WO2022021106A1 - 液压调节单元、制动***、车辆及控制方法 - Google Patents

液压调节单元、制动***、车辆及控制方法 Download PDF

Info

Publication number
WO2022021106A1
WO2022021106A1 PCT/CN2020/105346 CN2020105346W WO2022021106A1 WO 2022021106 A1 WO2022021106 A1 WO 2022021106A1 CN 2020105346 W CN2020105346 W CN 2020105346W WO 2022021106 A1 WO2022021106 A1 WO 2022021106A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
brake pipeline
pipeline
wheels
control valve
Prior art date
Application number
PCT/CN2020/105346
Other languages
English (en)
French (fr)
Inventor
刘栋豪
杨维妙
张永生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20947081.4A priority Critical patent/EP4180289A4/en
Priority to CN202080004968.5A priority patent/CN112703136B/zh
Priority to JP2023506039A priority patent/JP7474384B2/ja
Priority to PCT/CN2020/105346 priority patent/WO2022021106A1/zh
Publication of WO2022021106A1 publication Critical patent/WO2022021106A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/24Single initiating means operating on more than one circuit, e.g. dual circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/70Electrical control in fluid-pressure brake systems by fluid-controlled switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input

Definitions

  • the present application relates to the field of vehicles, and more particularly, to hydraulic adjustment units, braking systems, vehicles and control methods.
  • the braking system of a vehicle is a system that applies a certain braking force to the wheels of the vehicle, thereby performing a certain degree of forced braking.
  • the function of the braking system is to force the moving vehicle to decelerate or even stop according to the requirements of the driver or the controller, or to stabilize the parked vehicle under various road conditions (for example, on a slope), or to make the vehicle stop.
  • the speed of the vehicle traveling downhill remains stable.
  • Electro-Hydraulic Brake as a popular braking system, usually includes dual-circuit braking system and distributed braking system.
  • the hydraulic adjustment device is used to provide braking force for the first group of wheels through the first brake pipeline, and the hydraulic adjustment device provides braking force for the second group of wheels through the second brake pipeline .
  • Tongchan adopts a hydraulic adjustment device with bidirectional boosting function as the hydraulic adjustment device in the above-mentioned dual-circuit braking system.
  • the first brake pipeline is communicated with the second brake pipeline, so that during the forward pressure increase process of the hydraulic pressure regulating device with the bidirectional boosting function, the first brake pipeline of the hydraulic pressure regulating device is connected.
  • the second hydraulic chamber sends the brake fluid into the brake circuit where the second group of wheels is located through the second brake pipeline, so as to provide braking force for the second group of wheels. Since the second brake pipeline is communicated with the first brake pipeline, the brake fluid in the second brake pipeline will also flow into the first brake pipeline, and the brake fluid will be transferred to the first brake pipeline through the first brake pipeline. Enter the brake circuit where the first set of wheels is located to provide braking force to the first set of wheels.
  • the first hydraulic chamber of the hydraulic adjustment device inputs the brake fluid into the brake circuit where the first group of wheels is located through the first brake pipeline, so as to provide braking force for the second group of wheels. Since the first brake pipeline is communicated with the second brake pipeline, the brake fluid in the first brake pipeline will also flow into the second brake pipeline, and the brake fluid will be transferred to the second brake pipeline through the second brake pipeline. Enter the brake circuit where the second set of wheels is located to provide braking force to the second set of wheels.
  • the hydraulic pressure regulating device with the bidirectional boosting function can no longer pass the forward direction.
  • the two boosting processes of boosting and reverse boosting provide braking force for the brake circuit that can work normally, which limits the efficiency of the hydraulic pressure regulating device with the bidirectional boosting function for boosting the brake circuit that works normally.
  • the present application provides a hydraulic adjustment unit, a braking system, a vehicle and a control method, which independently pressurize any brake circuit in a dual-circuit brake pipeline in a two-way pressurization manner, which is beneficial to improve the hydraulic pressure with a two-way pressurization function.
  • a hydraulic adjustment unit comprising: a first hydraulic adjustment device 107 with a bidirectional boosting function, the first hydraulic adjustment device 107 includes a first hydraulic chamber 25 and a second hydraulic chamber 27 , the first hydraulic chamber 25 Connected with the first brake pipeline 110 , the second hydraulic chamber 27 is connected with the second brake pipeline 120 , and the fifth brake pipeline 150 passes between the first brake pipeline 110 and the second brake pipeline 120
  • the first brake pipeline 110 communicates with the third brake pipeline 130
  • the third brake pipeline 130 communicates with the fifth brake pipeline 150
  • the second brake pipeline 120 passes through the fifth brake pipeline
  • the road 150 communicates with the third brake pipeline 130, the third brake pipeline 130 provides braking force for the first group of wheels 43, 44, and the third brake pipeline 130 is provided with a first control valve 32 to control the On/off of the third brake pipeline 130;
  • the second brake pipeline 120 is connected with the fourth brake pipeline 130, and the fourth brake pipeline 140 is connected with the fifth brake pipeline 150, then the first brake The pipeline 110 communicates with the fourth brake pipeline 140 through the fifth brake pipeline
  • the first hydraulic chamber 25 is respectively communicated with the third brake pipeline 130 and the fourth brake pipeline 140 through the first brake pipeline 110
  • the second hydraulic chamber 27 is connected through the second brake pipeline
  • the road 120 is communicated with the third brake pipeline 130 and the fourth brake pipeline 140 respectively
  • the first control valve 42 and the second control valve 42 are respectively arranged on the third brake pipeline 130 and the fourth brake pipeline 140
  • the valve 32 is used to control the on-off of the third brake pipeline 130 and the fourth brake pipeline 140, so that the first hydraulic pressure regulating device 107 can pass through the third brake pipeline 130 to become the first
  • the set of wheels 43 , 44 provides the braking force, or the first hydraulic adjustment device 107 can provide the braking force for the second set of wheels 45 , 46 through the fourth brake line 140 in a bidirectional pressure boosting manner.
  • the first control valve 32 when leakage occurs in the first brake circuit 105 for providing braking force for the first group of wheels 43 and 44, the first control valve 32 can be controlled to be in a disconnected state and the second control valve 34 in a connected state. , the first hydraulic adjustment device 107 can still provide braking force for the second group of wheels 45 and 46 through the two-way pressure boosting process.
  • the second control valve 34 when leakage occurs in the second brake circuit 106 for providing braking force for the second group of wheels 45, 46, the second control valve 34 can be controlled to be in a disconnected state, the first control valve 32 is in a connected state, and this At this time, the first hydraulic adjustment device 107 can still provide braking force for the first group of wheels 43 and 44 through the bidirectional pressure boosting process.
  • the first hydraulic pressure regulating device 107 provides braking force to the corresponding wheels in a bidirectional boosting manner, so as to improve the boosting efficiency of the braking system.
  • a third control valve 29 is provided on the first brake pipeline 110 , and the third control valve 29 is used to control the on-off of the first brake pipeline 110 .
  • the third control valve 29 is provided on the first brake pipeline 110 to cooperate with the first hydraulic pressure regulating device 107 to realize the reversing boost.
  • the first brake pipeline 110 is further provided with a first one-way valve 28, the first one-way valve 28 is connected in parallel with the third control valve 29, and the first one-way valve 28 allows the first The brake fluid in the hydraulic chamber 25 flows to the fifth brake line 150 , and the brake fluid in the fifth brake line 150 is blocked from flowing to the first hydraulic chamber 25 .
  • the third control valve 29 is connected in parallel at both ends of the first one-way valve 28, so that the one-way valve is used as a backup of the control valve, and the redundancy performance of the braking system is improved.
  • a fourth control valve 31 is provided on the second brake pipeline 120 , and the fourth control valve 31 is used to control the on-off of the second brake pipeline 120 .
  • the fourth control valve 31 is provided on the second brake pipeline 120 to cooperate with the first hydraulic pressure regulating device 107 to realize the reversing pressure increase.
  • the second brake pipeline 120 is further provided with a second one-way valve 30, the second one-way valve 30 is connected in parallel with the fourth control valve 31, and the second one-way valve 30 allows the second The brake fluid in the hydraulic chamber 27 flows to the fifth brake line 150 , and the brake fluid in the fifth brake line 150 is blocked from flowing to the second hydraulic chamber 27 .
  • the fourth control valve 30 is connected in parallel at both ends of the second one-way valve 30, so that the one-way valve is used as a backup of the control valve to improve the redundancy performance of the braking system.
  • the fifth brake pipeline 150 is provided with a pressure sensor 33 to detect the pressure of the brake fluid in the fifth brake pipeline 150 .
  • the pressure sensor 33 by disposing the pressure sensor 33 on the fifth brake pipeline 150, the pressure of the brake fluid in the fifth brake pipeline 150 is detected by the pressure sensor 33, and the pressure of the brake fluid in the fifth brake pipeline 150 is detected by the pressure sensor 33, The pressure of the brake fluid in the road 150 is detected, and the pressure of the brake fluid in the first brake pipeline 110 and the second brake pipeline 120 is detected, so as to reduce the number of pressure sensors in the brake system and reduce the cost of the brake system.
  • the hydraulic adjustment unit further includes a second hydraulic adjustment device 108 , and the second hydraulic adjustment device 108 is connected to the third brake pipeline 130 and the fourth brake pipeline respectively through the fifth brake pipeline 150 .
  • Road 140 communicates to provide braking force for the first set of wheels 43 , 44 and the second set of wheels 45 , 46 .
  • the second hydraulic pressure regulating device 108 can pass through the fifth brake pipeline 150 and the third brake pipeline 130 and the fourth brake pipeline 140 to provide braking force for the first group of wheels 43, 44 and the second group of wheels 45, 46 respectively, that is, to reuse the first hydraulic adjustment unit 107 for the first group of wheels 43, 44 and the second group of wheels 43, 44.
  • the set of wheels 45, 46 provides a brake line for braking force. It is beneficial to simplify the number of brake lines while improving the redundant performance of the brake system through the second hydraulic adjustment device 108 .
  • a braking system comprising a first group of brake wheel cylinders for providing braking force to a first group of wheels 43 and 44 and a second group of brake wheels for providing braking force to a second group of wheels 45 and 46
  • the cylinder, and the hydraulic adjustment unit of any possible implementation manner of the first aspect the hydraulic adjustment unit adjusts the pressure of the brake fluid in the first group of brake wheel cylinders and/or the second group of brake wheel cylinders.
  • a vehicle comprising a first group of wheels 43, 44, a second group of wheels 45, 46, and a hydraulic adjustment unit in the first aspect, where the hydraulic adjustment unit is the first group of wheels 43, 44 and/or the first group of wheels 43, 44 Two sets of wheels 45, 46 provide braking force.
  • a method for controlling a braking system includes: a first hydraulic pressure regulating device 107 having a bidirectional boosting function, and the first hydraulic pressure regulating device 107 includes a first hydraulic chamber 25 and a second hydraulic chamber 27.
  • the first hydraulic chamber 25 is communicated with the first brake line 110, the second hydraulic chamber 27 is communicated with the second brake line 120, and the first brake line 110 and the second brake line 120 pass through
  • the fifth brake pipeline 150 is connected; the first brake pipeline 110 is connected with the third brake pipeline 130, and the third brake pipeline 130 is connected with the fifth brake pipeline 150, so the second brake pipeline 120 is communicated with the third brake pipeline 130 through the fifth brake pipeline 150, the third brake pipeline 130 provides braking force for the first group of wheels 43, 44, and the third brake pipeline 130 is provided with a third brake pipeline 130.
  • the brake pipeline 140 is provided with a second control valve 34 to control the on-off of the fourth brake pipeline 140; the second hydraulic chamber 27 communicates with the third brake pipeline 130 through the second brake pipeline 120.
  • control method Including: the controller generates a control command, and the control command is used to control the on-off state of the first control valve 32 and/or the second control valve 34; the controller sends a control command to the first control valve 32 and/or the second control valve 34 .
  • the first hydraulic chamber 25 is respectively communicated with the third brake pipeline 130 and the fourth brake pipeline 140 through the first brake pipeline 110
  • the second hydraulic chamber 27 is connected through the second brake pipeline
  • the road 120 is communicated with the third brake pipeline 130 and the fourth brake pipeline 140 respectively
  • the first control valve 42 and the second control valve 42 are respectively arranged on the third brake pipeline 130 and the fourth brake pipeline 140
  • the valve 32 is used to control the on-off of the third brake pipeline 130 and the fourth brake pipeline 140, so that the first hydraulic pressure regulating device 107 can pass through the third brake pipeline 130 to become the first
  • the set of wheels 43 , 44 provides the braking force, or the first hydraulic adjustment device 107 can provide the braking force for the second set of wheels 45 , 46 through the fourth brake line 140 in a bidirectional pressure boosting manner.
  • the first control valve 32 when leakage occurs in the first brake circuit 105 for providing braking force for the first group of wheels 43 and 44, the first control valve 32 can be controlled to be in a disconnected state and the second control valve 34 in a connected state. , the first hydraulic adjustment device 107 can still provide braking force for the second group of wheels 45 and 46 through the two-way pressure boosting process.
  • the second control valve 34 when leakage occurs in the second brake circuit 106 for providing braking force for the second group of wheels 45, 46, the second control valve 34 can be controlled to be in a disconnected state, the first control valve 32 is in a connected state, and this At this time, the first hydraulic adjustment device 107 can still provide braking force for the first group of wheels 43 and 44 through the bidirectional pressure boosting process.
  • the first hydraulic pressure regulating device 107 provides braking force to the corresponding wheels in a bidirectional boosting manner, so as to improve the boosting efficiency of the braking system.
  • the controller generates a control instruction, including: the controller generates a control instruction, and the control instruction is used to control the first control valve 32 to be in an off state and the second control valve 34 in an on state, so as to
  • the first hydraulic chamber 25 sends the brake hydraulic pressure into the fourth brake pipeline 140 through the connected first brake pipeline 110 and the fifth brake pipeline 150 to provide braking force for the second group of wheels 45 and 46 .
  • the two hydraulic chambers 27 provide braking force for the second group of wheels 45 and 46 through the connected second brake pipeline 120 and the fourth brake pipeline 140 .
