WO2024103692A1 - 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品 - Google Patents

基于超细秸秆/碳酸钙粉制备地膜的方法及其产品 Download PDF

Info

Publication number
WO2024103692A1
WO2024103692A1 PCT/CN2023/098448 CN2023098448W WO2024103692A1 WO 2024103692 A1 WO2024103692 A1 WO 2024103692A1 CN 2023098448 W CN2023098448 W CN 2023098448W WO 2024103692 A1 WO2024103692 A1 WO 2024103692A1
Authority
WO
WIPO (PCT)
Prior art keywords
straw
calcium carbonate
powder
ultrafine
zone
Prior art date
Application number
PCT/CN2023/098448
Other languages
English (en)
French (fr)
Inventor
徐磊
郑志雨
严旎娜
陈敬文
汪敏
蒋希芝
徐锐
Original Assignee
江苏省农业科学院
江苏博创新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省农业科学院, 江苏博创新材科技有限公司 filed Critical 江苏省农业科学院
Publication of WO2024103692A1 publication Critical patent/WO2024103692A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/28Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture specially adapted for farming

Definitions

  • the invention relates to a method for preparing a mulch film, in particular to a method for preparing a mulch film based on ultrafine straw/calcium carbonate powder and a product thereof, belonging to the field of agricultural application.
  • Crop straw is one of the most abundant biomass materials in nature. Applying it in ground film can not only improve the utilization of agricultural waste, but also disperse into the soil as the ground film degrades, achieving the effect of returning straw to the field.
  • Chinese invention patent CN113461983A discloses a method for filling PBAT film with modified straw powder, which requires first crushing the straw to 500-800 mesh, then modifying the straw powder, and finally adding it to the PBAT film; the elongation at break of the prepared PBAT film is 430-460%; the tensile strength is 32.24-36.43MPa. Although the cost can be reduced by adding straw powder, the cost of straw crushing and modification cannot be ignored.
  • the technical problem to be solved by the present invention is to provide a method based on ultrafine Straw/calcium carbonate powder mulch film and preparation method thereof.
  • the present invention provides a method for preparing a mulch film based on ultrafine straw/calcium carbonate powder, comprising the following steps:
  • the composite particles are blown into a film by a film blowing machine to obtain a ground film.
  • the mesh size of the coarse powder in step 1) is 50-100 meshes, which is conducive to further grinding after mixing with calcium carbonate powder.
  • the mass ratio of coarse powder to ultrafine calcium carbonate is 1 to 4:1, and the mesh size of the ultrafine calcium carbonate powder is 1000 to 2000 mesh, which can greatly improve the crushing effect and avoid electrostatic adsorption or agglomeration between calcium powder and straw powder.
  • the pulverizing time in step 1) is 2 to 3 hours to ensure that the ultrafine straw/calcium carbonate powder is fully ground.
  • step 2) the mass ratio of PBAT, PLA, compatibilizer, epoxy soybean oil, silane coupling agent and ultrafine straw/calcium carbonate powder is 200-800:10-180:2-20:1-15:1-20:20-300.
  • the compatibilizer includes an anhydride type compatibilizer, an epoxy type compatibilizer or an ethylene terpolymer.
  • the extrusion temperature of the twin-screw extruder granulator in step 2) is 180-200°C in zone 1, 170-190°C in zone 2, 170-190°C in zone 3, 160-180°C in zone 4, and 150-170°C in zone 5, and the main engine speed is 40-80rpm.
  • the film blowing temperature of the film blowing machine in step 3) is 180-200°C in zone 1, 170-190°C in zone 2, 170-190°C in zone 3, 165-185°C in zone 4, 160-180°C in zone 5, and 150-170°C in zone 6.
  • step 3 the main engine speed of the film blowing machine is 10 to 30 rpm, and the pulling speed is 5 to 25 rpm.
  • the invention also provides a ground film prepared by the method.
  • the ultrafine calcium carbonate powder itself has a small particle size and a hard texture, it can act as a grinding friction agent, similar to the small balls in a ball mill; and the ultrafine calcium carbonate powder can be fully dispersed in the straw powder, avoiding electrostatic adsorption or agglomeration between the calcium powder and the straw powder.
  • Figure 1 shows the pulverization efficiency of ultrafine straw/calcium carbonate powder at different ratios
  • FIG2 is an infrared spectrum of straw/calcium carbonate powder before and after sieving
  • FIG3 is a scanning electron microscope image of pure straw powder and straw/calcium carbonate powder
  • Figure 4 shows the mechanical properties of mulch films prepared from different straw/calcium carbonate powders.
  • Ultrafine calcium carbonate powders with particle sizes of 1000 mesh, 1500 mesh and 2000 mesh were selected and sieved respectively. It was found that the amount of ultrafine calcium carbonate powders of 1000 mesh, 1500 mesh and 2000 mesh after sieving was small, indicating that a certain amount of agglomeration would occur between the calcium powders, resulting in an increase in particle size.
  • Preparation of ultrafine straw/calcium carbonate powder Grind the wheat straw and sieve it to obtain wheat straw coarse powder of about 50 mesh, then mix the wheat straw coarse powder and the sieved 1000 mesh ultrafine calcium carbonate powder in a mass ratio of 4:1, put it into a grinder and grind it for 3 hours, and pass the mixture through a 1000 mesh sieve to obtain ultrafine straw/calcium carbonate powder.
