を用いて形成されている。各区画Sにおいて、第3絶縁層136は、第3開口パターン136aを画定している。第3絶縁層136は、第3開口パターン136aを除いて、第2接続導体144を覆っている。各区画Sにおいて、第3開口パターン136aは、第2接続導体144の-Z側の面の一部分を-Z側に向けて露出している。 Next, as shown in FIG. 4, a third insulating layer 136 is formed in each section S. The third insulating layer 136 is formed, for example, using lithography technology. In each section S, the third insulating layer 136 defines a third opening pattern 136a. The third insulating layer 136 covers the second connecting conductor 144 except for the third opening pattern 136a. In each section S, the third opening pattern 136a exposes a portion of the -Z side surface of the second connecting conductor 144 toward the -Z side.
 次いで、各区画Sにおいて、第3絶縁層136の第3開口パターン136aにパッド150を形成する。次いで、各区画Sにおいて、原基板100Rの第1面102側にランド110を形成する。ただし、ランド110を形成した後にパッド150を形成してもよい。次いで、ダイシングによって原基板100Rの2つの区画Sから2つの基板100を切り出す。次いで、ランド110の+Z側の面側にプローブ120を実装する。 Next, in each section S, a pad 150 is formed in the third opening pattern 136a of the third insulating layer 136. Next, in each section S, a land 110 is formed on the first surface 102 side of the original substrate 100R. However, the pad 150 may be formed after the land 110 is formed. Next, two substrates 100 are cut out from the two sections S of the original substrate 100R by dicing. Next, a probe 120 is mounted on the +Z side surface of the land 110.
 このようにして、実施形態に係る接続装置10が製造される。 In this manner, the connection device 10 according to the embodiment is manufactured.
 上述したように、実施形態では、1つの原基板100Rから複数の基板100が切り出されている。よって、原基板100Rが上述した内部配線を有する場合、内部配線の良否判定において不良と判定される基板100が切り出される可能性を抑制することが比較的難しくなることがある。これに対して、実施形態においては、原基板100Rが上述した内部配線を有する必要がない。よって、原基板100Rが内部配線を有する場合と比較して、良否判定において良と判定される基板100を原基板100Rから効率的に切り出しやすくすることができる。 As described above, in the embodiment, multiple substrates 100 are cut out from one original substrate 100R. Therefore, when the original substrate 100R has the above-mentioned internal wiring, it may be relatively difficult to reduce the possibility of cutting out a substrate 100 that is determined to be defective in the quality judgment of the internal wiring. In contrast, in the embodiment, the original substrate 100R does not need to have the above-mentioned internal wiring. Therefore, compared to when the original substrate 100R has internal wiring, it is possible to efficiently cut out a substrate 100 that is determined to be good in the quality judgment from the original substrate 100R more easily.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 The above describes the embodiments of the present invention with reference to the drawings, but these are merely examples of the present invention, and various configurations other than those described above can also be adopted.
 例えば、実施形態では、複数のランド110のレイアウト及び複数のパッド150のレイアウトが互いに異なっている。しかしながら、複数のランド110のレイアウト及び複数のパッド150のレイアウトは互いに同一であってもよい。 For example, in the embodiment, the layout of the lands 110 and the layout of the pads 150 are different from each other. However, the layout of the lands 110 and the layout of the pads 150 may be the same as each other.
 本明細書によれば、以下の態様の接続装置が提供される。
(態様1)
 態様1では、検査対象物及び検査基板を電気的に接続する接続装置が、基板と、前記基板の前記検査基板に対向する所定面側に位置する接続導体と、を備えている。
According to the present specification, there is provided a connection device having the following aspects.
(Aspect 1)
In the first aspect, a connection device that electrically connects an object to be inspected and an inspection board includes a board and a connection conductor located on a predetermined surface side of the board that faces the inspection board.
 「所定面」は、上述の実施形態の「第2面」に相当する。 The "predetermined surface" corresponds to the "second surface" in the above embodiment.
 上述の態様によれば、基板の検査対象物に対向する面側に接続導体が設けられている場合と比較して、接続装置の検査対象物に対向する面側の平坦性を確保することができる。 The above-mentioned aspect ensures flatness of the surface of the connection device facing the object to be inspected, compared to when the connection conductor is provided on the surface of the board facing the object to be inspected.
(態様2)
 態様2では、前記基板が、前記接続導体に電気的に接続された内部導体が設けられたスルーホールを画定している。
(Aspect 2)
In a second aspect, the substrate defines a through hole having an inner conductor electrically connected to the connecting conductor.
 上述の態様によれば、基板が、接続装置の検査対象物に対向する面側の電極のレイアウトと、接続装置の検査基板に対向する面側の電極のレイアウトと、を互いに異ならせるための内部配線を有する場合と比較して、基板を単純な構造にすることができる。よって、基板が当該内部配線を有する場合と比較して、基板の歩留まりを向上させることができる。 According to the above-mentioned aspect, the board can have a simpler structure than when the board has internal wiring for making the layout of the electrodes on the side of the connection device facing the test object and the layout of the electrodes on the side of the connection device facing the test board different from each other. Therefore, the yield of the board can be improved compared to when the board has such internal wiring.