  • the first control valve 32 can be controlled to be in an off state, and the second control valve 34 can be controlled to be in an on state.
  • 45, 46 provide braking force to improve the boost efficiency of the braking system.
  • the controller generates a control instruction, including: if the brake pipeline in the braking system that provides the braking force for the first group of wheels 43 and 44 leaks, the controller generates a control instruction, and the control instruction is used for The first control valve 32 is controlled to be in an off state, and the second control valve 34 is controlled to be in an on state.
  • the first control valve 32 when the brake pipeline that provides the braking force for the first group of wheels 43 and 44 in the braking system leaks, the first control valve 32 can be controlled to be disconnected and the second control valve 34 to be turned on At this time, the first hydraulic pressure regulating device 107 can still provide braking force for the second group of wheels 45 and 46 through the two-way pressurization process, so as to improve the pressurization efficiency of the braking system.
  • the brake lines in the brake system that provide braking force for the first group of wheels 43 and 44 include brake lines other than the first brake line 110 in the brake system
  • the method further includes: the controller drives the piston 26 of the first hydraulic adjustment device 107 to move forward along the inner wall of the hydraulic cylinder of the first hydraulic adjustment device 107 through the driving device 23, so as to provide braking force for the second group of wheels 44 and 45; the controller The piston 26 is driven by the drive device 23 to move in the opposite direction along the inner wall of the hydraulic cylinder to provide braking force for the second set of wheels 44 , 45 .
  • the driving device 23 can control the piston 26 to move forward or reversely along the inner wall of the hydraulic cylinder in the hydraulic adjustment device 107, The braking force is provided for the second group of wheels 45, 46 to improve the boosting efficiency of the braking system.
  • the controller generates a control instruction, including: the controller generates a control instruction, and the control instruction is used to control the second control valve 34 to be in an off state and the first control valve 32 in an on state, so as to
  • the second hydraulic chamber 27 sends the brake hydraulic pressure into the third brake pipeline 130 through the connected second brake pipeline 120 and the fifth brake pipeline 150 to provide braking force for the first group of wheels 43 and 44.
  • a hydraulic chamber 25 provides braking force for the first group of wheels 43 and 44 through the first brake line 110 and the third brake line 130 that communicate with each other.
  • the first control valve 32 can be controlled to be in an on state, and the second control valve 34 can be controlled to be in a disconnected state.
  • the first hydraulic adjustment device 107 can still be used for the first group of The wheels 43, 44 provide braking force to increase the boosting efficiency of the braking system.
  • the controller generates a control instruction, including: if a brake line in the braking system that provides braking force for the second group of wheels 45 and 46 leaks, the controller The control command is generated, and the control command is used to control the second control valve 34 to be in an OFF state and the first control valve 32 to be in an ON state.
  • the first control valve 32 when the brake pipeline in the braking system that provides the braking force for the second group of wheels 45 and 46 leaks, the first control valve 32 can be controlled to be in an on state and the second control valve 34 to be in a lead-off state. In the open state, at this time, the first hydraulic pressure regulating device 107 can still provide braking force for the first group of wheels 43 and 44 through the bidirectional pressure boosting process, so as to improve the boosting efficiency of the braking system.
  • the brake pipelines in the brake system that provide the braking force for the second group of wheels 45 and 46 include the second brake pipeline 120 in the brake system except the second brake pipeline 120 .
  • the method further includes: the controller drives the piston 26 of the first hydraulic adjustment device 107 through the driving device 23 along the positive direction of the inner wall of the hydraulic cylinder of the first hydraulic adjustment device 107 move to provide braking force for the first set of wheels 43, 44; the controller drives the piston 26 to move in the opposite direction along the inner wall of the hydraulic cylinder through the driving device 23, so as to provide the first set of wheels 43 , 44 provides braking power.
  • the piston 26 can be controlled by the driving device 23 to move forward or reversely along the inner wall of the hydraulic cylinder in the hydraulic adjustment device 107, The braking force is provided for the first group of wheels 43 and 44 to improve the boosting efficiency of the braking system.
  • the first brake pipeline 110 is provided with a third control valve 29, and the third control valve 29 is used to control the on-off of the first brake pipeline 110,
  • the method further includes: if it is necessary to depressurize the first wheels 43 , 44 and/or the second wheels 45 , 46 , the controller controls the third control valve 29 to be in a conducting state.
  • the third control valve 29 is provided on the first brake pipeline 110 to control the on-off of the first brake pipeline 110 through the third control valve 29, and cooperate with the first hydraulic adjustment device 107 Depressurize the brake system.
  • the second brake pipeline 120 is provided with a fourth control valve 31, and the fourth control valve 31 is used to control the on-off of the second brake pipeline 120,
  • the method further includes: if it is necessary to depressurize the first wheels 43 , 44 and/or the second wheels 45 , 46 , the controller controls the fourth control valve 31 to be in a conducting state.
  • the fourth control valve 31 is provided on the second brake pipeline 120 to control the on-off of the second brake pipeline 120 through the fourth control valve 31 , in coordination with the first hydraulic adjustment device 107 Depressurize the brake system.
  • a fifth aspect provides a control device, the control device includes a processing unit and a sending unit, wherein the sending unit is configured to send a control instruction, and the processing unit is configured to generate a control command, so that the control device executes any one of the possibilities in the third aspect control method.
  • control device may be an independent controller in the vehicle, or may be a chip with a control function in the vehicle.
  • the above-mentioned processing unit may be a processor, and the above-mentioned sending unit may be a communication interface.
  • control device may further include a storage unit, and the storage unit may be a memory in the controller, wherein the memory may be a storage unit (for example, a register, a cache, etc.) in a chip, or a storage unit located outside the above-mentioned chip in the vehicle.
  • a storage unit eg, read only memory, random access memory, etc.
  • the memory is coupled to the processor.
  • the memory is coupled with the processor, and it can be understood that the memory is located inside the processor, or the memory is located outside the processor, so as to be independent of the processor.
  • a computer program product comprising: computer program code, which, when the computer program code is run on a computer, causes the computer to perform the methods in the above aspects.
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, which is not implemented in this embodiment of the present application. Specific restrictions.
  • a computer-readable medium stores program codes, which, when executed on a computer, cause the computer to perform the methods in the above-mentioned aspects.
  • FIG. 1 is a schematic diagram of a conventional dual circuit braking system 100 .
  • FIG. 2 is a schematic diagram of a hydraulic adjustment unit 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hydraulic adjustment unit 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hydraulic adjustment unit 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the connection mode of the liquid storage device 1 and the first hydraulic pressure regulating device 107 in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a braking system according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a control method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a control device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a controller according to another embodiment of the present application.
  • FIG. 1 is a schematic diagram of a conventional dual circuit braking system 100 .
  • the dual-circuit braking system 100 includes a first hydraulic pressure regulating device 107 with a bidirectional boosting function. Specifically, a hydraulic cylinder of the first hydraulic pressure regulating device 107 is divided into a first hydraulic chamber 25 and a second hydraulic chamber 26 by the piston 26 .
  • the first hydraulic chamber 25 is connected to the first brake pipeline 110
  • the first brake pipeline 110 is connected to the first brake circuit 106 to provide braking force for the first group of wheels 43 and 44 .
  • the second hydraulic chamber 27 is connected to the second brake pipeline 120
  • the second brake pipeline 120 is connected to the second brake circuit 107 to provide braking force for the second group of wheels 45 and 46 .
  • the first brake pipeline 110 and the second brake pipeline 120 are connected through the control valve 1.
  • the control valve 1 When the control valve 1 is in the conducting state, the first brake pipeline 110 and the second brake pipeline 120 are connected to each other through the control valve 1.
  • the brake pipeline 120 is connected, and when the control valve 1 is in the disconnected state, the first brake pipeline 110 and the second brake pipeline 120 are disconnected.
  • the driving device 23 drives the piston 26 to move to the left, compressing the space of the second hydraulic chamber 27, so as to press the brake fluid in the second hydraulic chamber 27 into the first hydraulic chamber 27 through the second brake pipeline 120.
  • the braking circuit 106 where the two groups of wheels 45 and 46 are located provides braking force for the second group of wheels 45 and 46 .
  • a part of the brake fluid in the second brake pipeline 120 will also flow into the first brake pipeline 110 and flow into the first group of wheels through the first brake pipeline 110
  • the braking circuit 107 where 43 and 44 are located provides braking force for the first group of wheels 43 and 44 .
  • the driving device 23 drives the piston 26 to move to the right, compressing the space of the first hydraulic chamber 25 , and the brake fluid in the first hydraulic chamber 25 is pressed into the first group of wheels through the first brake pipeline 110
  • the brake circuit 105 where 43 and 44 are located provides braking force for the first group of wheels.
  • a part of the brake fluid in the first brake pipeline 110 will also flow into the second brake pipeline 120 and flow into the second group of wheels through the second brake pipeline 120
  • the braking circuit 106 where the wheels 45 and 46 are located provides braking force for the second group of wheels 45 and 46 .
  • the first hydraulic pressure regulating device with the bidirectional boosting function cannot be used. Then, the braking force is provided for the normally working brake circuit through the bidirectional boosting process, which limits the efficiency of boosting the normally working brake circuit by the first hydraulic pressure regulating device 107 having the bidirectional boosting function.
  • the brake circuit where the second group of wheels 45 and 46 is located works normally, in order to ensure that the first hydraulic adjustment device 107 can be the second group of wheels 45, 46 provide braking force, control the control valve 1 to be in the disconnected state, and control the drive device 23 to drive the piston 26 to move left (ie forward boost) to provide braking force for the second group of wheels 45, 46.
  • the first hydraulic pressure regulating device 107 cannot pressurize the brake circuit in which the second group of wheels 45, 46 is located by the reverse pressurization process.
  • the brake circuit where the wheels 43 and 44 of the first group are located works normally, in order to ensure that the first hydraulic adjustment device 107 can be the wheel of the first group 43 and 44 provide braking force, control the control valve 1 to be in the disconnected state, and control the drive device 23 to drive the piston 26 to move to the right (ie, reverse boost pressure) to provide braking force for the first group of wheels 43 and 44 .
  • the first hydraulic pressure regulating device 107 cannot pressurize the brake circuit in which the first group of wheels 43 , 44 is located through the forward pressurization process.
  • the present application provides a new hydraulic adjustment unit, which controls the third brake by arranging the first control valve 32 on the third brake pipeline 130 in the first brake circuit 105 and a second control valve 34 is provided on the fourth brake pipeline 140 in the second brake circuit 106 to control the on-off of the fourth brake pipeline 140, wherein the third control valve
  • the brake pipeline 130 is a brake pipeline in the first brake circuit 105 that communicates with the first brake pipeline 110 and the second brake pipeline 120
  • the fourth brake pipeline 140 is a brake pipeline in the second brake circuit 106 .
  • a brake line that communicates with the first brake line 110 and the second brake line 120 .
  • FIG. 2 is a schematic diagram of a hydraulic adjustment unit 200 according to an embodiment of the present application. It should be understood that the components in the hydraulic adjustment unit 200 shown in FIG. 2 that have the same functions as those in the braking system 100 use the same numbers, and will not be repeated below for the sake of brevity.
  • the first hydraulic pressure regulating device 200 includes: a first hydraulic pressure regulating device 107 with a bidirectional boosting function, a first brake pipeline 110, a second brake pipeline 120, a third brake pipeline 130, and a fourth brake pipeline
  • the brake pipeline 110 is in communication
  • the second hydraulic chamber 27 is in communication with the second brake pipeline 120
  • the first brake pipeline 110 and the second brake pipeline 120 are connected through a fifth brake pipeline 150 .
  • the first brake line 110 communicates with the third brake line 130
  • the third brake line 130 communicates with the fifth brake line 150
  • the second brake line 120 passes through the fifth brake line 150
  • the third brake pipeline 130 provides braking force for the first group of wheels 43, 44
  • the third brake pipeline 130 is provided with a first control valve 32 to control the third brake pipeline 130 On and off of the brake line 130 .
  • the second brake pipeline 120 communicates with the fourth brake pipeline 130 , the fourth brake pipeline 140 communicates with the fifth brake pipeline 150 , and the first brake pipeline 110 passes through the fifth brake pipeline 150 It communicates with the fourth brake pipeline 140, the fourth brake pipeline 140 provides braking force for the second group of wheels 43, 44, and the fourth brake pipeline 140 is provided with a second control valve 34 to control the fourth brake pipeline 140. On and off of the brake line 140 .
  • the brake fluid in the first brake pipeline 110 and the second brake pipeline 120 cannot flow through the third brake pipeline 130, so the first brake pipeline 110 and the brake fluid in the second brake pipeline 120 cannot flow through the third brake pipeline 130.
  • the set of wheels 43, 44 provide braking force.
  • the brake fluid in the first brake line 110 and the second brake line 120 cannot pass through the fourth brake line 140, so that the second group of wheels 45, 46 provide braking power.
  • the first hydraulic chamber 25 is respectively communicated with the third brake pipeline 130 and the fourth brake pipeline 140 through the first brake pipeline 110
  • the second hydraulic chamber 27 is connected through the second brake pipeline
  • the road 120 is communicated with the third brake pipeline 130 and the fourth brake pipeline 140 respectively
  • the first control valve 42 and the second control valve 42 are respectively arranged on the third brake pipeline 130 and the fourth brake pipeline 140
  • the valve 32 is used to control the on-off of the third brake pipeline 130 and the fourth brake pipeline 140, so that the first hydraulic pressure regulating device 107 can pass through the third brake pipeline 130 to become the first
  • the set of wheels 43 , 44 provides the braking force, or the first hydraulic adjustment device 107 can provide the braking force for the second set of wheels 45 , 46 through the fourth brake line 140 in a bidirectional pressure boosting manner.
  • the first control valve 32 can be controlled to be in an off state and the second control valve 34 in an on state.
  • the brake fluid in the second hydraulic chamber 27 flows through the second brake line 120 to the fourth brake line 140 , and passes through the fourth brake line 140 for the second group of wheels 45, 46 provide braking power.
