WO2024098335A1 - 制动***的控制方法和装置 - Google Patents

制动***的控制方法和装置 Download PDF

Info

Publication number
WO2024098335A1
WO2024098335A1 PCT/CN2022/131180 CN2022131180W WO2024098335A1 WO 2024098335 A1 WO2024098335 A1 WO 2024098335A1 CN 2022131180 W CN2022131180 W CN 2022131180W WO 2024098335 A1 WO2024098335 A1 WO 2024098335A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
main
pressure
braking
subsystem
Prior art date
Application number
PCT/CN2022/131180
Other languages
English (en)
French (fr)
Inventor
杨维妙
张永生
靳彪
刘栋豪
张宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/131180 priority Critical patent/WO2024098335A1/zh
Priority to CN202280082139.8A priority patent/CN118382568A/zh
Publication of WO2024098335A1 publication Critical patent/WO2024098335A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the embodiments of the present application relate to the field of intelligent driving, and more specifically, to a control method and device for a braking system.
  • the vehicle's braking system is a system that applies a certain degree of braking force to the vehicle's wheels, thereby forcing the vehicle to brake to a certain extent.
  • vehicle electrification and intelligence the requirements for vehicle braking systems are becoming higher and higher.
  • the operation of the braking system has reduced its dependence on the driver, making the requirements for the redundancy performance of the braking system higher and higher.
  • the redundancy performance of the braking system is insufficient, which will affect the use of the braking system; and setting up multiple sets of devices in the braking system to improve the redundancy performance of the braking system will cause the weight and cost of the braking system to be too high. How to reasonably set up a redundant solution for the braking system has become a problem that needs to be solved.
  • the embodiments of the present application provide a control method and device for a braking system, which can ensure the realization of the braking function at a relatively low cost and improve the safety of braking when some devices in the main braking subsystem of the braking system fail.
  • a control method for a braking system is provided.
  • the control method can be executed by a vehicle equipped with the braking system, or by a controller of the braking system, or by the braking system, and the embodiments of the present application are not limited to this.
  • the braking system may include a main braking subsystem and an auxiliary braking subsystem, the main braking subsystem is controlled by a first control unit, and the method may include: obtaining the working status of the first control unit and the main braking subsystem; when the working status indicates that the first control unit is working normally and some devices in the main braking subsystem are faulty, controlling the devices in the main braking subsystem except the faulty device through the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the pressure of the brake fluid in the wheel cylinder is adjusted by devices other than the failed device in the main braking subsystem, thereby ensuring the realization of the basic braking function and the dynamic function at a lower cost to improve the braking safety.
  • the braking system is in a driver braking mode
  • the main braking subsystem includes a first sensor
  • the auxiliary braking subsystem includes a second sensor
  • the first sensor and the second sensor are used to obtain the driver's braking force demand information
  • the method may further include: determining the braking force information based on the braking force demand information obtained by the second sensor; wherein, controlling the devices in the main braking subsystem except the faulty device through the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder may include: when the working state indicates that the first sensor is faulty, controlling the devices in the main braking subsystem except the first sensor through the first control unit to adjust the pressure based on the braking force information.
  • the first control unit when the brake system is in the driver control mode, when the first sensor in the main brake subsystem fails, the first control unit can control the normal device in the main brake subsystem to adjust the pressure of the brake fluid in the brake wheel cylinder based on the driver's braking force demand information obtained by the second sensor in the auxiliary brake subsystem. In this way, the normal state of the device in the main brake subsystem can be fully utilized to realize the functions supported by the brake system, and the safety of braking can be improved at a lower cost.
  • the braking system is in an active braking mode
  • the main braking subsystem includes a first sensor
  • the first sensor is used to obtain the driver's braking force requirement information.
  • the method may also include: determining the braking force requirement information based on the vehicle's operating status and/or surrounding environment information; wherein, controlling the devices in the main braking subsystem other than the faulty device through the first control unit to adjust the pressure of the brake fluid in the wheel cylinder may include: when the working status indicates that the first sensor is faulty, controlling the devices in the main braking subsystem other than the first sensor through the first control unit to adjust the pressure based on the braking force requirement information.
  • the brake system When the brake system is in active braking mode, the driver does not need to operate the brake system, and the braking force demand information can be derived from the vehicle's motion state information and/or surrounding environment information. Therefore, in active braking mode, the failure of the first sensor will not affect the main brake subsystem's regulation of the brake fluid pressure in the brake wheel cylinder.
  • the braking system when the braking system is in active braking mode, the first control unit is operating normally, and the first sensor in the main braking subsystem fails, the pressure of the brake fluid in the wheel cylinder is regulated by the main braking subsystem, so that the devices in the main braking subsystem can be fully utilized to realize basic braking functions and dynamic functions, and the redundant performance of the braking system can be determined at a lower cost.
  • the main braking subsystem includes a main boosting module, an inlet valve and an outlet valve, the main boosting module is used to adjust the pressure of the brake fluid in a first section of the pipeline, the first section of the pipeline is a brake pipeline between the main boosting module and the inlet valve, when the inlet valve is in a conducting state, the first section of the pipeline is communicated with the brake wheel cylinder, the auxiliary braking subsystem includes an auxiliary boosting module, the auxiliary boosting module is used to adjust the pressure of the brake fluid in the first section of the pipeline, wherein, controlling the devices in the main braking subsystem other than the fault device by the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder may include: when the working state indicates that the main boosting module is faulty, adjusting the pressure of the brake fluid in the first section of the pipeline by the auxiliary boosting module, and controlling the inlet valve and/or the outlet valve by the first control unit to adjust the pressure of the brake
  • the auxiliary boost module in the auxiliary brake subsystem adjusts the pressure of the brake fluid in the first section of the pipeline connected to the pressure inlet port of the inlet valve, and then adjusts the pressure of the brake fluid in the brake wheel cylinder through the inlet valve and/or the outlet valve. It can realize the control of a single brake wheel cylinder, ensure the smooth operation of the dynamic function, and ensure the safety of braking.
  • the main boost module includes a main pressure supply device, a first control valve and a third sensor, wherein the first control valve is used to connect the main pressure supply device and the first section of the pipeline, the main boost module adjusts the pressure of the brake fluid in the first section of the pipeline through the main pressure supply device, and the third sensor is used to sense the operating state of the main pressure supply device, wherein the operating state indicates a fault of the main boost module, and may include: the operating state indicates a fault of at least one of the main pressure supply device, the first control valve and the third sensor.
  • the first control valve may include one or more control valves, that is, one or more control valves may be provided between the main pressure supply device and the first section of the pipeline.
  • the main pressure supply device adjusts the pressure of the brake fluid in the first section of the pipeline, which may mean that when the one or more control valves between the main pressure supply device and the first section of the pipeline are in a turned-on state, the main pressure supply device can adjust the pressure of the brake fluid in the first section of the pipeline.
  • a failure of the first control valve may refer to a failure of at least one of the one or more control valves.
  • the main brake subsystem includes a main boost module, an inlet valve and an outlet valve
  • the main boost module is used to adjust the pressure of the brake fluid in a first section of the pipeline
  • the first section of the pipeline is a brake pipeline between the main boost module and the inlet valve
  • controlling the devices in the main brake subsystem other than the fault device by the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder may include: when the inlet valve indicates a fault in the working state and the inlet valve is in a conducting state, and/or when the outlet valve fails and the outlet valve is in a disconnected state, controlling the main boost module by the first control unit to adjust the pressure.
  • the inlet valve and/or outlet valve provided in the brake system may correspond to each brake wheel cylinder respectively.
  • the wheel cylinder when the inlet valve is in the on state, the wheel cylinder is connected to the first section of the pipeline.
  • the wheel cylinder corresponding to it is connected to the first section of the pipeline, and the main pressure providing device can adjust the pressure of the brake fluid in the wheel cylinder by adjusting the pressure of the brake fluid in the first section of the pipeline.
  • the main pressure providing device can adjust the brake fluid pressure in the wheel cylinder corresponding to the inlet valve by combining the inlet valve and/or the outlet valve.
  • the main pressure providing device can adjust the pressure of the brake fluid in the brake wheel cylinder corresponding to the failed outlet valve by adjusting the pressure of the brake fluid in the first section of the pipeline.
  • the pressure of the brake fluid in the brake wheel cylinder is regulated by the main boost module in the main brake subsystem to ensure the realization of the braking function.
  • the first section of the line may include corresponding branches.
  • the first section of the pipeline may include a first branch of the first section of the pipeline connected to the brake cylinders (17, 18) of the first set of wheels (121), and a second branch of the first section of the pipeline connected to the brake cylinders (19, 20) of the second set of wheels (122).
  • the first branch may include the brake circuit supply pipeline 171, etc.
  • the second branch may include the brake circuit supply pipeline 172, etc.
  • the braking system is in an active braking mode
  • the main braking subsystem includes a pedal feel simulation module
  • the pedal feel simulation module is used to provide a pedal feel to the driver.
  • the method may also include: determining braking force requirement information based on the vehicle's operating status and/or surrounding environment information; wherein, controlling the devices in the main braking subsystem other than the fault device through the first control unit to adjust the pressure of the brake fluid in the wheel cylinder may include: when the working status indicates that the pedal feel simulation module is faulty, controlling the devices in the main braking subsystem other than the pedal feel simulation module through the first control unit to adjust the pressure of the brake fluid in the wheel cylinder according to the braking force requirement information.
  • the driver may not need to operate the braking system, and thus the vehicle may not need to provide the driver with a pedal feel through a pedal feel simulation module.
  • the pressure of the brake fluid in the brake wheel cylinder is regulated by the normal device in the main brake subsystem. This can make full use of the device in the main brake subsystem to achieve basic braking function and dynamic function without affecting the use of the brake system.
  • the auxiliary braking subsystem is controlled by a second control unit, and the method may further include: when the first control unit fails, controlling the auxiliary braking subsystem by the second control unit to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • a control device for a braking system which includes a main braking subsystem and an auxiliary braking subsystem.
  • the main braking subsystem is controlled by a first control unit.
  • the device may include: an acquisition unit for acquiring the working status of the first control unit and the main braking subsystem; a processing unit for controlling the devices in the main braking subsystem except the faulty device through the first control unit to adjust the pressure of the brake fluid in the wheel cylinder when the working status indicates that the first control unit is working normally and some devices in the main braking subsystem are faulty.
  • the braking system is in a driver braking mode
  • the main braking subsystem includes a first sensor
  • the auxiliary braking subsystem includes a second sensor
  • the first sensor and the second sensor are used to obtain the driver's braking force demand information
  • the processing unit can be used to: determine the braking force information based on the braking force demand information obtained by the second sensor; when the working state indicates that the first sensor is faulty, control the devices in the main braking subsystem except the first sensor through the first control unit according to the braking force information to adjust the pressure.
  • the braking system is in an active braking mode
  • the main braking subsystem includes a first sensor
  • the first sensor is used to obtain the driver's braking force requirement information.
  • the processing unit is also used to: determine the braking force requirement information based on the vehicle's operating status and/or surrounding environment information; the processing unit can be used to: when the working status indicates that the first sensor is faulty, control the devices in the main braking subsystem other than the first sensor through the first control unit according to the braking force requirement information to adjust the pressure.
  • the main braking subsystem includes a main boost module, an inlet valve and an outlet valve
  • the main boost module is used to adjust the pressure of the brake fluid in a first section of the pipeline
  • the first section of the pipeline is the brake pipeline between the main boost module and the inlet valve
  • the auxiliary braking subsystem includes an auxiliary boost module
  • the auxiliary boost module is used to adjust the pressure of the brake fluid in the first section of the pipeline
  • the processing unit can be used to: when the working state indicates that the main boost module is faulty, the pressure of the brake fluid in the first section of the pipeline is adjusted through the auxiliary boost module
  • the inlet valve and/or the outlet valve are controlled through the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the main boost module includes a main pressure supply device, a first control valve and a third sensor
  • the first control valve is used to connect the main pressure supply device and the first section of the pipeline
  • the main boost module adjusts the pressure of the brake fluid in the first section of the pipeline through the main pressure supply device
  • the third sensor is used to sense the operating status of the main pressure supply device, wherein the working status indicates a fault of the main boost module, and may include: the working status indicates a fault in at least one of the main pressure supply device, the first control valve and the third sensor.
  • the main braking subsystem includes a main boost module, and an inlet valve and/or an outlet valve.
  • the main boost module is used to adjust the pressure of the brake fluid in a first section of the pipeline.
  • the first section of the pipeline is a brake pipeline between the main boost module and the inlet valve.
  • the processing unit can be used to: when the working state indicates that the inlet valve is faulty and the inlet valve is in a conducting state, and/or the outlet valve is faulty and the outlet valve is in a disconnected state, control the main boost module through the first control unit to adjust the pressure.
  • the braking system is in an active braking mode
  • the main braking subsystem includes a pedal feel simulation module
  • the pedal feel simulation module is used to provide a pedal feel to the driver
  • the processing unit can also be used to: determine the braking force requirement information based on the vehicle's operating status and/or surrounding environment information; the processing unit can be used to: when the working status indicates that the pedal feel simulation module is faulty, control the devices in the main braking subsystem except the pedal feel simulation module through the first control unit according to the braking force requirement information to adjust the pressure.
  • the auxiliary braking subsystem is controlled by a second control unit, and the processing unit can also be used to: when the first control unit fails, control the auxiliary braking subsystem to adjust the pressure through the second control unit.
  • a control device which includes a memory and a processor, the memory being used to store a computer program, and the processor being used to execute the computer program in the memory, so that the control device can implement the method in the above-mentioned first aspect and any possible implementation manner thereof.
  • a control system in a fourth aspect, includes a main braking subsystem, an auxiliary braking subsystem and the control device in the second aspect or the third aspect and any possible implementation.
  • a vehicle wherein the intelligent driving device comprises the control device of the second aspect or the third aspect and any possible implementation thereof, or comprises the control system of the fourth aspect and any possible implementation thereof.
  • the vehicle in the present application is a vehicle in a broad sense, which can be a means of transportation (such as commercial vehicles, passenger cars, motorcycles, flying cars, trains, etc.), industrial vehicles (such as forklifts, trailers, tractors, etc.), engineering vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • the embodiments of the present application do not specifically limit the type of vehicle.
  • a computer program product comprising: a computer program code, when the computer program code is run on a computer, the computer executes the method in any possible implementation of the first aspect.
  • a computer-readable storage medium wherein the computer-readable medium stores a computer program, and when the computer program runs on a computer, the computer executes the method in any possible implementation of the first aspect.
  • a chip comprising a circuit for executing the method in any possible implementation of the first aspect.
  • FIG1 is a schematic diagram of a main brake subsystem provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an auxiliary braking subsystem provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a braking system provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a brake fluid pressure boosting path in a brake system provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another brake fluid pressure boosting path in a brake system provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another brake fluid pressure boosting path in a brake system provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another brake fluid pressure boosting path in a brake system provided in an embodiment of the present application.
  • FIG. 8 is a flow chart of a method for controlling a braking system provided in an embodiment of the present application.
  • FIG. 9 is a flow chart of another method for controlling a braking system provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a system architecture of a braking system provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a control unit of an auxiliary braking subsystem provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a control unit of a main brake subsystem provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of a control device for a braking system provided in an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of another control device provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of a main brake subsystem provided by an embodiment of the present application.
  • the main brake subsystem 100 shown in FIG1 includes a main boost module 130.
  • the main boost module 130 can be used to adjust the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20).
  • a vehicle equipped with the brake system may include a first set of wheels 121 and a second set of wheels 122, and a braking force can be provided to the wheels through the brake wheel cylinder (17, 18, 19, 20).
  • the wheel brake cylinders 17 and 18 can provide braking force for the wheels in the first set of wheels 121 , respectively, and correspondingly, the wheel brake cylinders 19 and 20 can provide braking force for the wheels in the second set of wheels 122 , respectively.
  • the first set of wheels 121 may include the left front wheel and the right front wheel of the vehicle, and the second set of wheels 122 may include the right rear wheel and the left rear wheel of the vehicle, that is, the braking system may be arranged in an H-type.
  • the first set of wheels 121 may include a right front wheel and a left rear wheel
  • the second set of wheels 122 may include a left front wheel and a right rear wheel, that is, the braking system may be arranged in an X-type arrangement.
  • the main boost module 130 can adjust the braking force applied to the first set of wheels 121 by adjusting the pressure of the brake fluid in the first fluid inlet pipeline 41.
  • the main boost module 130 can adjust the braking force applied to the second set of wheels 122 by adjusting the pressure of the brake fluid in the second fluid inlet pipeline 42.
  • the first inlet pipeline 41 may include a first inlet branch 31 and a second inlet branch 32 to respectively control the braking force applied to the two wheels of the first set of wheels 121.
  • the second inlet pipeline 42 may include a third inlet branch 33 and a fourth inlet branch 34 to respectively control the braking force applied to the two wheels of the second set of wheels 122.
  • the pressure outlet port of the first inlet branch 31 may be connected to the pressure inlet port 5 of the brake wheel cylinder 17.
  • the pressure outlet ports of the second inlet branch 32, the third inlet branch 33 and the fourth inlet branch 34 may be connected to the pressure inlet ports 6, 7 and 8 of the brake wheel cylinders 18, 19 and 20, respectively.
  • a liquid inlet valve (9, 10, 11, 12) can be arranged on the liquid inlet pipeline of the brake wheel cylinder (17, 18, 19, 20) so as to independently adjust the pressure of the brake fluid in each brake wheel cylinder.
  • the liquid inlet valve corresponding to the brake wheel cylinder can be controlled to be in a conducting state.
  • the liquid inlet valve can be controlled to be in a disconnected state.
  • a liquid inlet valve 9 can be provided in the first liquid inlet branch 31, and the pressure inlet port of the liquid inlet valve 9 can be connected to the pressure outlet port of the brake pipe 1, and the pressure outlet port of the liquid inlet valve 9 can be communicated with the pressure inlet port 5 of the wheel cylinder 17.
  • the brake fluid in the first liquid inlet branch 31 can flow to the wheel cylinder 17, and the pressure of the brake fluid in the wheel cylinder 17 can be increased by increasing the pressure of the brake fluid in the brake pipe 1.
  • liquid inlet valves 10, 11 and 12 can be provided in the second liquid inlet branch 32, the third liquid inlet branch 33 and the fourth liquid inlet branch 34, respectively, and the pressure outlet ports of the liquid inlet valves 10, 11 and 12 can be communicated with the pressure inlet ports 6, 7 and 8 of the wheel cylinders 18, 19 and 20, respectively.
  • a one-way valve 109 connected in parallel with the inlet valve (9, 10, 11, 12) can be provided.
  • the brake fluid pressure in the brake wheel cylinder (17, 18, 19, 20) can be adjusted individually.
  • a liquid outlet valve (13, 14, 15, 16) can be arranged on the liquid outlet pipeline of the brake wheel cylinder (17, 18, 19, 20) so as to independently adjust the pressure of the brake fluid in each brake wheel cylinder.
  • the liquid outlet valve corresponding to the brake wheel cylinder can be controlled to be in a conducting state.
  • the liquid outlet valve can be controlled to be in a disconnected state.
  • the brake wheel cylinder 17 can be connected to the liquid outlet pipeline 110, and a liquid outlet valve 13 can be provided in the brake pipeline between the brake wheel cylinder 17 and the liquid outlet pipeline 110.
  • the liquid outlet valve 13 When the liquid outlet valve 13 is in the conducting state, the brake fluid in the brake pipeline can flow from the brake wheel cylinder 17 to the liquid outlet pipeline 110 through the liquid outlet valve 13, and then flow to the liquid storage device 101, so as to reduce the pressure of the brake fluid in the brake wheel cylinder 17.
  • the liquid outlet valve 13 is in the disconnected state, the brake fluid is blocked by the liquid outlet valve 13 and cannot flow from the brake wheel cylinder 17 to the liquid outlet pipeline 110.
  • liquid outlet valves 14, 15 and 16 can be provided in the brake pipeline between the liquid outlet pipeline 110 and the brake wheel cylinders 18, 19 and 20, respectively. In this way, the brake fluid pressure in the brake wheel cylinders (17, 18, 19, 20) can be adjusted separately.
  • the brake fluid in the wheel cylinder (17, 18, 19, 20) can flow back to the fluid storage device 101 through the fluid outlet pipeline 110. Therefore, the above-mentioned fluid outlet pipeline 110 can also be called a "return oil pipeline”.
  • liquid outlet pipeline oil return pipeline
  • liquid inlet pipeline liquid inlet pipeline
  • the "pressure outlet port” can be understood as the port through which the brake fluid flows out
  • the "pressure inlet port” can be understood as the port through which the brake fluid flows in.
  • the "pressure outlet port” and the “pressure inlet port” can be understood as defining the role of the port in terms of function.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define the role of a physical port in different working modes. For example, during the decompression process of the brake wheel cylinder 18, when the liquid outlet valve 14 is in the on state, the pressure inlet port 6 can be used as the pressure outlet port of the brake wheel cylinder 18.
  • the above-mentioned "pressure outlet port” and “pressure inlet port” can also correspond to two different physical ports.
  • outlet valve solution and inlet valve solution can be configured separately for use in a brake system, or can be used in conjunction with each other in a brake system.
  • the following text, in conjunction with FIG. 1 takes the outlet valve 14 and the inlet valve 10 corresponding to the brake wheel cylinder 18 as an example to introduce the connection method between the outlet valve and the inlet valve.
