WO2024119767A1 - 散热装置和服务器 - Google Patents

散热装置和服务器 Download PDF

Info

Publication number
WO2024119767A1
WO2024119767A1 PCT/CN2023/101431 CN2023101431W WO2024119767A1 WO 2024119767 A1 WO2024119767 A1 WO 2024119767A1 CN 2023101431 W CN2023101431 W CN 2023101431W WO 2024119767 A1 WO2024119767 A1 WO 2024119767A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
air duct
sub
guide
plate
Prior art date
Application number
PCT/CN2023/101431
Other languages
English (en)
French (fr)
Inventor
宗斌
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2024119767A1 publication Critical patent/WO2024119767A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of servers, and in particular to a heat dissipation device and a server.
  • the heat dissipation bottleneck of the server is the CPU, the rear PSU (Power supply unit) and the rear high-capacity network card (100G).
  • the PSU and the network card are both at the rear end of the chassis.
  • the heat dissipation airflow first passes through the CPU, and then dissipates the heat of the PSU and the network card. Therefore, the heat dissipation effect at the PSU and the network card is poor, which can easily cause the temperature to exceed the standard value.
  • the heat dissipation efficiency is extremely low. Therefore, how to improve the coordinated heat dissipation capacity of the server is a technical problem that needs to be solved urgently.
  • the present application provides a heat dissipation device and a server to improve the coordinated heat dissipation capability of the heat dissipation device and the server.
  • a heat dissipation device comprising a front
  • the invention relates to a front air duct and a rear air duct, wherein the rear air duct is connected to the front air duct;
  • the front air duct comprises a plurality of front sub-air ducts, wherein a plurality of first heat dissipation elements and second heat dissipation elements are arranged in the front air duct, wherein the first heat dissipation elements and the second heat dissipation elements are respectively located in different front sub-air ducts, and the heat dissipation of the first heat dissipation element per unit time is greater than the heat dissipation of the second heat dissipation element per unit time, and a blocking plate is arranged in the front sub-air duct corresponding to at least one of the second heat dissipation elements; the blocking plates are arranged in different specifications, and the blocking plates of different specifications have different cross-sectional areas in
  • the front sub-duct close to the third heat dissipation element is the first sub-duct, the second sub-duct and the third sub-duct
  • an air guide cover is arranged between the first sub-duct, the second sub-duct and the third sub-duct and the rear air duct
  • the air guide cover includes a guide plate and a guide plate
  • the guide plate includes a guide baffle and a guide flow plate
  • the heat dissipation airflow in the first sub-duct and the second sub-duct merges through the guide plate and flows to the third heat dissipation element in the rear air duct through the guide flow plate
  • the heat dissipation airflow of the third sub-duct passes through the guide plate and is separated from the first sub-duct and the second sub-duct and then passes through the guide baffle to move away from the third heat dissipation element.
  • the heat dissipation device also includes a shell, in which an air guide cover, a main board and the drainage cover are arranged, the main board includes a first main board area and a second main board area, the front air duct is formed between the first main board area and the air guide cover and the shell, the rear air duct is formed between the second main board area and the drainage cover and the shell, the multiple first heat dissipation elements and the second heat dissipation elements are arranged in the first main board area, and the third heat dissipation element is arranged in the second main board area.
  • the air guide cover includes a top plate, a plurality of partitions are arranged on the top plate, the front sub-air duct is formed between two connected partitions, and the blocking plate is detachably installed in the front sub-air duct.
  • the blocking plate is connected to the top plate, and/or the blocking plate is connected to partitions on both sides of its corresponding front sub-air duct.
  • a plurality of fourth heat dissipation elements are further disposed on the second mainboard region, the fourth heat dissipation elements are located in the rear air duct, and the fourth heat dissipation elements are disposed corresponding to at least one of the front sub-air ducts.
  • the specification of the blocking plate is determined according to the heat dissipation requirement of the fourth heat dissipation element.
  • the installation position of the blocking plate is determined according to the position of the fourth heat dissipation element in the rear air duct.
  • the first heat dissipation element is a central processing unit
  • the second heat dissipation element is a memory stick
  • a blocking plate is provided in the front sub-air duct corresponding to at least one of the memory sticks.
  • the third heat dissipation element is a power module
  • the fourth heat dissipation element is a south bridge chip or an M.2 interface device.
  • the heat dissipation device further comprises a fan assembly, the heat dissipation airflow generated by the fan assembly flows into the front air duct, and the first sub-air duct, the second sub-air duct and the third sub-air duct in the front air duct are connected to the The power supply module is configured accordingly.
  • the guide plate is hinged to the deflector plate.
  • a center line is formed between the second sub-air duct and the third sub-air duct, and the guide plate is located on the center line.
  • the guide baffle and the guide flow plate are respectively located on both sides of the guide plate, the guide baffle is located on the side corresponding to the third sub-air duct, and the guide flow plate is located on the side corresponding to the first sub-air duct and the second sub-air duct.
  • a first guide plate is provided on a side of the flow guide plate opposite to the guide plate, and a first guide groove for changing the direction of the heat dissipation airflow is formed between the first guide plate and the flow guide plate.
  • a second guide plate is provided on a side of the guide baffle plate opposite to the guide plate, and a second guide groove for changing the direction of the heat dissipation airflow is formed between the second guide plate and the guide baffle plate.
  • the second guide groove is communicated with the first guide groove.
  • a wire management groove is provided on the top and the bottom of the guide plate.
  • foam is provided at the wire management groove, and a wire threading groove is provided on the foam.
  • foam is arranged between the two sides of the air guide cover and the outer shell, and threading holes and avoidance holes are arranged on the foam, and the gaps between some of the threading holes and the avoidance holes form the first sub-air duct.
  • a server comprising a heat dissipation device.
  • FIG1 is a schematic diagram of a three-dimensional structure of a heat dissipation device provided in some embodiments of the present application (without the outer shell);
  • FIG2 is a schematic diagram of a top view of a heat dissipation device provided in some embodiments of the present application (without the outer shell);
  • FIG. 3 is a schematic diagram of a path of heat dissipation airflow flow paths before and after a deflection cover of a heat dissipation device provided in some embodiments of the present application;
  • FIG4 is a first structural schematic diagram of an air guide cover of a heat dissipation device provided in some embodiments of the present application.
  • FIG5 is a second structural schematic diagram of an air guide cover of a heat dissipation device provided in some embodiments of the present application.
  • FIG6 is a schematic structural diagram of foam parts on both sides of a heat dissipation device provided in some embodiments of the present application.
  • FIG7 is a first structural schematic diagram of a flow guide cover of a heat dissipation device provided in some embodiments of the present application.
  • FIG8 is a second structural schematic diagram of a flow guide cover of a heat dissipation device provided in some embodiments of the present application.
  • FIG. 9 is a schematic diagram of the structure of a server provided in some embodiments of the present application.
  • the heat dissipation device includes a front air duct 1 and a rear air duct 2 which are sequentially arranged along the heat dissipation airflow direction thereof, and the rear air duct 2 is connected to the front air duct 1;
  • the front air duct 1 includes a plurality of front sub-air ducts 3, and a plurality of first heat dissipation elements 4 and second heat dissipation elements 5 are arranged in the front air duct 1, and the first heat dissipation elements 4 and the second heat dissipation elements 5 are respectively located in different front sub-air ducts 3, and the heat dissipation of the first heat dissipation element 4 per unit time is greater than the heat dissipation of the second heat dissipation element 5 per unit time, and a blocking plate 6 is arranged in the front sub-air duct 3 corresponding to at least one of the second heat dissipation elements 5; the blocking plates 6 are arranged in different specifications, and the blocking plates 6 of different specifications
  • a guide cover 8 is arranged between the first sub-air duct 18, the second sub-air duct 19 and the third sub-air duct 20 and the rear air duct 2, and the guide cover 8 includes a guide plate 21 and a guide plate 22, and the guide plate 22 includes a guide baffle 23 and a guide flow plate 24.
  • the heat dissipation airflow in the first sub-air duct 18 and the second sub-air duct 19 merges through the guide plate 21 and then flows to the third heat dissipation element 7 in the rear air duct 2 through the guide flow plate 24.
  • the heat dissipation airflow in the third sub-air duct 20 passes through the guide plate 21 and is separated from the first sub-air duct 18 and the second sub-air duct 19 and then flows through the guide flow plate 24.
  • the flow partition plate 23 is away from the third heat dissipation element 7 .
  • the present application optimizes the flow path of the heat dissipation airflow inside the heat dissipation device to improve the overall heat dissipation capacity of the heat dissipation device, and further improves the heat dissipation capacity of the heat dissipation components located behind the CPU, so that the temperature of each component inside the heat dissipation device can be effectively controlled within the standard.
  • the power source of the heat dissipation device is a fan assembly 17, and the fan assembly 17 generates a heat dissipation airflow.
  • a front air duct 1 and a rear air duct 2 are sequentially arranged along the flow direction of the heat dissipation airflow.
  • the front air duct 1 is connected to the rear air duct 2, so the heat dissipation airflow generated by the fan assembly 17 passes through the front air duct 1 and then passes through the rear air duct 2.
  • a first heat dissipation element 4 and a second heat dissipation element 5 are arranged in the front air duct 1.
  • the front air duct 1 includes a plurality of front sub-air ducts 3.
  • the first heat dissipation element 4 and the second heat dissipation element 5 are respectively located in different front sub-air ducts 3. Compared with the second heat dissipation element 5, the heat dissipation of the first heat dissipation element 4 is greater than that of the second heat dissipation element 5.
  • a blocking plate 6 is provided in the front sub-air duct 3 where the second heat dissipation element 5 (a heat dissipation element with a smaller heat dissipation requirement) is located, so as to reduce the size of the heat dissipation airflow per unit time in the front sub-air duct 3 where it is located through the blocking plate 6.
  • a reduction in the size of the heat dissipation airflow passing through the second heat dissipation element 5 will cause an increase in the heat dissipation airflow passing through the first heat dissipation element 4.
  • the setting of the blocking plate 6 actually reduces the partial heat dissipation capacity of the second heat dissipation element 5 to relatively improve the heat dissipation capacity of the first heat dissipation element 4.
  • the heat dissipation capacity of the entire heat dissipation device is coordinated and optimized, and further all components in the heat dissipation device can be designed within the standard to meet the needs of users.
  • the first heat dissipation element 4 has a higher heat dissipation requirement and the second heat dissipation element 5 has a lower heat dissipation requirement.
  • the heat dissipation capacity of the second heat dissipation element 5 can be sacrificed to optimize the overall heat dissipation effect of the heat dissipation device.
  • the blocking plate 6 is set to different specifications, and the blocking plates 6 of different specifications have different cross-sectional areas in the corresponding front sub-air duct 3, and different cross-sectional areas have different blocking effects on the heat dissipation airflow.