  • the brake fluid in the first hydraulic chamber 25 flows through the first brake line 110 to the fourth brake line 140 , and passes through the fourth brake line 140 for the second group of wheels 45, 46 provide braking power.
  • the second control valve 34 can be controlled to be in an off state, and the first control valve 32 can be controlled to be in an on state.
  • the brake fluid in the second hydraulic chamber 27 flows through the second brake pipeline 120 to the third brake pipeline 130 , and passes through the third brake pipeline 130 for the first group of wheels 43, 44 provide braking power.
  • the brake fluid in the first hydraulic chamber 25 flows through the first brake line 110 to the third brake line 130 , and passes through the third brake line 130 for the first group of wheels 43, 44 provide braking power.
  • the first group of wheels 43 and 44 may include the right front wheel and the left front wheel of the vehicle, and the second group of wheels 45 and 46 may include the right rear wheel and the left rear wheel of the vehicle.
  • the braking unit can be understood as being arranged in an H-shape in the vehicle.
  • the first group of wheels 43 and 44 may include the right front wheel and the left rear wheel of the vehicle, and the second group of wheels 45 and 46 may include the right rear wheel and the left front wheel of the vehicle.
  • the hydraulic brake The units can be understood as being arranged in an X-shape in the vehicle.
  • FIG. 2 only shows a possible structure of the first hydraulic pressure regulating device with bidirectional pressure increase, and the embodiment of the present application may also use other structures of the first hydraulic pressure regulation device with bidirectional pressure increase. The example does not limit this.
  • the hydraulic chamber that provides the braking force needs to provide the braking force to the other.
  • a hydraulic chamber presses a portion of the brake fluid to reduce the pressure difference between the two hydraulic chambers. Therefore, since the fifth brake pipeline 150 communicates with the first brake pipeline 110 and the second brake pipeline 120 , the above-mentioned fifth brake pipeline 150 can also play a role in reducing the pressure difference between the two hydraulic chambers.
  • first brake line 110 and the second brake line 120 may be two independent brake lines if the resistance to reducing the movement of the piston is not considered.
  • the solution for reducing the pressure difference between the first hydraulic chamber 25 and the second hydraulic chamber 27 in the embodiment of the present application will be specifically described below with reference to FIG. 2 .
  • the driving device 23 drives the piston 26 to move to the right, compressing the volume of the second hydraulic chamber 27 and increasing the volume of the first hydraulic chamber 25 .
  • the brake fluid is pressed into the second brake line 120 , and a part of the brake fluid in the second brake line 120 flows to the fourth brake line 140 to provide braking force for the second group of wheels 43 , 44 .
  • Another part of the brake fluid in the second brake line 120 flows to the fifth brake line 150 , and correspondingly, a part of the brake fluid in the fifth brake line 150 flows through the first brake line 110 to Another part of the brake fluid in the first hydraulic chamber 25 and the fifth brake pipeline 150 flows to the third brake pipeline 130 to provide braking force for the first group of wheels 43 and 44 .
  • the driving device 23 drives the piston 26 to move to the left, compressing the volume of the first hydraulic chamber 25 and increasing the volume of the second hydraulic chamber 27.
  • the brake fluid in the first hydraulic chamber 25 is The first brake pipeline 110 is pressed into the first brake pipeline 110 , and a part of the brake fluid in the first brake pipeline 110 flows to the third brake pipeline 130 to provide braking force for the first group of wheels 43 and 44 .
  • Another part of the brake fluid in the first brake line 110 flows to the fifth brake line 150 , and correspondingly, a part of the brake fluid in the fifth brake line 150 flows through the second brake line 120 to In the second hydraulic chamber 27 , another part of the brake fluid in the fifth brake pipeline 150 flows to the fourth brake pipeline 140 to provide braking force for the second group of wheels 45 and 46 .
  • a third control valve 29 may be provided on the first brake line to control the on-off of the first brake line 110, and/or the second control valve A fourth control valve 31 is provided on the brake pipeline 120 to control the on-off of the second brake pipeline 120 .
  • the first one-way valve 28 can be connected in parallel at both ends of the third control valve 29, wherein the first one-way valve 28 allows The brake fluid in the first hydraulic chamber 25 flows to the fifth brake line 150 , and the brake fluid in the fifth brake line 150 is blocked from flowing to the first hydraulic chamber 25 .
  • a second one-way valve 30 can be connected in parallel at both ends of the fourth control valve 31, wherein the second one-way valve 30
  • the brake fluid in the second hydraulic chamber 27 is allowed to flow to the fifth brake line 150
  • the brake fluid in the fifth brake line 150 is blocked from flowing to the second hydraulic chamber 27 .
  • FIG. 3 is a schematic diagram of a hydraulic adjustment unit 300 according to an embodiment of the present application. It should be understood that the components with the same functions in the hydraulic adjustment unit 300 and the hydraulic adjustment unit 200 are numbered the same, and for the sake of brevity, detailed descriptions are not repeated below.
  • the fourth control valve 31 is controlled to be in the disconnected state, and the third control valve 29 is in the disconnected state, so that the driving device 23 drives the piston 26 to move to the right, compresses the volume of the second hydraulic chamber 27 and The volume of the first hydraulic chamber 25 is increased.
  • the brake fluid in the second hydraulic chamber 27 is pressed into the second brake pipeline 120 through the second one-way valve 30, and the A portion of the brake fluid flows to the fourth brake line 140 to provide braking force for the second set of wheels 43 , 44 .
  • Another part of the brake fluid in the second brake line 120 flows to the fifth brake line 150 .
  • the brake fluid in the fifth brake line 150 is in the disconnected state because the third control valve 29 is in a disconnected state. Therefore, the brake fluid in the fifth brake pipeline 150 flows to the third brake pipeline 130, so that the first group of wheels 43 and 44 cannot flow to the first hydraulic chamber 25 through the first brake pipeline 110. provide braking power.
  • the fourth control valve 31 is controlled to be in the disconnected state, and the third control valve 29 is in the disconnected state.
  • the driving device 23 drives the piston 26 to move to the left, compresses the volume of the first hydraulic chamber 25 and increases the volume of the first hydraulic chamber 25.
  • the volume of the second hydraulic chamber 27 is large.
  • the brake fluid in the first hydraulic chamber 25 is pressed into the first brake pipeline 110 through the first one-way valve 28, and a part of the first brake pipeline 110 Brake fluid flows to the third brake line 130 to provide braking force for the first set of wheels 43 , 44 .
  • Another part of the brake fluid in the first brake line 110 flows to the fifth brake line 150 , and accordingly, the brake fluid in the fifth brake line 150 is in the disconnected state because the fourth control valve 31 is in the disconnected state, However, it cannot flow to the second hydraulic chamber 27 through the second brake line 120 . Therefore, the brake fluid in the fifth brake line 150 can flow to the fourth brake line 140 , so that the second set of wheels 45 , 46 provide braking power.
  • the above-mentioned brake fluid required to compensate the pressure difference of the brake fluid in the two hydraulic chambers can also be provided by the fluid storage device 1 in the braking system.
  • the specific fluid storage device 1 and the hydraulic adjustment device 107 The connection between them can be seen in the braking system shown in Figure 5 below.
  • the controller needs to obtain the pressure of the brake fluid in the first brake pipeline 110 and the second brake pipeline 120 to monitor whether the first hydraulic pressure regulating device 107 can be pressurized normally Therefore, it is necessary to dispose pressure sensors on the first brake line 110 and the second brake line 120 respectively.
  • this method of disposing the pressure sensors leads to an increase in the cost of the hydraulic adjustment unit 300 .
  • a pressure sensor 33 may be provided on the fifth brake line 150 to detect the pressure of the brake fluid in the fifth brake line 150 . Since the first brake pipeline 110 and the second brake pipeline 120 are communicated through the fifth brake pipeline 150, at this time, the pressure of the brake fluid in the fifth brake pipeline 150 is the same as that of the first brake pipeline 110 and the second brake pipeline 150. The pressure of the brake fluid in the second brake line 120 is the same, therefore, the pressure sensor 33 can simultaneously monitor the pressure of the brake fluid in the first brake line 110 and the second brake line 120 .
  • a second hydraulic adjustment device 108 may also be provided in the hydraulic adjustment unit, and the second hydraulic adjustment device 108 is connected to the first brake via the fifth brake pipeline 150 respectively.
  • the line 110 communicates with the second brake line 120 to provide braking force for the first set of wheels 43 , 44 and the second set of wheels 45 , 46 .
  • the connection between the first hydraulic adjustment device 107 and the dual-circuit brake pipelines 105 and 106 in the hydraulic adjustment unit of the embodiment of the present application is described above with reference to FIGS. 2 to 4 , and the first hydraulic adjustment is described below with reference to FIG. 5 .
  • the connection between the device 107 and the liquid storage device 1 It should be understood that any of the above hydraulic adjustment units can be connected to the liquid storage device 1 as shown in FIG. 5 . Since the flow of the brake fluid between each of the above-mentioned hydraulic adjustment units and the fluid storage device 1 is similar, for the sake of brevity, the above-mentioned hydraulic adjustment unit 400 is used as an example for description below.
  • FIG. 5 is a schematic diagram of the connection mode of the liquid storage device 1 and the first hydraulic pressure regulating device 107 in the embodiment of the present application.
  • a one-way valve 22 is provided on the liquid inlet pipe 1 510, and the one-way valve 22 allows the brake fluid in the liquid inlet pipe 1 to flow from the liquid storage device 1 to the second hydraulic chamber 27.
  • the brake pipeline 520 is provided with a control valve 20 to control the on-off of the brake pipeline 520 , and a check valve 21 is connected in parallel at both ends of the control valve 20 , and the check valve 21 allows the brake fluid to flow from the fluid storage device 1 Flow to the first hydraulic chamber 25 to block the flow of brake fluid from the first hydraulic chamber 25 to the fluid storage device 1 .
  • the first hydraulic chamber 25 is connected to the fluid storage device 1 through the brake pipeline 520.
  • the control valve 20 can be controlled to be in a disconnected state, and the brake fluid in the fluid storage device 1 passes through the one-way valve 21. Flow to the first hydraulic chamber 25 to reduce the pressure difference of the brake fluid in the first hydraulic chamber 25 and the second hydraulic chamber 27 .
  • control valve 20 can be controlled to be in a disconnected state, and the brake fluid in the fluid storage device 1 flows to the first hydraulic chamber 25 through the one-way valve 21, so that the braking Hydraulic into the brake wheel cylinders of the brake system.
  • the first hydraulic pressure regulating device 107 may decompress the wheels 43, 44, 45, 46, for example, control the third control valve 29 and the fourth control valve 31 to be in In the conduction state, the driving device 23 drives the piston 26 to move to the left to compress the volume of the second hydraulic chamber 27 and increase the volume of the first hydraulic chamber 25. At this time, due to the low pressure in the first hydraulic chamber 25, the The brake fluid on the wheels 43 , 44 , 45 and 46 is drawn into the first hydraulic chamber 25 and flows out of the first hydraulic chamber 25 through the control valve 20 .
  • first hydraulic adjustment device 107 and the liquid storage device 1 can also be connected in other ways.
  • control valve 20 can be deleted on the basis of the hydraulic adjustment unit 500.
  • the one-way valve 21 is deleted on the basis of the unit 500, which is not specifically limited in this embodiment of the present application.
  • the hydraulic adjustment unit according to the embodiment of the present application is described above with reference to FIG. 2 to FIG. 5 , and the following describes the braking system including the hydraulic adjustment unit. It should be understood that any of the above-mentioned hydraulic adjustment units can be individually applied to the braking system. Since the working modes of the above-mentioned hydraulic adjustment units in the braking system are similar, for the sake of brevity, the following description is given by taking the braking system including the above-mentioned hydraulic adjustment unit 500 as an example.
  • FIG. 6 is a schematic diagram of a braking system according to an embodiment of the present application.
  • the braking system 600 shown in FIG. 6 can support three braking modes: manual braking mode, brake-by-wire mode, and automatic driving mode.
  • the first hydraulic adjustment device 107 can participate in the brake-by-wire mode and the automatic driving mode.
  • the master cylinder boost pressure regulating unit 610 can participate in the manual braking mode and the brake-by-wire mode.
  • the master cylinder boost pressure regulating unit 610 allows the driver to step on the brake pedal 5 to pass the brake fluid in the brake master cylinder 101 through the control valve 17
  • the brake line where it is located flows into the pedal feel simulator 15 .
  • the liquid inlet valves 35, 36, 37, 38, the control valve 18 and the control valve 19 are in the conducting state
  • the liquid outlet valves 39, 40, 41, 42 and the control valve 17 are in the disconnecting state
  • the braking The dynamic fluid provides braking force to the wheels 43 , 44 , 45 and 46 through the brake pipeline where the control valve 18 is located and the brake pipeline where the control valve 19 is located.
  • the liquid outlet valves 39, 40, 41, 42, the control valve 19 and the control valve 18 are in the disconnected state, and the liquid inlet valves 35, 36, 37, 38 and the control valve 17 are in the conductive state, correspondingly , the first hydraulic adjustment device 107 provides braking force for the wheels 43 , 44 , 45 , and 46 based on the pedal stroke detected by the pedal stroke sensor 15 .
  • the liquid outlet valves 39, 40, 41, 42, the control valve 17, the control valve 19, and the control valve 18 are in the disconnected state, and the liquid inlet valves 35, 36, 37, and 38 are in the conductive state, and the first
  • the hydraulic adjustment device 107 provides braking force to the wheels 43 , 44 , 45 , 46 based on the commands of the controller.
  • the working mode of the braking system in the manual braking mode is similar to that of the traditional braking system, and the working mode of the first hydraulic adjustment device 107 in the brake-by-wire mode and the automatic driving mode is described above.
  • the working mode of the hydraulic adjustment unit has already been introduced.
  • the following mainly introduces the leakage of the first brake circuit 105, the leakage of the second brake circuit 106, and the first The working mode of the braking system when the hydraulic adjustment device 107 fails, and the above three working modes will not be repeated.