  • the inlet valve 10 is arranged on the second inlet branch 32, the pressure inlet port of the inlet valve 10 is connected to the brake pipeline 2, and the pressure outlet port of the inlet valve 10 is connected to the pressure inlet port 6 of the brake wheel cylinder 18. Moreover, the pressure inlet port of the outlet valve 14 is connected to the pressure inlet port 6 of the brake wheel cylinder 18, and the pressure outlet port of the outlet valve 14 is connected to the outlet pipeline 110.
  • connection mode between the liquid outlet valve 13 and the liquid inlet valve 9 corresponding to the brake wheel cylinder 17, the connection mode between the liquid outlet valve 15 and the liquid inlet valve 11 corresponding to the brake wheel cylinder 19, and/or the connection mode between the liquid outlet valve 16 and the liquid inlet valve 12 corresponding to the brake wheel cylinder 20 can be the same as the connection mode between the above-mentioned liquid outlet valve 14 and the liquid inlet valve 10.
  • the inlet valve and the outlet valve may be matched in other ways.
  • the wheel cylinder 18 may have two independent physical ports, whereby the wheel cylinder 18 may be connected to the brake circuit supply pipeline 171 and the outlet pipeline 110 through two parallel and independent brake pipelines, respectively, and the inlet valve 10 and the outlet valve 14 may be respectively arranged on the two independent brake pipelines.
  • the "inlet valve”, “inlet valve” and “isolation valve” mentioned above, as well as the “isolation valve” mentioned below, are distinguished based on the function of the control valve in the brake system.
  • the control valve used to control the connection or disconnection of the inlet pipeline can be called an “inlet valve” or a “boosting valve” or an “oil inlet valve”.
  • the control valve used to control the connection or disconnection of the outlet pipeline can be called a “outlet valve” or a “pressure reducing valve” or an “oil outlet valve”.
  • the control valve used to isolate the two-stage brake subsystem can be called an "isolation valve".
  • the above-mentioned control valves can be valves commonly used in existing brake systems, such as solenoid valves.
  • a brake master cylinder 210 may be provided in a brake system including the main brake subsystem 100.
  • the pressure outlet port of the brake master cylinder 210 may be communicated with a fluid inlet pipeline, so that the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20) is adjusted by adjusting the pressure of the brake fluid in the fluid inlet pipeline.
  • the brake master cylinder 210 may be a single-chamber brake master cylinder or a double-chamber brake master cylinder.
  • the embodiment of the present application does not limit the form of the brake master cylinder.
  • the brake master cylinder 210 when the brake master cylinder 210 is a tandem dual-chamber brake master cylinder, the brake master cylinder 210 may include a first chamber 211 and a second chamber 212.
  • the first piston in the first chamber 211 and the second piston in the second chamber 212 may be connected via a spring, and when the first piston is displaced relative to the cylinder body, the second piston may be pushed by the spring to displace relative to the cylinder body.
  • the brake fluid flowing out of the second chamber 212 of the brake master cylinder 210 can flow to the brake wheel cylinders of the second set of wheels 122 through the pressure outlet port 22.
  • the brake fluid in the first chamber 211 of the brake master cylinder 210 can flow to the brake wheel cylinders of the first set of wheels 121 through the pressure outlet port 21.
  • the pressure outlet port 21 of the first chamber 211 may be connected to the brake wheel cylinder of the second set of wheels 122 through a liquid inlet pipeline, and the pressure outlet port 22 of the second chamber 212 may be connected to the brake wheel cylinder of the first set of wheels 121 through a liquid inlet pipeline.
  • the brake master cylinder 210 can be connected to the fluid storage device 101 through a pressure compensation pipeline, and the brake master cylinder 210 can compensate the brake fluid from the fluid storage device 101 through the pressure compensation pipeline.
  • the brake master cylinder 210 is a series double-chamber brake master cylinder, as shown in FIG1
  • the first chamber 211 and the second chamber 212 of the brake master cylinder 210 can be respectively connected to the fluid storage device 101 through the pressure compensation pipeline (177, 178).
  • a control valve can be set in the pressure compensation pipeline. When the control valve is disconnected, the brake fluid is blocked by the control valve and cannot flow between the fluid storage device 101 and the brake master cylinder 210.
  • the control valve is turned on, the fluid storage device 101 is connected to the brake master cylinder 210.
  • a one-way valve connected in parallel with the above-mentioned control valve can also be set.
  • a vehicle equipped with the master brake subsystem 100 may be provided with a brake pedal, and the master brake cylinder 210 may be connected to the brake pedal through a connection mechanism such as a piston rod, so that the movement of the brake pedal can be coupled with the movement of the piston in the master brake cylinder 210.
  • a brake pedal travel sensor may be provided in the brake system to obtain the travel of the brake pedal.
  • one or more pressure sensors may be provided in the brake pipeline of the brake system to detect the pressure of the brake fluid in the pipeline.
  • the pressure sensor 154 may detect the pressure of the brake fluid in the brake pipeline connected to the pressure outlet port of the brake master cylinder 210.
  • a pressure sensor may be provided in the first inlet pipeline 41 and/or the second inlet pipeline 42.
  • the main boost module 130 may include a pressure providing device.
  • the pressure providing device in the main boost module 130 may also be referred to as a main pressure providing device.
  • the main pressure supply device may include a hydraulic cylinder 133 and a device for driving the hydraulic cylinder 133, such as a motor 132.
  • the motor 132 may be used to drive the piston in the hydraulic cylinder 133 to perform linear reciprocating motion, and inject the brake fluid in the hydraulic cylinder 133 into the first inlet pipeline 41 and/or the second inlet pipeline 42.
  • the hydraulic cylinder 133 may be a double-acting plunger cylinder (dual apply plunger, DAP) or other forms of hydraulic cylinder, such as a single-acting plunger cylinder.
  • DAP dual apply plunger
  • the main boost module 130 may also include one or more control valves.
  • the brake fluid flowing out of the main pressure providing device can flow through the control valve to the brake line connected to the pressure inlet port of the inlet valve, such as the brake circuit supply line (171, 172), brake line 1, etc.
  • the main boost module 130 may include a control valve 137 and a control valve 138.
  • the control valve 137 When the control valve 137 is turned on, the brake fluid in the first inlet pipeline 41 can flow from the hydraulic cylinder 133 through the first inlet pipeline 41 to the brake wheel cylinder of the first set of wheels 121.
  • the control valve 138 When the control valve 138 is turned on, the brake fluid in the second inlet pipeline 42 can flow from the hydraulic cylinder 133 through the second inlet pipeline 42 to the brake wheel cylinder of the second set of wheels 122.
  • the main boost module 130 may also include a sensor to monitor the working state of the main pressure providing device.
  • the main boost module 130 may also include a motor position sensor 139 to monitor the working state of the motor 132.
  • a pressure sensor may be provided in the brake line between the hydraulic cylinder 133 and the control valve 137 and/or the control valve 138 to monitor the pressure regulation of the brake fluid in the brake line by the hydraulic cylinder 133.
  • first liquid inlet pipeline 41 and the second liquid inlet pipeline 42 can be changed with the form of the main pressure providing device.
  • the first liquid inlet pipeline 41 and the second liquid inlet pipeline 42 can be connected to the two pressure outlet ports, respectively, as shown in FIG1.
  • the hydraulic cylinder 133 is provided with one pressure outlet port
  • the first liquid inlet pipeline 41 and the second liquid inlet pipeline 42 can share part of the brake pipeline.
  • a control valve can be provided, and a pressure sensor can also be provided.
  • a control valve such as a control valve 117 and a control valve 118, may be provided in the brake pipeline connected to the pressure outlet port of the brake master cylinder 210.
  • the brake master cylinder 210 may be connected to the brake circuit supply pipeline 171; when the control valve 117 is turned off, the brake fluid flowing out of the brake master cylinder 210 is blocked by the control valve 117 and cannot flow into the brake circuit supply pipeline 171.
  • the above-mentioned control valves 117 and 118 may also be referred to as "isolation valves".
  • the braking force information applied to the wheels may be determined based on the braking force requirement information.
  • the driver's braking force requirement information can be determined based on the driver's manipulation of the vehicle. For example, the driver's braking force requirement information can be determined based on the travel of the brake pedal. For another example, when the user steps on the brake pedal, the brake fluid in the brake master cylinder 210 will flow to the brake pipeline where the pressure sensor 154 is located. Therefore, the driver's braking force requirement information can be determined based on the pressure of the brake fluid collected by the pressure sensor 154. For another example, the braking force information applied to the wheel can be determined based on the above-determined driver's braking force requirement information.
  • the braking force requirement information can be determined according to the vehicle's motion state and/or surrounding environment information.
  • the braking force requirement information can be determined according to the vehicle's running state (such as wheel speed, etc.) and/or surrounding environment information, and then the braking force applied to each wheel can be determined, so that one or more dynamic functions such as an antilock braking system (ABS), an autonomous emergency braking (AEB), an adaptive cruise control (ACC), an electronic stability control system (ESC), an electronic stability control program (ESP), and a traction control system (TCS) can be realized.
  • ABS antilock braking system
  • AEB autonomous emergency braking
  • ACC adaptive cruise control
  • ESC electronic stability control system
  • ESP electronic stability control program
  • TCS traction control system
  • the main braking subsystem 100 can be controlled to provide braking force for the wheels.
  • the isolation valve 117 and the isolation valve 118 can be controlled to be in a disconnected state, and the driver's braking force requirement information can be obtained based on the travel of the brake pedal and/or the brake fluid pressure collected by the pressure sensor 154.
  • the main boost module 130 By controlling the main boost module 130 to operate, the corresponding braking force is applied to the wheel.
  • the inlet valve and/or the outlet valve can also be combined to realize the control of the brake fluid pressure in a single brake wheel cylinder.
  • the main brake subsystem 100 may also include a pedal feel simulation module for providing a pedal feel to the driver.
  • the pedal feel simulation module may include a pedal feel simulator 151, and may also include one or more valves.
  • a control valve 152 may be used to connect the pedal feel simulator 151 and a brake line connected to the brake master cylinder 210.
  • the brake fluid may flow to the pedal feel simulator 151 through the brake line.
  • a one-way valve 153 may be connected in parallel at both ends of the control valve 152.
  • the pedal feel simulator 151 may also be connected to a liquid outlet line 140. The brake fluid flowing out of the pedal feel simulator 151 may flow to the liquid storage device 101 through the oil outlet line 140.
  • FIG2 is a schematic diagram of an auxiliary brake subsystem provided in an embodiment of the present application.
  • the auxiliary brake subsystem 200 shown in FIG2 includes an auxiliary boost module 160. It should be understood that the components in FIG2 that have the same functions as those in FIG1 use the same numbers as those in FIG1, and the specific functions can be found in the above description.
  • the auxiliary boost module 160 can adjust the braking force applied to the first set of wheels 121 by adjusting the pressure of the brake fluid in the third inlet pipeline 51.
  • the auxiliary boost module 160 can adjust the braking force applied to the second set of wheels 122 by adjusting the pressure of the brake fluid in the fourth inlet pipeline 52.
  • the auxiliary boost module 160 may include a pressure providing device.
  • the pressure providing device in the auxiliary boost module 160 may also be referred to as an auxiliary pressure providing device.
  • the auxiliary boost module 160 is described below by taking the brake master cylinder 210 as a series dual-chamber brake master cylinder as an example.
  • the auxiliary pressure providing device may include a plunger pump (161, 162), and a driving device for the plunger pump, such as a motor 163.
  • the motor 163 may drive the plunger pumps 161 and 162 to operate through a transmission mechanism such as a belt, a gear, or a chain, and the brake fluid pressurized by the plunger pumps 161 and 162 may flow to the corresponding brake wheel cylinders through the third liquid inlet pipeline 51 and the fourth liquid inlet pipeline 52, respectively.
  • the plunger pump 161 and the plunger pump 162 may be driven by two independent motors, respectively.
  • the auxiliary boost module 160 may also include one or more control valves.
  • the auxiliary boost module 160 may include control valves 113 and 114 , control valves 115 and 116 , and control valves 213 and 214 .
  • the brake fluid flowing out of the master cylinder 210 can be isolated from the brake fluid pressurized by the plunger pumps (161 and 162).
  • the control valves 213 and 214 are connected, the brake fluid flowing out of the master cylinder 210 can flow to the corresponding wheel cylinder through the corresponding third inlet pipeline 51 and fourth inlet pipeline 52. Therefore, the control valves 213 and 214 can also be called "isolation valves".
  • control valve 113 can be used to connect the third liquid inlet pipeline 51 and the liquid storage device 101.
  • a control valve 114 can be provided between the fourth liquid inlet pipeline 52 and the liquid storage device 101.
  • control valve 115 can be used to connect the master brake cylinder 210 and the plunger pump 161.
  • a control valve 116 can be provided between the master brake cylinder 210 and the plunger pump 162.
  • the control valve 115 when the control valve 115 is disconnected, the brake fluid flowing out of the master brake cylinder 210 is blocked by the control valve 115 and cannot flow to the pressure inlet port of the plunger pump 161.
  • the control valve 115 When the control valve 115 is turned on, the brake fluid flowing out of the master brake cylinder 210 can flow to the plunger pump 161 through the control valve 115, and the brake fluid pressurized by the plunger pump 161 can flow to the brake wheel cylinder of the first group of wheels 121 through the third fluid inlet pipeline 51.
  • the plunger pumps 161, 162 can replenish brake fluid from the reservoir 101.
  • a one-way valve can be provided between the plunger pumps (161, 162) and the reservoir to prevent the brake fluid from flowing back.
  • the one-way valve 165 can be used to connect the reservoir 101 and the plunger pump 161.
  • a one-way valve 166 can be provided between the reservoir 101 and the plunger pump 162.
  • a pressure sensor may be provided in the brake line to detect the pressure of the brake fluid in the line.
  • the pressure sensor 218 may be used to detect the pressure of the brake fluid in the brake line connected to the pressure outlet port of the brake master cylinder 210.
  • one or more sensors may be provided to measure the pressure of the brake fluid in the third brake line 51 and the fourth fluid inlet line 52.
  • the auxiliary braking subsystem 200 may be controlled to provide braking force to the wheels according to the braking force information.
  • the auxiliary brake subsystem 200 is in a normal working state.
  • the isolation valves 213 and 214 can be controlled to be in a disconnected state, and the control valves 115 and 116 can be in a conducting state.
  • the motor 163 can be controlled to actuate, thereby driving the plunger pumps 161 and 162 to apply corresponding braking force to the wheels.
  • the third brake line 51 may include a first inlet branch 31 and a second inlet branch 32
  • the fourth brake line 52 may include a third inlet branch 33 and a fourth inlet branch 34.
  • the connection mode of the four inlet branches and the configuration mode of the inlet valve and the outlet valve may refer to the description of FIG. 1 .
  • the auxiliary boost module 160 may include only one plunger pump (for example, the plunger pump 161), and the corresponding control valve (113, 115, 213). Accordingly, the third inlet pipeline 51 and the fourth inlet pipeline 52 may share part of the pipeline, such as the brake pipeline 173.
  • FIG3 is a schematic diagram of a braking system provided by an embodiment of the present application.
  • the braking system 300 shown in FIG3 may include a main braking subsystem and an auxiliary braking subsystem.
  • the main braking subsystem included in the braking system 300 may be understood as an extension or deformation of the main braking subsystem 100 shown in FIG1, and the auxiliary braking subsystem included may be understood as an extension or deformation of the main braking subsystem 200 shown in FIG2.
  • the components in FIG3 that have the same functions as those in FIG1 and/or FIG2 use the same numbers as those in FIG1 and/or FIG2, and their specific functions may refer to the above description.
  • the isolation valves 117 and 118 can be controlled to be in a disconnected state, so that the brake fluid flowing out of the hydraulic cylinder 133 can flow to the corresponding brake wheel cylinders (17 and 18) of the first group of wheels 121 and the brake wheel cylinders (19 and 20) of the second group of wheels 122 through the first inlet pipeline 41 and the second inlet pipeline 42.
  • the isolation valves 117 and 118 can be controlled to be in a conducting state, so that the brake fluid pressurized by the plunger pumps (161 and 162) can flow to the corresponding brake wheel cylinders (17 and 18) of the first group of wheels 121 and the brake wheel cylinders (19 and 20) of the second group of wheels 122 through the third inlet pipeline 51 and the fourth inlet pipeline 52.
  • the main brake subsystem and the auxiliary brake subsystem can adjust the pressure of the brake fluid in the brake circuit supply pipeline (171, 172), thereby adjusting the pressure of the brake fluid in each brake wheel cylinder.
  • a portion of the brake pipeline in the first liquid inlet pipeline 41 and the second liquid inlet pipeline 42 may be shared.
  • a pressure sensor 135 may be provided in the shared brake pipeline to monitor the pressure of the brake fluid pressurized by the main pressure providing device, and a control valve 134 may also be provided in the shared brake pipeline.
  • a control valve 216 may be provided in the pressure compensation line 178.
  • a one-way valve 217 connected in parallel with the control valve 216 may also be provided.
  • the devices in the brake system 300 can be controlled by one or more control devices.
  • they can be controlled by one or more control modules in a control device.
  • they can be controlled by multiple control devices, such as multiple electronic control units (ECUs).
  • ECUs electronice control units
  • ECU1 and ECU2 may respectively control devices in different zones of the brake system 300.
  • ECU1 may control devices in zone 202
  • ECU2 may control devices in zone 204.
  • main brake subsystem and the auxiliary brake subsystem may belong to different partitions.
  • partition 204 may include devices in the main brake subsystem, and partition 204 may include devices in the auxiliary brake subsystem.
  • ECU1 can obtain the brake fluid pressure collected by the pressure sensor (154, 134); ECU1 can realize the control of the control valve (117, 118, 134, 137, 138), and the inlet valve (9, 10, 11, 12), etc.; ECU1 can be used to control the actuation of the motor 132; ECU1 can obtain the information collected by the motor position sensor 139. Therefore, ECU1 can realize the control of the devices in the main brake subsystem.
  • ECU2 can be used to obtain the brake fluid pressure collected by pressure sensor 218; ECU2 can obtain the pedal stroke sensed by brake pedal stroke sensor 219; ECU2 can control the actuation of control valves 213, 214, 113, 114, 115, 116, 216, etc.; ECU2 can control the actuation of motor 163.
  • ECU2 can realize the control of the devices in auxiliary brake subsystem 200.
  • the multiple electronic control units can exchange information.
  • the ECU1 can determine the braking force information applied to the wheel and send the braking force information to ECU2, so that the ECU2 can control the auxiliary boost module 160 to operate according to the braking force information.
  • the ECU2 can send the information collected by the pressure sensor 218 and the brake pedal travel sensor 219 to ECU1, so that the ECU1 can obtain the braking force demand information of the driver.
  • partitions 202 and 204 shown in FIG. 3 are merely examples, and there may be other ways of division.
  • the control valve 152 and the pedal feel simulator 151 may also belong to the partition 204.
  • the embodiment of the present application does not limit the way of dividing the partitions.
  • connection mode between the components in the brake system is introduced above in conjunction with Figures 1 to 3, and various working modes of the brake system are introduced below in conjunction with Figures 4 to 8. It should be noted that the present application does not specifically limit the priority of the working mode of the brake system.
  • the implementation of some functions in different modes may be the same.
  • the method of determining the braking force requirement information in different modes may be the same.
  • the adjustment of the brake fluid pressure in the brake wheel cylinder may be achieved by controlling the inlet valve and/or the outlet valve. Therefore, for the sake of simplicity, the functions implemented by the brake system are divided into the following scenarios for introduction.
  • the inlet valves (9, 10, 11, 12) are normally open valves
  • the outlet valves (13, 14, 15, 16) are normally closed valves
  • the isolation valves (213, 214, 117, 118) are normally open valves
  • the control valves (113, 114, 115, 116, 152, 134, 137, 138) are normally closed valves
  • the control valve 216 is a normally open valve.
  • Scenario 1 The working process and redundancy scheme of the braking system 300 in driver braking mode.
  • the isolation valves 117 and 118 are in the disconnected state, the control valve 152 is in the on state, and other control valves in the braking system 300 may maintain the above default state.
  • the brake fluid flowing out of the brake master cylinder 210 flows into the brake pipes 173 and 174. Since the isolation valves (117, 118) are in the disconnected state, the brake fluid is blocked by the isolation valves (117, 118), resulting in an increase in the pressure of the brake fluid in the brake pipes 173 and 174. Since the control valve 152 is turned on, the brake fluid in the brake pipe 174 can flow to the pedal feel simulator 151 through the control valve 152.
  • the driver's braking force demand can be calculated based on at least one of the brake fluid pressure collected by the pressure sensor 154, the brake fluid pressure collected by the pressure sensor 218, and the pedal stroke detected by the brake pedal stroke sensor 219.
  • the data collected by the pedal stroke sensor 219, the pressure sensor 154, and the pressure sensor 218 can serve as redundant backups for each other, and thus, the pedal stroke sensor 219, the pressure sensor 154, and the pressure sensor 218 can be referred to as "redundant sensors.”
  • the main braking subsystem in the braking system 300 can provide braking force for the wheels according to the braking force demand information.
  • the control valves 134, 137 and 138 are controlled to be in a conducting state.
  • the control motor 132 drives the hydraulic cylinder 133 to compress the brake fluid.