  • ground film 200 parts of PBAT, 10 parts of PLA, 2 parts of compatibilizer, 1 part of epoxy soybean oil (chemical formula: (RC 2 H 2 OR'COO) 3 C 3 H 5 ), 1 part of silane coupling agent, and 20 parts of ultrafine straw/calcium carbonate powder are uniformly mixed in proportion and made into composite particles through a twin-screw extruder granulator.
  • the twin-screw extrusion temperature is 190°C in zone 1, 180°C in zone 2, 180°C in zone 3, 170°C in zone 4, and 160°C in zone 5, and the main engine speed is 60rpm. Then, a ground film with a thickness of 10 ⁇ m can be obtained by blowing the film through a film blowing machine.
  • the film blowing temperature is 190°C in zone 1, 180°C in zone 2, 180°C in zone 3, 175°C in zone 4, 170°C in zone 5, and 160°C in zone 6;
  • the main engine speed is 20rpm, and the traction rate is 15rpm.
  • Preparation of ultrafine straw/calcium carbonate powder Grind wheat straw and sieve to obtain wheat straw coarse powder of about 80 mesh.
  • the wheat straw coarse powder and 2000-mesh ultrafine calcium carbonate powder were mixed in a mass ratio of 2:1, and then put into a grinder and crushed for 2 hours.
  • the mixture was passed through a 1000-mesh sieve to obtain ultrafine straw/calcium carbonate powder.
  • Preparation of mulch film 800 parts of PBAT, 180 parts of PLA, 20 parts of compatibilizer, 15 parts of epoxy soybean oil, 20 parts of silane coupling agent, and 300 parts of ultrafine straw/calcium carbonate powder are uniformly mixed in proportion and made into composite particles through a twin-screw extruder granulator.
  • the twin-screw extrusion temperature is 200°C in zone 1, 190°C in zone 2, 190°C in zone 3, 180°C in zone 4, and 170°C in zone 5, and the main engine speed is 80rpm. Then, a mulch film with a thickness of 10 ⁇ m can be obtained by blowing the film through a film blowing machine.
  • the film blowing temperature is 200°C in zone 1, 190°C in zone 2, 190°C in zone 3, 185°C in zone 4, 180°C in zone 5, and 170°C in zone 6;
  • the main engine speed is 30rpm, and the traction rate is 25rpm.
  • Preparation of ultrafine straw/calcium carbonate powder Grind the wheat straw and sieve it to obtain wheat straw coarse powder of about 100 mesh, then mix the wheat straw coarse powder and 1500 mesh ultrafine calcium carbonate powder in a mass ratio of 1:1, put it into a grinder and grind it for 2.5 hours, and pass the mixture through a 1000 mesh sieve to obtain ultrafine straw/calcium carbonate powder.
  • Preparation of mulch film 500 parts of PBAT, 100 parts of PLA, 10 parts of compatibilizer, 10 parts of epoxy soybean oil, 10 parts of silane coupling agent, and 200 parts of ultrafine straw/calcium carbonate powder are uniformly mixed in proportion and made into composite particles through a twin-screw extruder granulator.
  • the twin-screw extrusion temperature is 180°C in zone 1, 170°C in zone 2, 170°C in zone 3, 160°C in zone 4, and 150°C in zone 5, and the main engine speed is 40rpm. Then, a mulch film with a thickness of 10 ⁇ m can be obtained by blowing the film through a film blowing machine.
  • the film blowing temperature is 180°C in zone 1, 170°C in zone 2, 170°C in zone 3, 165°C in zone 4, 160°C in zone 5, and 150°C in zone 6;
  • the main engine speed is 10rpm, and the traction rate is 5rpm.
  • Preparation of ultrafine straw/calcium carbonate powder Grind the wheat straw and sieve it to obtain wheat straw coarse powder of about 50 mesh, then mix the wheat straw coarse powder and calcium carbonate powder of about 500 mesh in a mass ratio of 1:1, put it into a grinder and grind it for 3 hours to obtain a mixture, and pass it through a 500-mesh sieve to obtain ultrafine straw/calcium carbonate powder.
  • Example 5 Investigation of the pulverization efficiency of ultrafine straw/calcium carbonate powder at different ratios
  • the infrared spectra of the straw/calcium carbonate powder in Example 2 before and after sieving were measured.
  • the hydroxyl peak of the straw/calcium carbonate powder in Example 2 after passing through a 1000-mesh sieve is basically consistent with that before sieving, indicating that the ratio of straw to calcium carbonate remains basically unchanged, rather than the calcium carbonate content increasing and the straw content decreasing.
  • Sieving basically does not affect the content of calcium carbonate and straw.
  • the mulch prepared by the method of Example 1 with pure straw powder was used as a comparative example.
  • the mulch films in Examples 1-4 were subjected to mechanical property tests. As shown in Figure 4, the tensile strength of the mulch film added with pure straw powder is 14.87MPa, and the elongation at break is 488.01%; the tensile strengths of the mulch films prepared in Examples 1-4 are 21.83MPa, 26.23MPa, 21.00MPa, and 22.9MPa, respectively; the elongations at break are 450.60%, 528.10%, 397.15%, and 447.6%, respectively.
  • the present invention adds straw/calcium carbonate powder to PBAT, which not only greatly improves the tensile strength, but also improves the elongation at break to a certain extent, indicating that it has a very positive effect in modifying mulch films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Protection Of Plants (AREA)