  • the first brake circuit 105 leaks, the second brake circuit 106 can work normally, and the control valve 18 , the control valve 19 , the first control valve 32 , and the liquid outlet valves 39 , 40 , 41 , 42 are in a disconnected state , the second control valve 34 , the third control valve 29 , the fourth control valve 31 , and the inlet valves 37 and 38 are in the conducting state.
  • the brake fluid in the second hydraulic chamber 27 flows through the second brake pipeline 120 to the fourth brake pipeline 140, and passes through the fourth brake pipeline 140 to form the second group.
  • Wheels 45, 46 provide braking force.
  • the brake fluid in the first hydraulic chamber 25 flows through the first brake line 110 to the fourth brake line 140 , and passes through the fourth brake line 140 for the second group of wheels 45, 46 provide braking power.
  • the on-off state of the control valve 17 can be determined based on the working mode of the braking system. For example, in the brake-by-wire mode, the control valve 17 is in the conductive state; in the automatic driving mode, the The control valve 17 is in an open state.
  • the second brake circuit 106 leaks, the first brake circuit 105 can work normally, and the control valve 18 , the control valve 19 , the second control valve 34 , and the liquid outlet valves 39 , 40 , 41 , 42 are in a disconnected state , the second control valve 32 , the third control valve 29 , the fourth control valve 31 , and the liquid inlet valves 35 and 36 are in the conducting state.
  • the brake fluid in the second hydraulic chamber 27 flows through the second brake pipeline 120 to the third brake pipeline 130, and passes through the third brake pipeline 130 to form the first group.
  • Wheels 43, 44 provide braking force.
  • the brake fluid in the first hydraulic chamber 25 flows through the first brake line 110 to the third brake line 130 , and passes through the third brake line 130 for the first group of wheels 43, 44 provide braking power.
  • the on-off state of the control valve 17 can be determined based on the working mode of the braking system. For example, in the brake-by-wire mode, the control valve 17 is in the conductive state; in the automatic driving mode, the The control valve 17 is in an open state.
  • the control valve 18, the control valve 19, the liquid outlet valves 39, 40, 41, 42, the third control valve 29, and the fourth control valve 31 are in a disconnected state, and the first control valve 32, The second control valve 34 and the liquid inlet valves 35, 36, 37, and 38 are in a conducting state.
  • the brake fluid in the second hydraulic adjustment device 108 flows through the fifth brake line 150 to the third brake line 130 and the fourth brake line 140, and passes through the third brake line 150.
  • the pipeline 130 provides braking force for the first set of wheels 43 and 44 , and provides braking force for the second set of wheels 45 and 46 through the fourth brake pipeline 140 .
  • the first hydraulic adjustment device failure may be determined by the controller based on feedback from the pressure sensor 33 .
  • the controller can determine the first pressure The adjustment device 33 is defective.
  • the controller can determine the first pressure The adjustment device 33 is defective.
  • FIG. 7 is a schematic flowchart of a control method according to an embodiment of the present application.
  • the method shown in FIG. 7 includes step 710 and step 720 .
  • the controller generates a control instruction, where the control instruction is used to control the on-off state of the first control valve 32 and/or the second control valve 34 .
  • the controller sends a control command to the first control valve 32 and/or the second control valve 34 .
  • the above step 710 includes: the controller generates a control instruction, and the control instruction is used to control the first control valve 32 to be in an off state, and the second control valve 34 in an on state, so that the first control valve 32 is in an on state
  • the hydraulic chamber 25 injects brake hydraulic pressure into the fourth brake circuit 140 through the connected first brake pipeline 110 and the fifth brake pipeline 150 to provide braking force for the second group of wheels 45 and 46 .
  • 27 provides braking force for the second set of wheels 45, 46 through the communicating second brake line 120 and the fourth brake line 140.
  • the above step 710 includes: if the brake pipeline in the braking system that provides the braking force for the first group of wheels 43 and 44 leaks, the controller generates a control instruction, and the control instruction is used to control the first group of wheels 43 and 44 .
  • the control valve 32 is in an OFF state, and the second control valve 34 is in an ON state.
  • the brake pipeline that provides braking force for the first group of wheels 43 and 44 in the brake system includes brake pipelines other than the first brake pipeline 110 in the brake system
  • the above method also includes: the controller drives the piston 26 of the hydraulic adjustment device 107 to move forward along the inner wall of the hydraulic cylinder of the hydraulic adjustment device 107 through the driving device 23 to provide braking force for the second group of wheels 44 and 45; 23 The drive piston 26 moves in the opposite direction along the inner wall of the hydraulic cylinder to provide braking force for the second set of wheels 44,45.
  • the above step 710 includes: the controller generates a control instruction, and the control instruction is used to control the second control valve 34 to be in an off state and the first control valve 32 in an on state, so that the second control valve 32 is in an on state
  • the hydraulic chamber 27 injects brake hydraulic pressure into the third brake circuit 130 through the connected second brake pipeline 120 and the fifth brake pipeline 150 to provide braking force for the first group of wheels 43 and 44.
  • the first hydraulic chamber 25 provides braking force for the first group of wheels 43 and 44 through the first brake line 110 and the third brake line 130 which are communicated.
  • the above step 710 includes: if the brake line in the braking system that provides the braking force for the second group of wheels 45 and 46 leaks, the controller generates a control instruction, and the control instruction is used to control the second group of wheels 45 and 46 .
  • the control valve 34 is in the OFF state, and the first control valve 32 is in the ON state.
  • the brake pipeline that provides braking force for the second group of wheels 45 and 46 in the brake system includes brake pipelines other than the second brake pipeline 120 in the brake system
  • the above method further includes: the controller drives the piston 26 of the first hydraulic adjustment device 107 to move forward along the inner wall of the hydraulic cylinder of the first hydraulic adjustment device 107 through the driving device 23 to provide braking force for the first group of wheels 43 and 44; controlling The drive unit 23 drives the piston 26 to move in the opposite direction along the inner wall of the hydraulic cylinder to provide braking force for the first set of wheels 43, 44.
  • the first brake pipeline 110 is provided with a third control valve 29, and the third control valve 29 is used to control the on-off of the first brake pipeline 110, and the above method further includes: if It is necessary to depressurize the first wheels 43, 44 and/or the second wheels 45, 46, and the controller controls the third control valve 29 to be in a conducting state.
  • the second brake pipeline 120 is provided with a fourth control valve 31, and the fourth control valve 31 is used to control the on-off of the second brake pipeline 120, and the above method further includes: if It is necessary to depressurize the first wheels 43, 44 and/or the second wheels 45, 46, and the controller controls the fourth control valve 31 to be in a conducting state.
  • FIG. 8 is a schematic diagram of a control apparatus according to an embodiment of the present application.
  • the apparatus 800 shown in FIG. 8 includes a processing unit 810 and a sending unit 820 .
  • a processing unit 810 configured to generate a control instruction, where the control instruction is used to control the on-off state of the first control valve 32 and/or the second control valve 34;
  • the sending unit 820 is configured to send the control instruction to the first control valve 32 and/or the second control valve 34 .
  • the processing unit 810 is further configured to generate a control instruction, where the control instruction is used to control the first control valve 32 to be in an off state and the second control valve 34 to be in an on state, so that the first control valve 32 is in an on state
  • the hydraulic chamber 25 injects brake hydraulic pressure into the fourth brake pipeline 140 through the connected first brake pipeline 110 and the fifth brake pipeline 150 to provide braking force for the second group of wheels 45 and 46 .
  • 27 provides braking force for the second set of wheels 45, 46 through the communicating second brake line 120 and the fourth brake line 140.
  • the processing unit 810 is further configured to generate the control command , the control command is used to control the first control valve 32 to be in an off state, and the second control valve 34 to be in an on state.
  • the brake pipeline that provides braking force for the first group of wheels 43 and 44 in the brake system includes the first brake pipeline 110 in the brake system except the first brake pipeline 110 .
  • the external brake pipeline, the processing unit 810 is also used to drive the piston 26 of the hydraulic adjustment device 107 to move forward along the inner wall of the hydraulic cylinder of the first hydraulic adjustment device 107 through the driving device 23, so that the The second group of wheels 44 and 45 provide braking force; the processing unit 810 is also used to drive the piston 26 to move in the opposite direction along the inner wall of the hydraulic cylinder through the driving device 23 to provide the second group of wheels 44 , 45 provides braking power.
  • the processing unit 810 is further configured to generate a control instruction, and the control instruction is used to control the second control valve 34 to be in an off state and the first control valve 32 in an on state, so that the The second hydraulic chamber 27 supplies brake hydraulic pressure into the third brake pipeline 130 through the connected second brake pipeline 120 and the fifth brake pipeline 150 to provide braking force for the first set of wheels 43 and 44 .
  • the hydraulic chamber 25 provides braking force for the first group of wheels 43 and 44 through the first brake pipeline 110 and the third brake pipeline 130 that communicate with each other.
  • the processing unit 810 is further configured for the controller to generate The control command is used to control the second control valve 34 to be in an off state and the first control valve 32 to be in an on state.
  • the brake pipeline that provides braking force for the second group of wheels 45 and 46 in the brake system includes the second brake pipeline 120 in the brake system except the second brake pipeline 120 .
  • the processing unit 810 is also used to drive the piston 26 of the hydraulic adjustment device 107 to move forward along the inner wall of the hydraulic cylinder of the hydraulic adjustment device 107 through the driving device 23, so that the The first group of wheels 43 and 44 provide braking force; the processing unit 810 is also used to drive the piston 26 to move in the opposite direction along the inner wall of the hydraulic cylinder through the driving device 23 to provide the first group of wheels 43 , 44 provides braking power.
  • the first brake pipeline 110 is provided with a third control valve 29, and the third control valve 29 is used to control the on-off of the first brake pipeline 110, If it is necessary to depressurize the first wheels 43 , 44 and/or the second wheels 45 , 46 , the processing unit 810 is further configured to control the third control valve 29 to be in a conducting state.
  • the second brake pipeline 120 is provided with a fourth control valve 31, and the fourth control valve 31 is used to control the on-off of the second brake pipeline 120, If it is necessary to depressurize the first wheels 43 , 44 and/or the second wheels 45 , 46 , the processing unit 810 is further configured to control the fourth control valve 31 to be in a conducting state.
  • the above-mentioned processing unit 810 may be a processor 920
  • the above-mentioned sending unit 820 may be a communication interface 930
  • the specific structure of the controller is shown in FIG. 9 .
  • FIG. 9 is a schematic block diagram of a controller according to another embodiment of the present application.
  • the controller 900 shown in FIG. 9 may include: a memory 910 , a processor 920 , and a communication interface 930 .
  • the memory 910, the processor 920, and the communication interface 930 are connected through an internal connection path.
  • the memory 910 is used to store instructions, and the processor 920 is used to execute the instructions stored in the memory 920 to control the communication interface 930 to receive/send information.
  • the memory 910 may be coupled with the processor 920 through an interface, or may be integrated with the processor 920 .
  • the above-mentioned communication interface 930 uses a device such as but not limited to an input/output interface (input/output interface) to implement communication between the controller 900 and other devices or a communication network.
  • a device such as but not limited to an input/output interface (input/output interface) to implement communication between the controller 900 and other devices or a communication network.
  • each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 920 or an instruction in the form of software.
  • the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 910, and the processor 920 reads the information in the memory 910, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a portion of the processor may also include non-volatile random access memory.
  • the processor may also store device type information.
  • the "liquid outlet pipeline” and “liquid inlet pipeline” involved in this application may correspond to different brake pipelines, or may correspond to the same brake pipeline.
  • the “outlet line” and “inlet line” are only distinguished based on the function of the brake line in the brake system.
  • the brake pipeline in the braking system 1 is used to deliver the brake fluid in the wheel to the fluid storage device, at this time, the brake pipeline 1 can be called “liquid outlet pipeline”.
  • the brake pipeline 1 In the process of pressurizing the wheels of the vehicle, the brake pipeline 1 is used to provide brake fluid for the wheels of the vehicle to provide braking force for the wheels of the vehicle. pipeline”.
  • liquid inlet valve used to control the connection or disconnection of the liquid inlet pipeline
  • controller used to control the connection or disconnection of the return line can be called “liquid outlet valve” or “relief valve”.
  • control valve used to isolate the two-stage braking subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a valve commonly used in an existing braking system, for example, a solenoid valve, etc., which is not specifically limited in the embodiment of the present application.
  • connection port between the control valve and the brake pipeline can be represented by the first end and the second end, and the application for the brake fluid is between the first end and the second end.
  • the flow direction is not limited.
  • brake fluid can flow from a first end of the control valve to a second end of the control valve when the control valve is on, or brake fluid can flow from the control valve when the control valve is off The second end flows to the first end of the control valve.
  • first brake line 110 can be understood as one or more sections of brake pipeline to achieve a certain function.
  • first brake line 110 may include a multi-section brake line for connecting the first hydraulic chamber 25 and the first control valve 32 .
  • the hydraulic adjustment unit in the present application may be a unit used to adjust the brake hydraulic pressure in the brake system, including one or more brake pipelines mentioned above, as well as control valves, one-way brake pipelines in the brake pipelines Valves and other components.
  • the above-mentioned hydraulic adjustment unit may further include elements such as hydraulic cylinders, pistons, push rods and the like in the hydraulic adjustment device.