  • the blocking plate 6 with a larger cross-sectional area has a greater resistance to the heat dissipation airflow in the same front sub-air duct 3
  • the blocking plate 6 with a smaller cross-sectional area has a smaller resistance to the heat dissipation airflow in the same front sub-air duct 3. Therefore, the flow resistance of the blocking plate 6 to the heat dissipation airflow in the front sub-air duct 3 where it is located can be adjusted by setting blocking plates 6 with different cross-sectional areas.
  • the rear air duct 2 is provided with a third heat dissipation element 7.
  • a heat dissipation fan assembly 17 is provided between the front air duct 1 and the rear air duct 2.
  • a guide hood 8 is provided, and the guide hood 8 is used to reasonably coordinate and plan the path of the heat dissipation airflow of the front air duct 1 and the rear air duct 2 and the size of the heat dissipation airflow passing through the path, so as to improve the heat dissipation capacity of the heat dissipation airflow to the third heat dissipation element 7 located in the rear air duct 2, and meet the heat dissipation requirements of the third heat dissipation element 7.
  • the path planning of the front air duct 1 is realized by the first sub-air duct 18, the second sub-air duct 19 and the third sub-air duct 20, the front sub-air duct 3 close to the third heat dissipation element 7 is the first sub-air duct 18, the second sub-air duct 19 and the third sub-air duct 20, and the path planning of the rear air duct 2 is realized by the guide hood 8.
  • the guide hood 8 is arranged between the front air duct 1 and the rear air duct 2, that is, between the first sub-air duct 18, the second sub-air duct 19 and the third sub-air duct 20 and the third heat dissipation element 7.
  • the heat dissipation airflow generated by the fan assembly 17 is divided through the first sub-duct 18, the second sub-duct 19 and the third sub-duct 20 of the front air duct 1.
  • the heat dissipation airflow after passing through the front air duct 1, that is, after passing through the first sub-duct 18, the second sub-duct 19 and the third sub-duct 20, is divided and merged through the deflection cover 8 and then flows into the rear air duct 2.
  • part of the heat dissipation airflow generated by the fan assembly 17 flows through the first sub-duct 18 close to the server housing 9, part of the heat dissipation airflow generated by the fan assembly 17 flows through the second sub-duct 19 where the memory stick is located, and part of the heat dissipation airflow generated by the fan assembly 17 flows through the third sub-duct 20 where the central processing unit is located;
  • the heat dissipation airflow temperature of the first sub-duct 18 is the lowest, the heat dissipation airflow of the second sub-duct 19 has a certain temperature rise, and the heat dissipation airflow temperature rise of the third sub-duct 20 is relatively high; therefore, the drainage hood 8 merges the heat dissipation airflows of the first sub-duct 18 and the second sub-duct 19 to mix the heat dissipation airflow of the first sub-duct 18 with the heat dissipation airflow of the second sub-duct
  • the deflection cover 8 for the path planning of the rear air duct 2 essentially sacrifices part of the heat dissipation capacity of the fourth heat dissipation element 16 in order to improve the heat dissipation capacity of the third heat dissipation element 7.
  • the temperature of the first power module 35 (close to the server shell 9) increases, but can still be controlled within the standard, and the second power module 36 (close to the central processing unit) that has always exceeded the standard can be controlled within the standard.
  • the rear air duct 2 after the path planning effectively solves the heat dissipation capacity of the third heat dissipation element 7 (power module).
  • the third heat dissipation element 7 is a power module, and the power module includes a first power module 35 and a second power module 36.
  • the temperature of the first power module 35 is 39°C ⁇
  • the temperature of the second power module 36 is 58°C ⁇ .
  • the temperature of the first power module 35 is 42°C ⁇
  • the temperature of the second power module 36 is 51°C ⁇ (the standard is 55°C ⁇ ). Therefore, the rear air duct 2 after path planning effectively solves the heat dissipation capacity of the power module.
  • the setting of the blocking plate 6 on the front air duct 1, as well as the path planning of the front air duct 1 and the path planning of the rear air duct 2 by the drainage hood 8, have coordinated and optimized the heat dissipation of the heat dissipation device as a whole, so that the components on the mainboard 11 can meet the standard requirements.
  • the present application coordinates and plans the paths of the front air duct 1 and the rear air duct 2, as well as the sizes of the air flows through the front air duct 1 and the rear air duct 2.
  • a blocking plate 6 is set in the front sub-air duct 3 corresponding to the second heat dissipation element 5 to relatively improve the heat dissipation capacity of the first heat dissipation element 4 at the expense of the heat dissipation capacity of the second heat dissipation element 5, and the heat dissipation capacity of the front air duct 1 is coordinated and optimized;
  • a deflection hood 8 is set between the front air duct 1 and the rear air duct 2, and the heat dissipation airflow entering the rear air duct 2 from the front air duct 1 is effectively merged and divided through the deflection hood 8, and the heat dissipation capacity of the rear air duct 2 is coordinated and optimized; through the above-mentioned coordinated planning of the paths of the front air duct 1 and the rear air duct
  • the heat dissipation device also includes a shell 9, in which an air guide cover 10, a main board 11 and the drainage cover 8 are arranged, and the main board 11 includes a first main board area 12 and a second main board area 13, a front air duct 1 is formed between the first main board area 12 and the air guide cover 10 and the shell 9, and a rear air duct 2 is formed between the second main board area 13 and the drainage cover 8 and the shell 9, and the rear air duct 2 is connected to the front air duct 1, the multiple first heat dissipation elements 4 and the second heat dissipation elements 5 are arranged in the first main board area 12, and the third heat dissipation element 7 is arranged in the second main board area 13.
  • the heat dissipation device further includes a housing 9 (the heat dissipation device is provided with a housing 9 separately, or the housing 9 of the server serves as the housing 9 of the heat dissipation device), and the housing 9 plays a role in protecting the internal components.
  • An air guide hood 10, a drainage hood 8 and a mainboard 11 are provided in the housing 9.
  • the mainboard 11 of the heat dissipation device is generally divided into two parts, namely, a first mainboard area 12 and a second mainboard area 13.
  • a front air duct 1 is formed between the first mainboard area 12, the air guide hood 10 and the housing 9.
  • the heat dissipation airflow generated by the fan assembly 17 first passes through the front air duct 1.
  • a rear air duct 2 is formed between the second mainboard area 13, the drainage hood 8 and the housing 9.
  • the front air duct 1 is connected to the rear air duct 2. Therefore, the heat dissipation airflow generated by the fan assembly 17 passes through the front air duct 1 and then passes through the rear air duct 2.
  • a plurality of first heat dissipation elements 4 and second heat dissipation elements 5 are provided in the first mainboard area 12, and a third heat dissipation element 7 is provided in the second mainboard area 13, that is, the first heat dissipation element 4 and the second heat dissipation element 5 are located in the front air duct 1 corresponding to the first mainboard area 12, and the third heat dissipation element 7 is located in the front air duct 1 corresponding to the second mainboard area 13.
  • the air guide cover 10 includes a top plate 14 , a plurality of partitions 15 are provided on the top plate 14 , the front sub-air duct 3 is formed between two connected partitions 15 , and the blocking plate 6 is detachably installed in the front sub-air duct 3 .
  • the air scoop 10 includes a top plate 14 and a side plate 34.
  • a front air duct 1 is formed between the top plate 14 and the side plate 34 of the air scoop 10 and the first mainboard area 12 of the mainboard 11.
  • a plurality of partitions 15 are arranged between the two side plates 34 of the air scoop 10, and a front sub-air duct 3 is formed between two adjacent partitions 15 and the top plate 14 and the first mainboard area 12 of the mainboard 11.
  • Different heat dissipation components are correspondingly arranged in the front sub-air duct 3.
  • first heat dissipation element 4 and the second heat dissipation element 5 are respectively located in different front sub-air ducts 3. Compared with the second heat dissipation element 5, the heat dissipation of the first heat dissipation element 4 is greater than that of the second heat dissipation element 5.
  • a blocking plate 6 is provided in the front sub-air duct 3 where the second heat dissipation element 5 is located (the front sub-air duct 3 where the blocking plate 6 is provided as shown in the figure is the front sub-air duct 3 where the second heat dissipation element 5 is located), so as to reduce the size of the heat dissipation airflow per unit time in the front sub-air duct 3 where the blocking plate 6 is located.
  • the heat dissipation capacity of the entire heat dissipation device is coordinated and optimized, so that all components in the heat dissipation device can be designed within the standard to meet the needs of users.
  • the blocking plate 6 is arranged on one side of the front sub-air duct 3 close to the fan assembly 17, which side is the air inlet for the heat dissipation airflow generated by the fan assembly 17 to enter the front air duct 1, and the other side is the air outlet after the heat dissipation flows through the front sub-air duct 3.
  • the heat dissipation airflow flowing out of the outlet passes through the deflection hood 8 and enters the rear air duct 2.
  • the blocking plate 6 is connected to the top plate 14 , and/or the blocking plate 6 is connected to the partition plates 15 on both sides of its corresponding front sub-air duct 3 .
  • the first heat dissipation element 4 has a higher heat dissipation requirement, while the second heat dissipation element 5 has a lower heat dissipation requirement. Therefore, the heat dissipation capacity of the second heat dissipation element 5 can be sacrificed to improve the heat dissipation capacity of the first heat dissipation element 4. Therefore, the blocking plate 6 is arranged in the front sub-air duct 3 where the corresponding second heat dissipation element 5 is located, such as the blocking plate 6 shown in Figures 4 and 5. There are three ways to connect the blocking plate 6 in the front sub-air duct 3 where it is located.
  • the first way is that the blocking plate 6 is connected to the top plate 14, the second way is that the blocking plate 6 is connected to the partition 15, and the third way is that the blocking plate 6 is connected to the partition 15 and the side plate 34 at the same time.
  • the blocking plate 6 is detachably connected to the partition 15 and the side plate 34.
  • the blocking plate 6 is connected to the partition 15 and the side plate 34 in an interference fit manner. Sliding grooves are provided on the top plate 14, the partition 15 and the side plate 34. The edge of the blocking plate 6 is inserted into the sliding groove.
  • the edge of the blocking plate 6 is interference fit with the sliding groove to prevent the blocking plate 6 from moving in the sliding groove due to the blowing of the heat dissipation airflow.
  • the interference fit between the blocking plate 6 and the sliding groove allows the user to install the blocking plate 6 into the sliding groove and to remove the blocking plate 6 from the sliding groove.
  • a sliding groove is provided between two adjacent partitions 15. The direction of the sliding groove is downward (in a vertical downward direction) perpendicular to the direction of the heat dissipation airflow. The two ends of the blocking plate 6 are inserted into the sliding groove.
  • a baffle is provided at the bottom of the sliding groove to limit the blocking plate 6.