Abstract

本发明公开了基于超细秸秆/碳酸钙粉制备地膜的方法,包括以下步骤:(1)将秸秆粉粗粉与超细碳酸钙混合,粉碎,过筛,得到超细秸秆/碳酸钙粉,所述超细秸秆/碳酸钙粉为500~2000目;(2)将PBAT、PLA、相容剂、环氧大豆油、硅烷偶联剂和超细秸秆/碳酸钙粉进行混合,经过双螺杆挤出造粒机制成复合颗粒;(3)将复合颗粒通过吹膜机吹膜,制得地膜。本发明所述的方法中秸秆粉的1000目产率在30%以上;钙粉的添加可大幅提高秸秆粉碎效果,同时可以有效避免钙粉之间以及秸秆粉之间的静电吸附或团聚;且钙粉可充当地膜开口剂,无需从秸秆粉中分离出来。本发明还公开了由所述方法制备的有较好抗拉强度和断裂伸长率的地膜。

Description

基于超细秸秆/碳酸钙粉制备地膜的方法及其产品 技术领域
本发明涉及一种制备地膜的方法,尤其涉及一种基于超细秸秆/碳酸钙粉制备地膜的方法及其产品,属于农业应用领域。
背景技术
在国家大力倡导“双碳”战略的背景下,可降解材料的应用越来越广泛,如可降解地膜、垃圾袋等。但是,目前可降解材料所面临的问题主要集中在原料价格较高以及性能较PE等传统材料差,因此很难大规模使用。可降解地膜也面临着同样的问题,因此急需一种改性手段,既可以降低可降解材料的成本,又能使得其性能有一定的提升。现有技术中,中国发明专利CN104403174A公开了一种碳酸钙填充PBAT地膜的方法,虽然碳酸钙的加入使得材料的成本有所降低,但是过多的碳酸钙加入到地膜中,在地膜降解的过程中会使得碳酸钙流失到土壤当中,使得土地硬化,不利于后续的种植,因此不具备实用性。
农作物秸秆是自然界最丰富的生物质材料之一,将其应用在地膜中不仅可以提高农业废弃物的利用,同时其也可以随着地膜的降解而分散进土壤中,达到秸秆还田的效果。现有技术中,中国发明专利CN113461983A公开了一种改性秸秆粉填充PBAT膜的方法,其需要先将秸秆粉碎到500-800目,再将秸秆粉改性,最后才添加到PBAT膜中;制备得到的PBAT膜的断裂伸长率为430~460%;拉伸强度为32.24~36.43MPa。虽然其通过秸秆粉的添加可以降低成本,但是其在秸秆粉碎和改性的成本仍不容忽视。此外,在秸秆粉碎过程中,一方面粉碎的效率不高导致的能耗会增加成本,另一方面秸秆颗粒较大根本无法制备较薄的农用地膜,增加成本的同时且会导致地膜性能大幅下降。因此,该技术实际应用也具有一定的局限。
综上所述,亟待提供一种简单高效的秸秆/PBAT复合地膜的方法,因此高目数的秸秆粉的制备及改性也显得尤为重要。单纯小麦秸秆在粉碎过程中,由于本身质地较软,难以达到较好的粉碎效果。粉碎3小时的纯秸秆粉通过1000目筛(10μm)的产率仅为3-9%。
发明内容
发明目的:本发明所要解决的技术问题是提供了一种有效增大拉伸强度的基于超细 秸秆/碳酸钙粉的地膜及其制备方法。
技术方案:为解决上述技术问题,本发明提供如下技术方案:
本发明提供一种基于超细秸秆/碳酸钙粉的地膜的制备方法,包括以下步骤:
(1)将秸秆粉粗粉与超细碳酸钙混合,粉碎,过筛,得到超细秸秆/碳酸钙粉,所述超细秸秆/碳酸钙粉的目数为500~2000;
(2)将PBAT、PLA、相容剂、环氧大豆油、硅烷偶联剂和超细秸秆/碳酸钙粉进行混合,经过双螺杆挤出造粒机制成复合颗粒;
(3)将复合颗粒通过吹膜机吹膜,制得地膜。
其中,步骤1)中粗粉的目数为50~100目,有利于混合碳酸钙粉后继续研磨。
其中,步骤1)中粗粉与超细碳酸钙的质量比为1~4:1,所述超细碳酸钙粉末的目数为1000~2000目,可大幅提高粉碎效果及避免钙粉之间以及秸秆粉之间的静电吸附或团聚。
其中,步骤1)中粉碎时间为2~3h,保证超细秸秆/碳酸钙粉研磨充分。