  • the brake system may further include one or more elements of a brake wheel cylinder, a fluid storage device, and a brake pedal.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种液压调节单元、制动***、车辆、控制方法、控制装置及控制器,适用于智能车辆、自动驾驶车辆、新能源车辆或者传统车辆,能够提高制动***的增压效率,液压调节单元包括具有双向增压功能的第一液压调节装置(107),第一液压调节装置(107)的第一液压腔(25)通过第一制动管路(110)分别与第三制动管路(130)和第四制动管路(140)连通,第二液压腔(27)通过第二制动管路(120)分别与第三制动管路(130)和第四制动管路(140)连通,并且在第三制动管路(130)和第四制动管路(140)上分别设置第一控制阀(32)和第二控制阀(34),以控制第三制动管路(130)和第四制动管路(140)的通断,以使得第一液压调节装置(107)能够以双向增压的方式为第一组车轮(43,44)或第二组车轮(45,46)提供制动力。

Description

液压调节单元、制动***、车辆及控制方法 技术领域
本申请涉及车辆领域,并且更具体地,涉及液压调节单元、制动***、车辆及控制方法。
背景技术
车辆的制动***是通过对车辆的车轮施加一定的制动力,从而对其进行一定程度的强制制动的***。制动***作用是使行驶中的车辆按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的车辆在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的车辆的速度保持稳定。
电液制动***(Electro-Hydraulic Brake,EHB)作为流行的制动***通常包括双回路制动***以及分布式制动***。其中,对于双回路制动***而言,液压调节装置通过第一制动管路用于为第一组车轮提供制动力,液压调节装置通过第二制动管路为第二组车轮提供制动力。目前,通产采用具有双向增压功能的液压调节装置作为上述双回路制动***中的液压调节装置。
传统的双回路制动***中,将第一制动管路与第二制动管路连通,这样,具有双向增压功能的液压调节装置在正向增压的过程中,液压调节装置的第二液压腔通过第二制动管路将制动液输入第二组车轮所在的制动回路,以为第二组车轮提供制动力。由于第二制动管路与第一制动管路连通,第二制动管路中的制动液也会流至第一制动管路中,通过第一制动管路将制动液输入第一组车轮所在的制动回路,以为第一组车轮提供制动力。
相应地,在反向增压过程中,液压调节装置的第一液压腔通过第一制动管路将制动液输入第一组车轮所在的制动回路,以为第二组车轮提供制动力。由于第一制动管路与第二制动管路连通,第一制动管路中的制动液也会流至第二制动管路中,通过第二制动管路将制动液输入第二组车轮所在的制动回路,以为第二组车轮提供制动力。
然而,上述双回路制动***中,当第一组车轮所在的制动回路或者第二组车轮所在的制动回路制动液泄漏后,具有双向增压功能的液压调节装置无法再通过正向增压以及反向增压两个增压过程为可以正常工作的制动回路提供制动力,限制了具有双向增压功能的液压调节装置为正常工作的制动回路进行增压的效率。
发明内容
本申请提供一种液压调节单元、制动***、车辆及控制方法,以双向增压的方式对双回路制动管路中的任意制动回路单独增压,有利于提高具有双向增压功能的液压调节装置为正常工作的制动回路进行增压的效率。
第一方面,提供一种液压调节单元,包括:具有双向增压功能的第一液压调节装置107,第一液压调节装置107包括第一液压腔25和第二液压腔27,第一液压腔25与第一 制动管路110连通,第二液压腔27与第二制动管路120连通,第一制动管路110和第二制动管路120之间通过第五制动管路150连通;第一制动管路110与第三制动管路130连通,第三制动管路130与第五制动管路150连通,则第二制动管路120通过第五制动管路150与第三制动管路130连通,第三制动管路130为第一组车轮43、44提供制动力,且第三制动管路130上设置有第一控制阀32,以控制第三制动管路130的通断;第二制动管路120与第四制动管路130连通,第四制动管路140与第五制动管路150连通,则第一制动管路110通过第五制动管路150与第四制动管路140连通,第四制动管路140为第二组车轮43、44提供制动力,且第四制动管路140上设置有第二控制阀34,以控制第四制动管路140的通断。
在本申请实施例中,第一液压腔25通过第一制动管路110分别与第三制动管路130和第四制动管路140连通,第二液压腔27通过第二制动管路120分别与第三制动管路130和第四制动管路140连通,并且在第三制动管路130和第四制动管路140上分别设置第一控制阀42和第二控制阀32,以控制第三制动管路130和第四制动管路140的通断,以使得第一液压调节装置107能够以双向增压的方式通过第三制动管路130为第一组车轮43、44提供制动力,或第一液压调节装置107能够以双向增压的方式通过第四制动管路140为第二组车轮45、46提供制动力。
进一步地,当用于为第一组车轮43、44提供制动力的第一制动回路105出现泄漏时,可以控制第一控制阀32处于断开状态,第二控制阀34处于连通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第二组车轮45、46提供制动力。相应地,当用于为第二组车轮45、46提供制动力的第二制动回路106出现泄漏时,可以控制第二控制阀34处于断开状态,第一控制阀32处于连通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第一组车轮43、44提供制动力,旨在上述第一制动回路105或第二制动回路106出现泄漏的情况下,保证第一液压调节装置107以双向增压方式为相应的车轮提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,第一制动管路110上设置有第三控制阀29,第三控制阀29用于控制第一制动管路110的通断。
在本申请实施例中,通过在第一制动管路110上设置第三控制阀29,以配合第一液压调节装置107实现换向增压。
在一种可能的实现方式中,第一制动管路110上还有设置第一单向阀28,第一单向阀28与第三控制阀29并联,第一单向阀28允许第一液压腔25中的制动液流至第五制动管路150,且阻断第五制动管路150中的制动液流至第一液压腔25。
在本申请实施例中,通过在第一单向阀28的两端并联第三控制阀29,以将单向阀作为控制阀的备份,提高制动***的冗余性能。
在一种可能的实现方式中,第二制动管路120上设置有第四控制阀31,第四控制阀31用于控制第二制动管路120的通断。
在本申请实施例中,通过在第二制动管路120上设置第四控制阀31,以配合第一液压调节装置107实现换向增压。
在一种可能的实现方式中,第二制动管路120上还设置有第二单向阀30,第二单向阀30与第四控制阀31并联,第二单向阀30允许第二液压腔27中的制动液流至第五制动 管路150,且阻断第五制动管路150中的制动液流至第二液压腔27。
在本申请实施例中,通过在第二单向阀30的两端并联第四控制阀30,以将单向阀作为控制阀的备份,提高制动***的冗余性能。
在一种可能的实现方式中,第五制动管路150上设置有压力传感器33,以检测第五制动管路150中制动液的压力。
在本申请实施例中,通过在第五制动管路150上设置压力传感器33,以通过压力传感器33检测第五制动管路150中制动液的压力,并通过检测第五制动管路150中制动液的压力,检测第一制动管路110和第二制动管路120中制动液的压力,以减少制动***中压力传感器的数量,降低制动***的成本。
在一种可能的实现方式中,液压调节单元还包括第二液压调节装置108,第二液压调节装置108通过第五制动管路150分别与第三制动管路130和第四制动管路140连通,以为第一组车轮43、44和第二组车轮45、46提供制动力。
在本申请实施例中,通过在第五制动管路150上设置第二液压调节装置108,这样,第二液压调节装置108可以通过第五制动管路150、第三制动管路130和第四制动管路140,分别为第一组车轮43、44和第二组车轮45、46提供制动力,即复用第一液压调节单元107为第一组车轮43、44和第二组车轮45、46提供制动力的制动管路。有利于在通过第二液压调节装置108为制动***提高冗余性能的同时,简化制动管路的数量。
第二方面,提供一种制动***,包括为第一组车轮43、44提供制动力的第一组制动轮缸、为第二组车轮45、46提供制动力的第二组制动轮缸,以及第一方面中任一种可能的实现方式的液压调节单元,液压调节单元调节第一组制动轮缸和/或第二组制动轮缸中制动液的压力。
第三方面,提供一种车辆,包括第一组车轮43、44、第二组车轮45、46以及第一方面中的液压调节单元,液压调节单元为第一组车轮43、44和/或第二组车轮45、46提供制动力。
第四方面,提供一种制动***的控制方法,上述制动***包括:具有双向增压功能的第一液压调节装置107,第一液压调节装置107包括第一液压腔25和第二液压腔27,第一液压腔25与第一制动管路110连通,第二液压腔27与第二制动管路120连通,第一制动管路110和第二制动管路120之间通过第五制动管路150连通;第一制动管路110与第三制动管路130连通,第三制动管路130与第五制动管路150连通,则第二制动管路120通过第五制动管路150与第三制动管路130连通,第三制动管路130为第一组车轮43、44提供制动力,且第三制动管路130上设置有第一控制阀32,以控制第三制动管路130的通断;第二制动管路120与第四制动管路130连通,第四制动管路140与第五制动管路150连通,则第一制动管路110通过第五制动管路150与第四制动管路140连通,第四制动管路140为第二组车轮43、44提供制动力,且第四制动管路140上设置有第二控制阀34,以控制第四制动管路140的通断;第二液压腔27通过连通的第二制动管路120与第三制动管路130为第一组车轮43、44提供制动力,且第二液压腔27通过连通的第二制动管路120与第四制动管路140为第二组车轮45、46提供制动力,控制方法包括:控制器生成控制指令,控制指令用于控制第一控制阀32和/或第二控制阀34的通断状态;控制器向第一控制阀32和/或第二控制阀34发送控制指令。
在本申请实施例中,第一液压腔25通过第一制动管路110分别与第三制动管路130和第四制动管路140连通,第二液压腔27通过第二制动管路120分别与第三制动管路130和第四制动管路140连通,并且在第三制动管路130和第四制动管路140上分别设置第一控制阀42和第二控制阀32,以控制第三制动管路130和第四制动管路140的通断,以使得第一液压调节装置107能够以双向增压的方式通过第三制动管路130为第一组车轮43、44提供制动力,或第一液压调节装置107能够以双向增压的方式通过第四制动管路140为第二组车轮45、46提供制动力。
进一步地,当用于为第一组车轮43、44提供制动力的第一制动回路105出现泄漏时,可以控制第一控制阀32处于断开状态,第二控制阀34处于连通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第二组车轮45、46提供制动力。相应地,当用于为第二组车轮45、46提供制动力的第二制动回路106出现泄漏时,可以控制第二控制阀34处于断开状态,第一控制阀32处于连通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第一组车轮43、44提供制动力,旨在上述第一制动回路105或第二制动回路106出现泄漏的情况下,保证第一液压调节装置107以双向增压方式为相应的车轮提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,控制器生成控制指令,包括:控制器生成控制指令,控制指令用于控制第一控制阀32处于断开状态,且第二控制阀34处于导通状态,以使第一液压腔25通过连通的第一制动管路110与第五制动管路150将制动液压入第四制动管路140,以为第二组车轮45、46提供制动力,第二液压腔27通过连通的第二制动管路120和第四制动管路140为第二组车轮45、46提供制动力。
在本申请实施例中,可以控制第一控制阀32处于断开状态,第二控制阀34处于导通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第二组车轮45、46提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,控制器生成控制指令,包括:若制动***中为第一组车轮43、44提供制动力的制动管路泄漏,控制器生成控制指令,控制指令用于控制第一控制阀32处于断开状态,且第二控制阀34处于导通状态。
在本申请实施例中,当制动***中为第一组车轮43、44提供制动力的制动管路泄漏,可以控制第一控制阀32处于断开状态,第二控制阀34处于导通状态,此时,第一液压调节装置107依然可以通过双向增压过程为第二组车轮45、46提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,制动***中为第一组车轮43、44提供制动力的制动管路包括制动***中除第一制动管路110之外的制动管路,方法还包括:控制器通过驱动装置23驱动第一液压调节装置107的活塞26沿第一液压调节装置107的液压缸的内壁正向移动,以为第二组车轮44、45提供制动力;控制器通过驱动装置23驱动活塞26沿液压缸的内壁反向移动,以为第二组车轮44、45提供制动力。
在本申请实施例中,若制动***中为第一组车轮43、44提供制动力的制动管路包括制动***中除第一制动管路110之外的制动管路,则制动***中为第一组车轮43、44提供制动力的制动管路泄漏时,可以通过驱动装置23控制活塞26在液压调节装置107中沿液压缸的内壁正向移动或反向移动,以为第二组车轮45、46提供制动力,以提高制动系 统的增压效率。
在一种可能的实现方式中,控制器生成控制指令,包括:控制器生成控制指令,控制指令用于控制第二控制阀34处于断开状态,且第一控制阀32处于导通状态,以使第二液压腔27通过连通的第二制动管路120与第五制动管路150将制动液压入第三制动管路130,以为第一组车轮43、44提供制动力,第一液压腔25通过连通的第一制动管路110与第三制动管路130为第一组车轮43、44提供制动力。
在本申请实施例中,可以控制第一控制阀32处于导通状态,第二控制阀34处于导断开状态,此时,第一液压调节装置107依然可以通过双向增压过程为第一组车轮43、44提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,所述控制器生成控制指令,包括:若所述制动***中为所述第二组车轮45、46提供制动力的制动管路泄漏,所述控制器生成所述控制指令,所述控制指令用于控制所述第二控制阀34处于断开状态,且所述第一控制阀32处于导通状态。