  • a plurality of fourth heat dissipation elements 16 are further disposed on the second main board area 13 .
  • the fourth heat dissipation elements 16 are located in the rear air duct 2 .
  • the fourth heat dissipation elements 16 are disposed corresponding to at least one of the front sub-air ducts 3 .
  • the first mainboard area 12 is provided with a first heat dissipation element 4 and a second heat dissipation element 5, and the second mainboard area 13 is provided with a first heat dissipation element 4 and a second heat dissipation element 5.
  • a fourth heat dissipation element 16 is also provided.
  • a rear air duct 2 is formed between the second mainboard area 13 and the air guide cover 8 and the outer shell 9.
  • the fourth heat dissipation element 16 is provided in the rear air duct 2, and the fourth heat dissipation element 16 is provided corresponding to at least one of the front sub-air ducts 3, so that the heat dissipation airflow of the front air duct 1 flows into the rear air duct 2 to dissipate the heat of the fourth heat dissipation component in the rear air duct 2.
  • the specification of the blocking plate 6 is determined according to the heat dissipation requirement of the fourth heat dissipation element 16 .
  • the blocking plate 6 is set to different specifications, and the blocking plates 6 of different specifications have different cross-sectional areas in the corresponding front sub-air duct 3, and different cross-sectional areas have different blocking effects on the heat dissipation airflow. Furthermore, the blocking plate 6 with a larger cross-sectional area has a greater resistance to the heat dissipation airflow in the same front sub-air duct 3, and the blocking plate 6 with a smaller cross-sectional area has a smaller resistance to the heat dissipation airflow in the same front sub-air duct 3.
  • the flow resistance of the blocking plate 6 to the heat dissipation airflow in the front sub-air duct 3 where it is located can be adjusted by setting the blocking plates 6 with different cross-sectional areas. As shown in the heat dissipation device of Figure 2, the left side is the first mainboard area 12, and the right side is the second mainboard area 13.
  • the first mainboard area 12 is provided with a first heat dissipation element 4 and a second heat dissipation element 5, and the first heat dissipation element 4 and the second heat dissipation element 5 are arranged at intervals;
  • the second mainboard area 13 is provided with a third heat dissipation element 7 and a fourth heat dissipation element 16, and the third heat dissipation element 7 is located above the second mainboard area 13, and the third heat dissipation element 7 is located below the second mainboard area 13.
  • the left side of the first mainboard area 12 is a fan assembly 17.
  • the heat dissipation airflow generated by the fan assembly 17 passes through the front air duct 1 to dissipate the first heat dissipation element 4 and the second heat dissipation element 5 of the first mainboard area 12.
  • the heat dissipation airflow flowing out of the front air duct 1 enters the rear air duct 2 to dissipate the third heat dissipation element 7 and the fourth heat dissipation element 16 in the rear air duct 2.
  • the size of the blocking plate 6 needs to be based on The heat dissipation requirement of the fourth heat dissipation element 16 is determined. If the heat dissipation requirement of the fourth heat dissipation element 16 is not high, a sealing plate 6 with a relatively large cross-sectional area can be selected.
  • a sealing plate 6 with a relatively small cross-sectional area can be selected.
  • the size of the sealing plate 6 needs to be determined based on experimental data and empirical values.
  • the heat dissipation requirement of the fourth heat dissipation element 16 needs to be quantified according to certain standards, and the corresponding relationship between the heat dissipation requirement and the cross-sectional area of the sealing plate 6 is set, so as to reasonably select the size of the cross-sectional area of the sealing plate 6 according to the heat dissipation requirement of the fourth heat dissipation element 16.
  • the installation position of the blocking plate 6 is determined according to the position of the fourth heat dissipating element 16 in the rear air duct 2 .
  • the size of the cross-sectional area of the blocking plate 6 is reasonably selected according to the heat dissipation requirements of the fourth heat dissipation element 16, it is necessary to determine the installation position of the blocking plate 6. There may be multiple front sub-air ducts 3 corresponding to the fourth heat dissipation element 16, and it is necessary to select the front sub-air duct 3 that is closer to the fourth heat dissipation element 16 to install the blocking plate 6.
  • the installed blocking plate 6 Even if the heat dissipation capacity of the second heat dissipation element 5 is sacrificed, its remaining heat dissipation capacity can still meet the heat dissipation requirements of the fourth heat dissipation element 16 located in the rear air duct 2 downstream of the front air duct 1. Therefore, the fourth heat dissipation element 16 is a component in the second mainboard area 13 that has low heat dissipation requirements.
  • the first heat dissipation element 4 is a central processing unit
  • the second heat dissipation element 5 is a memory stick
  • a blocking plate 6 is provided in the front sub-air duct 3 corresponding to at least one of the memory sticks.
  • the first heat dissipation element 4 is a central processing unit
  • the second heat dissipation element 5 is a memory stick.
  • a blocking plate 6 is provided in the front sub-air duct 3 corresponding to at least one memory stick. The heat dissipation of the central processing unit is greater than that of the memory stick.
  • a blocking plate 6 is provided in the front sub-air duct 3 where the memory stick is located, so as to reduce the size of the heat dissipation airflow per unit time of the front sub-air duct 3 where the memory stick is located through the blocking plate 6. In the same air guide cover 10, a reduction in the size of the heat dissipation airflow passing through the memory stick will cause an increase in the heat dissipation airflow passing through the central processing unit.
  • the setting of the blocking plate 6 actually reduces the partial heat dissipation capacity of the memory stick to relatively improve the heat dissipation capacity of the central processing unit.
  • the heat dissipation capacity of the entire heat dissipation device is coordinated and optimized, and further all components in the heat dissipation device can be designed within the standard to meet the needs of users.
  • the third heat dissipation component 7 is a power module
  • the fourth heat dissipation component 16 is a south bridge chip or an M.2 interface device.
  • the second motherboard area 13 is provided with a third heat dissipation element 7, which is a power module.
  • the power module is located in the rear air duct 2. After the heat dissipation airflow generated by the fan assembly 17 passes through the front air duct 1, the temperature of the heat dissipation airflow has increased, and the heat dissipation airflow entering the rear air duct 2 has a certain temperature. Therefore, the heat dissipation capacity of the heat dissipation airflow passing through the rear air duct 2 in the related art cannot meet the heat dissipation requirements of the power module. Therefore, a guide cover 8 is provided between the front air duct 1 and the rear air duct 2.
  • the guide cover 8 is used to reasonably coordinate and plan the path of the heat dissipation airflow of the front air duct 1 and the rear air duct 2 and the size of the heat dissipation airflow passing through the path, so as to improve the heat dissipation capacity of the heat dissipation airflow to the power module located in the rear air duct 2 and meet the heat dissipation requirements of the power module.
  • the selection of the specifications of the blocking plate 6 and the installation position need to be determined based on the fourth heat dissipation element 16.
  • the fourth heat dissipation element 16 is a component in the second motherboard area 13 that does not require high heat dissipation, such as a south bridge chip and an M.2 interface device.
  • the heat dissipation device also includes a fan assembly 17, and the heat dissipation airflow generated by the fan assembly 17 flows into the front air duct 1.
  • the first sub-duct 18, the second sub-duct 19 and the third sub-duct 20 in the front air duct 1 are arranged corresponding to the power module.
  • the heat dissipation coordination of the heat dissipation device is improved by planning the paths of the three sub-air ducts.
  • the air in the front air duct 1 (the heat dissipation airflow passing through the memory stick and/or the central processing unit) directly enters the two power modules in the rear air duct 2.
  • There is always a power module (such as the power module close to the central processing unit in Figure 2) whose temperature value cannot be controlled within the standard, because the heat dissipation airflow passing through the central processing unit has a high temperature rise, and the heat dissipation airflow passing through the central processing unit cannot meet the heat dissipation requirements of its downstream power module.
  • the power supply module includes a first power supply module 35 and a second power supply module 36.
  • the temperature of the heat dissipation airflow that finally enters the rear duct 2 (leading to the power supply module) through the front duct 1 (the first sub-duct 18, the second sub-duct 19 and the third sub-duct 20) is reduced.
  • the first sub-duct 18, the second sub-duct 19 and the third sub-duct 20 are arranged corresponding to the power supply module, so that the temperature of the first power supply module 35 and the second power supply module 36 can be guaranteed to be within the standard during normal operation.
  • the guide plate 21 is hinged to the guide plate 22 .
  • the guide cover 8 includes a guide plate 21 and a guide plate 22.
  • the guide plate 21 is responsible for guiding the heat dissipation airflow of the first sub-air duct 18, the second sub-air duct 19 and the third sub-air duct 20, and the guide plate 22 plays a role in guiding the heat dissipation airflow after being guided by the guide plate 21.
  • the guide plate 21 and the guide plate 22 are arranged to be hinged (not shown in FIGS. 7 and 8), the guide plate 22 is fixed, and the guide plate 21 can rotate relative to the guide plate 22.
  • the drainage capacity of the guide plate 21 can be adjusted by adjusting the rotation angle of the guide plate 21 relative to the guide plate 22.
  • the main function of the guide plate 21 is to merge the heat dissipation airflows of the first sub-duct 18 and the second sub-duct 19, and to proportionally divert the heat dissipation airflow after the merger of the first sub-duct 18 and the second sub-duct 19 and the heat dissipation airflow of the third sub-duct 20, as shown in Figure 3.
  • a center line is formed between the second sub-air duct 19 and the third sub-air duct 20, and the guide plate 21 is located on the center line.
  • the second sub-air duct 19 is provided with a memory module, and the first sub-air duct 18 is provided with a heat dissipation element with a much smaller heat dissipation than the memory module. Therefore, after the heat dissipation airflow in the second sub-air duct 19 flows through the memory module, the temperature of the heat dissipation airflow flowing out of the second sub-air duct 19 is lower than that of the heat dissipation airflow flowing through the heat dissipation element in the first sub-air duct 18.
  • the temperature of the heat dissipation airflow flowing out of the first sub-air duct 18 is relatively high, so the temperature of the second heat dissipation airflow is reduced by the first heat dissipation airflow; and the third sub-air duct 20 is correspondingly provided with the CPU, and the heat dissipation of the CPU is much greater than that of the memory stick, so the temperature of the heat dissipation airflow flowing out of the third sub-air duct 20 is much higher than that of the heat dissipation airflow flowing out of the first sub-air duct 18 and the second sub-air duct 19, and it is necessary to isolate the confluence of the first sub-air duct 18 and the second sub-air duct 19 from the heat dissipation airflow of the third sub-air duct 20, which is achieved by the guide plate 21 of the air guide cover 10.
  • the rotation angle of the guide plate 21 is adjusted according to the actual heat dissipation situation.