  • the brake fluid flowing out of the hydraulic cylinder 133 can flow to the brake wheel cylinders of the first set of wheels 121 and the second set of wheels 122 through the first liquid inlet pipeline 41 and the second liquid inlet pipeline 42, respectively.
  • the pressurization path of the brake fluid in the brake system 300 can refer to FIG. 4.
  • the pressure maintaining process can be started.
  • the isolation valves (137, 138) can be controlled to be in the disconnected state, and the other control valves in the brake system 300 remain in the same state.
  • the motor 132 can also be controlled to stop actuating.
  • the decompression process can be started.
  • the brake fluid in the pedal feeling simulator 151 can be reversely returned to the brake master cylinder 210 by the control valve 152, and the hydraulic cylinder 133 can be driven to work in reverse by the control motor 132.
  • the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20) can be greater than the pressure of the brake fluid in the hydraulic cylinder 133, and the brake fluid can be returned to the hydraulic cylinder 133 from the brake wheel cylinder (17, 18, 19, 20) through the liquid inlet valve (9, 10, 11, 12).
  • the isolation valves (117, 118) can also be controlled to be in a conducting state, so that the brake fluid flows from the brake wheel cylinders (17, 18, 19, 20) to the brake master cylinder 210, and then from the brake master cylinder 210 to the fluid storage device 101.
  • the liquid outlet valves may be further opened to allow the brake wheel cylinders (17, 18, 19, 20) to flow to the liquid outlet pipeline 110 and then flow back to the liquid storage device 101.
  • the above scheme for determining the braking force demand information will not directly affect the realization of dynamic functions such as ABS, AEB, ACC, TCS and ESC.
  • the inlet valve and/or outlet valve in the main brake subsystem can be controlled to realize the pressure increase, pressure maintenance and pressure reduction operation of a single brake wheel cylinder.
  • Redundancy solution 1 when the first sensor in the main brake subsystem fails, the braking force requirement information can be obtained according to the second sensor in the auxiliary brake subsystem, and the device in the main brake subsystem in a normal state can be controlled to operate according to the braking force requirement information.
  • the first sensor includes a sensor in the main brake subsystem for obtaining the driver's braking force demand information, such as the pressure sensor 154.
  • the second sensor includes a sensor in the auxiliary brake subsystem for obtaining the driver's braking force demand information, such as the pressure sensor 218 and the brake pedal travel sensor 219.
  • ECU1 and ECU2 can exchange information.
  • ECU2 can determine the braking force demand information, control the solenoid valves 134, 137 and 138 to be turned on, control the motor 132 to drive the hydraulic cylinder 133 to actuate, and adjust the pressure of the brake fluid in the brake wheel cylinder, thereby providing braking force for the wheel.
  • the boost path of the brake fluid in the brake system 300 can refer to Figure 4.
  • the main brake subsystem is controlled based on the driver's braking force demand information obtained by the second sensor in the auxiliary brake subsystem.
  • the inlet valve and/or outlet valve in the main brake subsystem can be used to ensure the normal operation of dynamic functions such as ABS, TCS, ESP and ESC, so that the devices in the normal state in the brake system can be fully utilized to improve the safety of braking at a lower cost.
  • Redundancy solution 2 When the main boost module 130 in the main brake subsystem fails, the auxiliary boost module 160 in the auxiliary brake subsystem can adjust the pressure of the brake fluid in the first section of the pipeline. Combined with the inlet valve and/or outlet valve in the main brake subsystem and the pressure of the brake fluid in the first section of the pipeline, the pressure of the brake fluid in the brake wheel cylinder is adjusted.
  • the first section of the pipeline may include the inlet pipeline between the inlet valve and the main boost module, and when the inlet valve is in the conducting state, the first section of the pipeline is connected to the brake wheel cylinder.
  • the first section of the pipeline may include the brake pipeline 1 and the brake circuit supply pipeline 171, and may also include the brake pipeline between the pressure outlet port of the isolation valve 137 and the pressure inlet port of the brake circuit supply pipeline 171.
  • the first section of the pipeline may include the brake pipeline 4 and the brake circuit supply pipeline 172, and may also include the brake pipeline between the pressure outlet port of the isolation valve 138 and the pressure inlet port of the brake circuit supply pipeline 172.
  • the main boost module 130 may include a main pressure supply device and a first control valve.
  • the first control valve is used to connect the main pressure supply device and the first section of the pipeline. When the first control valve is in the on state, the main pressure supply device is used to adjust the pressure of the brake fluid in the first section of the pipeline.
  • the main boost module 130 may also include a third sensor, which may be used to sense the operating state of the main pressure supply device.
  • the first control valve may include control valves 134 and 137.
  • the third sensor may include a motor position sensor 139, and may also include a pressure sensor 135.
  • the main pressure supply device may include a motor 132 and a hydraulic cylinder 133.
  • the failure of the main boost module 130 may mean that at least one of the main pressure providing device, the first control valve and the third sensor is in a faulty state.
  • ECU1 controls partition 202 and ECU2 controls partition 204.
  • ECU1 can receive the braking force information from ECU2, and then control the isolation valves 213 and 214 to be in the disconnected state, control valves 115 and 116 to be in the on state, and control the isolation valves 117 and 118 to be in the on state.
  • the brake fluid flowing out of the plunger pumps 161 and 162 can flow to the brake wheel cylinders (17, 18, 19, 20) through the third inlet pipeline 51 and the fourth inlet pipeline 52, respectively, through the brake circuit supply pipeline (171, 172), so as to adjust the braking force applied to the wheel.
  • the inlet valve and/or the outlet valve can be controlled by ECU2 to achieve control of a single brake wheel cylinder.
  • ECU2 the smooth operation of dynamic functions such as ABS, AEB, ACC, TCS and ESC can be achieved to ensure braking safety.
  • the boost path of the brake fluid in the brake system 300 can refer to Figure 5.
  • the pressure of the brake fluid in the first section of the pipeline is adjusted by the auxiliary boost module 160 in the auxiliary brake subsystem.
  • the pressure of the brake fluid in the brake wheel cylinder is adjusted, which can make full use of the devices in the brake system in a normal state and improve the safety of braking at a lower cost.
  • Redundancy solution three when the inlet valve and/or outlet valve in the main brake subsystem fails, the main boost module 130 can adjust the pressure of the brake fluid in the first section of the pipeline.
  • the faulty device is taken as the inlet valve 9.
  • the inlet valve 9 is a normally open valve
  • the inlet valve 9 cannot be closed normally due to a fault.
  • the pressure of the brake fluid in the brake circuit supply pipelines 171 and 172 can be adjusted respectively through the main boost module 130 and the control valves 137 and 138.
  • the boost path of the brake fluid in the brake system 300 can refer to Figure 4.
  • the inlet valves (9, 10, 11, 12) can be controlled to be in a conducting state, so that the pressure of the brake fluid in the brake wheel cylinders 17, 18, and the brake wheel cylinders 19, 20 can be changed respectively with the adjustment of the brake fluid pressure in the brake circuit supply pipelines 171 and 172. Therefore, by adjusting the pressure of the brake fluid in the brake circuit supply pipelines 171 and 172 respectively, the braking force applied to the first group of wheels 121 and the second group of wheels 122 can be adjusted respectively, so as to realize the degraded use of dynamic functions such as ABS, TCS and ESC.
  • the pressure of the brake fluid in the brake circuit supply lines 171 and 172 is regulated by the main boost module 130, and combined with the inlet valve and/or outlet valve in a normal state, individual control of some brake wheel cylinders can also be achieved.
  • the faulty device is taken as the liquid outlet valve 13. Assuming that the liquid outlet valve 13 is a normally closed valve, the liquid outlet valve 13 cannot be opened normally due to a fault.
  • the inlet valves can be controlled to be in an on state and the outlet valves can be controlled to be in an off state, so that the pressure of the brake fluid in the wheel cylinders 17, 18, and the wheel cylinders 19, 20 can change with the adjustment of the brake fluid pressure in the brake circuit supply lines 171 and 172, respectively.
  • liquid outlet valve 13 taking the failure of the liquid outlet valve 13 as an example, other liquid inlet valves and/or liquid outlet valves in normal state may be combined to achieve separate control of some brake wheel cylinders.
  • the pressure of the brake fluid in the first section of the pipeline is adjusted by controlling the main boost module 130, thereby adjusting the pressure of the brake fluid in the wheel cylinder.
  • the devices in the normal state of the braking system can be fully utilized to achieve the downgraded use of the dynamic function, thereby improving the safety of braking at a lower cost.
  • Redundancy scheme four when the control unit of the main brake subsystem fails, the pressure of the brake fluid in the brake wheel cylinder can be adjusted through the auxiliary brake subsystem.
  • the control unit of the main brake subsystem e.g., the above-mentioned ECU2
  • the control unit of the auxiliary brake subsystem e.g., ECU1
  • the isolation valves 213 and 214 can be in the disconnected state, and the control valves 115 and 116 to be in the on state.
  • the auxiliary boost module 160 in the auxiliary brake subsystem can actuate, the brake fluid flowing out of the plunger pumps 161 and 162 can flow to the brake wheel cylinders of the first group of wheels 121 and the second group of wheels 122 through the third inlet pipeline 51 and the fourth inlet pipeline 52, respectively.
  • the pressure of the brake fluid in the third inlet pipeline 51 and the fourth inlet pipeline 52 can be adjusted respectively by the pressure reducing valves 113 and 114.
  • the boost path of the brake fluid in the brake system 300 can refer to FIG. 5.
  • the pressures of the brake wheel cylinders of the first set of wheels 121 and the second set of wheels 122 are adjusted respectively through the third fluid inlet pipeline 51 and the fourth fluid inlet pipeline 52, so that the downgraded use of dynamic functions such as ABS, TCS and ESC can be achieved.
  • Scenario 2 Working process of the braking system 300 and the redundant braking scheme in active braking mode.
  • the braking system can brake through the main braking subsystem.
  • the difference from the driver braking mode described in Scenario 1 is that the driver does not need to operate the brake pedal 215 in the active braking mode.
  • braking force requirement information may be determined according to the vehicle's motion state and/or surrounding environment information, thereby controlling the main braking subsystem to adjust the pressure of the brake fluid in the wheel cylinder.
  • the control isolation valves 117 and 118 are in the disconnected state, the control valves 134, 137 and 138 are in the on state, and the other control valves are kept in the above default state.
  • the hydraulic cylinder 133 is driven by the control motor 132 to compress the brake fluid, and the brake fluid flowing out of the hydraulic cylinder 133 can flow to the brake wheel cylinders (17, 18, 19, 20) through the first liquid inlet pipeline 41 and the second liquid inlet pipeline 42.
  • the pressurization path of the brake fluid in the brake system 300 can refer to Figure 6.
  • control valves 137 and 138 can be controlled to be in an open state, and the motor 132 can be controlled to stop operating.
  • the control valve 134 can also be controlled to be in an open state.
  • the hydraulic cylinder 133 can work in the reverse direction under the drive of the motor 132, and the brake fluid in the brake wheel cylinders (17, 18, 19, 20) can return to the hydraulic cylinder 133 through the liquid inlet valves (9, 10, 11, 12).
  • the liquid outlet valves (13, 14, 15, 16) can be further opened to allow the brake fluid in the brake wheel cylinders (17, 18, 19, 20) to flow to the liquid storage device 101 through the liquid outlet pipeline 110.
  • the pressure-increasing, pressure-maintaining and pressure-reducing operations of the single wheel brake cylinder can be implemented through the liquid inlet valve and/or liquid outlet valve of the wheel brake cylinder.
  • the redundant scheme in the active braking mode is essentially the same as the redundant scheme in the driver braking mode, and thus, reference may be made to the redundant scheme in the driver braking mode.
  • the braking force requirement information can be obtained according to the vehicle's motion state and/or surrounding environment information.
  • the pressure of the brake fluid in the brake wheel cylinder can be adjusted through the main boost module 130, the inlet valve and/or the outlet valve according to the braking force requirement information obtained above.
  • the isolation valves 213 and 214 can be controlled to be in a disconnected state, and other control valves in the brake system are in a default state.
  • the auxiliary boost module 160 in the auxiliary brake subsystem adjusts the pressure of the brake fluid in the brake circuit supply pipeline (171, 172), and in combination with the inlet valve and/or the outlet valve, adjusts the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20).
  • the main boost module 130 can be used to adjust the pressure of the brake fluid in the brake circuit supply lines 171 and 172.
  • the inlet valve By controlling the inlet valve to be in a conducting state, the downgraded use of dynamic functions such as ABS, AEB, TCS, and ESC can be achieved.
  • ECU1 when ECU2 fails, for example, when ECU2 cannot control the main brake subsystem due to power failure, ECU1 can control the isolation valves 213 and 214 to be in a disconnected state, and other control valves in the brake system are in the above-mentioned default state.
  • the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20) is adjusted by the auxiliary boost module 160 in the auxiliary brake subsystem. In this way, the downgraded use of dynamic functions such as ABS, AEB, and TCS can be achieved, which can improve the safety of braking.
  • the pedal feeling simulation module in the main brake subsystem fails, since the isolation valves 117 and 118 are in a disconnected state in the active braking mode, the user does not need to operate the brake pedal, and the failure of the pedal feeling simulation module will not directly affect the operation of the main brake subsystem.
  • the main boost module 130, the inlet valve and/or the outlet valve can provide braking force for the wheels.
  • Scenario 3 Redundant backup solution for manual braking: When the main braking subsystem fails to work and the auxiliary braking subsystem also fails, the pressure of the brake fluid in the brake wheel cylinder can be adjusted by manual braking.
  • all control valves in the brake system are in a default state, the driver steps on the brake pedal 215, the brake master cylinder 210 injects brake fluid into the brake lines 173 and 174, and the brake fluid flows into the brake wheel cylinders (17, 18, 19, 20) through the inlet valves (9, 10, 11, 12), thereby achieving the braking function.
  • the pressurization path of the brake fluid in the brake system can be shown in FIG. 7 .
  • the braking system of the embodiment of the present application is introduced above in combination with Figures 1 to 7.
  • the control method based on the above braking system provided by the embodiment of the present application is introduced below in combination with Figures 8 to 9.
  • the method shown in Figure 8 can be executed by the braking system, or it can also be executed by one or more controllers of the braking system, or it can also be executed by an intelligent driving device equipped with the braking system, or it can also be executed by a control device in the intelligent driving device.
  • FIG8 is a flow chart of a control method of a braking system provided in an embodiment of the present application.
  • the method 400 shown in FIG8 can be used in conjunction with the braking system described above.
  • the braking system may include a main braking subsystem and an auxiliary braking subsystem.
  • the method 400 may include the following steps:
  • the main brake subsystem may be controlled by a first control unit.
  • the brake system may be controlled by a plurality of controllers, wherein the controller for controlling the main brake subsystem may be divided into the first control unit.
  • the brake subsystem is controlled by one controller, and the module in the controller for controlling the main brake subsystem may be determined as the first control unit.
  • the working status may indicate that the first control unit is working normally or faulty, and may also indicate that the main brake subsystem is working normally or faulty.
  • the first control unit may periodically feedback the working status of the device in its main brake subsystem. If the first control unit does not feedback the working status of the main brake subsystem within a preset time, it can be determined that the first control unit is faulty.
  • the first control unit may send fault information to a control device such as a chip or controller that executes the method, thereby knowing that there is a faulty device in the first control unit and the main brake subsystem.
  • the first control unit may monitor its own operating status in real time.
  • the auxiliary brake subsystem may be controlled by the second control unit.
  • the first control unit controls the devices in the main brake subsystem except the faulty device to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the pressure of the brake fluid in the wheel cylinder is regulated by a device other than the faulty device in the main brake subsystem, and the pressure of the brake fluid in the wheel cylinder can be regulated only by a normal device in the main brake subsystem.
  • the pressure of the brake fluid in the wheel cylinder can still be regulated by the main brake subsystem.
  • the brake system 300 when the brake system 300 is in the driver braking mode, when the inlet valve and/or the outlet valve fails, the pressure of the brake fluid in the wheel cylinder can be regulated by the main brake subsystem based on the redundant solution three in the above-mentioned scenario 1.
  • the brake system 300 when the brake system 300 is in the active braking mode, when the inlet valve fails and the inlet valve is in the conducting state, the braking force can be applied to the wheel through the main brake subsystem based on the redundant solution in the above-mentioned scenario 2.
  • the pressure of the brake fluid in the wheel cylinder is regulated by the device other than the faulty device in the main brake subsystem, or the pressure of the brake fluid in the wheel cylinder is regulated by the normal working device in the main brake subsystem and some devices in the auxiliary brake subsystem.
  • the pressure of the brake fluid in the wheel cylinder can be regulated by the auxiliary boost module 160 and the normal devices such as the inlet valve, the outlet valve, and the control valve in the main brake subsystem based on the redundant scheme 2 of the above-mentioned scenario 1.
  • the information of the driver's braking force requirement can be determined based on the redundant scheme 1 in the above-mentioned scenario 1 through the information collected by the brake pedal travel sensor 219 and/or the pressure sensor 218, and the pressure of the brake fluid in the wheel cylinder is regulated accordingly.
  • the braking system 300 is in active braking mode, when the main boost module fails, braking force can be applied to the wheels through the auxiliary boost module 160 and the inlet valve, outlet valve, etc. based on the redundant solution in the above scenario two.
  • the second control unit can be used to control the auxiliary brake subsystem to adjust the pressure of the brake fluid in the brake wheel cylinder when the first control unit fails.
  • the control unit of the auxiliary brake subsystem can be used to control the auxiliary brake subsystem to adjust the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20) based on the redundancy scheme 4 in scenario 1.
  • the pressure of the brake fluid in the brake wheel cylinder is adjusted by devices other than the failed device in the main brake subsystem, thereby ensuring the use of the dynamic function at a lower cost to improve braking safety.
  • FIG9 is a flowchart of another method for controlling a braking system provided by an embodiment of the present application.
  • the method 500 can be understood as an extension of the above method 400.
  • the method 500 can be executed by a control device such as a controller of the braking system.
  • the method 500 can include some or all of the following steps:
  • the state of the braking system can be monitored based on the data collected by the sensors in the braking system, the braking effect of the braking system, and the like.
  • the working state of the main pressure providing device can be determined based on the information obtained by the motor position sensor 139 and the pressure sensor 134.
  • the working state of the braking system can be judged based on the brake fluid pressure obtained by the pressure sensor 219 and the pressure sensor 154.
  • the state of the braking system can be judged based on the current pressure building time of the braking system and the average pressure building time of the braking system.
  • the working state of the first control unit corresponding to the main braking subsystem in the braking system can be obtained, and the working state of the second control unit corresponding to the auxiliary braking subsystem can also be obtained. It should be understood that the embodiments of the present application do not limit the specific method of obtaining the working state of the braking system.
  • whether the main brake subsystem is operating normally can be determined based on the pressure building time of the brake system.
  • whether the main brake subsystem is working properly can be judged based on the current pressure building time of the main brake subsystem and the average pressure building time of the main brake subsystem. For example, when the current pressure building time of the main brake subsystem is greater than or equal to the average pressure building time of the main brake subsystem, it can be considered that the main brake subsystem is not working properly. For another example, when the current pressure building time of the main brake subsystem is less than or equal to the average pressure building time of the main brake subsystem, it can be considered that the main brake subsystem is normal.
  • whether the main brake subsystem is operating normally can be determined based on the brake fluid pressure at the pressure outlet port of the pressure providing device 130 .
  • step S5 When the main brake subsystem works normally, the process may jump to step S515. Alternatively, when the main brake subsystem works abnormally, the process may jump to step S520.
  • the braking force requirements can be determined respectively according to the data collected by the multiple redundant sensors.
  • the multiple redundant sensors can be considered to be working properly, and when the difference between the required braking forces determined by the multiple sensors is greater than or equal to the preset threshold, some of the multiple sensors can be considered to be faulty.
  • step S530 When the redundant sensor is not failed, the process may jump to step S530 .
  • step S525 When the redundant sensor is failed, the process may jump to step S525 .
  • a redundant sensor backup can be obtained. Based on the redundant sensor backup, the braking force information that needs to be applied to the wheel is determined. For example, in the driver braking mode, when it is determined that the pressure sensor 154 fails, the driver's braking force requirement information can be determined based on the data collected by the pressure sensor 218 and the brake pedal travel sensor 219, and the braking force that needs to be applied to the wheel can be determined.
  • the main boost module in the main brake subsystem is faulty.
  • the faulty device includes one or more of the motor 132, the hydraulic cylinder 133, the control valves 134, 137, 138, the pressure sensor 135, and the motor position sensor 139.
  • the actuator in the main brake subsystem may refer to the motor 132, the hydraulic cylinder 133, the control valves 134, 137, 138.
  • the non-redundant sensor may refer to other sensors other than the redundant sensor, such as the pressure sensor 135 and the motor position sensor 139.
  • the actuator in the main brake subsystem may also include the pedal feel simulation module.
  • the inlet valve and/or the outlet valve are faulty. For example, taking the brake system 300 shown in FIG. 3 as an example, it is determined whether the faulty device includes one or more of the inlet valves 9, 10, 11, 12, and the outlet valves 13, 14, 15, 16.
  • step S532 When the actuator and/or the non-redundant sensor of the main brake subsystem fails, the process may jump to step S532 .
  • step S540 When the actuator and/or the non-redundant sensor of the main brake subsystem fails, the process may jump to step S540 .
  • the process may jump to step S534 , and when the auxiliary braking subsystem fails, the process may jump to step S515 .