在本申请实施例中,当制动***中为第二组车轮45、46提供制动力的制动管路泄漏,可以控制第一控制阀32处于导通状态,第二控制阀34处于导断开状态,此时,第一液压调节装置107依然可以通过双向增压过程为第一组车轮43、44提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,所述制动***中为所述第二组车轮45、46提供制动力的制动管路包括所述制动***中除所述第二制动管路120之外的制动管路,所述方法还包括:所述控制器通过驱动装置23驱动所述第一液压调节装置107的活塞26沿所述第一液压调节装置107的液压缸的内壁正向移动,以为所述第一组车轮43、44提供制动力;所述控制器通过所述驱动装置23驱动所述活塞26沿所述液压缸的内壁反向移动,以为所述第一组车轮43、44提供制动力。
在本申请实施例中,若制动***中为第二组车轮45、46提供制动力的制动管路包括制动***中除第二制动管路120之外的制动管路,则制动***中为第二组车轮45、46提供制动力的制动管路泄漏时,可以通过驱动装置23控制活塞26在液压调节装置107中沿液压缸的内壁正向移动或反向移动,以为第一组车轮43、44提供制动力,以提高制动***的增压效率。
在一种可能的实现方式中,所述第一制动管路110上设置有第三控制阀29,所述第三控制阀29用于控制所述第一制动管路110的通断,所述方法还包括:若需要为所述第一车轮43、44和/或所述第二车轮45、46减压,所述控制器控制所述第三控制阀29处于导通状态。
在本申请实施例中,通过在第一制动管路110上设置第三控制阀29,以通过第三控制阀29控制第一制动管路110的通断,配合第一液压调节装置107为制动***减压。
在一种可能的实现方式中,所述第二制动管路120上设置有第四控制阀31,所述第四控制阀31用于控制所述第二制动管路120的通断,所述方法还包括:若需要为所述第一车轮43、44和/或所述第二车轮45、46减压,所述控制器控制所述第四控制阀31处于导通状态。
在本申请实施例中,通过在第二制动管路120上设置第四控制阀31,以通过第四控制阀31控制第二制动管路120的通断,配合第一液压调节装置107为制动***减压。
第五方面,提供一种控制装置,该控制装置包括处理单元和发送单元,其中发送单元用于发送控制指令,处理单元用于生成控制指令,以使控制装置执行第三方面中任一种可能的控制方法。
可选地,上述控制装置可以是车辆中独立的控制器,也可以是车辆中具有控制功能的芯片。上述处理单元可以是处理器,上述发送单元可以是通信接口。
可选地,控制装置还可以包括存储单元,存储单元可以是控制器中的存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是车辆内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是传统的双回路制动***100的示意图。
图2是本申请实施例的液压调节单元200的示意图。
图3是本申请实施例的液压调节单元300的示意图。
图4是本申请实施例的液压调节单元400的示意图。
图5是本申请实施例中储液装置1与第一液压调节装置107的连接方式的示意图。
图6是本申请实施例的制动***的示意图。
图7是本申请实施例的控制方法的示意性流程图。
图8是本申请实施例的控制装置的示意图。
图9是本申请另一实施例的控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是传统的双回路制动***100的示意图。双回路制动***100包括具有双向增压功能的第一液压调节装置107,具体地,第一液压调节装置107的液压缸被活塞26分隔为第一液压腔25以及第二液压腔26。其中,第一液压腔25与第一制动管路110相连,第一制动管路110与第一制动回路106相连,以为第一组车轮43、44提供制动力。第二液压腔27与第二制动管路120相连,第二制动管路120与第二制动回路107相连,以为第二组车轮45、46提供制动力。
在双回路制动***100中,第一制动管路110与第二制动管路120通过控制阀1连接,当控制阀1处于导通状态时,第一制动管路110和第二制动管路120连通,当控制阀1处 于断开状态时,第一制动管路110和第二制动管路120断开。
在正向增压的过程中,驱动装置23驱动活塞26左移,压缩第二液压腔27的空间,以将第二液压腔27中的制动液通过第二制动管路120压入第二组车轮45、46所在的制动回路106,以为第二组车轮45、46提供制动力。当控制阀1处于导通状态时,第二制动管路120中的一部分制动液也会流至第一制动管路110中,并通过第一制动管路110流入第一组车轮43、44所在的制动回路107,以为第一组车轮43、44提供制动力。
在反向增压过程中,驱动装置23驱动活塞26右移,压缩第一液压腔25的空间,第一液压腔25中的制动液通过第一制动管路110压入第一组车轮43、44所在的制动回路105,以为第一组车轮提供制动力。当控制阀1处于导通状态时,第一制动管路110中的一部分制动液也会流至第二制动管路120中,并通过第二制动管路120流入第二组车轮45、46所在的制动回路106,以为第二组车轮45、46提供制动力。
然而,上述双回路制动***中,当第一组车轮所在的制动回路105或者第二组车轮所在的制动回路制动液106泄漏后,具有双向增压功能的第一液压调节装置无法再通过双向增压过程为可以正常工作的制动回路提供制动力,限制了具有双向增压功能的第一液压调节装置107为正常工作的制动回路进行增压的效率。
假设第一组车轮43、44所在的制动回路105发生制动液泄漏,且第二组车轮45、46所在的制动回路正常工作,为了保证第一液压调节装置107可以为第二组车轮45、46提供制动力,控制控制阀1处于断开状态,并控制驱动装置23驱动活塞26左移(即正向增压),以为第二组车轮45、46提供制动力。在这种情况下,第一液压调节装置107无法通过反向增压过程为第二组车轮45、46所在的制动回路增压。
假设第二组车轮45、46所在的制动回路106发生制动液泄漏,且第一组车轮43、44所在的制动回路正常工作,为了保证第一液压调节装置107可以为第一组车轮43、44提供制动力,控制控制阀1处于断开状态,并控制驱动装置23驱动活塞26右移(即反向增压),以为第一组车轮43、44提供制动力。在这种情况下,第一液压调节装置107无法通过正向增压过程为第一组车轮43、44所在的制动回路增压。
因此,为了避免上述问题,本申请提供了一种新的液压调节单元,通过在第一制动回路105中的第三制动管路130上设置第一控制阀32,以控制第三制动管路130的通断;并且在第二制动回路106中的第四制动管路140上设置第二控制阀34,以控制第四制动管路140的通断,其中,第三制动管路130为第一制动回路105中与第一制动管路110和第二制动管路120连通的制动管路,第四制动管路140为第二制动回路106中与第一制动管路110和第二制动管路120连通的制动管路。
下文结合图2介绍本申请实施例的液压调节单元的结构。图2是本申请实施例的液压调节单元200的示意图。应理解,图2所示的液压调节单元200中与制动***100中功能相同的元件使用的编号相同,为了简洁下文不再具赘述。
第一液压调节装置200包括:具有双向增压功能的第一液压调节装置107、第一制动管路110、第二制动管路120、第三制动管路130、第四制动管路140、第一控制阀32以及第二控制阀34,其中,具有双向增压功能的第一液压调节装置107包括第一液压腔25和第二液压腔26,第一液压腔25与第一制动管路110连通,第二液压腔27与第二制动管路120连通,第一制动管路110和第二制动管路120之间通过第五制动管路150连通。
第一制动管路110与第三制动管路130连通,第三制动管路130与第五制动管路150连通,则第二制动管路120通过第五制动管路150与第三制动管路130连通,第三制动管路130为第一组车轮43、44提供制动力,且第三制动管路130上设置有第一控制阀32,以控制第三制动管路130的通断。
第二制动管路120与第四制动管路130连通,第四制动管路140与第五制动管路150连通,则第一制动管路110通过第五制动管路150与第四制动管路140连通,第四制动管路140为第二组车轮43、44提供制动力,且第四制动管路140上设置有第二控制阀34,以控制第四制动管路140的通断。
也就是说,当第一控制阀32处于断开状态时,第一制动管路110和第二制动管路120中的制动液无法流过第三制动管路130,以为第一组车轮43、44提供制动力。当第二控制阀34处于断开状态时,第一制动管路110和第二制动管路120中的制动液无法通过第四制动管路140,以为第二组车轮45、46提供制动力。
在本申请实施例中,第一液压腔25通过第一制动管路110分别与第三制动管路130和第四制动管路140连通,第二液压腔27通过第二制动管路120分别与第三制动管路130和第四制动管路140连通,并且在第三制动管路130和第四制动管路140上分别设置第一控制阀42和第二控制阀32,以控制第三制动管路130和第四制动管路140的通断,以使得第一液压调节装置107能够以双向增压的方式通过第三制动管路130为第一组车轮43、44提供制动力,或第一液压调节装置107能够以双向增压的方式通过第四制动管路140为第二组车轮45、46提供制动力。
假设第一制动回路105发生泄漏,且第二制动回路106可以正常工作,可以控制第一控制阀32处于断开状态,第二控制阀34处于导通状态。在正向增压过程中,第二液压腔27中的制动液通过第二制动管路120流至第四制动管路140,并通过第四制动管路140为第二组车轮45、46提供制动力。在反向增压过程中,第一液压腔25中的制动液通过第一制动管路110流至第四制动管路140,并通过第四制动管路140为第二组车轮45、46提供制动力。
假设第二制动回路106发生泄漏,且第一制动回路105可以正常工作,可以控制第二控制阀34处于断开状态,控制第一控制阀32处于导通状态。在正向增压过程中,第二液压腔27中的制动液通过第二制动管路120流至第三制动管路130,并通过第三制动管路130为第一组车轮43、44提供制动力。在反向增压过程中,第一液压腔25中的制动液通过第一制动管路110流至第三制动管路130,并通过第三制动管路130为第一组车轮43、44提供制动力。
可选地,上述第一组车轮43、44可以包括车辆的右前轮和左前轮,则上述第二组车轮45、46可以包括车辆的右后轮和左后轮,此时,上述液压制动单元可以理解为在车辆中呈H型布置。或者,上述第一组车轮43、44可以包括车辆的右前轮和左后轮,则上述第二组车轮45、46可以包括车辆的右后轮和左前轮,此时,上述液压制动单元可以理解为在车辆中呈X型布置。
应理解,图2仅示出了具有双向增压的第一液压调节装置的一种可能的结构,本申请实施例还可以使用其他结构的具有双向增压的第一液压调节装置,本申请实施例对此不作限定。
在第一液压调节装置107的增压过程中,无论是由第一液压腔25还是第二液压腔27提供制动力,为了减小活塞运动的阻力,都需要由提供制动力的液压腔向另一个液压腔压入一部分制动液,以减少两个液压腔之间的压力差。因此,上述第五制动管路150由于连通第一制动管路110和第二制动管路120,还可以起到减少两个液压腔之间的压力差的作用。
当然,如果不考虑减小活塞运动的阻力,第一制动管路110和第二制动管路120可以是两条独立的制动管路。下文结合图2具体介绍本申请实施例中减小第一液压腔25和第二液压腔27之间压力差的方案。
参见图2,在正向增压过程中,驱动装置23驱动活塞26右移,压缩第二液压腔27的容积并增大第一液压腔25的容积,此时,第二液压腔27中的制动液被压入第二制动管路120,第二制动管路120中的一部分制动液流至第四制动管路140,以为第二组车轮43、44提供制动力。第二制动管路120中的另一部分制动液流至第五制动管路150,相应地,第五制动管路150中的一部分制动液通过第一制动管路110流至第一液压腔25,第五制动管路150中的另一部分制动液流至第三制动管路130,以为第一组车轮43、44提供制动力。
在反向增压过程中,驱动装置23驱动活塞26左移,压缩第一液压腔25的容积并增大第二液压腔27的容积,此时,第一液压腔25中的制动液被压入第一制动管路110,第一制动管路110中的一部分制动液流至第三制动管路130,以为第一组车轮43、44提供制动力。第一制动管路110中的另一部分制动液流至第五制动管路150,相应地,第五制动管路150中的一部分制动液通过第二制动管路120流至第二液压腔27,第五制动管路150中的另一部分制动液流至第四制动管路140,以为第二组车轮45、46提供制动力。
需要说明的是,当第一制动回路105或第二制动回路106中产生泄漏时,第一液压腔25和第二液压腔27之间降低压力差的方式与上文介绍的原理相同,为了简洁,下文不再赘述。
如上文所述,无论是由第一液压腔25提供制动力,还是由第二液压腔26提供制动力,液压腔内的制动液都无法全部流至第一组车轮和/第二组车轮,总有一部分制动液用于补偿两个液压腔之间的压力差,这样,会降低第一液压调节装置107提供制动力的效率。因此,为了提高第一液压调节装置107的增压效率,可以在第一制动管路上设置第三控制阀29,以控制第一制动管路110的通断,和/或在第二制动管路120上设置第四控制阀31,以控制第二制动管路120的通断。
通常,为了避免第三控制阀29卡滞失效,使得第一制动管路110断路,可以在第三控制阀29的两端并联第一单向阀28,其中,第一单向阀28允许第一液压腔25中的制动液流至第五制动管路150,且阻断第五制动管路150中的制动液流至第一液压腔25。同理,为了避免第四控制阀31卡滞失效,使得第二制动管路120断路,可以在第四控制阀31的两端并联第二单向阀30,其中,第二单向阀30允许第二液压腔27中的制动液流至第五制动管路150,且阻断第五制动管路150中的制动液流至第二液压腔27。下文结合图3介绍本申请实施例的液压调节单元300在不考虑由液压腔中的制动液补偿两个液压腔之间压力差的情况下,液压调节单元的增压方案。
图3是本申请实施例的液压调节单元300的示意图。应理解,液压调节单元300和液 压调节单元200中功能相同的元件使用的编号相同,为了简洁,下文不再具体赘述。
在正向增压的过程中,控制第四控制阀31处于断开状态,第三控制阀29处于断开状态,这样,驱动装置23驱动活塞26右移,压缩第二液压腔27的容积并增大第一液压腔25的容积,此时,第二液压腔27中的制动液通过第二单向阀30被压入第二制动管路120,第二制动管路120中的一部分制动液流至第四制动管路140,以为第二组车轮43、44提供制动力。第二制动管路120中的另一部分制动液流至第五制动管路150,相应地,第五制动管路150中的制动液由于第三控制阀29处于断开状态,而无法通过第一制动管路110流至第一液压腔25,因此,第五制动管路150中的制动液流至第三制动管路130,以为第一组车轮43、44提供制动力。
在反向增压过程中,控制第四控制阀31处于断开状态,第三控制阀29处于断开状态,这样,驱动装置23驱动活塞26左移,压缩第一液压腔25的容积并增大第二液压腔27的容积,此时,第一液压腔25中的制动液通过第一单向阀28被压入第一制动管路110,第一制动管路110中的一部分制动液流至第三制动管路130,以为第一组车轮43、44提供制动力。第一制动管路110中的另一部分制动液流至第五制动管路150,相应地,第五制动管路150中的制动液由于第四控制阀31处于断开状态,而无法通过第二制动管路120流至第二液压腔27,因此,第五制动管路150中的制动液都可以流至第四制动管路140,以为第二组车轮45、46提供制动力。