其中,步骤2)中PBAT、PLA、相容剂、环氧大豆油、硅烷偶联剂和超细秸秆/碳酸钙粉的质量比为200~800:10~180:2~20:1~15:1~20:20~300。
其中,所述相容剂包括酸酐型相容剂、环氧型相容剂或乙烯三元共聚物。
其中,步骤2)中双螺杆挤出造粒机的挤出温度为一区180~200℃,二区170~190℃,三区170~190℃,四区160~180℃,五区150~170℃,主机转速为40~80rpm。
其中,步骤3)中吹膜机的吹膜温度为一区180~200℃,二区170~190℃,三区170~190℃,四区165~185℃,五区160~180℃,六区150~170℃。
其中,步骤3)中吹膜机的主机转速10~30rpm,牵引速率5~25rpm。
本发明还提供一种由所述方法制备的地膜。
反应机理:因为超细碳酸钙粉本身粒径较小且质地较硬,可以充当粉碎的摩擦剂,类似于球磨中的小球;而且超细碳酸钙粉可以充分分散在秸秆粉中,避免了钙粉之间以及秸秆粉之间的静电吸附或团聚。
有益效果:与现有技术相比,本发明具有如下显著优点:
1、超细碳酸钙粉和秸秆粉混合后可以达到很好的粉碎效果,秸秆粉的1000目产率在30%以上;2、无需将超细碳酸钙粉从秸秆粉中分离出来,可以同时添加到地膜中充当开口剂;3、制备得到的超细秸秆/碳酸钙粉可以增强地膜的拉伸强度。
附图说明
图1为不同比例的超细秸秆/碳酸钙粉的粉碎效率;
图2为秸秆/碳酸钙粉过筛前后的红外光谱图;
图3为纯秸秆粉和秸秆/碳酸钙粉的扫描电镜图;
图4为由不同秸秆/碳酸钙粉末制备的地膜的力学性能。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
材料:小麦秸秆来源于江苏省农业科学院;超细碳酸钙粉末(1000-2000目):苏州盛耀塑胶新材料有限公司,批号SY-2700;热塑性生物降解塑料(PBAT):金辉兆隆高新科技有限公司,批号1908;硅烷偶联剂(PLA):美国嘉吉公司,批号2003D;相容剂:乙烯三元共聚物,美国杜邦,HP441;硅烷偶联剂:国药化试,KH570;环氧大豆油:麦克林。
仪器:双螺杆挤出造粒机:张家港联江机械有限公司,LJPS20-PLC;吹膜机:张家港联江机械有限公司,SCM25-PLC。
实施例1
分别选用粒径是1000目、1500目、2000目的超细碳酸钙粉末,过筛,发现过筛后的1000目、1500目、2000目的超细碳酸钙粉末量较小,表明钙粉之间会发生一定的团聚导致粒径变大。
超细秸秆/碳酸钙粉的制备:将小麦秸秆研磨,过筛,得到50目左右的小麦秸秆粗粉,再将小麦秸秆粗粉和过筛后的1000目超细碳酸钙粉末按照质量比4:1进行混合,再放入粉碎机中粉碎3小时,得到混合物过1000目筛,得到超细秸秆/碳酸钙粉。
地膜的制备:将PBAT 200份,PLA 10份,相容剂2份,环氧大豆油(化学式:(RC2H2OR'COO)3C3H5)1份,硅烷偶联剂1份,超细秸秆/碳酸钙粉20份按比例均匀混合,经过双螺杆挤出造粒机制成复合颗粒。其中,双螺杆挤出温度为一区190℃,二区180℃,三区180℃,四区170℃,五区160℃,主机转速为60rpm。再通过吹膜机吹膜,即可制得厚度为10μm的地膜。其中,吹膜温度为一区190℃,二区180℃,三区180℃,四区175℃,五区170℃,六区160℃;主机转速20rpm,牵引速率15rpm。
实施例2
超细秸秆/碳酸钙粉的制备:将小麦秸秆研磨,过筛,得到80目左右的小麦秸秆粗 粉,再将小麦秸秆粗粉和2000目的超细碳酸钙粉末按照质量比2:1进行混合,再放入粉碎机中粉碎2小时,得到混合物过1000目筛,得到超细秸秆/碳酸钙粉。