  • auxiliary brake subsystem it can be determined whether the auxiliary brake subsystem needs to intervene based on the mode of the brake system and the fault device. For example, taking the above-mentioned brake system 300 as an example, when the brake system is in the active brake mode, the working state of the brake system indicates that the pedal feel simulation module is faulty, and other devices are working normally, based on the redundant braking scheme in the active brake mode, the auxiliary brake subsystem does not need to intervene. For another example, when the working state of the brake system indicates that the inlet valve is faulty and is in the on state, and/or the outlet valve is faulty and is in the off state, the main brake subsystem can be used to achieve degraded use of the dynamic function, and the auxiliary brake subsystem does not need to intervene. For another example, it can be determined whether the auxiliary brake subsystem needs to intervene based on the redundant scheme of the brake system in the above-mentioned scenarios one and two.
  • the process may jump to step S536 , and when the auxiliary braking subsystem does not need to intervene, the process may jump to step S515 .
  • Step S532 and step S534 may be executed simultaneously, or step S532 may be executed first, or step S534 may be executed first.
  • the pressure of the brake fluid in the first section of the pipeline can be adjusted by the auxiliary boost module, and the pressure of the brake fluid in the brake wheel cylinder can be adjusted by the inlet valve and/or the outlet valve.
  • the use of the dynamic function can be guaranteed, and the safety of braking can be improved at a lower cost.
  • the process may jump to step S548 , and when the auxiliary braking subsystem can work normally, the process may jump to step S545 .
  • the control unit of the auxiliary braking subsystem can obtain braking force demand information through pressure sensor 218 and brake pedal travel sensor 219, and adjust the pressure of the brake fluid in the brake wheel cylinder by controlling the actuation of the auxiliary braking subsystem.
  • the redundant backup solution of manual braking in scenario three can be used to provide braking force for the wheels.
  • S550 Determine the braking forces that the main braking subsystem and the auxiliary braking subsystem need to provide respectively according to the required braking force.
  • Fig. 10 is a schematic diagram of a system architecture of a braking system provided in an embodiment of the present application.
  • the following takes the braking system 300 shown in Fig. 3 as an example to introduce the system architecture in the braking system 300.
  • the above method 400 or method 500 can be implemented through the system architecture.
  • the partition 202 includes an auxiliary braking subsystem
  • the partition 204 includes a main braking subsystem
  • the control unit of the partition 202 can be recorded as Module1
  • the control unit of the partition 204 can be recorded as Module2, as shown in Figure 10.
  • the Module2 can control the main braking subsystem and can be the first control unit
  • the Module1 can control the auxiliary braking subsystem and can be the second control unit.
  • control units of the partitions 202 and 204 may include a brake system state detection unit to detect the working state of the devices in the corresponding partitions.
  • the Module1 brake system state detection unit and the Module2 brake system state detection unit may be used to detect the working state of the devices in the partitions 202 and 204, respectively, and may be used to determine whether the actuators and sensors included in the partitions 202 and 204 are faulty.
  • the two can communicate through an external signal interface.
  • the Module1 brake system status detection unit can send the Module1 brake system status information to the Module2 brake system status detection unit through the external signal interface to indicate the working status of each device in the partition 202 obtained by it, as shown in Figure 10.
  • information exchange can be carried out through an internal communication circuit.
  • the control units of the partition 202 and the partition 204 may include redundant sensor information units to obtain the braking force demand information of the driver.
  • the Module1 redundant sensor information unit and the Module2 redundant sensor information unit can be used to obtain the information of the redundant sensors in the corresponding partitions, respectively.
  • the Module1 redundant sensor information unit can be used to obtain the information collected by the pressure sensor 218 and the brake pedal travel sensor 219 in the partition 202.
  • the Module2 redundant sensor information unit can be used to obtain the information collected by the pressure sensor 154 in the partition 204.
  • the two can communicate through an external signal interface, as shown in FIG10.
  • Module1 can obtain the redundant sensor information it needs (for example, recorded as Module1 redundant sensor information) through the external signal interface;
  • Module2 can also obtain the redundant sensor information it needs (for example, recorded as Module2 redundant sensor information).
  • control units of the partitions 202 and 204 may include a braking control functional unit to control the actuators within the partitions to implement a braking function.
  • the Module1 brake control functional unit and the Module2 brake control functional unit can be used to control the actuators in the corresponding partitions, and can also be used to obtain sensor signals in the corresponding partitions.
  • the Module2 brake control functional unit can be used to control the main pressure providing device (motor 132 and hydraulic cylinder 133), control valves (134, 137 and 138), inlet valves (9, 10, 11, 12) and outlet valves (13, 14, 15, 16) in the partition 204, and can also be used to control the actuation of the isolation valves (117, 118), and can also be used to obtain data collected by the pressure sensor 135 and the motor position sensor 139.
  • the Module1 brake control functional unit can be used to control the actuation of the actuators in the partition 202.
  • the two can communicate through an external signal interface.
  • the Module2 brake control functional unit can send a target brake request through an external signal interface, so that the Module1 brake control functional unit can control the actuator in the main brake subsystem in the partition according to the target brake request.
  • the redundancy scheme 2 in scenario 1 can be implemented in this way.
  • the brake system state detection unit, redundant sensor information unit and brake control function unit corresponding to the same partition can be in the same controller.
  • ECU1 can include Module1 brake system state detection unit, Module1 redundant sensor information unit and Module1 brake control function unit.
  • ECU1 can serve as the second control unit.
  • the first control unit and the second control unit can be arranged in the same control device.
  • the method shown in FIG8 can be executed by the first control unit, for example, the above-mentioned ECU2 is the first control unit, and the first control unit can execute the method shown in FIG8.
  • it can also be executed by a control device including the first control unit, for example, it can be executed by a control device including the above-mentioned ECU2.
  • it can also be executed by a control device capable of communicating with the first control unit, for example, it can also be executed by the above-mentioned ECU1, or a control device including ECU1.
  • Figure 11 is a schematic diagram of a control unit of an auxiliary braking subsystem provided in an embodiment of the present application.
  • the redundant sensor information unit can be the redundant sensor information unit of Module1 shown in Figure 10.
  • the redundant sensor information unit can obtain the master cylinder pressure information collected by the pressure sensor (218, 154), and can obtain the brake pedal travel information collected by the brake pedal travel sensor 219, thereby determining whether the redundant sensor is working properly.
  • the redundant sensor information unit can also receive or send redundant sensor information, such as the above-mentioned master cylinder pressure information, brake pedal travel information, etc., through an external signal interface.
  • control unit of partition 202 may include a redundant basic brake function unit, which is used to determine the braking force requirement information according to the brake pedal travel information and/or the master cylinder pressure information, and control the actuator to realize the basic brake function.
  • the target brake pressure information may also be received by an external signal interface to control the actuator to realize the basic brake function (BBF).
  • BAF basic brake function
  • the actuator actuation may be controlled by driving the actuator actuation through other units or modules.
  • the redundant basic braking functional unit may belong to the Module1 braking control functional unit shown in FIG10 .
  • the redundant basic braking functional unit may realize the basic braking function by determining the braking force demand information.
  • the redundant basic braking functional unit may indicate the basic target braking force information.
  • the plunger pump motor control unit may drive the motor 163 to actuate through the motor control unit according to the basic target braking force information, so as to drive the plunger pumps 161 and 162.
  • the plunger pump motor control unit may drive the control valves 115 and 116 to actuate through the control valve control unit according to the basic target braking force information.
  • the pressure of the brake fluid in the wheel cylinder may be adjusted.
  • control unit of partition 202 may include a vehicle and/or wheel state calculation unit for determining vehicle state information and/or wheel state information, so that in active braking mode, braking force requirement information can be determined based on the vehicle state information and/or wheel state information, thereby determining the braking force that needs to be applied to the wheel.
  • the electronic parking brake (EPB) function unit can be used to drive the EPB motor to operate according to the vehicle status information to realize the EPB function.
  • the control unit of partition 202 may include a redundant dynamic control unit for determining target wheel braking torque information to achieve a dynamic function.
  • the target wheel refers to a wheel that needs to be controlled to achieve a dynamic function
  • the target wheel braking torque information may refer to the braking torque required by the target wheel to achieve the dynamic function.
  • the target braking force arbitration unit may be used to determine whether the target wheel braking torque information is reasonable. For example, it is determined whether the vehicle safety will be affected when the braking force is applied to the vehicle according to the target wheel braking torque information. For another example, when the braking torque is unreasonable, it may be corrected.
  • the target pressure calculation unit may determine the braking force applied to the target wheel according to the braking torque, and may determine the brake fluid pressure in the wheel cylinder based on the correlation between the braking force and the brake fluid pressure.
  • the pressure of the brake fluid in the wheel cylinder may be increased by the redundant basic brake unit.
  • the isolation valve (213, 214) and/or the pressure reducing valve (113, 114) may be controlled to actuate by the isolation valve and pressure reducing valve control unit to reduce the pressure of the brake fluid in the wheel cylinder. In this way, the downgraded use of the dynamic function may be achieved.
  • the second control unit controls the motor 163 and/or the control valve (113, 114, 115, 116, 213, 214), and the braking force applied to the first group of wheels 121 and the second group of wheels 122 can be adjusted through the auxiliary braking subsystem, thereby also realizing the functions of downgrading ABS, downgrading AEB, etc.
  • FIG12 is a schematic diagram of the structure of a control unit of a main brake subsystem provided in an embodiment of the present application.
  • the redundant sensor information unit may be the Module2 redundant sensor information unit shown in FIG. 10 .
  • the redundant sensor information unit can obtain the master cylinder pressure information collected by the pressure sensor 154 and can obtain the brake pedal travel information collected by the brake pedal travel sensor 219 .
  • control unit of the partition 204 may include a basic braking function unit, which is used to control the actuation of actuators such as motors and control valves according to the driver's braking force demand information to achieve the basic braking function.
  • actuators such as motors and control valves according to the driver's braking force demand information to achieve the basic braking function.
  • the basic brake functional unit may belong to the Module2 brake control functional unit shown in FIG10 .
  • the basic braking force functional unit may determine the basic target braking force information.
  • the electric cylinder pressure control unit may control the motor 132 to drive the hydraulic cylinder 133 to actuate according to the basic target braking force information; it may also drive the control valve (134, 137, 138, 117, 118) to actuate.
  • the electric cylinder pressure control unit may also control the motor 132 and/or the control valve (134, 137, 138, 117, 118) to actuate according to the pressure of the brake fluid in the brake circuit collected by the pressure sensor 134.
  • control unit of partition 204 may include a dynamic control unit for determining the target wheel braking torque information according to the vehicle state information to realize the dynamic function.
  • the target braking torque arbitration unit may determine whether the target wheel braking torque information is reasonable.
  • the target pressure calculation unit may determine the brake fluid pressure in the brake wheel cylinder of the wheel based on the target wheel braking torque.
  • dynamic functions such as ABS, AEB, ACC, ECS, TCS, etc. may be realized.
  • the dynamic control unit may belong to the Module2 braking control function unit shown in FIG. 10.
  • the EPB function may be implemented by the EPB function unit according to the vehicle status information.
  • the embodiment of the present application also provides a device for implementing any of the above control methods, for example, a device is provided including a unit for implementing each step performed by a chip, a controller, a braking system, etc. in any of the above methods.
  • a device is provided including a unit for implementing each step performed by a chip, a controller, a braking system, etc. in any of the above methods.
  • Figure 13 is a structural schematic diagram of a control device for a braking system provided in an embodiment of the present application.
  • the braking system includes a main braking subsystem and an auxiliary braking subsystem, and the main braking subsystem is controlled by a first control unit.
  • the device 600 may include an acquisition unit 610 and a processing unit 620.
  • the acquisition unit 610 can be used to acquire the working status of the first control unit and the main brake subsystem.
  • the processing unit 620 can be used to indicate that the first control unit is working normally in the working status, and when some devices in the main brake subsystem fail, the first control unit controls the devices in the main brake subsystem except the failed device to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the braking system is in a driver braking mode
  • the main braking subsystem includes a first sensor
  • the auxiliary braking subsystem includes a second sensor
  • the first sensor and the second sensor can be used to obtain the driver's braking force demand information
  • the processing unit 620 can also be used to determine the braking force information based on the braking force demand information obtained by the second sensor
  • the processing unit 620 can be used to control the devices in the main braking subsystem except the first sensor through the first control unit according to the braking force information to adjust the pressure of the brake fluid in the brake wheel cylinder when the working status indicates that the first sensor fails.
  • the braking system is in active braking mode
  • the main braking subsystem includes a first sensor
  • the auxiliary braking subsystem includes a second sensor
  • the first sensor and the second sensor can be used to obtain the driver's braking force demand information.
  • the processing unit 620 can also be used to determine the braking force demand information according to the vehicle's operating state and/or surrounding environment information; the processing unit 620 can be used to control the devices other than the first sensor in the main braking subsystem through the first control unit according to the braking force demand information when the operating state indicates that the first sensor is faulty, and adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the main brake subsystem includes a main boost module, and an inlet valve and/or an outlet valve, wherein the main boost module is used to adjust the pressure of the brake fluid in the first section of the pipeline, the first section of the pipeline is the brake pipeline between the main boost module and the inlet valve, and when the inlet valve is in a conducting state, the first section of the pipeline is connected to the brake wheel cylinder, and the auxiliary brake subsystem includes an auxiliary boost module, which is used to adjust the pressure of the brake fluid in the first section of the pipeline.
  • the processing unit 620 can be used to adjust the pressure of the brake fluid in the first section of the pipeline through the auxiliary boost module when the working state indicates that the main boost module fails, and control the inlet valve and/or the outlet valve through the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the main boost module includes a main pressure supply device, a first control valve and a third sensor, wherein the first control valve is used to connect the main pressure supply device and the first section of the pipeline, the main boost module adjusts the pressure of the brake fluid in the first section of the pipeline through the main pressure supply device, and the third sensor is used to sense the operating state of the main pressure supply device.
  • the operating state indicates that the main boost module fails, including: the operating state indicates that at least one of the main pressure supply device, the first control valve and the third sensor fails.
  • the main brake subsystem includes a main boost module, and an inlet valve and/or an outlet valve.
  • the main boost module is used to adjust the pressure of the brake fluid in the first section of the pipeline, and the first section of the pipeline is the brake pipeline between the main boost module and the inlet valve.
  • the processing unit 620 can be used to control the main boost module through the first control unit to adjust the pressure of the brake fluid in the brake wheel cylinder when the working state indicates that the inlet valve is faulty and the inlet valve is in a conducting state, and/or the outlet valve is faulty and the outlet valve is in a disconnected state.
  • the main boost module can adjust the pressure of the brake fluid in the brake wheel cylinder by adjusting the pressure of the brake fluid in the first section of the pipeline.
  • the braking system is in active braking mode
  • the main braking subsystem includes a pedal feeling simulation module, which is used to provide a pedal feeling to the driver.
  • the processing unit 620 can also be used to determine the braking force requirement information according to the vehicle's operating state and/or surrounding environment information; the processing unit 620 can be used to control the devices in the main braking subsystem other than the pedal feeling simulation module through the first control unit according to the braking force requirement information when the operating state indicates that the pedal feeling simulation module is faulty, and adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the auxiliary braking subsystem may be controlled by a second control unit.
  • the processing unit 620 may also be used to control the auxiliary braking subsystem to adjust the pressure of the brake fluid in the wheel cylinder via the second control unit when the first control unit fails.
  • the division of the units in the above device is only a division of logical functions. In actual implementation, they can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, and instructions are stored in the memory.
  • the processor calls the instructions stored in the memory to implement any of the above methods or realize the functions of the units of the device, wherein the processor is, for example, a general-purpose processor, such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which can be understood as a microprocessor), or a digital signal processor (DSP), etc., and the memory is a memory inside the device or a memory outside the device.
  • a general-purpose processor such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which can be understood as a microprocessor), or a digital signal processor (DSP), etc.
  • the memory is a memory inside the device or a memory outside the device.
  • the units in the device may be implemented in the form of hardware circuits, and the functions of some or all of the units may be implemented by designing the hardware circuits, and the hardware circuits may be understood as one or more processors; for example, in one implementation, the hardware circuit is an application-specific integrated circuit (ASIC), and the functions of some or all of the above units may be implemented by designing the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit may be implemented by a programmable logic device (PLD), and a field programmable gate array (FPGA) may be used as an example, which may include a large number of logic gate circuits, and the connection relationship between the logic gate circuits may be configured by configuring the configuration file, so as to implement the functions of some or all of the above units.
  • PLD programmable logic device
  • FPGA field programmable gate array
  • it may also be a hardware circuit designed for artificial intelligence, which may be understood as an ASIC, such as a neural network processing unit (NPU), a tensor
  • All units of the above device may be implemented entirely in the form of a processor calling software, or entirely in the form of a hardware circuit, or partially in the form of a processor calling software and the rest in the form of a hardware circuit.
  • FIG14 is a schematic block diagram of another control device provided in an embodiment of the present application.
  • the device 1000 may include: a processor 1010, an interface circuit 1020, and a memory 1030.
  • the processor 1010, the interface circuit 1020, and the memory 1030 are connected via an internal connection path, the memory 1030 is used to store instructions, the processor 1010 is used to execute the instructions stored in the memory 1030, and the interface circuit 1020 receives/sends some parameters.
  • the memory 1030 can be coupled to the processor 1010 through an interface, or integrated with the processor 1010.
  • the interface circuit 1020 may include, but is not limited to, a transceiver device such as an input/output interface to achieve communication between the device 1000 and other devices or communication networks.
  • the interface circuit 1020 may be used to obtain information collected by a sensor, control an actuator such as a control valve, and perform corresponding operations.
  • the embodiment of the present application further provides a computer program product, which includes: a computer program code, which, when executed on a computer, enables the computer to execute the above method 400 or method 500 and any possible implementation thereof.
  • the embodiment of the present application also provides a chip, including a circuit, for executing the method 400 or the method 500 in the embodiment of the present application and any possible implementation thereof.
  • the embodiment of the present application also provides a control system, including a main braking subsystem, an auxiliary braking subsystem and a control device 600 or 1000 and any possible implementation thereof.