需要说明的是,上述补偿两个液压腔内制动液的压力差所需的制动液,还可以由制动***中的储液装置1提供,具体的储液装置1与液压调节装置107之间的连接方式可以参见下文图5所示的制动***。
通常,为了提高制动***的安全性,控制器需要获取第一制动管路110和第二制动管路120中制动液的压力,以监控第一液压调节装置107是否能够正常增压,因此,需要在第一制动管路110和第二制动管路120上分别设置压力传感器,然而,这种设置压力传感器的方法导致液压调节单元300的成本升高。
因此,为了降低液压调节单元300的成本,可以在第五制动管路150上设置有压力传感器33(参见图3),以检测第五制动管路150中制动液的压力。由于第一制动管路110和第二制动管路120通过第五制动管路150连通,此时第五制动管路150中制动液的压力与第一制动管路110和第二制动管路120制动液的压力相同,因此,压力传感器33可以同时起到监测第一制动管路110和第二制动管路120制动液压力的作用。
为了提高液压调节单元的冗余性能,还可以在液压调节单元中设置第二液压调节装置108(参见图4),第二液压调节装置108通过第五制动管路150分别与第一制动管路110和第二制动管路120连通,以为第一组车轮43、44和第二组车轮45、46提供制动力。
上文结合图2至图4介绍了本申请实施例的液压调节单元中第一液压调节装置107与双回路制动管路105、106之间的连接方式,下文结合图5介绍第一液压调节装置107与储液装置1之间的连接方式。应理解,上文中任意的液压调节单元都可以按照图5所示与储液装置1相连。由于上述各液压调节单元与储液装置1之间的制动液的流动方式类似,为了简洁,下文以上述液压调节单元400为例进行介绍。
图5是本申请实施例中储液装置1与第一液压调节装置107的连接方式的示意图。如图5所示液压调节单元500,进液管路1 510上设置有单向阀22,单向阀22允许进液管 路1中的制动液从储液装置1流至第二液压腔27。制动管路520上设置有控制阀20以控制制动管路520的通断,且在控制阀20的两端并联有单向阀21,单向阀21允许制动液从储液装置1流向第一液压腔25,阻断制动液从第一液压腔25流向储液装置1。
第一液压腔25通过制动管路520与储液装置1相连,在正向增压过程中,可以控制控制阀20处于断开状态,储液装置1中的制动液通过单向阀21流至第一液压腔25,以减小第一液压腔25和第二液压腔27中制动液的压力差。
在反向增压过程中,可以控制控制阀20处于断开状态,储液装置1中的制动液通过单向阀21流至第一液压腔25,以通过第一液压腔25将制动液压入制动***中的制动轮缸。
可选地,若上述控制阀20处于导通状态时,第一液压调节装置107可以为车轮43、44、45、46进行减压,例如,控制第三控制阀29和第四控制阀31处于导通状态,驱动装置23驱动活塞26左移,以压缩第二液压腔27的容积,增大第一液压腔25的容积,此时,由于第一液压腔25内的压力较低,施加在车轮43、44、45、46上的制动液,被抽入第一液压腔25,并通过处于控制阀20流出第一液压腔25。
需要说明的是,上述第一液压调节装置107与储液装置1之间还可以由其他的连接方式,例如,可以在液压调节单元500的基础上删除控制阀20,又例如,可以在液压调节单元500的基础上删除单向阀21,本申请实施例对此不作具体限定。
上文结合图2至图5介绍了本申请实施例的液压调节单元,下文介绍包含上述液压调节单元的制动***。应理解,上文中任意的液压调节单元都可以单独的应用于制动***。由于上述各液压调节单元在制动***中的工作方式类似,为了简洁,下文以包含上述液压调节单元500的制动***为例进行介绍。
图6是本申请实施例的制动***的示意图。图6所示的制动***600可以支持3种制动模式:人工制动模式,线控制动模式以及自动驾驶模式。其中,第一液压调节装置107可以参与线控制动模式以及自动驾驶模式。主缸增压调节单元610可以参与人工制动模式以及线控制动模式,主缸增压调节单元610,驾驶员通过踩踏制动踏板5将制动主缸101中的制动液通过控制阀17所在的制动管路流入踏板感觉模拟器15。
在人工制动模式下,进液阀35、36、37、38、控制阀18和控制阀19处于导通状态,出液阀39、40、41、42、控制阀17处于断开状态,制动液通过控制阀18所在的制动管路和控制阀19所在的制动管路为车轮43、44、45、46提供制动力。
在线控制动模式下,出液阀39、40、41、42、控制阀19和控制阀18处于断开状态,进液阀35、36、37、38、控制阀17处于导通状态,相应地,第一液压调节装置107基于踏板行程传感器15检测到的踏板行程,为车轮43、44、45、46提供制动力。
在自动驾驶模式下,出液阀39、40、41、42、控制阀17、控制阀19和控制阀18处于断开状态,进液阀35、36、37、38处于导通状态,第一液压调节装置107基于控制器的指令,为车轮43、44、45、46提供制动力。
上述3种模式中,人工制动模式下制动***的工作方式与传统的制动***的工作方式相似,线控制动模式与自动驾驶模式下第一液压调节装置107的工作方式在上文介绍液压调节单元的工作方式时已经介绍,为了简洁,下文主要介绍当第一液压调节装置107参与的制动模式下,第一制动回路105发生泄漏、第二制动回路106发生泄漏以及第一液压调 节装置107故障时制动***的工作方式,而对上述3种工作模式不再赘述。
假设第一制动回路105发生泄漏,且第二制动回路106可以正常工作,且控制阀18、控制阀19、第一控制阀32、出液阀39、40、41、42处于断开状态,第二控制阀34、第三控制阀29、第四控制阀31、进液阀37、38处于导通状态。则在正向增压过程中,第二液压腔27中的制动液通过第二制动管路120流至第四制动管路140,并通过第四制动管路140为第二组车轮45、46提供制动力。在反向增压过程中,第一液压腔25中的制动液通过第一制动管路110流至第四制动管路140,并通过第四制动管路140为第二组车轮45、46提供制动力。
需要说明的是,在上述情况下,控制阀17的通断状态可以基于制动***的工作模式确定,例如,处于线控制动模式时,控制阀17处于导通状态;处于自动驾驶模式时,控制阀17处于断开状态。
还需要说明的是,在上述情况下,进液阀35、36的通断状态对制动***的工作没有影响,本申请实施例对此不作限定。
假设第二制动回路106发生泄漏,且第一制动回路105可以正常工作,且控制阀18、控制阀19、第二控制阀34、出液阀39、40、41、42处于断开状态,第二控制阀32、第三控制阀29、第四控制阀31、进液阀35、36处于导通状态。则在正向增压过程中,第二液压腔27中的制动液通过第二制动管路120流至第三制动管路130,并通过第三制动管路130为第一组车轮43、44提供制动力。在反向增压过程中,第一液压腔25中的制动液通过第一制动管路110流至第三制动管路130,并通过第三制动管路130为第一组车轮43、44提供制动力。
需要说明的是,在上述情况下,控制阀17的通断状态可以基于制动***的工作模式确定,例如,处于线控制动模式时,控制阀17处于导通状态;处于自动驾驶模式时,控制阀17处于断开状态。
还需要说明的是,在上述情况下,进液阀37、38的通断状态对制动***的工作没有影响,本申请实施例对此不作限定。
假设第一液压调节装置107故障,控制阀18、控制阀19、出液阀39、40、41、42、第三控制阀29、第四控制阀31处于断开状态,第一控制阀32、第二控制阀34、进液阀35、36、37、38处于导通状态。则在增压过程中,第二液压调节装置108中的制动液通过第五制动管路150流至第三制动管路130和第四制动管路140,并通过第三制动管路130为第一组车轮43、44提供制动力,通过第四制动管路140为第二组车轮45、46提供制动力。
可选地,第一液压调节装置故障可以由控制器基于压力传感器33的反馈确定。例如,在由第一液压调节装置107提供制动力的场景下,压力传感器33检测的第五制动管路中的制动液的压力低于预设压力值,则控制器可以判断第一压力调节装置33故障。又例如,在由第一液压调节装置107提供制动力的场景下,压力传感器33检测的第五制动管路中的增压速率低于预设增压速率,则控制器可以判断第一压力调节装置33故障。
上文结合图2至图6介绍了本申请实施例的液压调节单元以及制动***,下文结合图7介绍本申请实施例提供的控制方法,应理解,本申请实施例提供的方案可以与上述任意一种液压调节单元配合使用,或者本申请实施例的控制方法还可以应用于包含上述任意一 种液压调节单元的制动***。
图7是本申请实施例的控制方法的示意性流程图。图7所示的方法包括步骤710以及步骤720。
710,控制器生成控制指令,控制指令用于控制第一控制阀32和/或第二控制阀34的通断状态。
720,控制器向第一控制阀32和/或第二控制阀34发送控制指令。
可选地,作为一个实施例,上述步骤710包括:控制器生成控制指令,控制指令用于控制第一控制阀32处于断开状态,且第二控制阀34处于导通状态,以使第一液压腔25通过连通的第一制动管路110与第五制动管路150将制动液压入第四制动管路140,以为第二组车轮45、46提供制动力,第二液压腔27通过连通的第二制动管路120和第四制动管路140为第二组车轮45、46提供制动力。
可选地,作为一个实施例,上述步骤710包括:若制动***中为第一组车轮43、44提供制动力的制动管路泄漏,控制器生成控制指令,控制指令用于控制第一控制阀32处于断开状态,且第二控制阀34处于导通状态。
可选地,作为一个实施例,制动***中为第一组车轮43、44提供制动力的制动管路包括制动***中除第一制动管路110之外的制动管路,上述方法还包括:控制器通过驱动装置23驱动液压调节装置107的活塞26沿液压调节装置107的液压缸的内壁正向移动,以为第二组车轮44、45提供制动力;控制器通过驱动装置23驱动活塞26沿液压缸的内壁反向移动,以为第二组车轮44、45提供制动力。
可选地,作为一个实施例,上述步骤710包括:控制器生成控制指令,控制指令用于控制第二控制阀34处于断开状态,且第一控制阀32处于导通状态,以使第二液压腔27通过连通的第二制动管路120与第五制动管路150将制动液压入第三制动管路130,以为第一组车轮43、44提供制动力,第一液压腔25通过连通的第一制动管路110与第三制动管路130为第一组车轮43、44提供制动力。
可选地,作为一个实施例,上述步骤710包括:若制动***中为第二组车轮45、46提供制动力的制动管路泄漏,控制器生成控制指令,控制指令用于控制第二控制阀34处于断开状态,且第一控制阀32处于导通状态。
可选地,作为一个实施例,制动***中为第二组车轮45、46提供制动力的制动管路包括制动***中除第二制动管路120之外的制动管路,上述方法还包括:控制器通过驱动装置23驱动第一液压调节装置107的活塞26沿第一液压调节装置107的液压缸的内壁正向移动,以为第一组车轮43、44提供制动力;控制器通过驱动装置23驱动活塞26沿液压缸的内壁反向移动,以为第一组车轮43、44提供制动力。
可选地,作为一个实施例,第一制动管路110上设置有第三控制阀29,第三控制阀29用于控制第一制动管路110的通断,上述方法还包括:若需要为第一车轮43、44和/或第二车轮45、46减压,控制器控制第三控制阀29处于导通状态。
可选地,作为一个实施例,第二制动管路120上设置有第四控制阀31,第四控制阀31用于控制第二制动管路120的通断,上述方法还包括:若需要为第一车轮43、44和/或第二车轮45、46减压,控制器控制第四控制阀31处于导通状态。
上文结合图7介绍了本申请实施例的方法,下文结合图8至图9本申请中执行上述控 制方法的控制装置。需要说明的是,本申请实施例的装置可以应用于上文介绍的任意一种液压调节单元或者制动***中,实现上文介绍的控制方法中的一个或多个步骤,为了简洁,在此不再赘述。
图8是本申请实施例的控制装置的示意图,图8所示的装置800包括处理单元810和发送单元820。
处理单元810,用于生成控制指令,所述控制指令用于控制所述第一控制阀32和/或所述第二控制阀34的通断状态;
发送单元820,用于向所述第一控制阀32和/或所述第二控制阀34发送所述控制指令。
可选地,作为一个实施例,处理单元810,还用于生成控制指令,控制指令用于控制第一控制阀32处于断开状态,且第二控制阀34处于导通状态,以使第一液压腔25通过连通的第一制动管路110与第五制动管路150将制动液压入第四制动管路140,以为第二组车轮45、46提供制动力,第二液压腔27通过连通的第二制动管路120和第四制动管路140为第二组车轮45、46提供制动力。
可选地,作为一个实施例,若所述制动***中为所述第一组车轮43、44提供制动力的制动管路泄漏,所述处理单元810,还用于生成所述控制指令,所述控制指令用于控制所述第一控制阀32处于断开状态,且所述第二控制阀34处于导通状态。
可选地,作为一个实施例,所述制动***中为所述第一组车轮43、44提供制动力的制动管路包括所述制动***中除所述第一制动管路110之外的制动管路,处理单元810,还用于通过驱动装置23驱动所述液压调节装置107的活塞26沿所述第一液压调节装置107的液压缸的内壁正向移动,以为所述第二组车轮44、45提供制动力;所述处理单元810,还用于通过所述驱动装置23驱动所述活塞26沿所述液压缸的内壁反向移动,以为所述第二组车轮44、45提供制动力。
可选地,作为一个实施例,所述处理单元810,还用于生成控制指令,控制指令用于控制第二控制阀34处于断开状态,且第一控制阀32处于导通状态,以使第二液压腔27通过连通的第二制动管路120与第五制动管路150将制动液压入第三制动管路130,以为第一组车轮43、44提供制动力,第一液压腔25通过连通的第一制动管路110与第三制动管路130为第一组车轮43、44提供制动力。
可选地,作为一个实施例,若所述制动***中为所述第二组车轮45、46提供制动力的制动管路泄漏,所述处理单元810,还用于所述控制器生成所述控制指令,所述控制指令用于控制所述第二控制阀34处于断开状态,且所述第一控制阀32处于导通状态。
可选地,作为一个实施例,所述制动***中为所述第二组车轮45、46提供制动力的制动管路包括所述制动***中除所述第二制动管路120之外的制动管路,所述处理单元810,还用于通过驱动装置23驱动所述液压调节装置107的活塞26沿所述液压调节装置107的液压缸的内壁正向移动,以为所述第一组车轮43、44提供制动力;所述处理单元810,还用于通过所述驱动装置23驱动所述活塞26沿所述液压缸的内壁反向移动,以为所述第一组车轮43、44提供制动力。
可选地,作为一个实施例,所述第一制动管路110上设置有第三控制阀29,所述第三控制阀29用于控制所述第一制动管路110的通断,若需要为所述第一车轮43、44和/或所述第二车轮45、46减压,所述处理单元810,还用于控制所述第三控制阀29处于导 通状态。
可选地,作为一个实施例,所述第二制动管路120上设置有第四控制阀31,所述第四控制阀31用于控制所述第二制动管路120的通断,若需要为所述第一车轮43、44和/或所述第二车轮45、46减压,所述处理单元810,还用于控制所述第四控制阀31处于导通状态。
在可选的实施例中,上述处理单元810可以为处理器920,上述发送单元820可以为通信接口930,控制器的具体结构如图9所示。