(態様3)
 態様3では、前記基板が、前記接続導体に電気的に接続された複数の内部導体を有している。
(Aspect 3)
In a third aspect, the substrate has a plurality of internal conductors electrically connected to the connecting conductors.
 上述の態様によれば、複数の内部導体に別々の接続導体を電気的に接続する場合と比較して、検査基板の電極の数を少なくすることができる。上述の態様によれば、接続導体を介して、複数の内部導体に略同一の電位を供給することができる。 According to the above-mentioned aspect, the number of electrodes on the inspection board can be reduced compared to the case where separate connection conductors are electrically connected to the multiple internal conductors. According to the above-mentioned aspect, it is possible to supply approximately the same potential to the multiple internal conductors via the connection conductors.
(態様4)
 態様4では、前記接続導体が、少なくとも部分的に互いに重なる複数の配線を有している。
(Aspect 4)
In a fourth aspect, the connecting conductor has a plurality of wirings that at least partially overlap each other.
 上述の態様によれば、少なくとも部分的に互いに重なる複数の配線によって、接続装置の検査対象物に対向する面側の電極のピッチと、接続装置の検査基板に対向する面側の電極のピッチと、を互いに変換することができる。よって、互いに重なることがない複数の配線によって当該ピッチを互いに変換する場合と比較して、当該ピッチの変換の自由度を向上させることができる。 According to the above-mentioned aspect, the pitch of the electrodes on the side of the connection device facing the test object and the pitch of the electrodes on the side of the connection device facing the test board can be converted from each other by using multiple wirings that at least partially overlap each other. Therefore, the degree of freedom in converting the pitch can be improved compared to when the pitch is converted from each other by using multiple wirings that do not overlap each other.
(態様5)
 態様5では、接続装置が、前記接続導体の少なくとも一部分が埋め込まれた絶縁層をさらに備えている。
(Aspect 5)
In a fifth aspect, the connection device further comprises an insulating layer in which at least a portion of the connection conductor is embedded.
 上述の態様によれば、検査対象物の検査において、接続装置の検査基板に対向する面側の電極と、ポゴピン等の外部部材と、が互いに接触する際、絶縁層を当該電極への荷重を緩和する部材として機能させることができる。よって、絶縁層が設けられていない場合と比較して、接続装置の耐久性を向上させることができる。 According to the above-mentioned aspect, when an electrode on the surface of the connection device facing the test board comes into contact with an external member such as a pogo pin during testing of the test object, the insulating layer can function as a member that relieves the load on the electrode. Therefore, the durability of the connection device can be improved compared to when no insulating layer is provided.
(態様6)
 態様6では、接続装置が、前記基板の前記検査対象物に対向する他の所定面側に位置するランドをさらに備えている。
(Aspect 6)
In a sixth aspect, the connection device further includes a land located on another predetermined surface side of the board facing the object to be inspected.
 「他の所定面」は、上述の実施形態の「第1面」に相当する。 The "other specified surface" corresponds to the "first surface" in the above embodiment.
 ランドの長さ又は幅は、接続導体の長さよりも短くしやすくなっている。また、他の所定面側に絶縁層を設けることなく、ランドを形成することができる。よって、上述の態様によれば、接続導体が基板の他の所定面側に位置する場合と比較して、接続装置の他の所定面側の平坦性を確保しやすくすることができる。 The length or width of the land can be easily made shorter than the length of the connection conductor. In addition, the land can be formed without providing an insulating layer on the other specified surface side. Therefore, according to the above-mentioned aspect, it is easier to ensure flatness on the other specified surface side of the connection device compared to when the connection conductor is located on the other specified surface side of the board.
 この出願は、2022年12月21日に出願された日本出願特願2022-204032号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-204032, filed on December 21, 2022, the disclosure of which is incorporated herein in its entirety.
10 接続装置、20 検査対象物、22 第1電極、30 検査基板、32 第2電極、100 基板、100R 原基板、102 第1面、104 第2面、106 スルーホール、110 ランド、112 第1ランド層、114 第2ランド層、120 プローブ、130 絶縁層、132 第1絶縁層、132a 第1開口パターン、134 第2絶縁層、134a 第2開口パターン、136 第3絶縁層、136a 第3開口パターン、140,140T 接続導体、142,142T 第1接続導体、142a,142aT 第1ビア、142b,142bT 第1配線、142p 第1めっき層、144,144T 第2接続導体、144a,144aT 第2ビア、144b,144bT 第2配線、144p 第2めっき層、150 パッド、200 ピンブロック、210 ポゴピン、302 第1レジスト、302a 第1レジスト開口、304 第2レジスト、304a 第2レジスト開口、S 区画 10 Connection device, 20 Test object, 22 First electrode, 30 Test board, 32 Second electrode, 100 Board, 100R Original board, 102 First surface, 104 Second surface, 106 Through hole, 110 Land, 112 First land layer, 114 Second land layer, 120 Probe, 130 Insulating layer, 132 First insulating layer, 132a First opening pattern, 134 Second insulating layer, 134a Second opening pattern, 136 Third insulating layer, 136a Third opening pattern, 140, 14 0T connecting conductor, 142, 142T first connecting conductor, 142a, 142aT first via, 142b, 142bT first wiring, 142p first plating layer, 144, 144T second connecting conductor, 144a, 144aT second via, 144b, 144bT second wiring, 144p second plating layer, 150 pad, 200 pin block, 210 pogo pin, 302 first resist, 302a first resist opening, 304 second resist, 304a second resist opening, S section