  • An embodiment of the present application also provides a vehicle, including a control device 600 or a control device 1000, or including the above-mentioned control system.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

一种制动***的控制方法和装置,该制动***包括主制动子***和辅制动子***,主制动子***由第一控制单元控制。该方法包括:获取该第一控制单元和该主制动子***的工作状态;在该工作状态指示该第一控制单元工作正常,且该主制动子***中部分装置故障时,通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力。本申请实施例可以应用于智能车辆或电动汽车,在主制动子***中部分装置故障时,通过主制动子***中除故障装置以外的正常装置,调节制动轮缸内制动液的压力,能够以较低的成本保障动力学功能的使用,以从而提升制动的安全性。

Description

制动***的控制方法和装置 技术领域
本申请实施例涉及智能驾驶领域,并且更具体地,涉及一种制动***的控制方法和装置。
背景技术
车辆的制动***是通过对车辆的车轮施加一定的制动力,从而对其进行一定程度的强制制动的***。随着车辆电动化和智能化的发展,车辆对制动***的要求也越来越高。例如,随着自动驾驶技术的进一步发展,减少了制动***的运行对驾驶员的依赖,使得对于制动***的冗余性能的要求越来越高。在制动***中部分装置失效时,制动***的冗余性能不足,会影响到制动***的使用;而在制动***中设置多套装置以提升制动***的冗余性能,会导致制动***的重量、成本过大。如何合理的设置制动***的冗余方案,成为需要解决的问题。
发明内容
本申请实施例提供一种制动***的控制方法和装置,在制动***的主制动子***中部分装置故障时,能够以较低的成本保障制动功能的实现,提升制动的安全性。
第一方面,提供了一种制动***的控制方法,该控制方法可以由设置有该制动***的车辆执行,或者,也可以由该制动***的控制器执行,或者,也可以由制动***执行,本申请实施例对此不做限定。
该制动***可以包括主制动子***和辅制动子***,该主制动子***由第一控制单元控制,该方法可以包括:获取该第一控制单元和该主制动子***的工作状态;在该工作状态指示该第一控制单元工作正常,且该主制动子***中部分装置故障时,通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力。
本申请实施例中,在第一控制单元正常且主制动子***中的部分装置故障时,通过主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,能够以较低的成本保障基础制动功能和动力学功能的实现,以提升制动的安全性。
结合第一方面,在第一方面的某些实现方式中,该制动***处于驾驶员制动模式,该主制动子***包括第一传感器,该辅制动子***包括第二传感器,该第一传感器和该第二传感器用于获取驾驶员的制动力需求信息,该方法还可以包括:根据该第二传感器获取的该制动力需求信息,确定制动力信息;其中,该通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以包括:在工作状态指示该第一传感器故障时,根据该制动力信息,通过该第一控制单元控制该主制动子***中除该第一传感器以外的装置,调节该压力。
本申请实施例中,当制动***处于驾驶员操纵模式,在主制动子***的中的第一传感 器故障时,可以基于辅制动子***中的第二传感器所获取的驾驶员的制动力需求信息,通过第一控制单元控制主制动子***中的正常装置调节制动轮缸内制动液的压力。由此,能够在充分利用主制动子***中处于的正常状态的装置,实现制动***所支持的功能,以较低的成本提升制动的安全性。
结合第一方面,在第一方面的某些实现方式中,该制动***处于主动制动模式,该主制动子***包括第一传感器,该第一传感器用于获取驾驶员的制动力需求信息,该方法还可以包括:根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;其中,该通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以包括:在工作状态指示该第一传感器故障时,根据该制动力需求信息,通过该第一控制单元控制该主制动子***中除该第一传感器以外的装置,调节该压力。
当制动***处于主动制动模式,驾驶员可以无需对制动***进行操纵,制动力需求信息可以来源于车辆的运动状态信息和/或周边环境信息。由此在主动制动模式下,第一传感器故障不会影响到主制动子***对于制动轮缸中制动液压力的调节。
本申请实施例中,当制动***处于主动制动模式、第一控制单元工作正常,且主制动子***中的第一传感器故障时,通过主制动子***调节制动轮缸内制动液的压力,能够充分利用主制动子***中装置实现基础制动功能和动力学功能,能够以较低的成本确定制动***的冗余性能。
结合第一方面,在第一方面的某些实现方式中,该主制动子***包括主增压模块、进液阀和出液阀,该主增压模块用于调节第一段管路内制动液的压力,该第一段管路为该主增压模块与该进液阀之间的制动管路,在该进液阀处于导通状态时,该第一段管路与该制动轮缸相通,该辅制动子***包括辅增压模块,该辅增压模块用于调节该第一段管路内制动液的压力,其中,该通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以包括:在该工作状态指示该主增压模块故障时,通过该辅增压模块调节该第一段管路内制动液的压力,且通过该第一控制单元控制该进液阀和/或该出液阀调节该制动轮缸内制动液的压力。
本申请实施例中,在主制动子***中的主增压模块故障时,通过辅制动子***中的辅增压模块,调节与进液阀压力入端口相连的第一段管路中制动液的压力,进而通过进液阀和/或出液阀调节制动轮缸内制动液的压力。能够实现对单个制动轮缸的控制,能够保障动力学功能的顺利运行,确保制动的安全性。
结合第一方面,在第一方面的某些实现方式中,该主增压模块包括主压力提供装置、第一控制阀和第三传感器,其中,该第一控制阀用于连接该主压力提供装置和该第一段管路,该主增压模块通过该主压力提供装置调节该第一段管路内制动液的压力,该第三传感器用于感测该主压力提供装置的运行状态,其中,该工作状态指示该主增压模块故障,可以包括:该工作状态指示该主压力提供装置、该第一控制阀和该第三传感器中的至少一项故障。
示例性地,该第一控制阀可以包括一个或多个控制阀,也就是说,主压力提供装置与第一段管路之间可以设置有一个或多个控制阀。该第一控制阀导通时,主压力提供装置调节第一段管路内制动液的压力,可以指,该主压力提供装置与第一段管路间的一个或多个控制阀均处于导通状态时,该主压力提供装置可以调节第一段管路内制动液的压力。第一 控制阀故障,可以指该一个或多个控制阀中的至少一个控制阀故障。
结合第一方面,在第一方面的某些实现方式中,该主制动子***包括主增压模块、进液阀和出液阀,该主增压模块用于调节第一段管路内制动液的压力,该第一段管路为该主增压模块与该进液阀之间的制动管路,在该进液阀处于导通状态时,该第一段管路与该制动轮缸相通,其中,该通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以包括:在工作状态指示该进液阀故障且该进液阀处于导通状态,和/或,该出液阀故障且该出液阀处于断开状态时,通过该第一控制单元控制该主增压模块,调节该压力。
示例性地,在制动***中设置的进液阀和/或出液阀,可以与各制动轮缸分别对应。
示例性地,由于进液阀处于导通状态时,制动轮缸与第一段管路连通。对于故障且处于导通状态的进液阀而言,其所对应的制动轮缸与第一段管路连通,主压力提供装置可以通过调节第一段管路内制动液的压力,调节制动轮缸内制动液的压力。对于正常进液阀而言,通过主压力提供装置结合该进液阀和/或出液阀,可以实现调节该进液阀所对应的制动轮缸内的制动液压力。
示例性地,由于出液阀故障且处于断开状态时,制动轮缸内制动液被出液阀阻断而无法流向储液装置。通过控制进液阀处于导通状态,主压力提供装置可以通过调节第一段管路内制动液的压力,调节该故障出液阀所对应的制动轮缸内的制动液的压力。
本申请实施例中,在主制动子***中的进液阀和/或出液阀故障时,通过主制动子***中的主增压模块调节制动轮缸内制动液的压力,能够确保制动功能的实现。
示例性地,当通过控制多个独立的制动管路内制动液的压力,以分别调节车辆的不同组车轮上的制动力时,第一段管路可以包括对应的分支。
一个实施例中,第一段管路可以包括,与第一组车轮(121)的制动轮缸(17、18)所连通的第一段管路的第一分支,和与第二组车轮(122)的制动轮缸(19、20)所连通的第一段管路的第二分支,比如,该第一分支可以包括制动回路供应管路171等,第二分支可以包括制动回路供应管路172等。例如,当进液阀全部故障且处于导通状态,和/或,出液阀全都故障且处于断开状态,通过主压力提供装置分别调节第一段管路的第一分支和第二分支中的制动液的压力,可以实现动力学功能的降级使用。
结合第一方面,在第一方面的某些实现方式中,该制动***处于主动制动模式,该主制动子***包括踏板感觉模拟模块,该踏板感觉模拟模块用于向驾驶员提供踏板感,该方法还可以包括:根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;其中,该通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以包括:在工作状态指示该踏板感觉模拟模块故障时,根据该制动力需求信息,通过该第一控制单元控制该主制动子***中除踏板感觉模拟模块以外的装置,调节该制动轮缸内制动液的压力。
示例性地,由于车辆处于主动制动模式下,驾驶员可以无需操纵制动***,由此车辆可以无需通过踏板感觉模拟模块向驾驶员提供踏板感。
本申请实施例中,在主制动子***中的踏板感觉模拟模块故障时,通过主制动子***中的正常装置调节制动轮缸内制动液的压力,可以在不影响制动***的使用的情况下,充分利用主制动子***中的装置,实现基础制动功能和动力学功能。
结合第一方面,在第一方面的某些实现方式中,该辅制动子***由第二控制单元控制,该方法还可以包括:在该第一控制单元故障时,通过该第二控制单元用于控制该辅制动子***调节该制动轮缸内制动液的压力。
第二方面,提供了一种制动***的控制装置,该制动***包括主制动子***和辅制动子***,该主制动子***由第一控制单元控制,该装置可以包括:获取单元,用于获取该第一控制单元和该主制动子***的工作状态;处理单元,可以用于,在该工作状态指示该第一控制单元工作正常,且该主制动子***中部分装置故障时,通过该第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力。
结合第二方面,在第二方面的某些实现方式中,该制动***处于驾驶员制动模式,该主制动子***包括第一传感器,该辅制动子***包括第二传感器,该第一传感器和该第二传感器用于获取驾驶员的制动力需求信息,该处理单元,可以用于:根据该第二传感器获取的该制动力需求信息,确定制动力信息;在该工作状态指示该第一传感器故障时,根据该制动力信息,通过该第一控制单元控制该主制动子***中除该第一传感器以外的装置,调节该压力。
结合第二方面,在第二方面的某些实现方式中,该制动***处于主动制动模式,该主制动子***包括第一传感器,该第一传感器用于获取驾驶员的制动力需求信息,该处理单元,还用于:根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;该处理单元,可以用于:在工作状态指示该第一传感器故障时,根据该制动力需求信息,通过该第一控制单元控制该主制动子***中除该第一传感器以外的装置,调节该压力。
结合第二方面,在第二方面的某些实现方式中,该主制动子***包括主增压模块、进液阀和出液阀,该主增压模块用于调节第一段管路内制动液的压力,该第一段管路为该主增压模块与该进液阀之间的制动管路,在该进液阀处于导通状态时,该第一段管路与该制动轮缸相通,该辅制动子***包括辅增压模块,该辅增压模块用于调节该第一段管路内制动液的压力,该处理单元可以用于:在该工作状态指示该主增压模块故障时,通过该辅增压模块,调节该第一段管路内制动液的压力,且通过该第一控制单元控制该进液阀和/或该出液阀,调节该制动轮缸内制动液的压力。
结合第二方面,在第二方面的某些实现方式中,该主增压模块包括主压力提供装置、第一控制阀和第三传感器,该第一控制阀用于连接该主压力提供装置和该第一段管路,该主增压模块通过该主压力提供装置调节该第一段管路内制动液的压力,该第三传感器用于感测该主压力提供装置的运行状态,其中,该工作状态指示该主增压模块故障,可以包括:该工作状态指示该主压力提供装置、该第一控制阀和该第三传感器中的至少一项故障。
结合第二方面,在第二方面的某些实现方式中,该主制动子***包括主增压模块,以及进液阀和/或出液阀,该主增压模块用于调节第一段管路内制动液的压力,该第一段管路为该主增压模块与该进液阀之间的制动管路,在该进液阀处于导通状态时,该第一段管路与该制动轮缸相通,该处理单元,可以用于:在该工作状态指示,该进液阀故障且该进液阀处于导通状态,和/或,该出液阀故障且该出液阀处于断开状态时,通过该第一控制单元控制该主增压模块,调节该压力。
结合第二方面,在第二方面的某些实现方式中,该制动***处于主动制动模式,该主制动子***包括踏板感觉模拟模块,该踏板感觉模拟模块用于向驾驶员提供踏板感,该处 理单元,还可以用于:根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;该处理单元,可以用于:在工作状态指示该踏板感觉模拟模块故障时,根据该制动力需求信息,通过该第一控制单元控制该主制动子***中除踏板感觉模拟模块以外的装置,调节该压力。
结合第二方面,在第二方面的某些实现方式中,该辅制动子***由第二控制单元控制,该处理单元还可以用于:在该第一控制单元故障时,通过第二控制单元用于控制该辅制动子***调节该压力。
第三方面,提供了一种控制装置,该控制装置包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于执行该存储器中的计算机程序,使得该控制装置可以实现上述第一方面及其任一可能的实现方式中的方法。
第四方面,提供了一种控制***,该制动***包括主制动子***、辅制动子***和上述第二方面或第三方面及任一可能的实现方式中的控制装置。
第五方面,提供了一种车辆,该智能驾驶设备,包括上述第二方面或第三方面及其任一可能的实现方式中的控制装置,或者,包括上述第四方面及其任一可能的实现方式中的控制***。
本申请中的车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。
第六方面,提供了一种计算机程序产品,上述计算机程序产品包括:计算机程序代码,当上述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,上述计算机可读介质存储有计算机程序,当上述计算机程序在计算机上运行时,使得计算机执行上述第一方面任一种可能实现方式中的方法。
第八方面,提供了一种芯片,该芯片包括电路,用于执行上述第一方面任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的一种主制动子***的示意图。
图2是本申请实施例提供的一种辅制动子***的示意图。
图3是本申请实施例提供的一种制动***的示意图。
图4是本申请实施例提供的制动***中制动液的增压路径的示意图。
图5是本申请实施例提供的制动***中另一种制动液的增压路径的示意图。
图6是本申请实施例提供的制动***中另一种制动液的增压路径的示意图。
图7是本申请实施例提供的制动***中另一种制动液的增压路径的示意图。
图8是本申请实施例提供的一种制动***的控制方法的流程示意图。
图9是本申请实施例提供的另一种制动***的控制方法的流程示意图。
图10是本申请实施例提供的一种制动***的***架构的示意图。
图11是本申请实施例提供的一种辅制动子***的控制单元的示意图。
图12是本申请实施例提供的一种主制动子***的控制单元的结构的示意图。
图13是本申请实施例提供的一种制动***的控制装置的结构示意图。
图14是本申请实施例提供的另一种控制装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例提供的一种主制动子***的示意图。图1所示主制动子***100包括主增压模块130。该主增压模块130可以用于调节制动轮缸(17、18、19、20)中的制动液的压力。搭载该制动***的车辆,可以包括第一组车轮121和第二组车轮122,通过制动轮缸(17、18、19、20)可以为车轮提供制动力。
示例性地,制动轮缸17和18可以分别为该第一组车轮121中的车轮提供制动力,相应地,制动轮缸19和20可以分别为该第二组车轮122中的车轮提供制动力。
一个实施例中,第一组车轮121可以包括车辆的左前轮和右前轮,第二组车轮122可以包括车辆的右后轮和左后轮,即制动***可以为H型布置。
又一个实施例中,第一组车轮121可以包括右前轮和左后轮,第二组车轮122可以包括左前轮和右后轮,即制动***可以为X型布置。
主增压模块130通过调节第一进液管路41内制动液的压力,可以调节施加在第一组车轮121上的制动力。主增压模块130通过调节第二进液管路42内的制动液的压力,可以调节施加在第二组车轮122上的制动力。
其中,第一进液管路41可以包括第一进液支路31和第二进液支路32,以分别控制施加在第一组车轮121的两个车轮上的制动力。第二进液管路42可以包括第三进液支路33和第四进液支路34,以分别控制施加在第二组车轮122的两个车轮上的制动力。例如,如图1所示,第一进液支路31的压力出端口可以与制动轮缸17的压力入端口5相连。第二进液支路32、第三进液支路33和第四进液支路34的压力出端口,可以分别与制动轮缸18、19和20的压力入端口6、7和8相连。
对于制动***而言,在一些情况下,需要为不同的车轮施加不同的制动力。
示例性地,可以在制动轮缸(17、18、19、20)的进液管路上设置进液阀(9、10、11、12),以便独立地调节每个制动轮缸内的制动液的压力。在对制动轮缸内的制动液增压,以便向对应的车轮施加制动力时,可以控制该制动轮缸对应的进液阀处于导通状态。在无需对制动轮缸内的制动液增压时,可以控制该进液阀处于断开状态。
例如,如图1所示,以制动轮缸17为例,可以在第一进液支路31中设置进液阀9,该进液阀9的压力入端口可以与制动管路1的压力出端口相连,进液阀9的压力出端口可以与制动轮缸17的压力入端口5连通。当进液阀9处于导通状态时,第一进液支路31中的制动液可以流向制动轮缸17,通过增加制动管路1中的制动液的压力,可以增大制动轮缸17内制动液的压力。当进液阀9处于断开状态时,制动管路1内的制动液的制动液被进液阀9阻断,无法流向制动轮缸17。又例如,如图1所示,可以在第二进液支路32、第三进液支路33和第四进液支路34中,分别设置进液阀10、11和12,进液阀10、11和12的压力出端口,可以分别与制动轮缸18、19和20的压力入端口6、7和8连通。又 例如,为了防止制动液回流,还可以设置与进液阀(9、10、11、12)并联的单向阀109。由此,可以实现对于制动轮缸(17、18、19、20)内制动液压力的单独调节。
对于制动***而言,在一些情况下,还需要减小施加在车轮上的制动力。
示例性地,可以在制动轮缸(17、18、19、20)的出液管路上设置出液阀(13、14、15、16),以便独立地调节每个制动轮缸内的制动液的压力。在对制动轮缸内的制动液进行减压,以减小向车轮施加的制动力时,可以控制该制动轮缸对应的出液阀处于导通状态。在无需对制动轮缸内的制动液减压时,可以控制该出液阀处于断开状态。
例如,如图1所示,以制动轮缸17为例,制动轮缸17可以与出液管路110相通,在制动轮缸17与出液管路110之间的制动管路中,可以设置出液阀13。当出液阀13处于导通状态时,该制动管路中的制动液,可以通过出液阀13,由制动轮缸17流向出液管路110,进而流向储液装置101,以减小制动轮缸17内制动液的压力。当出液阀13处于断开状态时,制动液被出液阀13阻断,无法从制动轮缸17流向出液管路110。又例如,如图1所示,在出液管路110与制动轮缸18、19和20之间的制动管路中,可以分别设置出液阀14、15和16。由此,可以实现制动轮缸(17、18、19、20)内的制动液压力的单独调节。
示例性地,在减小施加在车轮上的制动力的过程中,制动轮缸(17、18、19、20)内的制动液可以通过该出液管路110流回储液装置101。因此,上述出液管路110也可以称为“回油管路”。
应理解,上述涉及的“出液管路”、“回油管路”、“进液管路”,仅仅基于制动管路在制动***中的功能来区分,可以对应于不同的制动管路,也可以对应于相同的一条制动管路。例如,如图1所示,从制动轮缸18流出的制动液,可以通过第二进液支路32中的部分管路,流向出液阀14,进而流向出液管路110,该部分管路可以作为进油管路,也可以作为出液管路。
应理解,“压力出端口”可以理解为制动液流出的端口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用。上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,比如,在制动轮缸18的减压过程中,出液阀14处于导通状态时,压力入端口6可以作为制动轮缸18的压力出端口。或者,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口。
上述出液阀的方案和进液阀的方案可以单独配置在制动***中使用,也可以与相互配合使用在一个制动***中。下文结合图1以制动轮缸18对应的出液阀14和进液阀10为例,介绍出液阀与进液阀之间的连接方式。