地膜的制备:将PBAT 800份,PLA 180份,相容剂20份,环氧大豆油15份,硅烷偶联剂20份,超细秸秆/碳酸钙粉300份按比例均匀混合,经过双螺杆挤出造粒机制成复合颗粒。其中,双螺杆挤出温度为一区200℃,二区190℃,三区190℃,四区180℃,五区170℃,主机转速为80rpm。再通过吹膜机吹膜,即可制得厚度为10μm的地膜。其中,吹膜温度为一区200℃,二区190℃,三区190℃,四区185℃,五区180℃,六区170℃;主机转速30rpm,牵引速率25rpm。
实施例3
超细秸秆/碳酸钙粉的制备:将小麦秸秆研磨,过筛,得到100目左右的小麦秸秆粗粉,再将小麦秸秆粗粉和1500目的超细碳酸钙粉末按照质量比1:1进行混合,再放入粉碎机中粉碎2.5小时,得到混合物过1000目筛,得到超细秸秆/碳酸钙粉。
地膜的制备:将PBAT 500份,PLA 100份,相容剂10份,环氧大豆油10份、硅烷偶联剂10份,超细秸秆/碳酸钙粉200份按比例均匀混合,经过双螺杆挤出造粒机制成复合颗粒。其中,双螺杆挤出温度为一区180℃,二区170℃,三区170℃,四区160℃,五区150℃,主机转速为40rpm。再通过吹膜机吹膜,即可制得厚度为10μm的地膜。其中,吹膜温度为一区180℃,二区170℃,三区170℃,四区165℃,五区160℃,六区150℃;主机转速10rpm,牵引速率5rpm。
实施例4
超细秸秆/碳酸钙粉的制备:将小麦秸秆研磨,过筛,得到50目左右的小麦秸秆粗粉,再将小麦秸秆粗粉和500目左右碳酸钙粉末按照质量比1:1进行混合,再放入粉碎机中粉碎3小时,得到混合物,过500目筛,得到超细秸秆/碳酸钙粉。
地膜的制备:将PBAT 600份,PLA 150份,相容剂18份,环氧大豆油12份、硅烷偶联剂18份,超细秸秆/碳酸钙粉250份按比例均匀混合,经过双螺杆挤出造粒机制成复合颗粒。其中,双螺杆挤出机和吹膜机参数同实施例1。
实施例5探究不同比例超细秸秆/碳酸钙粉的粉碎效率
以纯小麦秸秆为对比例,将其放入粉碎机中粉碎3小时。如图1所示,实施例1-4中的1000目以上的产率分别为35.9%,51.8%,30.2%,15.7%均高于纯小麦秸秆的产率5.1%;可见,随着碳酸钙比例的增加,1000目以上的产率也随之增加,但是碳酸钙的 含量过多反而会导致粉碎效率下降,即小麦秸秆粗粉和超细碳酸钙粉末的质量比2:1时,1000目以上的产率最高。
实施例6探究过筛对超细秸秆/碳酸钙粉含量的影响
以纯小麦秸秆粉和超细碳酸钙为对比例,测定实施例2中秸秆/碳酸钙粉过筛前后的红外光谱,如图2所示,实施例2中的秸秆/碳酸钙粉在过完1000目筛后的羟基峰与未过筛的基本一致,表明其秸秆与碳酸钙的比例基本不变,而不是碳酸钙含量变多,秸秆含量变少,过筛基本不影响碳酸钙和秸秆的含量。
实施例7探究超细秸秆粉的粒径大小
以纯秸秆粉为对比例,对实施例2的秸秆/碳酸钙粉进行电镜扫描。如图3所示,秸秆/碳酸钙粉中秸秆粉的平均粒径为6μm,较单纯秸秆粉碎30μm的粒径大幅下降,这表明添加碳酸钙可以大幅提高粉碎效率。
实施例8探究不同地膜的力学性能
以用纯秸秆粉按实施例1方法制备的地膜作为对比例。将实施例1-4中的地膜进行力学性能测试。如图4所示,纯秸秆粉添加的地膜的抗拉伸强度为14.87MPa,断裂伸长率为488.01%;实施例1-4中制得的地膜抗拉伸强度分别为21.83MPa,26.23MPa,21.00MPa,22.9MPa;断裂伸长率分别为450.60%,528.10%,397.15%,447.6%。在添加了纯秸秆粉的地膜里,明显能看到斑点,导致其力学性能下降,表明其也会发生团聚;而本发明将秸秆/碳酸钙粉末加入到PBAT中,不仅大幅提高了抗拉强度,断裂伸长率也有一定的提升,表明其在改性地膜方面有着十分积极的作用。