Claims (6)

  1.  検査対象物及び検査基板を電気的に接続する接続装置であって、
     基板と、
     前記基板の前記検査基板に対向する所定面側に位置する接続導体と、
    を備える接続装置。
    A connection device for electrically connecting an object to be inspected and an inspection board,
    A substrate;
    a connection conductor located on a predetermined surface side of the board facing the inspection board;
    A connection device comprising:
  2.  前記基板が、前記接続導体に電気的に接続された内部導体が設けられたスルーホールを画定している、請求項1に記載の接続装置。 The connection device of claim 1, wherein the substrate defines a through hole having an internal conductor electrically connected to the connection conductor.
  3.  前記基板が、前記接続導体に電気的に接続された複数の内部導体を有する、請求項1に記載の接続装置。 The connection device of claim 1, wherein the substrate has a plurality of internal conductors electrically connected to the connection conductors.
  4.  前記接続導体が、少なくとも部分的に互いに重なる複数の配線を有する、請求項1から3のいずれかに記載の接続装置。 The connection device according to any one of claims 1 to 3, wherein the connection conductor has a plurality of wirings that at least partially overlap each other.
  5.  前記接続導体の少なくとも一部分が埋め込まれた絶縁層をさらに備える、請求項1から3のいずれかに記載の接続装置。 The connection device according to any one of claims 1 to 3, further comprising an insulating layer in which at least a portion of the connection conductor is embedded.
  6.  前記基板の前記検査対象物に対向する他の所定面側に位置するランドをさらに備える、請求項1から3のいずれかに記載の接続装置。 The connection device according to any one of claims 1 to 3, further comprising a land located on another predetermined surface side of the board facing the object to be inspected.
PCT/JP2023/041389 2022-12-21 2023-11-17 Connection device WO2024135182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-204032 2022-12-21
JP2022204032A JP2024088964A (en) 2022-12-21 2022-12-21 Connecting Devices