进液阀10设置于第二进液支路32,进液阀10的压力入端口与制动管路2相连,进液阀10的压力出端口与制动轮缸18的压力入端口6相连。而且,出液阀14的压力入端口与制动轮缸18的压力入端口6相连,出液阀14的压力出端口与出液管路110相连。
示例性地,制动轮缸17对应的出液阀13和进液阀9间的连接方式,制动轮缸19对应的出液阀15和进液阀11间的连接方式,和/或,制动轮缸20对应的出液阀16和进液阀12的连接方式,可以与上述出液阀14与进液阀10之间的连接方式相同。
应理解,进液阀和出液阀的配合方式还可以有其他方式。例如,制动轮缸18可以具 有两个独立的物理端口,由此,制动轮缸18可以通过两个并联且独立的制动管路,分别与制动回路供应管路171、出液管路110相连,将进液阀10和出液阀14分别设置在上述两个独立的制动管路上。
另外,上述所涉及的“进液阀”、“出液阀”,以及下文涉及的“隔离阀”是基于控制阀在制动***中的功能来区分的。用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”、“进油阀”。用于控制出液管路连通或者断开的控制阀可以称为“出液阀”或者“减压阀”、“出油阀”。用于隔离两级制动子***的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动***中常用的阀,例如,电磁阀等。
示例性地,在包含主制动子***100的制动***中,可以设置有制动主缸210。制动主缸210的压力出端口可以与进液管路连通,从而通过调节进液管路中的制动液的压力,调节制动轮缸(17、18、19、20)内制动液的压力。
示例性地,该制动主缸210可以是单腔式制动主缸,也可以是双腔式制动主缸,本申请实施例对制动主缸的形式不做限定。
可选地,上述制动主缸210为串联双腔式制动主缸时,该制动主缸210可以包括第一腔211和第二腔212。其中,第一腔211中的第一活塞与第二腔212中的第二活塞之间可以通过弹簧相连,当第一活塞相对于缸体产生位移时,可以通过弹簧推动第二活塞产生相对于缸体的位移。
一个实施例中,从制动主缸210的第二腔212流出的制动液,可以通过压力出端口22流向第二组车轮122的制动轮缸。制动主缸210的第一腔211中的制动液可以通过压力出端口21流向第一组车轮121的制动轮缸。
又一个实施例中,也可以是第一腔211的压力出端口21,通过进液管路与第二组车轮122的制动轮缸连通,第二腔212的压力出端口22通过进液管路与第一组车轮121的制动轮缸连通。
示例性地,制动主缸210可以通过压力补偿管路与储液装置101相连,制动主缸210可以通过压力补偿管路从储液装置101中补偿制动液。例如,制动主缸210为串联双腔式制动主缸时,如图1所示,制动主缸210的第一腔211和第二腔212,可以通过压力补偿管路(177、178)分别与储液装置101连通。又例如,在压力补偿管路中可以设置控制阀,当控制阀断开时,制动液被控制阀阻断,无法在储液装置101与制动主缸210间流动,当控制阀导通时,储液装置101与制动主缸210连通。又例如,为避免制动液回流,还可以设置与上述控制阀并联的单向阀。
示例性地,搭载该主制动子***100的车辆可以设置有制动踏板,制动主缸210可以通过活塞杆等连接机构,与制动踏板连接,从而可以将制动踏板的运动与制动主缸210中活塞的运动相耦合。相应地,该制动***中可以设置制动踏板行程传感器,以获取该制动踏板的行程。
示例性地,可以在制动***的制动管路中设置一个或多个压力传感器,以检测管路中制动液的压力。例如,压力传感器154,可以检测与制动主缸210的压力出端口连通的制动管路中的制动液的压力。又例如,可以在第一进液管路41,和/或第二进液管路42中设置压力传感器。
主增压模块130,可以包括压力提供装置。为便于区分,该主增压模块130中的压力 提供装置也可以称为主压力提供装置。
示例性地,该主压力提供装置可以包括液压缸133,以及用于驱动该液压缸133的装置,比如,电机132。例如,电机132可以用于驱动液压缸133中的活塞做直线往复运动,将液压缸133中的制动液压入第一进液管路41和/或第二进液管路42中。
示例性地,液压缸133可以是双作用柱塞缸(dual apply plunger,DAP),也可以是其他形式的液压缸,比如,单作用柱塞缸等。
示例性地,主增压模块130也可以包括一个或多个控制阀,上述控制阀处于导通状态时,从主压力提供装置流出的制动液可以经控制阀流向与进液阀的压力入端口连通的制动管路,比如,制动回路供应管路(171、172)、制动管路1等。
一个实施例中,主增压模块130中可以包括控制阀137和控制阀138。控制阀137导通时,第一进液管路41中的制动液,可以由液压缸133经第一进液管路41,流向第一组车轮121的制动轮缸。控制阀138导通时,第二进液管路42中的制动液,可以由液压缸133经第二进液管路42,流向第二组车轮122的制动轮缸。在控制阀137断开时,从液压缸133流出的制动液,被控制阀137阻断,无法流向制动回路供应管路171;在控制阀138断开时,液压缸133与制动回路供应管路172不相通。
示例性地,该主增压模块130中还可以包括传感器以监测主压力提供装置的工作状态。例如,该主增压模块130也可以包括电机位置传感器139,以监测电机132的工作状态。又例如,液压缸133与控制阀137和/或控制阀138之间的制动管路中,可以设置有压力传感器,以监测液压缸133对该制动管路内制动液的压力调节状况。
应理解,第一进液管路41和第二进液管路42可以随着主压力提供装置的形式而变化。例如,在液压缸133设置有两个压力出端口时,第一进液管路41和第二进液管路42可以分别与上述两个压力出端口相连,如图1所示。又例如,在该液压缸133设置有一个压力出端口时,第一进液管路41和第二进液管路42可以共用部分的制动管路。又例如,在上述第一进液管路41和第二进液管路42的共用管路中,可以设置控制阀,也可以设置压力传感器等。
示例性地,在制动主缸210的压力出端口所连通的制动管路中,可以设置控制阀,比如控制阀117和控制阀118。以控制阀117为例,在控制阀117导通时,制动主缸210可以与制动回路供应管路171连通;控制阀117断开时,从制动主缸210流出的制动液被控制阀117阻断,而无法流入制动回路供应管路171。上述控制阀117、118也可以称为“隔离阀”。
示例性地,可以根据制动力需求信息,确定为车轮施加的制动力信息。
一个实施例中,可以基于驾驶员对车辆的操纵,确定驾驶员的制动力需求信息。例如,可以根据制动踏板的行程,确定驾驶员的制动力需求信息。又例如,用户踩下制动踏板时,制动主缸210内的制动液会流向压力传感器154所在的制动管路,由此,可以根据压力传感器154所采集的制动液的压力,确定驾驶员的制动力需求信息。又例如,可以根据上述确定的驾驶员的制动力需求信息,确定为车轮施加的制动力信息。
又一个实施例中,可以根据车辆的运动状态和/或周边环境信息,确定制动力需求信息。例如,可以根据车辆的运行状态(比如轮速等)和/或周边环境信息,确定制动力需求信息,进而确定为各车轮施加的制动力,从而可以实现自动防抱死刹车***(antilock  braking system,ABS)、自动紧急刹车(autonomous emergency braking,AEB)功能、自适应巡航控制(adaptive cruise control,ACC)功能、电子稳定控制***(electronic stability control system,ESC)、电子稳定控制程序(electronic stability program,ESP)、牵引力控制***(traction control system,TCS)等动力学功能中的一种或多种。
基于上述制动力信息,可以控制主制动子***100为车轮提供制动力。
示例性地,在该主制动子***100工作正常的场景下,在检测到用户踩下制动踏板时,可以控制隔离阀117和隔离阀118处于断开状态,可以基于制动踏板的行程和/或压力传感器154所采集的制动液压力,获取驾驶员的制动力需求信息。通过控制主增压模块130作动,从而为车轮施加相应的制动力。在一些可能的实现方式中,也可以结合进液阀和/或出液阀,实现对单个制动轮缸内的制动液压力的控制。
可选地,该主制动子***100中也可以包括踏板感觉模拟模块,用于向驾驶员提供踏板感。比如,该踏板感觉模拟模块可以包括踏板感觉模拟器151,也可以包括一个或多个阀。例如,如图1所示,控制阀152可以用于连接踏板感觉模拟器151,以及与制动主缸210连通的制动管路,在该控制阀152导通的情况下,制动液可以通过该制动管路流向踏板感觉模拟器151。又例如,为防止制动液回流,可以在该控制阀152两端并联单向阀153,该踏板感觉模拟器151还可以与出液管路140相连,从踏板感觉模拟器151流出的制动液,可以通过出油管路140流向储液装置101。
示例性地,图2是本申请实施例提供的一种辅制动子***的示意图。图2所示的辅制动子***200包括辅增压模块160。应理解,图2中功能与图1中功能相同的部件,使用了与图1相同的编号,具体功能可以参见上文描述。
辅增压模块160通过调节第三进液管路51内制动液的压力,可以调节施加在第一组车轮121上的制动力。辅增压模块160通过调节第四进液管路52内制动液的压力,可以调节施加在第二组车轮122上的制动力。
辅增压模块160可以包括压力提供装置。为了便于区分,该辅增压模块160中的压力提供装置,也可以称为辅压力提供装置。以下以制动主缸210为串联双腔式制动主缸为例,介绍上述辅增压模块160。
示例性地,该辅压力提供装置,可以包括柱塞泵(161、162),以及该柱塞泵的驱动装置,比如,电机163。例如,该电机163可以通过皮带、齿轮、链条等传动机构驱动柱塞泵161和162作动,经柱塞泵161和162加压后的制动液,可以分别经第三进液管路51和第四进液管路52,流向相应的制动轮缸。又例如,也可以通过两个独立的电机,分别驱动柱塞泵161和柱塞泵162。
示例性地,该辅增压模块160,也可以包括一个或多个控制阀。例如,该辅增压模块160可以包括控制阀113、114,控制阀115、116,以及控制阀213、214。
示例性地,控制阀213、214断开时,可以实现从制动主缸210流出的制动液,与经柱塞泵(161、162)加压后的制动液之间的隔离。控制阀213、214导通时,从制动主缸210流出的制动液可以经相应的第三进液管路51、第四进液管路52流向对应的制动轮缸。因此,上述控制阀213、214也可以称为“隔离阀”。
示例性地,控制阀113可以用于连接第三进液管路51和储液装置101。类似地,第四进液管路52和储液装置101之间,可以设置有控制阀114。控制阀113、114导通时, 相应的第三进液管路51和第四进液管路52可以与储液装置101连通,上述进液管路中的制动液,可以分别经控制阀113、114流向储液装置101,从而实现管路内制动液压力的下降。因此,上述控制阀113、114也可以称为“减压阀”、“泄压阀”。
示例性地,控制阀115可以用于连接制动主缸210和柱塞泵161。类似地,制动主缸210与柱塞泵162之间,可以设置有控制阀116。以控制阀115为例,在控制阀115断开时,从制动主缸210流出的制动液,被上述控制阀115阻断,无法流向柱塞泵161的压力入端口。在控制阀115导通时,从制动主缸210流出的制动液,可以经控制阀115流向柱塞泵161,由柱塞泵161加压后的制动液,可以经第三进液管路51流向第一组车轮121的制动轮缸。
示例性地,柱塞泵161、162可以从储液装置101补充制动液。可以在柱塞泵(161、162)和储液装置间设置单向阀,以防止制动液回流。例如,单向阀165可以用于连接储液装置101和柱塞泵161。又例如,储液装置101与柱塞泵162之间,可以设置有单向阀166。
示例性地,可以在制动管路中设置压力传感器,以检测管路中制动液的压力。例如,压力传感器218,可以用于检测与制动主缸210的压力出端口连通的制动管路中的制动液的压力。又例如,还可以设置一个或多个传感器以测量第三制动管路51、第四进液管路52中的制动液的压力。
示例性地,可以根据制动力信息,控制辅制动子***200为车轮提供制动力。
示例性地,该辅制动子***200处于工作正常的状态下,在检测到用户踩下制动踏板时,可以控制隔离阀213、214处于断开状态,控制阀115、116处于导通状态。根据基于驾驶员的制动力需求,可以控制电机163作动,进而驱动柱塞泵161、162,为车轮施加相应的制动力。
上述第三制动管路51可以包括第一进液支路31和第二进液支路32,上述第四制动管路52可以包括第三进液支路33和第四进液支路34。上述4条进液支路的连接方式,进液阀与出液阀的配置方式,可以参照图1的介绍。
应理解,以上关于辅增压模块160的描述仅为示例,本申请实施例对辅增压模块的具体形式不做限定。例如,在制动主缸210只设置有一个压力出端口(比如,压力出端口21)时,在辅增压模块160中,可以只包含一个柱塞泵(比如,柱塞泵161),以及对应的控制阀(113、115、213)。相应地,第三进液管路51和第四进液管路52可以共用部分管路,比如制动管路173。
下文结合图3介绍本申请实施例的制动***。图3是本申请实施例提供的一种制动***的示意图,图3所示制动***300可以包括主制动子***和辅制动子***,制动***300所包括的主制动子***可以理解为是对图1所示主制动子***100的扩展或变形,所包括的辅制动子***可以理解为是对图2所示主制动子***200的扩展或变形。应理解,图3中与图1和/或图2功能相同的部件,使用了与图1和/或图2相同的编号,其具体功能可以参照上文描述。
示例性地,图3所示制动***300中,在由主增压模块130为车轮提供制动力时,可以控制隔离阀117、118处于断开状态,由此,从液压缸133流出的制动液,可以通过第一进液管路41和第二进液管路42,分别流向相应的第一组车轮121的制动轮缸(17、18) 和第二组车轮122的制动轮缸(19、20)。在由辅增压模块160为车轮提供制动力时,可以控制隔离阀117和118处于导通状态,由此,经柱塞泵(161、162)加压后的制动液,可以通过第三进液管路51和第四进液管路52,分别流向相应的第一组车轮121的制动轮缸(17、18)和第二组车轮122的制动轮缸(19、20)。
也就是说,主制动子***和辅制动子***可以通过调节制动回路供应管路(171、172)中制动液的压力,进而调节各制动轮缸内制动液的压力。
示例性地,在制动***300中,第一进液管路41和第二进液管路42中部分的制动管路可以共用。如图3所示,在该共用的制动管路中可以设置压力传感器135,以监测经主压力提供装置加压后的制动液的压力,还可以在该共用的制动管路中设置控制阀134。
示例性地,在制动***300中,可以在压力补偿管路178中设置控制阀216。为防止制动液回流,也可以设置与控制阀216并联的单向阀217。
可选地,该制动***300中的装置,比如,压力传感器154、制动踏板行程传感器219、电机132、控制阀134、137、138等,可以由一个或多个控制装置控制。例如,可以由一个控制装置内的一个或多个控制模块控制。又例如,可以由多个控制装置控制,比如,多个电子控制单元(electronic control unit,ECU)控制。
一个实施例中,可以由ECU1和ECU2分别控制制动***300中不同分区内的装置。例如,ECU1可以控制分区202中的装置,ECU2可以控制分区204中的装置。
又一个实施例中,主制动子***和辅制动子***可以属于不同的分区。例如,如图3所示,分区204可以包括主制动子***中的装置,分区2可以包括辅制动子***中的装置。
例如,ECU1可以获取压力传感器(154、134)所采集的制动液压力;ECU1可以实现对于控制阀(117、118、134、137、138),以及进液阀(9、10、11、12)等的控制;ECU1可以用于控制电机132作动;ECU1可以获取电机位置传感器139所采集的信息。由此,ECU1可以实现对于主制动子***中的装置的控制。
又例如,ECU2可以用于获取压力传感器218所采集的制动液压力;ECU2可以获取制动踏板行程传感器219所感测的踏板行程;ECU2可以控制控制阀213、214、113、114、115、116、216等作动;ECU2可以控制电机163作动。从而ECU2可以实现对于辅制动子***200中的装置的控制。
示例性地,该多个电子控制单元可以进行信息交互。例如,上述ECU1可以确定为车轮施加的制动力信息,并向ECU2发送该制动力信息,从而该ECU2可以根据该制动力信息,控制辅增压模块160作动。又例如,上述ECU2可以向ECU1发送压力传感器218、制动踏板行程传感器219所采集的信息,由此该ECU1可以获取驾驶员的制动力需求信息。
应理解,图3所示分区202和分区204仅为示例,还可以有其他的划分方式,比如,控制阀152、踏板感觉模拟器151也可以是属于分区204,本申请实施例对于分区的划分方式不做限定。
上文结合图1至图3介绍了制动***中各元件之间的连接方式,下文结合图4至图8介绍制动***的多种工作方式。需要说明的是,本申请对该制动***的工作模式的优先级不做具体限定。
在多种的工作模式中,不同模式下的部分功能的实现可能是相同的。例如,不同模式下确定制动力需求信息的方式可能是相同的。又例如,不同模式下,可能通过控制进液阀 和/或出液阀,实现制动轮缸中的制动液压力的调节。因此,为了简洁,下文将制动***的实现的功能划分为以下几种场景分别进行介绍。
假设,在制动***300中,进液阀(9、10、11、12)为常开阀,出液阀(13、14、15、16)为常闭阀,隔离阀(213、214、117、118)为常开阀,控制阀(113、114、115、116、152、134、137、138)为常闭阀,控制阀216为常开阀。
场景一,驾驶员制动模式下,制动***300的工作过程以及冗余方案。
在驾驶员制动模式下,隔离阀117和118处于断开状态,控制阀152处于导通状态,制动***300中的其他控制阀可以保持上述默认状态。
当驾驶员踩下制动踏板215,从制动主缸210中流出的制动液流入制动管路173和174,由于隔离阀(117、118)处于断开状态,制动液被隔离阀(117、118)阻断,导致制动管路173和174内的制动液的压力升高。由于控制阀152导通,制动管路174中的制动液可以通过控制阀152流向踏板感觉模拟器151。
示例性地,确定驾驶员的制动力需求信息的方式有多种。例如,根据压力传感器154所采集的制动液的压力、压力传感器218所采集的制动液的压力,和制动踏板行程传感器219所检测的踏板行程中的至少一项,可以计算驾驶员的制动力需求。就确定制动力需求信息而言,踏板行程传感器219、压力传感器154、压力传感器218所采集的数据,可以互相作为冗余备份,由此,踏板行程传感器219、压力传感器154、压力传感器218可以称为“冗余传感器”。
相应地,可以根据制动力需求信息,通过制动***300中的主制动子***为车轮提供制动力。
一个实施例中,在增压过程中,控制控制阀134、137和138处于导通状态。根据制动力需求信息,控制电机132驱动液压缸133压缩制动液。由液压缸133流出的制动液,可以通过第一进液管路41和第二进液管路42,分别流向第一组车轮121和第二组车轮122的制动轮缸。制动***300中制动液的增压路径可以参照图4。
又一个实施例中,在完成增压过程后,可以进入保压过程。可以控制隔离阀(137、138)处于断开状态,制动***300内的其他控制阀保持状态不变。同时,还可以控制电机132停止作动。
又一个实施例中,当驾驶员松开制动踏板215时,可以进入减压过程。踏板感觉模拟器151中的制动液,可以由控制阀152反向回流至制动主缸210,通过控制电机132驱动液压缸133反向工作,制动轮缸(17、18、19、20)中制动液的压力可以大于液压缸133中制动液的压力,制动液可以由制动轮缸(17、18、19、20)经进液阀(9、10、11、12)返回液压缸133。
可选地,在减压过程中,也可以控制隔离阀(117、118)处于导通状态,使制动液由制动轮缸(17、18、19、20)流向制动主缸210,进而由制动主缸210可以流向储液装置101。
可选地,在需要快速减压时,也可以进一步打开出液阀(13、14、15、16),使制动轮缸(17、18、19、20)流向出液管路110,进而回流至储液装置101。
应理解,上述确定制动力需求信息的方案,不会直接影响ABS、AEB、ACC、TCS和ESC等动力学功能的实现。在需要控制单个制动轮缸作动,以实现上述动力学功能时, 可以控制主制动子***中的进液阀和/或出液阀,以实现单个制动轮缸的增压、保压、减压操作。
以下结合图5至图7介绍该场景下,主制动子***中的装置出现故障时的冗余方案。
冗余方案一,在主制动子***中的第一传感器故障时,可以根据辅制动子***中的第二传感器获取制动力需求信息。并根据该制动力需求信息,控制主制动子***中处于正常状态的装置作动。
其中,第一传感器,包括主制动子***中用于获取驾驶员的制动力需求信息的传感器,比如,压力传感器154。第二传感器,包括辅制动子***中用于获取驾驶员制动力需求信息的传感器,比如,压力传感器218、制动踏板行程传感器219。
示例性地,以ECU1控制分区202,ECU2控制分区204为例,ECU1与ECU2可以进行信息交互。在确定压力传感器154故障时,根据压力传感器218和/或制动踏板行程传感器219所采集的数据,ECU2可以确定的制动力需求信息,控制电磁阀134、137和138导通,控制电机132驱动液压缸133作动,调节制动轮缸中的制动液的压力,从而为车轮提供制动力。该冗余方案下,制动***300中制动液的增压路径可以参照图4。
在该冗余方案下,在主制动子***中的第一传感器故障时,基于辅制动子***中的第二传感器所获取的驾驶员的制动力需求信息,控制主制动子***作动,能够利用主制动子***中的进液阀和/或出液阀,以保障ABS、TCS、ESP和ESC等动力学功能的正常运行,从而可以充分利用制动***中处于正常状态的装置,以较低的成本提升制动的安全性。
冗余方案二,在主制动子***中的主增压模块130故障时,可以由辅制动子***中的辅增压模块160调节第一段管路内制动液的压力。结合主制动子***中的进液阀和/或出液阀,以及第一段管路内制动液的压力,调节制动轮缸内的制动液的压力。