Claims (10)

  1. 基于超细秸秆/碳酸钙粉的地膜的制备方法,其特征在于,包括以下步骤:
    (1)将秸秆粉粗粉与超细碳酸钙粉混合,粉碎,过筛,得到超细秸秆/碳酸钙粉,所述超细秸秆/碳酸钙粉为500~2000目;
    (2)将PBAT、PLA、相容剂、环氧大豆油、硅烷偶联剂和超细秸秆/碳酸钙粉进行混合,经过双螺杆挤出造粒机制成复合颗粒;
    (3)将复合颗粒通过吹膜机吹膜,制得地膜。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中秸秆粉粗粉为50~100目。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中秸秆粉粗粉与超细碳酸钙的质量比为1~4:1;所述超细碳酸钙粉末为1000~2000目。
  4. 根据权利要求1所述的方法,其特征在于,步骤(1)中粉碎时间为2~3h。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中PBAT、PLA、相容剂、环氧大豆油、硅烷偶联剂和超细秸秆/碳酸钙粉的质量比为200~800:10~180:2~20:1~15:1~20:20~300。
  6. 根据权利要求5所述的方法,其特征在于,所述相容剂包括酸酐型相容剂、环氧型相容剂或乙烯三元共聚物。
  7. 根据权利要求1所述的方法,其特征在于,步骤(2)中双螺杆挤出造粒机的挤出温度为一区180~200℃,二区170~190℃,三区170~190℃,四区160~180℃,五区150~170℃,主机转速为40~80rpm。
  8. 根据权利要求1所述的方法,其特征在于,步骤(3)中吹膜机的吹膜温度为一区180~200℃,二区170~190℃,三区170~190℃,四区165~185℃,五区160~180℃,六区150~170℃。
  9. 根据权利要求5所述的方法,其特征在于,步骤(3)中吹膜机的主机转速10~30rpm,牵引速率5~25rpm。
  10. 由权利要求1~9任一项所述的方法制备的地膜。
PCT/CN2023/098448 2022-11-17 2023-06-06 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品 WO2024103692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211442554.8 2022-11-17
CN202211442554.8A CN115746512B (zh) 2022-11-17 2022-11-17 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品