  • the preferred rotation position of the guide plate 21 is that the guide plate 21 is close to the memory stick, and one end of the CPU is located at the center line formed between the second sub-air duct 19 and the third sub-air duct 20, which can effectively isolate the confluence of the first sub-air duct 18 and the second sub-air duct 19 from the heat dissipation airflow of the third sub-air duct 20, and effectively reduce the temperature of the heat dissipation airflow flowing to the third heat dissipation element 7 (power module).
  • the guide baffle 23 and the guide flow plate 24 are respectively located on both sides of the guide plate 21, the guide baffle 23 is located on the side corresponding to the third sub-air duct 20, and the guide flow plate 24 is located on the side corresponding to the first sub-air duct 18 and the second sub-air duct 19.
  • the guide plate 22 includes a guide baffle 23 and a guide flow plate 24. As shown in FIG7 , the guide baffle 23 blocks the heat dissipation airflow, and the guide flow plate 24 allows the heat dissipation airflow to pass through. After the heat dissipation airflow of the first sub-air duct 18 and the second sub-air duct 19 passes through the guide flow plate 24, the heat dissipation airflow of the first sub-air duct 18 and the heat dissipation airflow of the second sub-air duct 19 will be effectively merged.
  • the guide baffle 23 and the guide flow plate 24 are respectively located on both sides of the guide plate 21, and the guide flow plate 24 corresponds to the position of the first sub-air duct 18 and the second sub-air duct 19, and the guide baffle 23 corresponds to the position of the third sub-air duct 20, which can effectively isolate the confluence of the first sub-air duct 18 and the second sub-air duct 19 from the heat dissipation airflow of the third sub-air duct 20, and effectively reduce the temperature of the heat dissipation airflow flowing to the third heat dissipation element 7 (power module).
  • a first guide plate 25 is provided on a side of the flow guide plate 24 opposite to the guide plate 21 , and a first guide groove 26 for changing the direction of heat dissipation airflow is formed between the first guide plate 25 and the flow guide plate 24 .
  • a first guide plate 25 is provided on the side of the guide plate 24 opposite to the guide plate 21, and a first guide groove 26 for changing the direction of the heat dissipation airflow is formed between the first guide plate 25 and the guide plate 24.
  • the confluence of the heat dissipation airflow of the first sub-duct 18 and the second sub-duct 19 is reversed by the first guide groove 26, so that the heat dissipation airflow of the first sub-duct 18 and the second sub-duct 19 are effectively mixed, so that the heat dissipation airflow of the first sub-duct 18 is used to cool down the heat dissipation airflow of the second sub-duct 19.
  • a second guide plate 27 is provided on the side of the guide baffle 23 opposite to the guide plate 21, and a second guide plate 27 is formed between the second guide plate 27 and the guide baffle 23 for changing the direction of the heat dissipation airflow.
  • Second guide groove 28 is provided on the side of the guide baffle 23 opposite to the guide plate 21, and a second guide plate 27 is formed between the second guide plate 27 and the guide baffle 23 for changing the direction of the heat dissipation airflow.
  • a second guide plate 27 is provided on the side of the guide baffle 23 opposite to the guide plate 21 , and a second guide groove 28 is formed between the second guide plate 27 and the guide baffle 23 .
  • the second guide groove 28 is used to change the direction of the heat dissipation airflow.
  • the second guide groove 28 is communicated with the first guide groove 26 .
  • the second guide groove 28 is connected to the first guide groove 26, so the heat dissipation airflow flowing through the first guide groove 26 will flow to the second guide groove 28, as shown in Figures 7 and 8 (the shell 9 is not marked in Figures 7 and 8, and the shell 9 and the guide cover 8 form a circulation channel for the heat dissipation airflow).
  • the first guide groove 26 reverses the confluence of the heat dissipation airflow of the first sub-duct 18 and the second sub-duct 19, it is reversed again through the second guide groove 28, so that the heat dissipation airflow flowing through the second guide groove 28 flows to the third heat dissipation element 7 (power supply module), and the third heat dissipation element 7 is effectively cooled by the confluence of the heat dissipation airflow of the first sub-duct 18 and the second sub-duct 19.
  • the top and bottom of the guide plate 21 are both provided with wire management grooves 29 .
  • wiring is required between the front air duct 1 and the rear air duct 2, and the wiring harness arranged between the front air duct 1 and the rear air duct 2 will hinder the heat dissipation airflow from the front air duct 1 to the rear air duct 2, affecting the heat dissipation effect of the heat dissipation airflow in the rear air duct 2 on the third heat dissipation element 7.
  • the present application sets an air duct 8 between the front air duct 1 and the rear air duct 2, which can not only merge and split the heat dissipation airflow, but also route the wiring harness, so that the wiring harness is routed through the wire management grooves 29 at the top and bottom of the air duct 8, thereby reducing the blocking effect of the wiring harness on the heat dissipation airflow and improving the heat dissipation effect on the third heat dissipation element 7.
  • a foam 30 is provided at the wire management groove 29 , and a wire threading groove 31 is provided on the foam 30 .
  • a foam 30 is provided at the wire management groove 29 , and a wire threading groove 31 is provided on the foam 30 .