其中,第一段管路,可以包括进液阀与主增压模块间的进液管路,在进液阀处于导通状态时,该第一段管路与制动轮缸连通。例如,以进液阀9为例,该第一段管路可以包括制动管路1和制动回路供应管路171,也可以包括隔离阀137的压力出端口与制动回路供应管路171的压力入端口之间的制动管路。又例如,以进液阀12为例,该第一段管路可以包括制动管路4和制动回路供应管路172,也可以包括隔离阀138的压力出端口与制动回路供应管路172的压力入端口之间的制动管路。
主增压模块130可以包括主压力提供装置和第一控制阀。第一控制阀用于连接主压力提供装置和第一段管路。在第一控制阀处于导通状态时,主压力提供装置用于调节第一段管路内的制动液的压力。主增压模块130还可以包括第三传感器,第三传感器可以用于感测主压力提供装置的运行状态。例如,以图3为例,对进液阀9而言,第一控制阀可以包括控制阀134和137。又例如,第三传感器可以包括电机位置传感器139,也可以包括压力传感器135。又例如,主压力提供装置,可以包括电机132、液压缸133。
主增压模块130故障,可以指上述主压力提供装置、第一控制阀和第三传感器中的至少一项装置处于故障状态。
示例性地,以ECU1控制分区202,ECU2控制分区204为例。在主增压模块130故障时,ECU1可以接收来自ECU2的制动力信息,进而可以控制隔离阀213和214处于断开状态,控制阀115和116处于导通状态,可以控制隔离阀117和118处于导通状态。从柱塞泵161和162流出的制动液,可以分别通过第三进液管路51和第四进液管路52,经 过制动回路供应管路(171、172),流向制动轮缸(17、18、19、20),以此调节施加于车轮的制动力。可以由ECU2控制进液阀和/或出液阀作动,以实现对于单个制动轮缸的控制。从而可以实现ABS、AEB、ACC、TCS和ESC等动力学功能的顺利运行,以保障制动安全性。该冗余方案下,制动***300中制动液的增压路径可以参照图5。
在该冗余方案下,在主制动子***中的主增压模块130故障时,通过辅制动子***中的辅增压模块160调节第一段管路内制动液的压力。结合主制动子***中的进液阀和/或出液阀,调节制动轮缸中制动液的压力,能够充分利用制动***中处于正常状态的装置,以较低的成本提升制动的安全性。
冗余方案三,在主制动子***中的进液阀和/或出液阀故障时,可以由主增压模块130调节第一段管路内制动液的压力。
示例性地,以故障装置为进液阀9为例。假设进液阀9为常开阀,进液阀9由于故障而无法正常关闭。通过主增压模块130和控制阀137、138,可以分别调节制动回路供应管路171和172内制动液的压力。在该进液阀9处于导通状态时,制动轮缸17内的制动液的压力,可以随着制动回路供应管路171内制动液压力的变化而变化。该冗余方案下,制动***300中制动液的增压路径可以参照图4。
由于进液阀和/或出液阀故障,可能无法实现对于单个制动轮缸的控制,因此可能会影响到动力学功能的实现。
一个实施例中,在需要实现ABS、TCS和ESC等动力学功能时,可以控制进液阀(9、10、11、12)都处于导通状态,使得制动轮缸17、18,和制动轮缸19、20中的制动液的压力,可以分别随着制动回路供应管路171和172内的制动液压力的调节而变化。从而通过分别调节制动回路供应管路171和172内制动液的压力,可以分别调节施加在第一组车轮121和第二组车轮122上的制动力,以实现ABS、TCS和ESC等动力学功能的降级使用。
又一个实施例中,通过主增压模块130调节制动回路供应管路171和172内制动液的压力,结合处于正常状态的进液阀和/或出液阀,也可以实现对于部分制动轮缸的单独控制。
示例性地,以故障装置为出液阀13为例。假设该出液阀13为常闭阀,出液阀13由于故障而无法正常开启。
一个实施例中,可以控制进液阀都处于导通状态,出液阀都处于断开状态,使得制动轮缸17、18,和制动轮缸19、20中的制动液的压力,可以分别随着制动回路供应管路171和172内的制动液压力的调节而变化。
又一个实施例中,以出液阀13故障为例,也可以结合其他处于正常状态的进液阀和/或出液阀,实现对于部分制动轮缸的单独控制。
在该冗余方案下,在故障装置包括进液阀,且该进液阀处于导通状态时,和/或,故障装置包括出液阀,且该出液阀处于断开状态时,通过控制主增压模块130调节第一段管路内制动液的压力,进而调节制动轮缸内制动液的压力。能够充分利用制动***中处于正常状态的装置,实现动力学功能的降级使用,以较低的成本提升制动的安全性。
冗余方案四,主制动子***的控制单元故障时,可以通过辅制动子***调节制动轮缸内制动液的压力。
示例性地,主制动子***的控制单元(比如,上述ECU2)故障时,辅制动子***的控制单元(比如ECU1),可以控制隔离阀213和214处于断开状态,控制阀115和116处于导通状态。通过控制辅制动子***中的辅增压模块160作动,从柱塞泵161和162流出的制动液,可以分别通过第三进液管路51和第四进液管路52,流向第一组车轮121和第二组车轮122的制动轮缸。通过减压阀113和114,可以分别调节第三进液管路51和第四进液管路52中的制动液的压力。在该冗余方案下,制动***300中制动液的增压路径可以参照图5。
在该冗余方案中,通过第三进液管路51和第四进液管路52,分别调节第一组车轮121和第二组车轮122的制动轮缸的压力,可以实现ABS、TCS和ESC等动力学功能的降级使用。
场景二,主动制动模式下,制动***300的工作过程以及冗余制动方案。
与场景一中介绍的驾驶员制动模式下的主动增压方案相似,制动***可以通过主制动子***进行制动。与场景一种介绍的驾驶员制动模式的区别在于,主动制动模式下可以不需要驾驶员操纵制动踏板215。
示例性地,在主动制动模式下,根据车辆的运动状态和/或周边环境信息,可以确定制动力需求信息,进而控制主制动子***调节制动轮缸内制动液的压力。
一个实施例中,在增压过程中,控制隔离阀117和118处于断开状态,控制阀134、137和138处于导通状态,其他控制阀保存上述默认状态。通过控制电机132驱动液压缸133压缩制动液,由液压缸133流出的制动液,通过第一进液管路41和第二进液管路42,可以流向制动轮缸(17、18、19、20)。制动***300中制动液的增压路径可以参照图6。
一个实施例中,在保压过程中,可以控制控制阀137和138处于断开状态,控制电机132停止作动。也可以控制控制阀134处于断开状态。
一个实施例中,在减压过程中,液压缸133可以在电机132的驱动下反向工作,制动轮缸(17、18、19、20)中的制动液可以经进液阀(9、10、11、12)返回液压缸133。一些可能的实现方式中,还可以进一步打开出液阀(13、14、15、16),使得制动轮缸(17、18、19、20)中的制动液通过出液管路110,流向至储液装置101。
示例性地,在需要控制单个制动轮缸作动时,可以通过该制动轮缸的进液阀和/或出液阀,实现该单个制动轮缸的增压、保压、减压操作。
应理解,该主动制动模式下的冗余方案,与驾驶员制动模式下的冗余方案相比,其本质相同,由此,可以参照驾驶员制动模式下的冗余方案。
一个实施例中,由于主动制动模式下,用户可以不需要操纵制动踏板215,可以根据车辆的运动状态和/或周边环境信息,获取制动力需求信息。在主制动子***中的第一传感器故障时,可以根据上述获取的制动力需求信息,通过主增压模块130、进液阀和/或出液阀,调节制动轮缸内制动液的压力。
又一个实施例中,在主制动子***中的主增压模块130故障时,可以控制隔离阀213和214处于断开状态,制动***中的其他控制阀处于默认状态。通过辅制动子***中的辅增压模块160调节制动回路供应管路(171、172)中的制动液的压力,结合进液阀和/或出液阀,调节制动轮缸(17、18、19、20)内的制动液的压力。
又一个实施例中,在主制动子***中的进液阀10因故障而无法关闭时,可以通过主 增压模块130调节分别调节制动回路供应管路171和172中的制动液的压力。通过控制进液阀处于导通状态,可以实现ABS、AEB、TCS、ESC等动力学功能的降级使用。
又一个实施例中,在ECU2故障时,比如ECU2由于掉电等原因无法控制主制动子***时,可以由ECU1控制隔离阀213、214处于断开状态,制动***中的其他控制阀处于上述默认状态。通过辅制动子***中的辅增压模块160调节制动轮缸(17、18、19、20)中制动液的压力。通过该方式也可以实现ABS、AEB、TCS等动力学功能的降级使用,可以提升制动的安全性。
又一个实施例中,在主制动子***中的踏板感觉模拟模块故障时,由于主动制动模式下,隔离阀117和118处于断开状态,用户无需操纵制动踏板,踏板感觉模拟模块故障不会直接影响到主制动子***的作动。可以基于由车辆的运动状态和/或周边环境信息所获取的制动力需求信息,通过主增压模块130、进液阀和/或出液阀,为车轮提供制动力。
场景三,人力制动的冗余备份方案。在主制动子***无法工作,而且辅制动子***也故障时,可以通过人工制动的方式调节制动轮缸内制动液的压力。
示例性地,制动***中的所有控制阀均处于默认状态,驾驶员踩下制动踏板215,制动主缸210将制动液压入制动管路173和174,制动液通过进液阀(9、10、11、12)流入制动轮缸(17、18、19、20),实现制动功能。制动***中制动液的增压路径可以参照图7所示。
以上结合图1至图7介绍了本申请实施例的制动***。下文结合图8至图9介绍本申请实施例提供的基于上述制动***的控制方法。图8所示的方法可以由该制动***执行,或者,也可以由该制动***的一个或多个控制器执行,或者,也可以由设置有该制动***的智能驾驶设备执行,或者,也可以由该智能驾驶设备中的控制装置执行。
示例性地,图8是本申请实施例提供的一种制动***的控制方法的流程示意图。图8所示方法400可以与上文介绍的制动***配合使用。该制动***可以包括主制动子***和辅制动子***。该方法400可以包括以下步骤:
S410,获取第一控制单元和主制动子***的工作状态。
示例性地,该主制动子***可以由第一控制单元控制。一个实施例中,该制动***可以由多个控制器控制,其中,可以将用于控制主制动子***的控制器划分为第一控制单元。又一个实施例中,该制动子***由一个控制器控制,可以将该控制器中用于控制主制动子***的模块确定为第一控制单元。
示例性地,该工作状态,可以指示第一控制单元工作正常或故障,也可以指示主制动子***工作正常或故障。在主制动子***中存在故障装置时,可以确定该主制动子***故障。例如,第一控制单元可以周期性反馈其主制动子***内的装置的工作状态,若第一控制单元预设时间内不反馈主制动子***的工作状态时,可以确定该第一控制单元故障。又例如,第一控制单元可以发送故障信息,执行该方法的芯片、控制器等控制装置,由此可以获知该第一控制单元以及主制动子***中存在故障的装置。又例如,第一控制单元可以实时监测其自身的运行状态。
示例性地,辅制动子***可以由第二控制单元控制。
S420,在该工作状态指示第一控制单元工作正常,且主制动子***中部分装置故障时,通过第一控制单元控制主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的 压力。
示例性地,通过主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,可以是仅通过主制动子***中的工作正常装置,调节制动轮缸内制动液的压力。例如,以上述制动***300为例,在上述场景二中,即制动***300处于主动制动模式下,当主制动子***中的踏板感觉模拟模块,或压力传感器154故障时,仍然可以通过主制动子***调节制动轮缸内制动液的压力。又例如,在制动***300处于驾驶员制动模式下,当进液阀和/或出液阀故障时,可以基于上述场景一中的冗余方案三,通过主制动子***调节制动轮缸内制动液的压力。又例如,在制动***300处于主动制动模式下,当进液阀故障且进液阀处于导通状态时,可以基于上述场景二中的冗余方案,通过主制动子***为车轮施加制动力。
示例性地,通过主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,也可以是利用主制动子***中的工作正常装置,以及辅制动子***中的部分装置,调节制动轮缸内制动液的压力。例如,以上述制动***300为例,在上述场景一中,即制动***300处于驾驶员制动模式下,当主增压模块130故障时,可以基于上述场景一种的冗余方案二,通过辅增压模块160,以及主制动子***中的进液阀、出液阀、控制阀等正常装置,调节制动轮缸内制动液的压力。又例如,制动***300处于驾驶员制动模式下,当压力传感器154故障时,可以基于上述场景一中的冗余方案一,通过制动踏板行程传感器219和/或压力传感器218所采集的信息,确定驾驶员的制动力需求信息,并由此调节制动轮缸中制动液的压力。又例如,在制动***300处于主动制动模式下,当主增压模块故障时,可以基于上述场景二中的冗余方案,通过辅增压模块160以及进液阀、出液阀等,为车轮施加制动力。
可选地,该第二控制单元可以用于,在第一控制单元故障时,控制辅制动子***调节制动轮缸内制动液的压力。例如,以上述图3所示制动***300为例,在主制动子***的控制单元故障时,可以通过辅制动子***的控制单元,基于场景一中的冗余方案四,控制辅制动子***调节制动轮缸(17、18、19、20)中的制动液的压力。
本申请实施例中,在第一控制单元正常且主制动子***中的部分装置故障时,通过主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,能够以较低的成本保障动力学功能的使用,以提升制动的安全性。
示例性地,图9是本申请实施例提供的另一种制动***的控制方法的流程示意图。该方法500可以理解为上述方法400的扩展。示例性地,该方法500可以由制动***的控制器等控制装置执行。该方法500可以包括以下部分或全部步骤:
S505,获取制动***的工作状态。
示例性地,可以根据制动***中的传感器所采集的数据、制动***的制动效果等,监测制动***的状态。例如,可以根据电机位置传感器139、压力传感器134所获取的信息,确定主压力提供装置的工作状态。又例如,可以根据压力传感器219、压力传感器154所获取的制动液压力,判断制动***的工作状态。又例如,可以基于制动***当前的建压时间以及制动***的平均建压时间,判断制动***的状态。又例如,可以获取制动***中的主制动子***所对应的第一控制单元的工作状态,也可以获取辅制动子***所对应的第二控制单元的工作状态。应理解,本申请实施例对获取制动***的工作状态的具体方式不作 限定。
S510,确定主制动子***是否工作正常。
示例性地,可以根据制动***的建压时间,确定该主制动子***是否工作正常。
一个实施例中,可以根据主制动子***当前的建压时间、主制动子***的平均建压时间,判断主制动子***是否工作正常。例如,在主制动子***的当前的建压时间,大于或等于主制动子***的平均建压时间时,可以认为该主制动子***工作不正常。又例如,在主制动子***的当前的建压时间,小于或等于主制动子***的平均建压时间时,可以认为该主制动子***正常。
有一个实施例中,可以根据压力提供装置130压力出端口的制动液压力,确定该主制动子***是否工作正常。
在主制动子***工作正常时,可以跳转步骤S515。或者,在主制动子***工作不正常时,可以跳转步骤S520。
S520,确定冗余传感器是否失效。
示例性地,可以根据多个冗余传感器所采集的数据,确定该主制动子***中的冗余传感器是否失效。
一个实施例中,根据多个冗余传感器所采集的数据,可以分别确定制动力需求。在根据该多个传感器所确定的制动力需求之间的差距,小于或等于预设阈值时,可以认为该多个冗余传感器工作正常,在该多个传感器所确定的需求制动力间的差距大于或等于预设阈值时,可以认为该多个传感器中的部分传感器故障。
在冗余传感器未失效时,可以跳转步骤S530,在该冗余传感器失效时,可以跳转步骤S525。
S525,获取冗余传感器备份。
示例性地,在确定该多个冗余传感器中的部分传感器失效时,可以获取冗余传感器备份。根据该冗余传感器备份,确定需要为车轮施加的制动力信息。例如,在驾驶员制动模式下,当确定压力传感器154故障时,可以根据压力传感器218和制动踏板行程传感器219所采集的数据,确定驾驶员的制动力需求信息,并确定需要为车轮施加的制动力。
S530,确定主制动子***中的执行器是否失效或非冗余传感器是否失效。
示例性地,确定主制动子***中的主增压模块是否故障。例如,以图3所示制动***300为例,确定故障装置中是否包括电机132、液压缸133、控制阀134、137、138、压力传感器135和电机位置传感器139中的一项或多项。其中,在上述制动***中,主制动子***中的执行器可以指,电机132、液压缸133、控制阀134、137、138。非冗余传感器可以指,冗余传感器之外的其他传感器,比如,压力传感器135和电机位置传感器139。
示例性地,在主制动子***包括踏板感觉模拟模块时,主制动子***中的执行器也可以包括该踏板感觉模拟模块。
示例性地,确定进液阀和/或出液阀是否故障。例如,以图3所示制动***300为例,确定故障装置中是否包括进液阀9、10、11、12,和出液阀13、14、15、16中的一项或多项。
在上述主制动子***的执行器和/或非冗余传感器失效时,可以跳转步骤S532,在未失效时,可以跳转步骤S540。
S532,确定辅制动子***中是否正常。
示例性地,在辅制动子***正常时,可以跳转步骤S534,在辅制动子***失效时,可以跳转步骤S515。
S534,确定是否需要辅制动子***介入。
示例性地,可以根据制动***所处的模式,以及故障装置,可以确定是否需要辅制动子***介入。例如,以上述制动***300为例,在制动***处于主动制动模式时,制动***的工作状态指示踏板感觉模拟模块故障,且其他装置工作正常时,基于主动制动模式下的冗余制动方案,可以无需辅制动子***介入。又例如,在制动***的工作状态指示进液阀故障且处于导通状态,和/或出液阀故障且处于断开状态时,可以通过主制动子***实现动力学功能的降级使用,可以无需辅制动子***的介入。又例如,可以根据上述场景一和场景二中,制动***的冗余方案,确定是否需要辅制动子***介入。
示例性地,在需要辅制动子***介入时,可以跳转步骤S536,在不需要辅制动子***介入时,可以跳转步骤S515。
步骤S532和步骤S534可以同时执行,也可以先执行步骤S532,还可以先执行步骤S534。
S536,主制动子***、辅制动子***协同工作。
示例性地,以上述场景一的冗余方案二为例,在主增压模块故障时,可以通过辅增压模块调节第一段管路内制动液的压力,并通过进液阀和/或出液阀调节制动轮缸内制动液的压力。通过主制动子***和辅制动子***的协同工作,可以实现保障动力学功能的使用,以较低的成本提升制动的安全性。
S540,确定辅制动子***是否失效。
示例性地,在辅制动子***失效时,可以跳转步骤S548,在辅制动子***可以正常工作时,可以跳转步骤S545。
S545,辅制动子***独立工作。
示例性地,在主制动子***完全失效时,比如,以场景一的冗余方案四为例,可以由辅制动子***的控制单元,通过压力压力传感器218、制动踏板行程传感器219获取制动力需求信息,通过控制辅制动子***作动,调节制动轮缸内制动液的压力。
S548,提醒采用人工制动。
示例性地,在主制动子***失效,且辅制动子***也失效时,可以提示用户通过人工制动的方式,实现制动功能。也就是说,可以采用场景三中,人力制动的冗余备份方案,为车轮提供制动力。
S550,根据需求制动力,确定主制动子***、辅制动子***分别需要提供的制动力。
S552,***进入增压过程。
S554,***进入保压过程。
S556,***进入减压过程。
示例性地,图10是本申请实施例提供的一种制动***的***架构的示意图。以下以图3所示制动***300为例,介绍该制动***300中的***架构。通过该***架构可以实现上述方法400或方法500。
示例性地,分区202包括辅制动子***,分区204包括主制动子***,分区202的控 制单元可以记作Module1,分区204的控制单元可以记作Module2,如图10所示。此时,该Module2可以控制主制动子***,可以为第一控制单元;该Module1可以控制辅制动子***,可以为第二控制单元。
示例性地,分区202、分区204的控制单元可以包括制动***状态检测单元,以检测对应分区内的装置的工作状态。例如,Module1制动***状态检测单元、Module2制动***状态检测单元,可以分别用于检测分区202和分区204中的装置的工作状态,可以用于确定该分区202和分区204包括的执行器与传感器是否故障。
一个实施例中,在Module1制动***状态检测单元和Module2制动***状态检测单元,位于不同的控制器时,二者可以通过外部信号接口进行通信。例如,Module1制动***状态检测单元,可以通过外部信号接口,向Module2制动***状态检测单元,发送Module1制动***状态信息,以指示其所获取的分区202中各装置的工作状态,如图10所示。又例如,当Module1制动***状态检测单元,和Module2制动***状态检测单元,位于同一个控制器时,可以通过内部通信电路进行信息交互。
示例性地,由于分区202和分区204中可以包括冗余传感器,分区202、分区204的控制单元可以包括冗余传感器信息单元,以获取驾驶员的制动力需求信息。
一个实施例中,Module1冗余传感器信息单元,和Module2冗余传感器信息单元,可以分别用于获取对应分区中的冗余传感器的信息。例如,Module1冗余传感器信息单元,可以用于获取分区202中的压力传感器218和制动踏板行程传感器219所采集的信息。Module2冗余传感器信息单元,可以用于获取分区204中的压力传感器154所采集的信息。又例如,当Module1冗余传感器信息单元、Module2冗余传感器信息单元属于不同的控制器时,二者可以通过外部信号接口进行通信,如图10所示。又例如,Module1可以通过外部信号接口获取其所需的冗余传感器信息(比如,记作Module1冗余传感器信息);Module2也可以获取其所需的冗余传感器信息(比如,记作Module2冗余传感器信息).