Publications (1)

Publication Number Publication Date
WO2024103692A1 true WO2024103692A1 (zh) 2024-05-23

Family

ID=85372885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098448 WO2024103692A1 (zh) 2022-11-17 2023-06-06 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品

Country Status (2)

Country Link
CN (1) CN115746512B (zh)
WO (1) WO2024103692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746512B (zh) * 2022-11-17 2024-07-05 江苏省农业科学院 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382572A (zh) * 2011-10-11 2012-03-21 徐梅 一种低成本环保内墙涂料的制备工艺
CN105001603A (zh) * 2014-11-25 2015-10-28 江苏天仁生物材料有限公司 一种以聚乳酸/聚对苯二甲酸己二酸丁二酯为基料的全生物降解材料及其制备方法
WO2016015508A1 (zh) * 2014-07-31 2016-02-04 南京工业大学 一种秸秆生物质的改性及其使用方法
CN105315689A (zh) * 2014-07-31 2016-02-10 南京博方生物科技有限公司 一种秸秆基材料的制备及其使用方法
CN106832424A (zh) * 2017-03-15 2017-06-13 苏州普利金新材料有限公司 一种纤维素粉和生物降解树脂共混改性材料制备吹塑薄膜的方法
US20180142073A1 (en) * 2016-11-24 2018-05-24 Chiao Fu Material Technology Co., Ltd. Biodecomposable film material and method for making the same
CN110218424A (zh) * 2019-06-05 2019-09-10 辽宁东盛塑业有限公司 秸秆粉/pla/pbat生物质全降解塑料及制备方法
KR20200047171A (ko) * 2018-10-26 2020-05-07 주식회사 에이유 생분해 속도제어가 가능한 멀칭 필름용 수지 조성물 및 이를 이용한 생분해성 멀칭 필름
CN113234305A (zh) * 2021-05-14 2021-08-10 河北凯力华维包装科技有限公司 可降解复合材料及其制备方法与应用
CN113429759A (zh) * 2021-07-13 2021-09-24 山东瑞丰高分子材料股份有限公司 Pbat复合改性生物降解材料及其制备方法
US20220325039A1 (en) * 2021-03-25 2022-10-13 Tbm Co., Ltd. Resin composition and molded article
CN115746512A (zh) * 2022-11-17 2023-03-07 江苏省农业科学院 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461983A (zh) * 2021-06-23 2021-10-01 沈阳化工大学 一种添加秸秆粉全降解种子膜的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382572A (zh) * 2011-10-11 2012-03-21 徐梅 一种低成本环保内墙涂料的制备工艺
WO2016015508A1 (zh) * 2014-07-31 2016-02-04 南京工业大学 一种秸秆生物质的改性及其使用方法
CN105315689A (zh) * 2014-07-31 2016-02-10 南京博方生物科技有限公司 一种秸秆基材料的制备及其使用方法
CN105001603A (zh) * 2014-11-25 2015-10-28 江苏天仁生物材料有限公司 一种以聚乳酸/聚对苯二甲酸己二酸丁二酯为基料的全生物降解材料及其制备方法
US20180142073A1 (en) * 2016-11-24 2018-05-24 Chiao Fu Material Technology Co., Ltd. Biodecomposable film material and method for making the same
CN106832424A (zh) * 2017-03-15 2017-06-13 苏州普利金新材料有限公司 一种纤维素粉和生物降解树脂共混改性材料制备吹塑薄膜的方法
KR20200047171A (ko) * 2018-10-26 2020-05-07 주식회사 에이유 생분해 속도제어가 가능한 멀칭 필름용 수지 조성물 및 이를 이용한 생분해성 멀칭 필름
CN110218424A (zh) * 2019-06-05 2019-09-10 辽宁东盛塑业有限公司 秸秆粉/pla/pbat生物质全降解塑料及制备方法
US20220325039A1 (en) * 2021-03-25 2022-10-13 Tbm Co., Ltd. Resin composition and molded article
CN113234305A (zh) * 2021-05-14 2021-08-10 河北凯力华维包装科技有限公司 可降解复合材料及其制备方法与应用
CN113429759A (zh) * 2021-07-13 2021-09-24 山东瑞丰高分子材料股份有限公司 Pbat复合改性生物降解材料及其制备方法
CN115746512A (zh) * 2022-11-17 2023-03-07 江苏省农业科学院 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG, XIAOZHONG; CHEN, JIE; TONG, LIXIN; YANG, YONGQIANG; WANG, HUI: "Preparation and Moulded Technology of Biodegradable Moulding Powder", JOURNAL OF LIGHT INDUSTRY, vol. 17, no. 04, 30 December 2002 (2002-12-30), pages 14 - 16, XP009554695, ISSN: 2096-1553 *
TONG, YI; LI, YI; ZHANG, HUILIANG; WU, YANDONG; YAN, XIANGYU; WANG, WEN: "Preparation and Characterization of Blown Films with High Content of PLA", CHINA PLASTICS INDUSTRY, vol. 45, no. 07, 20 July 2017 (2017-07-20), pages 27 - 31, XP009554696, ISSN: 1005-5770 *