  • the wire harness is arranged in the wire threading groove 31 on the foam 30 .
  • the provision of the foam 30 plays a role in preventing air leakage, that is, preventing the loss of heat dissipation airflow.
  • foam 30 is arranged between the two sides of the air guide cover 10 and the outer shell 9, and threading holes 32 and avoidance holes 33 are arranged on the foam 30.
  • the gaps between some of the threading holes 32 and the avoidance holes 33 form the first sub-air duct 18.
  • Foam 30 is provided between the two sides of the air guide cover 10 and the outer shell 9.
  • the foam 30 is provided with threading holes 32 and avoidance holes 33.
  • the gaps between some of the threading holes 32 and the avoidance holes 33 form the first sub-air duct 18.
  • the threading holes 32 on the foam 30 are used for threading, and the avoidance holes 33 are used to avoid the components under the foam 30.
  • the heat dissipation airflow generated by the fan assembly 17 will pass through the two gaps to form the first sub-air duct 18, so that the heat dissipation airflow passing through the first sub-air duct 18 will merge with the heat dissipation airflow of the second sub-air duct 19, further reducing the temperature of the heat dissipation airflow of the second sub-air duct 19.
  • the foam 30 located on the side of the first sub-air duct 18 can adopt a split design, and the threading holes 32 are arranged on the side close to the outer shell 9, which is convenient for wiring and can also prevent The foam 30 is pressed against the wire; the foam 30 on the other side of the air guide cover 10 can also be designed in a split style, which can play a role in relieving the heat dissipation airflow at this point while taking into account the wiring, that is, preventing the loss of the heat dissipation airflow.
  • Figure 9 is a schematic diagram of the structure of a server provided in some embodiments of the present application.
  • the same or similar contents as those in the schematic diagrams shown in Figures 1 to 8 can refer to the structures in Figures 1 to 8, and will not be repeated here.
  • the server includes the above-mentioned heat dissipation device, which can coordinate and plan the paths of the front air duct 1 and the rear air duct 2, as well as the size of the air flow flowing through the front air duct 1 and the rear air duct 2.
  • a blocking plate 6 is set in the front sub-air duct 3 corresponding to the second heat dissipation element 5, so as to sacrifice the heat dissipation capacity of the second heat dissipation element 5 to relatively improve the heat dissipation capacity of the first heat dissipation element 4, and the heat dissipation capacity of the front air duct 1 is coordinated and optimized;
  • a drainage hood 8 is set between the front air duct 1 and the rear air duct 2, and the heat dissipation airflow entering the rear air duct 2 from the front air duct 1 through the drainage hood 8 is effectively merged and divided, and the heat dissipation capacity of the rear air duct 2 is coordinated and optimized; through the above-mentioned coordinated planning of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热装置和服务器,其中散热装置包括沿其散热气流方向依次设置的前置风道(1)和后置风道(2),后置风道(2)与前置风道(1)相连通;前置风道(1)包括多个前置子风道(3),前置风道(1)内设置有多个第一散热元件(4)和第二散热元件(5),第一散热元件(4)和第二散热元件(5)分别位于不同的前置子风道(3)中,第一散热元件(4)在单位时间内的散热量大于第二散热元件(5)在单位时间内的散热量,至少一个第二散热元件(5)对应的前置子风道(3)内设置有封堵板(6),封堵板(6)用于减小其所在的前置子风道(3)单位时间内散热气流的大小;后置风道(2)内设置有第三散热元件(7),前置风道(1)与后置风道(2)之间设置有引流罩(8),从而有效地提高了服务器整体上的协调散热能力。

Description

散热装置和服务器
相关申请的交叉引用
本申请要求于2022年12月5日提交中国专利局,申请号为202211550247.1,申请名称为“散热装置和服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器领域,特别是涉及一种散热装置和服务器。
背景技术
随着云计算、大数据等新型技术的发展,对数据存储的带宽和容量要求越来越高,处理器的运算速度与运算量也越来越大,导致内存、硬盘、网卡等各个元器件的温度也不断飙升,电子器件的散热成为目前较为灼手的问题,而且现在社会对功耗的要求也越来越高,节能是目前的一个主流趋势。现在服务器对硬盘、CPU(Central Processing Unit,中央处理器)、网卡的需求越来越高,随着计算量的增加,对应CPU性能的要求越来越高,CPU的功耗也越来越高,对于计算机而言,高功耗的CPU对整个机器的散热设计也是一个瓶颈点。
目前服务器的散热瓶颈是CPU、后置PSU(Power supply unit,电源)以及后置高容量网卡(100G)。其中,PSU以及网卡均处于机箱后端,散热气流首先经过CPU,然后再对PSU以及网卡散热,因此PSU和网卡处的散热效果较差,很容易导致温度超过标准值,散热效率极为低下,因此如何提高服务器的协调散热能力是亟待解决的技术问题。
发明内容
基于此,本申请提供一种散热装置和服务器,以提高散热装置和服务器的协调散热能力。
一方面,提供一种散热装置,所述散热装置包括沿其散热气流方向依次设置的前置 风道和后置风道,所述后置风道与所述前置风道相连通;所述前置风道包括多个前置子风道,所述前置风道内设置有多个第一散热元件和第二散热元件,所述第一散热元件和第二散热元件分别位于不同的前置子风道中,所述第一散热元件在单位时间内的散热量大于所述第二散热元件在单位时间内的散热量,至少一个所述第二散热元件对应的前置子风道内设置有封堵板;所述封堵板设置不同规格,不同规格的封堵板在相应的所述前置子风道内的横截面积不同;所述后置风道内设置有第三散热元件,靠近所述第三散热元件的前置子风道为第一子风道、第二子风道和第三子风道,所述第一子风道、第二子风道和第三子风道与后置风道之间设置有引流罩,所述引流罩包括引流板和导流板,所述导流板包括导流隔板和导流通板,所述第一子风道和第二子风道中的散热气流经过所述引流板合流后通过所述导流通板流向所述后置风道中的第三散热元件,所述第三子风道的散热气流经过所述引流板与所述第一子风道、第二子风道分流后通过所述导流隔板远离所述第三散热元件。
在其中一些实施例中,所述散热装置还包括外壳,所述外壳内设置有导风罩、主板和所述引流罩,所述主板包括第一主板区域和第二主板区域,所述第一主板区域与所述导风罩、外壳之间形成所述前置风道,所述第二主板区域与所述引流罩、外壳之间形成所述后置风道,所述多个第一散热元件和第二散热元件设置在所述第一主板区域,所述第三散热元件设置在所述第二主板区域。
在其中一些实施例中,所述导风罩包括顶板,所述顶板上设置有多个隔板,相连的两个隔板之间形成所述前置子风道,所述封堵板可拆卸地安装在所述前置子风道内。
在其中一些实施例中,所述封堵板与所述顶板相连接,和/或,所述封堵板与其相应的前置子风道两侧的隔板相连接。
在其中一些实施例中,所述第二主板区域上还设置有多个第四散热元件,所述第四散热元件位于所述后置风道中,所述第四散热元件至少与其中一个前置子风道对应设置。
在其中一些实施例中,所述封堵板的规格根据所述第四散热元件的散热需求确定。
在其中一些实施例中,所述封堵板的安装位置根据所述第四散热元件在所述后置风道中的位置确定。在其中一些实施例中,所述第一散热元件为中央处理器,所述第二散热元件为内存条,至少一个所述内存条对应的前置子风道内设置有封堵板。
在其中一些实施例中,所述第三散热元件为电源模组,所述第四散热元件为南桥芯片、M.2接口设备。
在其中一些实施例中,所述散热装置还包括风扇组件,所述风扇组件产生的散热气流流入所述前置风道,所述前置风道中的第一子风道、第二子风道和第三子风道与所述 电源模组相对应设置。
在其中一些实施例中,所述引流板与所述导流板相铰接。
在其中一些实施例中,所述第二子风道和第三子风道之间形成有中心线,所述引流板位于所述中心线上。
在其中一些实施例中,所述导流隔板和导流通板分别位于所述引流板的两侧,所述导流隔板位于与所述第三子风道对应的一侧,所述导流通板位于与所述第一子风道和第二子风道对应的一侧。
在其中一些实施例中,所述导流通板上与所述引流板相对的一侧设置有第一导板,所述第一导板与所述导流通板之间形成有用于改变散热气流方向的第一导流槽。
在其中一些实施例中,所述导流隔板上与所述引流板相对的一侧设置有第二导板,所述第二导板与所述导流隔板之间形成有用于改变散热气流方向的第二导流槽。
在其中一些实施例中,所述第二导流槽与所述第一导流槽相连通。
在其中一些实施例中,所述引流板的顶部和底部均设置有理线槽。
在其中一些实施例中,所述理线槽处设置有泡棉,所述泡棉上设置有穿线槽。
在其中一些实施例中,所述导风罩的两侧与所述外壳之间设置有泡棉,所述泡棉上设置有穿线孔和避让孔,部分所述穿线孔和所述避让孔的空隙形成所述第一子风道。
另一方面,提供了一种服务器,所述服务器包括散热装置。
附图说明
为了更清楚地说明本申请一些实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一些实施例提供的散热装置的立体结构示意图(去掉外壳);