示例性地,分区202、分区204的控制单元可以包括制动控制功能单元,以实现对分区内的执行器的控制,以实现制动功能。
一个实施例中,Module1制动控制功能单元,和Module2制动控制功能单元,可以用于控制对应分区中执行器,也可以用于获取对应分区中的传感器信号。例如,以图3所示分区204为例,Module2制动控制功能单元,可以用于控制分区204中的主压力提供装置(电机132和液压缸133)、控制阀(134、137和138)、进液阀(9、10、11、12)和出液阀(13、14、15、16)作动,也可以用于控制隔离阀(117、118)作动,也可以用于获取压力传感器135和电机位置传感器139所采集的数据。类似地,Module1制动控制功能单元,可以用于控制分区202中的执行器作动。
又一个实施例中,当Module1制动控制功能单元,和Module2制动控制功能单元属于不同的控制器时,二者可以通过外部信号接口进行通信。例如,以图3所示分区204为例,Module2制动控制功能单元可以通过外部信号接口,发送目标制动请求,从而该Module1制动控制功能单元可以根据该目标制动请求,控制该分区内的主制动子***中的执行器作动,比如,通过该方式可以实现场景一中的冗余方案二。
示例性地,同一分区所对应的制动***状态检测单元、冗余传感器信息单元和制动控制功能单元可以在同一个控制器中。例如,ECU1可以包括Module1制动***状态检测单 元、Module1冗余传感器信息单元和Module1制动控制功能单元,此时,该ECU1可以作为第二控制单元。又例如,该第一控制单元和第二控制单元可以设置于同一个控制装置中。
一些可能的实现方式中,通过该***架构,图8所示的方法可以由第一控制单元执行,比如,上述ECU2为第一控制单元,该第一控制单元可以执行图8所示方法。或者,也可以由包含第一控制单元的控制装置执行,比如,可以由包含上述ECU2的控制装置执行。或者,也可以由能够与第一控制单元通信的控制装置执行,比如,也可以由上述ECU1,或者包含ECU1的控制装置执行该方法。
以图3所示制动***300为例,以下结合图11和图12,介绍分区202或分区204的控制单元的控制方式。示例性地,图11是本申请实施例提供的一种辅制动子***的控制单元的示意图。
示例性地,以辅制动子***属于分区202为例,该冗余传感器信息单元,可以为图10所示Module1冗余传感器信息单元。例如,以图3所示制动***300为例,该冗余传感器信息单元,可以获取压力传感器(218、154)采集的主缸压力信息,可以获取制动踏板行程传感器219采集的制动踏板行程信息,由此可以确定冗余传感器是否工作正常。该冗余传感器信息单元,也可以通过外部信号接口,接收或发送冗余传感器信息,比如,上述主缸压力信息、制动踏板行程信息等。
示例性地,分区202的控制单元可以包括冗余基础制动功能单元,用于根据制动踏板行程信息和/或主缸压力信息,确定制动力需求信息,并控制执行器实现基础的制动功能。也可以由外部信号接口接收目标制动压力信息,以控制执行器实现基础制动功能(basic brake function,BBF)。其中,控制执行器作动,可以是通过其他单元或模块,驱动执行器作动。
一个实施例中,以该辅制动子***属于分区202为例,该冗余基础制动功能单元,可以属于图10所示的Module1制动控制功能单元。冗余基础制动功能单元,通过确定制动力需求信息,可以实现基础制动功能。例如,该冗余基础制动功能单元,可以指示基础目标制动力信息。又例如,柱塞泵电机控制单元,可以根据该基础目标制动力信息,通过电机控制单元,驱动电机163作动,以带动柱塞泵161和162。又例如,柱塞泵电机控制单元,可以根据该基础目标制动力信息,通过控制阀控制单元,驱动控制阀115和116作动。由此,通过调节第三进液管路51和第四进液管路54内的制动液的压力,可以调节制动轮缸内制动液的压力。
示例性地,分区202的控制单元可以包括车辆和/或车轮状态计算单元,用于确定车辆状态信息和/或车轮状态信息,从而在主动制动模式下,可以根据车辆状态信息和/或车轮状态信息,确定制动力需求信息,由此确定需要施加于车轮的制动力。
示例性地,可以通过电子驻车制动(electrical park brake,EPB)功能单元,根据车辆状态信息,驱动EPB电机作动,实现EPB功能。
示例性地,分区202的控制单元可以包括冗余动力学控制单元,用于确定目标车轮制动力矩信息,以实现动力学功能。其中,目标车轮,指为实现动力学功能所需要进行控制的车轮,目标车轮制动力矩信息,可以指,为实现该动力学功能,该目标车轮所需的制动力矩。目标制动力仲裁单元,可以用于确定上述目标车轮制动力矩信息是否合理。例如,确定根据上述目标车轮制动力矩信息为车辆施加制动力时,是否会影响车辆安全。又例如, 在上述制动力矩不合理时进行可以对其进行校正。目标压力计算单元,可以根据上述制动力矩确定施加于目标车轮的制动力,可以基于制动力与制动液压力间的关联关系,确定制动轮缸中的制动液压力。由此,可以通过冗余基础制动单元增加制动轮缸中制动液的压力。可以通过隔离阀和减压阀控制单元,控制隔离阀(213、214)和/或减压阀(113、114)作动,以减少制动轮缸中制动液的压力。通过该方式,可以实现动力学功能的降级使用。
示例性地,以图3所示制动***300为例,由第二控制单元控制电机163和/或控制阀(113、114、115、116、213、214),可以通过辅制动子***调节施加于第一组车轮121、第二组车轮122的制动力,从而也可以实现降级ABS、降级AEB等的功能。
示例性地,图12是本申请实施例提供的一种主制动子***的控制单元的结构的示意图。
示例性地,以主制动子***属于分区204为例,该冗余传感器信息单元,可以为图10所示Module2冗余传感器信息单元。
一个实施例中,该冗余传感器信息单元,可以获取压力传感器154所采集的主缸压力信息,可以获取制动踏板行程传感器219采集的制动踏板行程信息。
示例性地,分区204的控制单元可以包括基础制动功能单元,用于根据驾驶员的制动力需求信息,控制电机和控制阀等执行器作动,实现基础制动功能。
一个实施例中,以该主制动子***属于分区204为例,该基础制动功能单元,可以属于图10所示的Module2制动控制功能单元。例如,该基础制动力功能单元,可以确定基础目标制动力信息。电缸压力控制单元,可以根据该基础目标制动力信息,控制电机132驱动液压缸133作动;也可以驱动控制阀(134、137、138、117、118)作动。又例如,电缸压力控制单元,也可以根据压力传感器134所采集的制动回路中制动液的压力,控制电机132和/或控制阀(134、137、138、117、118)作动。
又一个实施例中,分区204的控制单元可以包括动力学控制单元,用于根据车辆状态信息,确定目标车轮制动力矩信息,以实现动力学功能。目标制动力矩仲裁单元,可以确定该目标车轮制动力矩信息是否合理。目标压力计算单元,可以基于目标车轮制动力矩,确定该车轮的制动轮缸中的制动液压力。由此,通过控制进液阀(9、10、11、12)和/或出液阀(13、14、15、16),实现制动轮缸的单独控制。从而可以实现ABS、AEB、ACC、ECS、TCS等动力学功能。例如,该动力学控制单元,可以属于图10所示的Module2制动控制功能单元。
又一个实施例中,可以通过EPB功能单元,可以根据车辆状态信息,实现EPB功能。
本申请实施例还提供用于实现以上任一种控制方法的装置,例如,提供一种装置包括用以实现以上任一种方法中芯片、控制器、制动***等所执行的各步骤的单元。例如,请参考图13,其为本申请实施例提供的一种制动***的控制装置的结构示意图。该制动***包括主制动子***和辅制动子***,主制动子***由第一控制单元控制。该装置600可以包括获取单元610和处理单元620。
其中,获取单元610,可以用于获取第一控制单元和主制动子***的工作状态。处理单元620,可以用于在该工作状态指示第一控制单元工作正常,且该主制动子***中部分装置故障时,通过第一控制单元控制该主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力。
可选地,该制动***处于驾驶员制动模式,该主制动子***包括第一传感器,该辅制动子***包括第二传感器,该第一传感器和第二传感器可以用于获取驾驶员的制动力需求信息,该处理单元620,还可以用于,根据第二传感器所获取的制动力需求信息,确定制动力信息;该处理单元620,可以用于,在工作状态指示第一传感器故障时,根据该制动力信息,通过第一控制单元控制该主制动子***中除第一传感器以外的装置,调节制动轮缸内制动液的压力。
可选地,该制动***处于主动制动模式,该主制动子***包括第一传感器,该辅制动子***包括第二传感器,该第一传感器和第二传感器可以用于获取驾驶员的制动力需求信息。该处理单元620,还可以用于,根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;该处理单元620,可以用于,在工作状态指示第一传感器故障时,根据该制动力需求信息,通过第一控制单元控制主制动子***中的除第一传感器以外的装置,调节制动轮缸内制动液的压力。
可选地,该主制动子***包括主增压模块,以及进液阀和/或出液阀,其中,主增压模块用于调节第一段管路内制动液的压力,该第一段管路为主增压模块与进液阀之间的制动管路,该进液阀处于导通状态时,该第一段管路与制动轮缸相通,该辅制动子***包括辅增压模块,该辅增压模块用于调节第一段管路内制动液的压力。该处理单元620,可以用于,在工作状态指示主增压模块故障时,通过辅增压模块调节第一段管路内制动液的压力,且通过第一控制单元控制进液阀和/或出液阀,调节制动轮缸内制动液的压力。
可选地,该主增压模块包括主压力提供装置、第一控制阀和第三传感器,其中,该第一控制阀用于连接主压力提供装置和该第一段管路,该主增压模块通过所述主压力提供装置调节该第一段管路内制动液的压力,该第三传感器用于感测主压力提供装置的运行状态。其中,工作状态指示主增压模块故障,包括:该工作状态指示主压力提供装置、第一控制阀和第三传感器中的至少一项装置故障。
可选地,该主制动子***包括主增压模块,以及进液阀和/或出液阀。其中,主增压模块用于调节第一段管路内制动液的压力,该第一段管路为主增压模块与进液阀之间的制动管路,该进液阀处于导通状态时,该第一段管路与制动轮缸相通。处理单元620,可以用于,在该工作状态指示进液阀故障且进液阀处于导通状态,和/或,出液阀故障且出液阀处于断开状态时,通过第一控制单元控制主增压模块,调节制动轮缸内制动液的压力。
示例性地,由于进液阀处于导通状态,第一段管路与制动轮缸相通,主增压模块通过调节第一段管路内制动液的压力,即可调节制动轮缸内制动液的压力。
可选地,该制动***处于主动制动模式,该主制动子***包括踏板感觉模拟模块,该踏板感觉模拟模块用于向驾驶员提供踏板感。该处理单元620,还可以用于,根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;该处理单元620,可以用于,在工作状态指示踏板感觉模拟模块故障时,根据该制动力需求信息,通过第一控制单元控制主制动子***中除踏板感觉模拟模块以外的装置,调节制动轮缸内制动液的压力。
可选地,该辅制动子***可以由第二控制单元控制,该处理单元620,还可以用于,在第一控制单元故障时,通过第二控制单元控制辅制动子***调节制动轮缸内制动液的压力。
应理解,以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或 部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为处理器为专用集成电路(application-specific integrated circuit,ASIC),通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过可编程逻辑器件(programmable logic device,PLD)实现,以现场可编程门阵列(Field Programmable Gate Array,FPGA)为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。
以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
示例性地,图14是本申请实施例提供的另一种控制装置的示意性框图。该装置1000可以包括:处理器1010、接口电路1020以及存储器1030。其中,处理器1010、接口电路1020以及存储器1030通过内部连接通路相连,该存储器1030用于存储指令,该处理器1010用于执行该存储器1030存储的指令,以接口电路1020接收/发送部分参数。可选地,存储器1030既可以和处理器1010通过接口耦合,也可以和处理器1010集成在一起。
需要说明的是,上述接口电路1020可以包括但不限于输入/输出接口(input/output interface)一类的收发装置,来实现装置1000与其他设备或通信网络之间的通信。例如,可以通过接口电路1020获取传感器所采集的信息,控制控制阀等执行器执行相应的操作等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述方法400或方法500及其任一可能的实现方式。
本申请实施例还提供一种芯片,包括电路,用于执行本申请实施例中的方法400或方法500及其任一可能的实现方式。
本申请实施例还提供了一种控制***,包括主制动子***、辅制动子***和控制装置600或1000及其任一可能的实现方式。
本申请实施例还提供了一种车辆,包括控制装置600或控制装置1000,或者,包括上述控制***。
应理解,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程以及有益效果,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本 申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种制动***的控制方法,其特征在于,所述制动***包括主制动子***和辅制动子***,所述主制动子***由第一控制单元控制,所述方法包括:
    获取所述第一控制单元和所述主制动子***的工作状态;
    在所述工作状态指示所述第一控制单元工作正常,且所述主制动子***中部分装置故障时,通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力。
  2. 如权利要求1所述的方法,其特征在于,
    所述制动***处于驾驶员制动模式,
    所述主制动子***包括第一传感器,所述辅制动子***包括第二传感器,所述第一传感器和所述第二传感器用于获取驾驶员的制动力需求信息,
    所述方法还包括:
    根据所述第二传感器获取的所述制动力需求信息,确定制动力信息;
    其中,所述通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,包括:
    在所述工作状态指示所述第一传感器故障时,根据所述制动力信息,通过所述第一控制单元控制所述主制动子***中除所述第一传感器以外的装置,调节所述压力。
  3. 如权利要求1所述的方法,其特征在于,
    所述制动***处于主动制动模式,
    所述主制动子***包括第一传感器,所述第一传感器用于获取驾驶员的制动力需求信息,
    所述方法还包括:
    根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;
    其中,所述通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,包括:
    在所述工作状态指示所述第一传感器故障时,根据所述制动力需求信息,通过所述第一控制单元控制所述主制动子***中除所述第一传感器以外的装置,调节所述压力。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,
    所述主制动子***包括主增压模块、进液阀和出液阀,
    所述主增压模块用于调节第一段管路内制动液的压力,所述第一段管路为所述主增压模块与所述进液阀之间的制动管路,在所述进液阀处于导通状态时,所述第一段管路与所述制动轮缸相通,
    所述辅制动子***包括辅增压模块,所述辅增压模块用于调节所述第一段管路内制动液的压力,
    其中,所述通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,包括:
    在所述工作状态指示所述主增压模块故障时,通过所述辅增压模块调节所述第一段管 路内制动液的压力,且通过所述第一控制单元控制所述进液阀和/或所述出液阀调节所述压力。
  5. 如权利要求4所述的方法,其特征在于,所述主增压模块包括主压力提供装置、第一控制阀和第三传感器,
    所述第一控制阀用于连接所述主压力提供装置和所述第一段管路,
    所述主增压模块通过所述主压力提供装置调节所述第一段管路内制动液的压力,
    所述第三传感器用于感测所述主压力提供装置的运行状态,
    其中,所述工作状态指示所述主增压模块故障,包括:所述工作状态指示所述主压力提供装置、所述第一控制阀和所述第三传感器中的至少一项故障。
  6. 如权利要求1至3中任一项所述的方法,其特征在于,
    所述主制动子***包括主增压模块、进液阀和出液阀,
    所述主增压模块用于调节第一段管路内制动液的压力,所述第一段管路为所述主增压模块与所述进液阀之间的制动管路,在所述进液阀处于导通状态时,所述第一段管路与所述制动轮缸相通,
    其中,所述通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,包括:
    在所述工作状态指示所述进液阀故障且所述进液阀处于导通状态,和/或,所述出液阀故障且所述出液阀处于断开状态时,通过所述第一控制单元控制所述主增压模块,调节所述压力。
  7. 如权利要求1所述的方法,其特征在于,
    所述制动***处于主动制动模式,
    所述主制动子***包括踏板感觉模拟模块,所述踏板感觉模拟模块用于向驾驶员提供踏板感,
    所述方法还包括:
    根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;
    其中,所述通过所述第一控制单元控制所述主制动子***中除故障装置以外的装置,调节制动轮缸内制动液的压力,包括:
    在所述工作状态指示所述踏板感觉模拟模块故障时,根据所述制动力需求信息,通过所述第一控制单元控制所述主制动子***中除踏板感觉模拟模块以外的装置,调节所述压力。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述辅制动子***由第二控制单元控制,所述方法还包括:
    在所述第一控制单元故障时,通过所述第二控制单元用于控制所述辅制动子***调节所述压力。
  9. 一种制动***的控制装置,其特征在于,所述制动***包括主制动子***和辅制动子***,所述主制动子***由第一控制单元控制,所述装置包括:
    获取单元,用于获取所述第一控制单元和所述主制动子***的工作状态;
    处理单元,用于在所述工作状态指示所述第一控制单元工作正常,且所述主制动子***中部分装置故障时,通过所述第一控制单元控制所述主制动子***中除故障装置以外的 装置,调节制动轮缸内制动液的压力。
  10. 如权利要求9所述的装置,其特征在于,
    所述制动***处于驾驶员制动模式,
    所述主制动子***包括第一传感器,所述辅制动子***包括第二传感器,所述第一传感器和所述第二传感器用于获取驾驶员的制动力需求信息,
    所述处理单元,用于:
    根据所述第二传感器获取的所述制动力需求信息,确定制动力信息;
    在所述工作状态指示所述第一传感器故障时,根据所述制动力信息,通过所述第一控制单元控制所述主制动子***中除所述第一传感器以外的装置,调节所述压力。
  11. 如权利要求9所述的装置,其特征在于,
    所述制动***处于主动制动模式,
    所述主制动子***包括第一传感器,所述第一传感器用于获取驾驶员的制动力需求信息,
    所述处理单元,还用于:
    根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;
    所述处理单元,用于:
    在所述工作状态指示所述第一传感器故障时,根据所述制动力需求信息,通过所述第一控制单元控制所述主制动子***中除所述第一传感器以外的装置,调节所述压力。
  12. 如权利要求9至11中任一项所述的装置,其特征在于,
    所述主制动子***包括主增压模块、进液阀和出液阀,
    所述主增压模块用于调节第一段管路内制动液的压力,所述第一段管路为所述主增压模块与所述进液阀之间的制动管路,在所述进液阀处于导通状态时,所述第一段管路与所述制动轮缸相通,
    所述辅制动子***包括辅增压模块,所述辅增压模块用于调节所述第一段管路内制动液的压力,
    所述处理单元用于:
    在所述工作状态指示所述主增压模块故障时,通过所述辅增压模块,调节所述第一段管路内制动液的压力,且通过所述第一控制单元控制所述进液阀和/或所述出液阀,调节所述压力。
  13. 如权利要求12所述的装置,其特征在于,所述主增压模块包括主压力提供装置、第一控制阀和第三传感器,
    所述第一控制阀用于连接所述主压力提供装置和所述第一段管路,
    所述主增压模块通过所述主压力提供装置调节所述第一段管路内制动液的压力,
    所述第三传感器用于感测所述主压力提供装置的运行状态,
    其中,所述工作状态指示所述主增压模块故障,包括:所述工作状态指示所述主压力提供装置、所述第一控制阀和所述第三传感器中的至少一项故障。
  14. 如权利要求9至11中任一项所述的装置,其特征在于,
    所述主制动子***包括主增压模块、进液阀和出液阀,
    所述主增压模块用于调节第一段管路内制动液的压力,所述第一段管路为所述主增压 模块与所述进液阀之间的制动管路,在所述进液阀处于导通状态时,所述第一段管路与所述制动轮缸相通,
    所述处理单元,用于:
    在所述工作状态指示所述进液阀故障且所述进液阀处于导通状态,和/或,所述出液阀故障且所述出液阀处于断开状态时,通过所述第一控制单元控制所述主增压模块,调节所述压力。
  15. 如权利要求9所述的装置,其特征在于,
    所述制动***处于主动制动模式,
    所述主制动子***包括踏板感觉模拟模块,所述踏板感觉模拟模块用于向驾驶员提供踏板感,
    所述处理单元,还用于:
    根据车辆的运行状态和/或周边环境信息,确定制动力需求信息;
    所述处理单元,用于:
    在所述工作状态指示所述踏板感觉模拟模块故障时,根据所述制动力需求信息,通过所述第一控制单元控制所述主制动子***中除踏板感觉模拟模块以外的装置,调节所述压力。
  16. 如权利要求9至15中任一项所述的装置,其特征在于,所述辅制动子***由第二控制单元控制,
    所述处理单元,还用于:
    在所述第一控制单元故障时,通过所述第二控制单元用于控制所述辅制动子***调节所述压力。
  17. 一种控制装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至8中任一项所述的方法。
  18. 一种控制***,其特征在于,所述控制***包括主制动子***、辅制动子***和如所述权利要求9至17中任一项所述的控制装置。
  19. 一种车辆,其特征在于,包括权利要求9至17中任一项所述的控制装置,或者,包括权利要求18所述的控制***。
  20. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至8中任一项所述的控制方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至8中任一项所述的控制方法被执行。
PCT/CN2022/131180 2022-11-10 2022-11-10 制动***的控制方法和装置 WO2024098335A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/131180 WO2024098335A1 (zh) 2022-11-10 2022-11-10 制动***的控制方法和装置
CN202280082139.8A CN118382568A (zh) 2022-11-10 2022-11-10 制动***的控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131180 WO2024098335A1 (zh) 2022-11-10 2022-11-10 制动***的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2024098335A1 true WO2024098335A1 (zh) 2024-05-16

Family

ID=91031642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131180 WO2024098335A1 (zh) 2022-11-10 2022-11-10 制动***的控制方法和装置

Country Status (2)

Country Link
CN (1) CN118382568A (zh)
WO (1) WO2024098335A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203626A1 (en) * 2011-04-19 2014-07-24 Harald Biller Brake System for Motor Vehicles and Method for Operating a Brake System
CN110962815A (zh) * 2019-12-26 2020-04-07 吉林大学 面向自动驾驶的线控液压制动控制***及其控制方法
CN112572380A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 汽车的制动***、汽车及制动***的控制方法
CN113085825A (zh) * 2019-12-23 2021-07-09 比亚迪股份有限公司 制动***及汽车
CN113525320A (zh) * 2020-04-13 2021-10-22 华为技术有限公司 汽车中制动***的液压调节单元、制动***及控制方法
CN115175836A (zh) * 2020-02-26 2022-10-11 大陆汽车科技有限公司 具备冗余性的真空助力制动***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203626A1 (en) * 2011-04-19 2014-07-24 Harald Biller Brake System for Motor Vehicles and Method for Operating a Brake System
CN112572380A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 汽车的制动***、汽车及制动***的控制方法
CN113085825A (zh) * 2019-12-23 2021-07-09 比亚迪股份有限公司 制动***及汽车
CN110962815A (zh) * 2019-12-26 2020-04-07 吉林大学 面向自动驾驶的线控液压制动控制***及其控制方法
CN115175836A (zh) * 2020-02-26 2022-10-11 大陆汽车科技有限公司 具备冗余性的真空助力制动***
CN113525320A (zh) * 2020-04-13 2021-10-22 华为技术有限公司 汽车中制动***的液压调节单元、制动***及控制方法

Also Published As

Publication number Publication date
CN118382568A (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
US10391994B2 (en) Brake system for motor vehicles
CN110177720B (zh) 用于机动车的制动***和两种用于运行该制动***的方法
US10351110B2 (en) Brake system for motor vehicles
CN103079914B (zh) 用于机动车辆的制动***
CN104169141B (zh) 用于运行用于机动车的制动***的方法以及制动***
US11845453B1 (en) Redundant actuator system
WO2021063159A1 (zh) 汽车的制动***、汽车及制动***的控制方法
JP2021037939A (ja) 自動車用の液圧式のブレーキシステムおよびブレーキシステムを運転するための方法
CN110356381B (zh) 车辆制动***
KR102352643B1 (ko) 브레이크 시스템 및 그러한 브레이크 시스템을 동작시키기 위한 두 가지 방법들
US10189456B2 (en) Vehicle brake system and method of operating
EP3554902B1 (en) Vehicle braking system and method
JP2023548123A (ja) ブレーキシステムを制御するための方法及び自動車用ブレーキシステム
CN112572381B (zh) 汽车的分布式制动***、汽车及其控制方法
US9033426B2 (en) Braking system with switchable pump path
WO2024098335A1 (zh) 制动***的控制方法和装置
US11014542B2 (en) Braking control device for vehicle
WO2021098345A1 (zh) 汽车制动***中的液压调节单元、汽车及控制方法
JP2001180464A (ja) ブレーキ液圧制御装置
WO2022021106A1 (zh) 液压调节单元、制动***、车辆及控制方法
US20240132039A1 (en) Brake-by-wire system and control method
US11104319B2 (en) Braking control device for vehicle
KR20220075734A (ko) 차량의 제동장치 및 그 제동방법
KR20220025495A (ko) 전자식 유압 브레이크 장치 및 제어방법
EP4349673A1 (en) Braking system and method for controlling braking system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964805

Country of ref document: EP

Kind code of ref document: A1