Also Published As

Publication number Publication date
CN115746512B (zh) 2024-07-05
CN115746512A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024103692A1 (zh) 基于超细秸秆/碳酸钙粉制备地膜的方法及其产品
CN111165242B (zh) 一种肥料型生物降解地膜及其制备方法
CN111592667B (zh) 增强、抗菌型的人造岗石废渣基塑料母粒及其制备方法
CN113637299B (zh) 一种耐热耐冲击聚乳酸复合材料及其制备方法与应用
CN1746274A (zh) 一种农作物秸秆颗粒燃料及其制备方法
CN108410145A (zh) 基于辐射改性制备秸秆纤维/pbat复合材料的方法
CN112063022A (zh) 一种机械力化学改性制备耐水淀粉基降解塑料母料的方法
CN102443196B (zh) 一种辐射改性淀粉生物降解材料及其制备方法
CN116694045A (zh) 一种超薄型生物可降解地膜及其制备方法
CN114933785A (zh) 一种改性木质素/pbat可生物降解塑料及其制备方法
CN102558874B (zh) 一种硅橡胶复合材料及提高力学性能的方法
WO2019061757A1 (zh) 一种耐老化木塑包装材料及其制备方法
CN101407595B (zh) 微细橡胶粉生产方法及其微细橡胶粉
CN114539728B (zh) 黑滑石改性可生物降解吹膜级复合材料及其制备方法
CN107880502A (zh) 一种生物全降解塑料及其制备方法
CN115851003A (zh) 一种无机阻燃复合填料及其制备方法和应用
CN110256761A (zh) 一种仿真植物及其制备方法
CN113480780B (zh) 一种生物基三维土工网垫及其制备方法
CN104530662A (zh) 一种降解塑料专用料及其制备方法
CN1597121A (zh) 一种从废旧轮胎制备高表面活性胶粉的方法
CN115160606A (zh) 具有高拉伸强度和冲击强度的复合材料及其制备方法
CN113461983A (zh) 一种添加秸秆粉全降解种子膜的制备方法
CN109957214B (zh) 一种纳米氧化物及大豆分离蛋白改性聚己二酸/对苯二甲酸丁二酯复合材料及其制备方法
CN110423427A (zh) 一种木塑复合材料及其制备方法、成型、改性工艺
CN110734631A (zh) 一种木质素基可生物降解聚丁二酸丁二醇酯薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890134

Country of ref document: EP

Kind code of ref document: A1