Publications (1)

Publication Number Publication Date
WO2024135182A1 true WO2024135182A1 (en) 2024-06-27

Family

ID=91588552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041389 WO2024135182A1 (en) 2022-12-21 2023-11-17 Connection device

Country Status (2)

Country Link
JP (1) JP2024088964A (en)
WO (1) WO2024135182A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772171A (en) * 1993-09-03 1995-03-17 Toshiba Corp Electric inspection jig for wiring board
WO2002067638A1 (en) * 2001-02-19 2002-08-29 Sony Corporation Printed wiring board, multilayer printed wiring board, and, method of detecting foreign matter and voids in inner layer of multilayer printed wiring board
JP2009092581A (en) * 2007-10-11 2009-04-30 Ngk Spark Plug Co Ltd Wiring board for electronic component inspection device
JP2009267267A (en) * 2008-04-28 2009-11-12 Tdk Corp Electronic component mounting device
JP2015012013A (en) * 2013-06-26 2015-01-19 京セラ株式会社 Multilayer wiring board and probe card including the same
JP2018031659A (en) * 2016-08-24 2018-03-01 京セラ株式会社 Circuit device
JP2019096817A (en) * 2017-11-27 2019-06-20 京セラ株式会社 Wiring board and probe board
JP2021076486A (en) * 2019-11-11 2021-05-20 株式会社日本マイクロニクス Electrical connection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772171A (en) * 1993-09-03 1995-03-17 Toshiba Corp Electric inspection jig for wiring board
WO2002067638A1 (en) * 2001-02-19 2002-08-29 Sony Corporation Printed wiring board, multilayer printed wiring board, and, method of detecting foreign matter and voids in inner layer of multilayer printed wiring board
JP2009092581A (en) * 2007-10-11 2009-04-30 Ngk Spark Plug Co Ltd Wiring board for electronic component inspection device
JP2009267267A (en) * 2008-04-28 2009-11-12 Tdk Corp Electronic component mounting device
JP2015012013A (en) * 2013-06-26 2015-01-19 京セラ株式会社 Multilayer wiring board and probe card including the same
JP2018031659A (en) * 2016-08-24 2018-03-01 京セラ株式会社 Circuit device
JP2019096817A (en) * 2017-11-27 2019-06-20 京セラ株式会社 Wiring board and probe board
JP2021076486A (en) * 2019-11-11 2021-05-20 株式会社日本マイクロニクス Electrical connection device

Also Published As

Publication number Publication date
JP2024088964A (en) 2024-07-03

Similar Documents

Publication Publication Date Title
US8033012B2 (en) Method for fabricating a semiconductor test probe card space transformer
KR101121644B1 (en) Space tansformer for probe card and repairing method of space tansformer
KR101192669B1 (en) Interconnect Assembly for a Probe Card
US7960988B2 (en) Contactor for electrical test, electrical connecting apparatus using the same, and method for manufacturing contactor
EP1943528A1 (en) Probe card with stacked substrate
KR20080043713A (en) Coordinate transforming apparatus for electrical signal connection
US7948253B2 (en) Probe assembly
JP4446793B2 (en) Semiconductor device and manufacturing method thereof
WO2024135182A1 (en) Connection device
US7316065B2 (en) Method for fabricating a plurality of elastic probes in a row
JP5242063B2 (en) Wiring board manufacturing method
US20030113944A1 (en) Semiconductor device and a manufacturing method thereof
KR100448528B1 (en) On inspecting apparatus of the semiconductor device and manufacturing method of the same
TW202138819A (en) Probe and electrical connection device
JP2006275579A (en) Test substrate and test device
JP2010054487A (en) Prober apparatus
JP3936600B2 (en) Contact probe and manufacturing method thereof
JP2010025629A (en) Probe card
JP2009122123A (en) Contact probe
JP4401627B2 (en) Contact probe manufacturing method
JP5203136B2 (en) Contact probe manufacturing method
JP2001242219A (en) Inspection probe board and its manufacturing method
JPH11284107A (en) Ic socket
JP2001349905A (en) Contact probe and manufacturing method thereof
JP2007132722A (en) Probe card, its manufacturing method, and inspection method of semiconductor device