图2是本申请一些实施例提供的散热装置的俯视结构示意图(去掉外壳);
图3是本申请一些实施例提供的散热装置的引流罩前后散热气流流通路径的路径示意图;
图4是本申请一些实施例提供的散热装置的导风罩的第一结构示意图;
图5是本申请一些实施例提供的散热装置的导风罩的第二结构示意图;
图6是本申请一些实施例提供的散热装置的两侧泡棉部位的结构示意图;
图7是本申请一些实施例提供的散热装置的引流罩的第一结构示意图;
图8是本申请一些实施例提供的散热装置的引流罩的第二结构示意图;
图9是本申请一些实施例提供的服务器的结构示意图。
说明书附图标记说明:
1、前置风道;2、后置风道;3、前置子风道;4、第一散热元件;5、第二散热元件;6、封堵板;7、第三散热元件;8、引流罩;9、外壳;10、导风罩;11、主板;12、第一主板区域;13、第二主板区域;14、顶板;15、隔板;16、第四散热元件;17、风扇组件;18、第一子风道;19、第二子风道;20、第三子风道;21、引流板;22、导流板;23、导流隔板;24、导流通板;25、第一导板;26、第一导流槽;27、第二导板;28、第二导流槽;29、理线槽;30、泡棉;31、穿线槽;32、穿线孔;33、避让孔;34、侧板;35、第一电源模组;36、第二电源模组。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一
参照图1~图8所示,散热装置包括沿其散热气流方向依次设置的前置风道1和后置风道2,所述后置风道2与所述前置风道1相连通;所述前置风道1包括多个前置子风道3,所述前置风道1内设置有多个第一散热元件4和第二散热元件5,所述第一散热元件4和第二散热元件5分别位于不同的前置子风道3中,所述第一散热元件4在单位时间内的散热量大于所述第二散热元件5在单位时间内的散热量,至少一个所述第二散热元件5对应的前置子风道3内设置有封堵板6;所述封堵板6设置不同规格,不同规格的封堵板6在相应的所述前置子风道3内的横截面积不同;所述后置风道2内设置有第三散热元件7,靠近所述第三散热元件7的前置子风道3为第一子风道18、第二子风道19和第三子风道20,所述第一子风道18、第二子风道19和第三子风道20与后置风道2之间设置有引流罩8,所述引流罩8包括引流板21和导流板22,所述导流板22包括导流隔板23和导流通板24,所述第一子风道18和第二子风道19中的散热气流经过所述引流板21合流后通过所述导流通板24流向所述后置风道2中的第三散热元件7,所述第三子风道20的散热气流经过所述引流板21与所述第一子风道18、第二子风道19分流后通过所述导 流隔板23远离所述第三散热元件7。
为了提高散热装置的协调散热能力,本申请对散热装置内部散热气流的流通路径进行了优化,以提高散热装置整体的散热能力,进一步提高对位于CPU后方的散热部件的散热能力,使得散热装置内部的各元器件的温度都能有效控制在标准以内。散热装置的动力源为风扇组件17,风扇组件17产生散热气流,沿着散热气流的流动方向依次设置有前置风道1和后置风道2,前置风道1与后置风道2相连通,因此风扇组件17所产生的散热气流经过前置风道1后再经过后置风道2。前置风道1内设置有第一散热元件4和第二散热元件5,前置风道1包括多个前置子风道3,第一散热元件4和第二散热元件5分别位于不同的前置子风道3中。第一散热元件4与第二散热元件5相比,第一散热元件4的散热量比第二散热元件5的散热量大,第二散热元件5(散热量需求较小的散热元件)所在的前置子风道3中设置封堵板6,以通过封堵板6来其所在的前置子风道3单位时间内散热气流的大小,同一个前置风道1中,通过第二散热元件5的散热气流的大小降低则会引起通过第一散热元件4的散热气流的增大,因此封堵板6的设置实则是降低对第二散热元件5的部分散热能力,以相对提高对第一散热元件4的散热能力,在保证满足第二散热元件5的散热需求的前提下,协调优化整个散热装置的散热能力,进一步使得散热装置中所有的元器件都能够在设计在标准以内,满足用户的需求。第一散热元件4与第二散热元件5相比,第一散热元件4的散热需求较高,第二散热元件5的散热需求较低,因此可以牺牲对第二散热元件5的散热能力来对散热装置的整体散热效果进行优化。为了进一步提高封堵板6的封堵效率,封堵板6设置不同的规格,不同规格的封堵板6在相应的前置子风道3内的横截面积不同,不同的横截面积对散热气流的封堵效果不同。进一步地,横截面面积越大的封堵板6在同一个前置子风道3内对散热气流的阻力较大,横截面面积越小的封堵板6在同一个前置子风道3内对散热气流的阻力较小,因此可以通过设置不同横截面积的封堵板6来调节封堵板6对其所在前置子风道3内的散热气流的流动阻力。由于封堵板6的设置实则是通过封堵板6对通过其所在前置子风道3的散热气流进行阻挡,即,在保证满足第二散热元件5的散热需求的前提下,牺牲对第二散热元件5的部分散热能力,以相对提高对第一散热元件4的散热能力,因此设置不同规格的封堵板6可以调整封堵板6对其所在前置子风道3内的散热气流的流动阻力,进一步提高对第一散热元件4的散热能力。后置风道2内设置有第三散热元件7,风扇组件17所产生的散热气流经过前置风道1后,散热气流的温度已经升高,进入后置风道2的散热气流已经有了一定的温度,因此相关技术中经过后置风道2的散热气流对第三散热元件7的散热能力无法满足第三散热元件7的散热需求。因此在前置风道1与后置风道2之间设 置引流罩8,通过引流罩8对前置风道1和后置风道2的散热气流的路径以及通过该路径的散热气流的大小进行合理的协调规划,以提高散热气流对位于后置风道2中的第三散热元件7的散热能力,满足第三散热元件7的散热需求。进一步地,前置风道1的路径规划通过第一子风道18、第二子风道19和第三子风道20实现,靠近第三散热元件7的前置子风道3为第一子风道18、第二子风道19和第三子风道20,后置风道2的路径规划通过引流罩8实现。引流罩8设置在前置风道1和后置风道2之间,也就是第一子风道18、第二子风道19和第三子风道20与第三散热元件7之间。风扇组件17所产生的散热气流通过前置风道1的第一子风道18、第二子风道19和第三子风道20进行分流,经过前置风道1,也就是经过第一子风道18、第二子风道19和第三子风道20后的散热气流通过引流罩8进行分流和合流后流入后置风道2。进一步的,如图3所示的散热气流流向示意图,风扇组件17所产生的散热气流部分流经靠近服务器外壳9的第一子风道18,风扇组件17所产生的散热气流部分流经内存条所在的第二子风道19,风扇组件17所产生的散热气流部分流经中央处理器所在的第三子风道20;第一子风道18的散热气流温度最低,第二子风道19的散热气流具有一定的温升,第三子风道20的散热气流温升较高;因此引流罩8将第一子风道18和第二子风道19的散热气流进行合流,以通过第一子风道18的散热气流与第二子风道19的散热气流进行混合以降低第二子风道19的散热气流的温度,并且引流罩8将第一子风道18、第二子风道19的合流与第三子风道20的散热气流分流,使得大部分的温升较高的散热气流流向第二主板区域13中第四散热元件16的区域(只有少部分温升较高的散热气流通过引流罩8与外壳之间的缝隙流向第三散热元件,即,电源模组),而不是直接流向电源模组的散热区域,因此引流罩8对于后置风道2的路径规划实质上是牺牲了部分对第四散热元件16的散热能力,以提高对第三散热元件7的散热能力,路径规划后的第一电源模组35(靠近服务器外壳9)的温度有所升高,但是依然能控制在标准以内,而一直超过标准的第二电源模组36(靠近中央处理器)能够控制在标准以内,路径规划后的后置风道2有效地解决了第三散热元件7(电源模组)的散热能力。实验数据如下,第三散热元件7为电源模组,电源模组包括第一电源模组35和第二电源模组36,在路径未规划前,第一电源模组35的温度为39℃□,第二电源模组36的温度为58℃□,采用本申请的路径规划后,第一电源模组35的温度为42℃□,第二电源模组36的温度为51℃□(标准为55℃□),因此路径规划后的后置风道2有效地解决了电源模组的散热能力,由此可以看出前置风道1上封堵板6的设置,以及通过对前置风道1的路径规划,通过引流罩8对后置风道2的路径规划,整体上对散热装置的散热起到了协调优化的作用,使得主板11上的元器件均能满足标准要求。
本申请对前置风道1和后置风道2的路径,以及流经前置风道1和后置风道2的气流大小进行了协调规划,首先是在第二散热元件5对应的前置子风道3中设置封堵板6,以牺牲对第二散热元件5的散热能力来相对提高对第一散热元件4的散热能力,对前置风道1的散热能力进行了协调优化;前置风道1与后置风道2之间设置引流罩8,通过引流罩8从前置风道1中进入后置风道2的散热气流进行了有效的合流与分流,对后置风道2的散热能力进行了协调优化;通过上述对前置风道1和后置风道2的路径,以及流经前置风道1和后置风道2的气流大小进行的协调规划,整体上降低了第三散热元件7的温度,有效地提高了散热装置整体上的协调散热能力。
在其中一个实施方式中,所述散热装置还包括外壳9,所述外壳9内设置有导风罩10、主板11和所述引流罩8,所述主板11包括第一主板区域12和第二主板区域13,所述第一主板区域12与所述导风罩10、外壳9之间形成前置风道1,所述第二主板区域13与所述引流罩8、外壳9之间形成后置风道2,所述后置风道2与所述前置风道1相连通,所述多个第一散热元件4和第二散热元件5设置在所述第一主板区域12,所述第三散热元件7设置在所述第二主板区域13。
散热装置还包括外壳9(散热装置单独设置外壳9,或者服务器的外壳9充当散热装置的外壳9),外壳9起到对内部元器件的保护作用。外壳9内设置导风罩10、引流罩8和主板11,散热装置的主板11一般分为两部分,即,第一主板区域12和第二主板区域13,第一主板区域12与导风罩10、外壳9之间形成前置风道1,风扇组件17所产生的散热气流首先经过前置风道1。第二主板区域13与引流罩8、外壳9之间形成后置风道2,前置风道1与后置风道2相连通,因此风扇组件17所产生的散热气流经过前置风道1后再经过后置风道2。多个第一散热元件4和第二散热元件5设置在第一主板区域12,第三散热元件7设置在第二主板区域13,即,第一散热元件4和第二散热元件5位于第一主板区域12对应的前置风道1中,第三散热元件7位于第二主板区域13对应的前置风道1中。
在其中一个实施方式中,所述导风罩10包括顶板14,所述顶板14上设置有多个隔板15,相连的两个隔板15之间形成所述前置子风道3,所述封堵板6可拆卸地安装在所述前置子风道3内。
如图4和图5所示,导风罩10包括顶板14和侧板34,当导风罩10安装在散热装置上时,导风罩10的顶板14、侧板34与主板11的第一主板区域12之间形成前置风道1。导风罩10的两个侧板34之间设置有多个隔板15,相邻的两个隔板15与顶板14、主板11的第一主板区域12之间形成前置子风道3。前置子风道3内对应设置不同的散热元件。 进一步地,第一散热元件4和第二散热元件5分别位于不同的前置子风道3中。第一散热元件4与第二散热元件5相比,第一散热元件4的散热量比第二散热元件5的散热量大,第二散热元件5所在的前置子风道3中设置封堵板6(如图所示中设置封堵板6的前置子风道3即第二散热元件5所在的前置子风道3),以通过封堵板6来其所在的前置子风道3单位时间内散热气流的大小,同一个导风罩10中,通过第二散热元件5的散热气流的大小降低则会引起通过第一散热元件4的散热气流的增大,因此封堵板6的设置实则是降低对第二散热元件5的部分散热能力,以相对提高对第一散热元件4的散热能力,在保证满足第二散热元件5的散热需求的前提下,协调优化整个散热装置的散热能力,进一步使得散热装置中所有的元器件都能够在设计在标准以内,满足用户的需求。优选的,封堵板6设置在前置子风道3上靠近风扇组件17的一侧,该侧为风扇组件17产生的散热气流进入前置风道1的进风口,另一侧为散热流经前置子风道3后的出风口,流出该出风口的散热气流经过引流罩8进入后置风道2。
在其中一个实施方式中,所述封堵板6与所述顶板14相连接,和/或,所述封堵板6与其相应的前置子风道3两侧的隔板15相连接。
第一散热元件4与第二散热元件5相比,第一散热元件4的散热需求较高,第二散热元件5的散热需求较低,因此可以牺牲对第二散热元件5的散热能力来提高对第一散热元件4的散热能力。因此封堵板6是设置在相应的第二散热元件5所在的前置子风道3中,如图4和图5所示的封堵板6。封堵板6在其所在的前置子风道3中的连接方式包括三种,第一种是封堵板6与顶板14相连接,第二种是封堵板6与隔板15,第三种是封堵板6同时与隔板15、侧板34相连接。为了便于更换不同规格的封堵板6,封堵板6与隔板15、侧板34之间可拆卸连接,进一步的,封堵板6与隔板15、侧板34之间采用过盈的方式连接,在顶板14、隔板15、侧板34上设置滑动槽,封堵板6的边缘***到滑动槽中,封堵板6的边缘与滑动槽之间过盈连接,防止封堵板6在滑动槽中因散热气流的吹动而活动,封堵板6与滑动槽之间的过盈量允许用户将封堵板6安装到滑动槽中,允许用户将封堵板6从滑动槽中移出。优选的,如图所示,在相邻的两个隔板15之间设置滑动槽,滑动槽的方向沿垂直于散热气流方向向下(沿竖直向下方向),封堵板6的两端***到滑动槽中,滑动槽的底部设置有挡板,用于对封堵板6进行限位。
在其中一个实施方式中,所述第二主板区域13上还设置有多个第四散热元件16,所述第四散热元件16位于所述后置风道2中,所述第四散热元件16至少与其中一个前置子风道3对应设置。
第一主板区域12上设置有第一散热元件4和第二散热元件5,第二主板区域13上除 设置第三散热元件7外,还设置有第四散热元件16,第二主板区域13与引流罩8、外壳9之间形成后置风道2,因此第四散热元件16设置在后置风道2中,并且第四散热元件16至少与其中一个前置子风道3对应设置,以便于前置风道1的散热气流流入到后置风道2对处于后置风道2中的第四散热组件进行散热。
在其中一个实施方式中,所述封堵板6的规格根据所述第四散热元件16的散热需求确定。
为了进一步提高封堵板6的封堵效率,封堵板6设置不同的规格,不同规格的封堵板6在相应的前置子风道3内的横截面积不同,不同的横截面积对散热气流的封堵效果不同。进一步地,横截面面积越大的封堵板6在同一个前置子风道3内对散热气流的阻力较大,横截面面积越小的封堵板6在同一个前置子风道3内对散热气流的阻力较小,因此可以通过设置不同横截面积的封堵板6来调节封堵板6对其所在前置子风道3内的散热气流的流动阻力。如图2所示的散热装置,左侧为第一主板区域12,右侧为第二主板区域13,第一主板区域12上设置有第一散热元件4和第二散热元件5,第一散热元件4和第二散热元件5间隔布置;第二主板区域13上设置有第三散热元件7和第四散热元件16,第三散热元件7位于第二主板区域13的上方,第三散热元件7位于第二主板区域13的下方。第一主板区域12的左侧为风扇组件17,风扇组件17所产生的散热气流经过前置风道1对第一主板区域12的第一散热元件4和第二散热元件5进行散热,流出前置风道1的散热气流进入后置风道2对后置风道2中的第三散热元件7和第四散热元件16进行散热,在前置风道1中设置相应的封堵板6时,由于封堵板6会阻挡其所在前置子风道3内的散热气流,因此会影响位于该封堵板6所在前置子风道3下游的第四散热元件16的散热效果,因此封堵板6的大小需要根据第四散热元件16的散热需求来决定,如果第四散热元件16所需的散热需求并不高,则可以选择横截面积相对较大的封堵板6,如果第四散热元件16所需的散热需求相对高一点,则可以选择横截面积相对较小的封堵板6,需要根据实验数据以及经验值来确定封堵板6的大小,需要对第四散热元件16的散热需求按照一定的标准进行量化,并设置好散热需求与封堵板6的横截面积之间的对应关系,以根据第四散热元件16的散热需求来合理地选择封堵板6横截面积的大小。
在其中一个实施方式中,所述封堵板6的安装位置根据所述第四散热元件16在所述后置风道2中的位置确定。
根据第四散热元件16的散热需求来合理地选择封堵板6横截面积的大小后,需要确定封堵板6的安装位置,与第四散热元件16所对应的前置子风道3可能存在多个,需要选择距离第四散热元件16较近的前置子风道3来安装封堵板6,这样安装后的封堵板6 即使在牺牲了第二散热元件5的散热能力下,其剩余散热能力依旧能够满足对位于前置风道1下游的后置风道2中的第四散热元件16的散热需求。因此第四散热元件16为第二主板区域13中对散热要求不高的元器件。
在其中一个实施方式中,所述第一散热元件4为中央处理器,所述第二散热元件5为内存条,至少一个所述内存条对应的前置子风道3内设置有封堵板6。
第一散热元件4为中央处理器,第二散热元件5为内存条,至少一个内存条对应的前置子风道3内设置有封堵板6。中央处理器的散热量比内存条的散热量大,内存条所在的前置子风道3中设置封堵板6,以通过封堵板6来其所在的前置子风道3单位时间内散热气流的大小,同一个导风罩10中,通过内存条的散热气流的大小降低则会引起通过中央处理器的散热气流的增大,因此封堵板6的设置实则是降低对内存条的部分散热能力,以相对提高对中央处理器的散热能力,在保证满足内存条的散热需求的前提下,协调优化整个散热装置的散热能力,进一步使得散热装置中所有的元器件都能够在设计在标准以内,满足用户的需求。
在其中一个实施方式中,所述第三散热元件7为电源模组,所述第四散热元件16为南桥芯片、M.2接口设备。
第二主板区域13上设置有第三散热元件7,第三散热元件7为电源模组,电源模组位于后置风道2中,风扇组件17所产生的散热气流经过前置风道1后,散热气流的温度已经升高,进入后置风道2的散热气流已经有了一定的温度,因此相关技术中经过后置风道2的散热气流对电源模组的散热能力无法满足电源模组的散热需求。因此在前置风道1与后置风道2之间设置引流罩8,通过引流罩8对前置风道1和后置风道2的散热气流的路径以及通过该路径的散热气流的大小进行合理的协调规划,以提高散热气流对位于后置风道2中的电源模组的散热能力,满足电源模组的散热需求。封堵板6的规格的选择以及安装位置都需要依据第四散热元件16来确定,第四散热元件16为第二主板区域13中对散热要求不高的元器件,如南桥芯片、M.2接口设备。
在其中一个实施方式中,所述散热装置还包括风扇组件17,所述风扇组件17产生的散热气流流入所述前置风道1,所述前置风道1中的第一子风道18、第二子风道19和第三子风道20与所述电源模组相对应设置。
为了能够对散热装置的散热进行协调优化,以保证散热装置内部元器件在正常工作时其温度都能够在标准以内,需要对前置风道1和后置风道2的散热气流路径进一步规划。针对前置风道1的路径规划,靠近第三散热元件7的前置子风道3为第一子风道18、第二子风道19和第三子风道20,通过对三个子风道的路径规划提高了散热装置的散热协 调控制能力。相关技术对电源模组的散热控制中,前置风道1的风(经过内存条和/或中央处理器的散热气流)直接进入后置风道2中的两个电源模组中,始终存在一个电源模组(如图2中靠近中央处理器的电源模组)的温度值不能控制在标准以内,因为经过中央处理器的散热气流温升较高,经过中央处理器的散热气流无法满足其下游电源模组的散热需求。电源模组包括第一电源模组35和第二电源模组36,如图3所示,通过对第一子风道18、第二子风道19和第三子风道20的合理规划,使得最终通过前置风道1(第一子风道18、第二子风道19和第三子风道20)进入后置风道2(通向电源模组)的散热气流的温度降低,第一子风道18、第二子风道19和第三子风道20与电源模组相对应设置,使得第一电源模组35和第二电源模组36在正常工作时都能够保证其温度在标准以内。
在其中一个实施方式中,所述引流板21与所述导流板22相铰接。
引流罩8包括引流板21和导流板22,如图7和图8所示,引流板21负责将第一子风道18、第二子风道19和第三子风道20的散热气流进行引流,导流板22起到了将通过引流板21引流后的散热气流进行导向的作用。为了便于调整引流板21的引流能力,引流板21与导流板22设置为铰接(图7和图8中未示出),导流板22固定,引流板21相对于导流板22可以旋转运动,通过调整引流板21相对于导流板22的旋转角度可以调节引流板21的引流能力。进一步地,引流板21的主要作用是将第一子风道18和第二子风道19的散热气流进行合流,并将第一子风道18和第二子风道19合流后的散热气流与第三子风道20的散热气流进行比例分流,如图3所示的引流罩8前后的散热气流流通路径示意图,如果引流板21向靠近CPU的方向旋转,则允许部分通过CPU的高温气流通过第一子风道18和第二子风道19的合流一并流向第三散热元件7,降低了流向第四散热元件16散热气流的温度,提高了流向第三散热元件7散热气流的温度;如果引流板21向远离CPU的方向旋转,则几乎全部的通过CPU的高温气流通过第三子风道20的流向第四散热元件16,降低了流向第三散热元件7散热气流的温度,提高了流向第四散热元件16散热气流的温度,可以通过引流板21调节散热气流的流通路径,以提高散热装置的协调散热能力。
在其中一个实施方式中,所述第二子风道19和第三子风道20之间形成有中心线,所述引流板21位于所述中心线上。
第二子风道19内对应设置内存条,第一子风道18内对应设置的是比内存条散热量小很多的散热元件,因此第二子风道19内的散热气流流经内存条后,与流经第一子风道18内散热元件的散热气流相比,从第二子风道19流出的散热气流的温度比从第一子风道 18流出的散热气流的温度较高,因此通过第一散热气流降低了第二散热气流的温度;而第三子风道20内对应设置的是CPU,CPU的散热量比内存条大很多,因此通过第三子风道20流出的散热气流的温度比第一子风道18和第二子风道19流出的散热气流的温度高很多,需要对第一子风道18和第二子风道19的合流与第三子风道20的散热气流进行隔离,通过导风罩10的引流板21来实现。根据实际的散热情况进行调整引流板21的旋转角度,引流板21的优选旋转位置为引流板21靠近内存条、CPU的一端位于第二子风道19和第三子风道20之间形成的中心线,能够有效地将第一子风道18和第二子风道19的合流与第三子风道20的散热气流进行隔离,有效地降低了流向第三散热元件7(电源模组)的散热气流的温度。
在其中一个实施方式中,所述导流隔板23和导流通板24分别位于所述引流板21的两侧,所述导流隔板23位于与所述第三子风道20对应的一侧,所述导流通板24位于与所述第一子风道18和第二子风道19对应的一侧。
导流板22包括导流隔板23和导流通板24,如图7所示,导流隔板23对散热气流起阻挡的作用,导流通板24起到让散热气流通过的作用,第一子风道18和第二子风道19的散热气流经过导流通板24后会对第一子风道18的散热气流和第二子风道19的散热气流进行有效地合流。由于引流板21的优选位置为引流板21靠近内存条、CPU的一端位于第二子风道19和第三子风道20之间形成的中心线,因此导流隔板23和导流通板24分别位于引流板21的两侧,导流通板24与第一子风道18和第二子风道19的位置相对应,导流隔板23与第三子风道20的位置相对应,能够有效地将第一子风道18和第二子风道19的合流与第三子风道20的散热气流进行隔离,有效地降低了流向第三散热元件7(电源模组)的散热气流的温度。
在其中一个实施方式中,所述导流通板24上与所述引流板21相对的一侧设置有第一导板25,所述第一导板25与所述导流通板24之间形成有用于改变散热气流方向的第一导流槽26。
为了提高第一子风道18和第二子风道19的散热气流的合流效果,导流通板24上与引流板21相对的一侧设置有第一导板25,第一导板25与导流通板24之间形成有用于改变散热气流方向的第一导流槽26,通过第一导流槽26对第一子风道18和第二子风道19的散热气流的合流的换向,有效地将第一子风道18和第二子风道19的散热气流进行混合,以通过第一子风道18的散热气流对第二子风道19的散热气流进行降温。
在其中一个实施方式中,所述导流隔板23上与所述引流板21相对的一侧设置有第二导板27,所述第二导板27与所述导流隔板23之间形成有用于改变散热气流方向的第 二导流槽28。
导流隔板23上与引流板21相对的一侧设置有第二导板27,第二导板27与导流隔板23之间形成有第二导流槽28,第二导流槽28用于改变散热气流方向。
在其中一个实施方式中,所述第二导流槽28与所述第一导流槽26相连通。
第二导流槽28与第一导流槽26相连通,因此流经第一导流槽26的散热气流会流向第二导流槽28,如图7和图8所示(图7和图8中未标识外壳9,外壳9与引流罩8形成散热气流的流通通道),第一导流槽26对第一子风道18和第二子风道19的散热气流的合流的换向后,通过第二导流槽28再次换向,使得流经第二导流槽28的散热气流流向第三散热元件7(电源模组),通过第一子风道18和第二子风道19的散热气流的合流有效地对第三散热元件7进行散热。
在其中一个实施方式中,所述引流板21的顶部和底部均设置有理线槽29。
相关技术中的前置风道1与后置风道2之间需要布线,而布置的线束在前置风道1之间和后置风道2之间会阻碍前置风道1流向后置风道2的散热气流,影响对后置风道2中散热气流对第三散热元件7的散热效果,因此本申请在前置风道1和后置风道2之间设置引流罩8,不仅能够对散热气流进行合流和分流,而且还能够对线束进行布线,使得线束通过引流罩8顶部和底部的理线槽29走线,降低了线束对散热气流的阻挡作用,提高了对第三散热元件7的散热效果。
在其中一个实施方式中,所述理线槽29处设置有泡棉30,所述泡棉30上设置有穿线槽31。
理线槽29处设置有泡棉30,泡棉30上设置有穿线槽31,线束布置在泡棉30上的穿线槽31中,泡棉30的设置起到了防止漏风的作用,即,防止散热气流的流失。
在其中一个实施方式中,所述导风罩10的两侧与所述外壳9之间设置有泡棉30,所述泡棉30上设置有穿线孔32和避让孔33,部分所述穿线孔32和所述避让孔33的空隙形成所述第一子风道18。
导风罩10的两侧与外壳9之间设置有泡棉30,泡棉30上设置有穿线孔32和避让孔33,部分穿线孔32和避让孔33的空隙形成第一子风道18,此处泡棉30上的穿线孔32用于穿线,避让孔33用于避让泡棉30下方的元器件,线束穿过穿线孔32时会留下间隙,避让孔33与元器件之间也就留下间隙,风扇组件17所产生的散热气流会通过两个间隙形成第一子风道18,以通过第一子风道18的散热气流与第二子风道19的散热气流进行合流,进一步降低第二子风道19的散热气流的温度。其中,位于第一子风道18侧的泡棉30可以采用分体式设计,穿线孔32布置于靠近外壳9的一侧,便于走线,也能够防止 出现泡棉30压线的情况;对于导风罩10另一侧的泡棉30也可以采用分体式设计,在兼顾走线的同时能够对此处的散热气流起到放漏风的作用,即,防止散热气流的流失。
实施例二
参照图9所示,图9为本申请一些实施例提供的服务器的结构示意图。其中,图9所示服务器中,与图1~图8所示结构示意图中相同或相似的内容,可以参考图1~图8中的结构,此处不做赘述。
服务器包括上述散热装置,能够对前置风道1和后置风道2的路径,以及流经前置风道1和后置风道2的气流大小进行协调规划,首先是在第二散热元件5对应的前置子风道3中设置封堵板6,以牺牲对第二散热元件5的散热能力来相对提高对第一散热元件4的散热能力,对前置风道1的散热能力进行了协调优化;前置风道1与后置风道2之间设置引流罩8,通过引流罩8从前置风道1中进入后置风道2的散热气流进行了有效的合流与分流,对后置风道2的散热能力进行了协调优化;通过上述对前置风道1和后置风道2的路径,以及流经前置风道1和后置风道2的气流大小进行的协调规划,整体上降低了第三散热元件7的温度,有效地提高了服务器整体上的协调散热能力。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种散热装置,其特征在于,包括沿其散热气流方向依次设置的前置风道(1)和后置风道(2),所述后置风道(2)与所述前置风道(1)相连通;所述前置风道(1)包括多个前置子风道(3),所述前置风道(1)内设置有多个第一散热元件(4)和第二散热元件(5),所述第一散热元件(4)和第二散热元件(5)分别位于不同的前置子风道(3)中,所述第一散热元件(4)在单位时间内的散热量大于所述第二散热元件(5)在单位时间内的散热量,至少一个所述第二散热元件(5)对应的前置子风道(3)内设置有封堵板(6),所述封堵板(6)设置不同规格,不同规格的封堵板(6)在相应的所述前置子风道(3)内的横截面积不同;所述后置风道(2)内设置有第三散热元件(7),靠近所述第三散热元件(7)的前置子风道(3)为第一子风道(18)、第二子风道(19)和第三子风道(20),所述第一子风道(18)、第二子风道(19)和第三子风道(20)与后置风道(2)之间设置有引流罩(8),所述引流罩(8)包括引流板(21)和导流板(22),所述导流板(22)包括导流隔板(23)和导流通板(24),所述第一子风道(18)和第二子风道(19)中的散热气流经过所述引流板(21)合流后通过所述导流通板(24)流向所述后置风道(2)中的第三散热元件(7),所述第三子风道(20)的散热气流经过所述引流板(21)与所述第一子风道(18)、第二子风道(19)分流后通过所述导流隔板(23)远离所述第三散热元件(7)。
  2. 根据权利要求1所述的散热装置,其特征在于,所述散热装置还包括外壳(9),所述外壳(9)内设置有导风罩(10)、主板(11)和所述引流罩(8),所述主板(11)包括第一主板区域(12)和第二主板区域(13),所述第一主板区域(12)与所述导风罩(10)、外壳(9)之间形成所述前置风道(1),所述第二主板区域(13)与所述引流罩(8)、外壳(9)之间形成所述后置风道(2),所述多个第一散热元件(4)和第二散热元件(5)设置在所述第一主板区域(12),所述第三散热元件(7)设置在所述第二主板区域(13)。
  3. 根据权利要求2所述的散热装置,其特征在于,所述导风罩(10)包括顶板(14),所述顶板(14)上设置有多个隔板(15),相连的两个隔板(15)之间形成所述前置子风道(3),所述封堵板(6)可拆卸地安装在所述前置子风道(3)内。
  4. 根据权利要求3所述的散热装置,其特征在于,所述封堵板(6)与所述顶板(14)相连接,和/或,所述封堵板(6)与其相应的前置子风道(3)两侧的隔板(15)相连接。
  5. 根据权利要求2所述的散热装置,其特征在于,所述第二主板区域(13)上还设置有多个第四散热元件(16),所述第四散热元件(16)位于所述后置风道(2)中,所述第四散热元件(16)至少与其中一个前置子风道(3)对应设置。
  6. 根据权利要求5所述的散热装置,其特征在于,所述封堵板(6)的规格根据所述第四散热元件(16)的散热需求确定。
  7. 根据权利要求6所述的散热装置,其特征在于,所述封堵板(6)的安装位置根据所述第四散热元件(16)在所述后置风道(2)中的位置确定。
  8. 根据权利要求7所述的散热装置,其特征在于,所述第一散热元件(4)为中央处理器,所述第二散热元件(5)为内存条,至少一个所述内存条对应的前置子风道(3)内设置有封堵板(6)。
  9. 根据权利要求8所述的散热装置,其特征在于,所述第三散热元件(7)为电源模组,所述第四散热元件(16)为南桥芯片、M.2接口设备。
  10. 根据权利要求9所述的散热装置,其特征在于,所述散热装置还包括风扇组件(17),所述风扇组件(17)产生的散热气流流入所述前置风道(1),所述前置风道(1)中的第一子风道(18)、第二子风道(19)和第三子风道(20)与所述电源模组相对应设置。
  11. 根据权利要求10所述的散热装置,其特征在于,所述引流板(21)与所述导流板(22)相铰接。
  12. 根据权利要求11所述的散热装置,其特征在于,所述第二子风道(19)和第三子风道(20)之间形成有中心线,所述引流板(21)位于所述中心线上。
  13. 根据权利要求12所述的散热装置,其特征在于,所述导流隔板(23)和导流通板(24)分别位于所述引流板(21)的两侧,所述导流隔板(23)位于与所述第三子风道(20)对应的一侧,所述导流通板(24)位于与所述第一子风道(18)和第二子风道(19)对应的一侧。
  14. 根据权利要求13所述的散热装置,其特征在于,所述导流通板(24)上与所述引流板(21)相对的一侧设置有第一导板(25),所述第一导板(25)与所述导流通板(24)之间形成有用于改变散热气流方向的第一导流槽(26)。
  15. 根据权利要求14所述的散热装置,其特征在于,所述导流隔板(23)上与所述引流板(21)相对的一侧设置有第二导板(27),所述第二导板(27)与所述导流隔板(23)之间形成有用于改变散热气流方向的第二导流槽(28)。
  16. 根据权利要求15所述的散热装置,其特征在于,所述第二导流槽(28)与所述第一导流槽(26)相连通。
  17. 根据权利要求16所述的散热装置,其特征在于,所述引流板(21)的顶部和底部均设置有理线槽(29)。
  18. 根据权利要求17所述的散热装置,其特征在于,所述理线槽(29)处设置有泡棉(30),所述泡棉(30)上设置有穿线槽(31)。
  19. 根据权利要求2所述的散热装置,其特征在于,所述导风罩(10)的两侧与所述外壳(9)之间设置有泡棉(30),所述泡棉(30)上设置有穿线孔(32)和避让孔(33),部分所述穿线孔(32)和所述避让孔(33)的空隙形成所述第一子风道(18)。
  20. 一种服务器,其特征在于,包括如权利要求1~19任一项所述的散热装置。
PCT/CN2023/101431 2022-12-05 2023-06-20 散热装置和服务器 WO2024119767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211550247.1 2022-12-05
CN202211550247.1A CN115617143B (zh) 2022-12-05 2022-12-05 散热装置和服务器

Publications (1)

Publication Number Publication Date
WO2024119767A1 true WO2024119767A1 (zh) 2024-06-13

Family

ID=84881012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101431 WO2024119767A1 (zh) 2022-12-05 2023-06-20 散热装置和服务器

Country Status (2)

Country Link
CN (1) CN115617143B (zh)
WO (1) WO2024119767A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115617143B (zh) * 2022-12-05 2023-03-21 苏州浪潮智能科技有限公司 散热装置和服务器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050041392A1 (en) * 2003-08-22 2005-02-24 Chen Chin Hui Heat dissipation device incorporating fan duct
CN101014236A (zh) * 2007-02-15 2007-08-08 华为技术有限公司 一种对电路板上的电子部件进行散热的方法及装置
CN203397297U (zh) * 2013-08-28 2014-01-15 浪潮电子信息产业股份有限公司 1u高配置服务器散热装置
CN107024967A (zh) * 2016-02-02 2017-08-08 研祥智能科技股份有限公司 工业服务器及其多路散热结构
CN109407797A (zh) * 2018-10-16 2019-03-01 郑州云海信息技术有限公司 一种服务器散热架构
CN113099676A (zh) * 2021-03-30 2021-07-09 联想(北京)信息技术有限公司 一种电子设备
CN216561694U (zh) * 2021-12-31 2022-05-17 联想(北京)信息技术有限公司 一种服务器
CN115617143A (zh) * 2022-12-05 2023-01-17 苏州浪潮智能科技有限公司 散热装置和服务器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578993U (en) * 2002-10-01 2004-03-01 Wistron Corp Heat sink of computer
CN206895102U (zh) * 2017-06-16 2018-01-16 漳州科华技术有限责任公司 一种散热风道结构及一种散热装置
TWM578993U (zh) * 2019-02-14 2019-06-11 冷研科技有限公司 Bubble water machine
CN115395136B (zh) * 2022-09-01 2024-06-25 厦门海辰储能科技股份有限公司 散热风道结构和储能设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050041392A1 (en) * 2003-08-22 2005-02-24 Chen Chin Hui Heat dissipation device incorporating fan duct
CN101014236A (zh) * 2007-02-15 2007-08-08 华为技术有限公司 一种对电路板上的电子部件进行散热的方法及装置
CN203397297U (zh) * 2013-08-28 2014-01-15 浪潮电子信息产业股份有限公司 1u高配置服务器散热装置
CN107024967A (zh) * 2016-02-02 2017-08-08 研祥智能科技股份有限公司 工业服务器及其多路散热结构
CN109407797A (zh) * 2018-10-16 2019-03-01 郑州云海信息技术有限公司 一种服务器散热架构
CN113099676A (zh) * 2021-03-30 2021-07-09 联想(北京)信息技术有限公司 一种电子设备
CN216561694U (zh) * 2021-12-31 2022-05-17 联想(北京)信息技术有限公司 一种服务器
CN115617143A (zh) * 2022-12-05 2023-01-17 苏州浪潮智能科技有限公司 散热装置和服务器

Also Published As

Publication number Publication date
CN115617143A (zh) 2023-01-17
CN115617143B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
KR101492320B1 (ko) 네트워크 통신 장치
WO2024119767A1 (zh) 散热装置和服务器
US9036344B2 (en) Electronic device
TWI399168B (zh) 資料中心及其電子設備組與空調裝置之配置組合與單元
US9036342B2 (en) Storage apparatus and storage controller of storage apparatus
US10412855B2 (en) Air deflection system
EP3716009B1 (en) Chassis of server and server
WO2019072115A1 (zh) 一种优化散热的服务器***及安装方法
CN103809712A (zh) 电子装置
US20230225075A1 (en) Air deflection plug-in unit, cabinet, electronic device, and manufacturing method for air deflection plug-in unit
US7359191B2 (en) Storage device system and cooling structure for logic circuit board for storage device system
CN108268102A (zh) 计算***
WO2016192497A1 (zh) 插箱和插箱组件结构
CN109189193B (zh) 一种实现机箱中风流均匀分布的导风装置及导风方法
TW201422135A (zh) 電子裝置
JP2010524249A (ja) 電子装置のための熱管理システム
CN216123334U (zh) 电子设备
CN105739653A (zh) 一种显卡散热结构及服务器
CN215340921U (zh) 用于服务器机箱内的挡风罩和服务器
CN2519933Y (zh) 改善机箱内部散热性能的计算机主机
JPH11135694A (ja) 電子機器冷却装置
CN209295712U (zh) 一种带并联式翅片模块的水冷散热装置
CN211293805U (zh) 一种分层式小型机
TWM505789U (zh) 導風結構
TWI829345B (zh) 散熱裝置及伺服器