图9是本申请另一实施例的控制器的示意性框图。图9所示的控制器900可以包括:存储器910、处理器920、以及通信接口930。其中,存储器910、处理器920,通信接口930通过内部连接通路相连,该存储器910用于存储指令,该处理器920用于执行该存储器920存储的指令,以控制通信接口930接收/发送信息。可选地,存储器910既可以和处理器920通过接口耦合,也可以和处理器920集成在一起。
需要说明的是,上述通信接口930使用例如但不限于输入/输出接口(input/output interface)一类的装置,来实现控制器900与其他设备或通信网络之间的通信。
在实现过程中,上述方法的各步骤可以通过处理器920中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器910,处理器920读取存储器910中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
需要说明的是,本申请中涉及的“出液管路”和“进液管路”可以对应不同的制动管路,也可以对应相同的一条制动管路。“出液管路”和“进液管路”仅仅基于制动管路在制动***中的功能来区分的。例如,当“出液管路”和“进液管路”对应相同的制动管路1时,可以理解为,在为车辆的车轮减压的过程中,制动***中的制动管路1用于将车轮中的制动液输送至储液装置,此时,制动管路1可以称为“出液管路”。在为车辆的车轮增压的过程中,该制动管路1用于为车辆的车轮提供制动液,以为车辆的车轮提供制动力,此时,制动管路1可以称为“进液管路”。
另外,本申请中涉及的“进液阀”、“出液阀”以及“均压阀”仅仅基于控制阀在制动***中的功能来区分的。用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”。用于控制回液管路连通或者断开的控制器可以称为“出液阀”或者“减压阀”。用于隔 离两级制动子***的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动***中常用的阀,例如,电磁阀等,本申请实施例对此不作具体限定。
另外,当控制阀连接至制动管路后,控制阀与制动管路的连接端口可以通过第一端和第二端表示,本申请对制动液在第一端和第二端之间的流向不作限定。例如,当控制阀处于导通状态时,制动液可以从控制阀的第一端流至控制阀的第二端,或者,当控制阀处于断开状态时,制动液可以从控制阀的第二端流至控制阀的第一端。
另外,本申请中涉及的“第一制动管路110”、“第二制动管路120”、“第三制动管路130”、“第四制动管路140”、以及其他制动管路等可以理解为实现某一功能的一段或多段制动管路。例如,第一制动管路110可以包括用于连接第一液压腔25与第一控制阀32的多段制动管路。
另外,本申请在结合附图介绍制动***、车辆等架构时,附图中会示意性地示出每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
另外,本申请在结合附图介绍液压调节单元、制动***、车辆等架构时,各个实施例对应的附图中功能相同的部件使用的编号相同,为了简洁,各部件的功能不会在每个实施例中说明,可以参见全文中关于各部件功能的介绍。
另外,本申请中的液压调节单元可以是制动***中用于调节制动液压力的单元,包括上文中涉及的一条或多条制动管路,以及制动管路中控制阀、单向阀等元件。可选地,上述液压调节单元还可以包括液压调节装置中的液压缸、活塞、推杆等元件。当上述液压调节单元安装于制动***后,制动***还可以包括制动轮缸、储液装置、制动踏板中的一种或多种元件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种液压调节单元,其特征在于,包括:
    具有双向增压功能的第一液压调节装置(107),所述第一液压调节装置(107)包括第一液压腔(25)和第二液压腔(27),所述第一液压腔(25)与第一制动管路(110)连通,所述第二液压腔(27)与第二制动管路(120)连通,所述第一制动管路(110)和所述第二制动管路(120)之间通过第五制动管路(150)连通;
    所述第一制动管路(110)与第三制动管路(130)连通,所述第三制动管路(130)与所述第五制动管路(150)连通,所述第二制动管路(120)通过所述第五制动管路(150)与所述第三制动管路(130)连通,所述第三制动管路(130)用于为第一组车轮(43、44)提供制动力,且所述第三制动管路(130)上设置有第一控制阀(32),以控制所述第三制动管路(130)的通断;
    所述第二制动管路(120)与第四制动管路(130)连通,所述第四制动管路(140)与所述第五制动管路(150)连通,所述第一制动管路(110)通过所述第五制动管路(150)与所述第四制动管路(140)连通,所述第四制动管路(140)用于为第二组车轮(43、44)提供制动力,且所述第四制动管路(140)上设置有第二控制阀(34),以控制所述第四制动管路(140)的通断。
  2. 如权利要求1所述的液压调节单元,其特征在于,所述第一制动管路(110)上设置有第三控制阀(29),所述第三控制阀(29)用于控制所述第一制动管路(110)的通断。
  3. 如权利要求2所述的液压调节单元,其特征在于,所述第一制动管路(110)上还有设置第一单向阀(28),所述第一单向阀(28)与所述第三控制阀(29)并联,所述第一单向阀(28)允许所述第一液压腔(25)中的制动液流至所述第五制动管路(150),且阻断所述第五制动管路(150)中的制动液流至所述第一液压腔(25)。
  4. 如权利要求1-3中任一项所述的液压调节单元,其特征在于,所述第二制动管路(120)上设置有第四控制阀(31),所述第四控制阀(31)用于控制所述第二制动管路(120)的通断。
  5. 如权利要求4所述的液压调节单元,其特征在于,所述第二制动管路(120)上还设置有第二单向阀(30),所述第二单向阀(30)与所述第四控制阀(31)并联,所述第二单向阀(30)允许所述第二液压腔(27)中的制动液流至所述第五制动管路(150),且阻断所述第五制动管路(150)中的制动液流至所述第二液压腔(27)。
  6. 如权利要求1-5中任一项所述的液压调节单元,其特征在于,所述第五制动管路(150)上设置有压力传感器(33),以检测所述第五制动管路(150)中制动液的压力。
  7. 如权利要求1-6中任一项所述的液压调节单元,其特征在于,所述液压调节单元还包括第二液压调节装置(108),所述第二液压调节装置(108)通过所述第五制动管路(150)分别与所述第三制动管路(130)和第四制动管路(140)连通,以为所述第一组车轮(43、44)和所述第二组车轮(45、46)提供制动力。
  8. 一种制动***,其特征在于,包括为第一组车轮(43、44)提供制动力的第一组 制动轮缸、为第二组车轮(45、46)提供制动力的第二组制动轮缸以及如权利要求1-7中任一项所述的液压调节单元,所述液压调节单元调节所述第一组制动轮缸和/或所述第二组制动轮缸中制动液的压力。
  9. 一种车辆,其特征在于,包括第一组车轮(43、44)、第二组车轮(45、46)以及如权利要求1-7中任一项所述的液压调节单元,所述液压调节单元为所述第一组车轮(43、44)和/或所述第二组车轮(45、46)提供制动力。
  10. 一种制动***的控制方法,其特征在于,所述制动***包括:具有双向增压功能的第一液压调节装置(107),所述第一液压调节装置(107)包括第一液压腔(25)和第二液压腔(27),所述第一液压腔(25)与第一制动管路(110)连通,所述第二液压腔(27)与第二制动管路(120)连通,所述第一制动管路(110)和所述第二制动管路(120)之间通过第五制动管路(150)连通;
    所述第一制动管路(110)与第三制动管路(130)连通,所述第三制动管路(130)与所述第五制动管路(150)连通,所述第二制动管路(120)通过所述第五制动管路(150)与所述第三制动管路(130)连通,所述第三制动管路(130)用于为第一组车轮(43、44)提供制动力,且所述第三制动管路(130)上设置有第一控制阀(32),以控制所述第三制动管路(130)的通断;
    所述第二制动管路(120)与第四制动管路(130)连通,所述第四制动管路(140)与所述第五制动管路(150)连通,所述第一制动管路(110)通过所述第五制动管路(150)与所述第四制动管路(140)连通,所述第四制动管路(140)用于为第二组车轮(43、44)提供制动力,且所述第四制动管路(140)上设置有第二控制阀(34),以控制所述第四制动管路(140)的通断;
    所述控制方法包括:
    控制器生成控制指令,所述控制指令用于控制所述第一控制阀(32)和/或所述第二控制阀(34)的通断状态;
    所述控制器向所述第一控制阀(32)和/或所述第二控制阀(34)发送所述控制指令。
  11. 如权利要求10所述的控制方法,其特征在于,所述控制器生成控制指令,包括:
    所述控制器生成所述控制指令,所述控制指令用于控制所述第一控制阀(32)处于断开状态,且所述第二控制阀(34)处于导通状态,以使所述第一液压腔(25)通过连通的第一制动管路(110)与第五制动管路(150)将制动液压入所述第四制动管路(140),以为所述第二组车轮(45、46)提供制动力,以及所述第二液压腔(27)通过连通的所述第二制动管路(120)和所述第四制动管路(140)为所述第二组车轮(45、46)提供制动力。
  12. 如权利要求11所述的控制方法,其特征在于,所述控制器生成控制指令,包括:
    若所述制动***中为所述第一组车轮(43、44)提供制动力的制动管路泄漏,所述控制器生成所述控制指令,所述控制指令用于控制所述第一控制阀(32)处于断开状态,且所述第二控制阀(34)处于导通状态。
  13. 如权利要求12所述的控制方法,其特征在于,所述制动***中为所述第一组车轮(43、44)提供制动力的制动管路包括所述制动***中除所述第一制动管路(110)之外的制动管路,
    所述方法还包括:
    所述控制器通过驱动装置(23)驱动所述液压调节装置(107)的活塞(26)沿所述液压调节装置(107)的液压缸的内壁正向移动,以为所述第二组车轮(44、45)提供制动力;
    所述控制器通过所述驱动装置(23)驱动所述活塞(26)沿所述液压缸的内壁反向移动,以为所述第二组车轮(44、45)提供制动力。
  14. 如权利要求10所述的控制方法,其特征在于,所述控制器生成控制指令,包括:
    所述控制器生成所述控制指令,所述控制指令用于控制所述第二控制阀(34)处于断开状态,且所述第一控制阀(32)处于导通状态,以使所述第二液压腔(27)通过连通的第二制动管路(120)与第五制动管路(150)将制动液压入所述第三制动管路(130),以为所述第一组车轮(43、44)提供制动力,以及所述第一液压腔(25)通过连通的所述第一制动管路(110)与所述第三制动管路(130)为所述第一组车轮(43、44)提供制动力。
  15. 如权利要求14所述的控制方法,其特征在于,所述控制器生成控制指令,包括:
    若所述制动***中为所述第二组车轮(45、46)提供制动力的制动管路泄漏,所述控制器生成所述控制指令,所述控制指令用于控制所述第二控制阀(34)处于断开状态,且所述第一控制阀(32)处于导通状态。
  16. 如权利要求15所述的控制方法,其特征在于,所述制动***中为所述第二组车轮(45、46)提供制动力的制动管路包括所述制动***中除所述第二制动管路(120)之外的制动管路,
    所述方法还包括:
    所述控制器通过驱动装置(23)驱动所述液压调节装置(107)的活塞(26)沿所述液压调节装置(107)的液压缸的内壁正向移动,以为所述第一组车轮(43、44)提供制动力;
    所述控制器通过所述驱动装置(23)驱动所述活塞(26)沿所述液压缸的内壁反向移动,以为所述第一组车轮(43、44)提供制动力。
  17. 如权利要求10-16中任一项所述的控制方法,其特征在于,所述第一制动管路(110)上设置有第三控制阀(29),所述第三控制阀(29)用于控制所述第一制动管路(110)的通断,
    所述方法还包括:
    若需要为所述第一车轮(43、44)和/或所述第二车轮(45、46)减压,所述控制器控制所述第三控制阀(29)处于导通状态。
  18. 如权利要求10-17中任一项所述的控制方法,其特征在于,所述第二制动管路(120)上设置有第四控制阀(31),所述第四控制阀(31)用于控制所述第二制动管路(120)的通断,
    所述方法还包括:
    若需要为所述第一车轮(43、44)和/或所述第二车轮(45、46)减压,所述控制器控制所述第四控制阀(31)处于导通状态。
  19. 一种控制装置,其特征在于,包括处理单元和发送单元,以执行如权利要求10-18 中任一项所述的控制方法。
  20. 一种控制器,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如权利要求10-18中任一项所述的控制方法。
PCT/CN2020/105346 2020-07-29 2020-07-29 液压调节单元、制动***、车辆及控制方法 WO2022021106A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20947081.4A EP4180289A4 (en) 2020-07-29 2020-07-29 HYDRAULIC ADJUSTMENT UNIT, BRAKE SYSTEM, VEHICLE AND CONTROL METHOD
CN202080004968.5A CN112703136B (zh) 2020-07-29 2020-07-29 液压调节单元、制动***、车辆及控制方法
JP2023506039A JP7474384B2 (ja) 2020-07-29 2020-07-29 油圧調整ユニット、ブレーキシステム、車両、及び制御方法
PCT/CN2020/105346 WO2022021106A1 (zh) 2020-07-29 2020-07-29 液压调节单元、制动***、车辆及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105346 WO2022021106A1 (zh) 2020-07-29 2020-07-29 液压调节单元、制动***、车辆及控制方法

Publications (1)

Publication Number Publication Date
WO2022021106A1 true WO2022021106A1 (zh) 2022-02-03

Family

ID=75514816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105346 WO2022021106A1 (zh) 2020-07-29 2020-07-29 液压调节单元、制动***、车辆及控制方法

Country Status (4)

Country Link
EP (1) EP4180289A4 (zh)
JP (1) JP7474384B2 (zh)
CN (1) CN112703136B (zh)
WO (1) WO2022021106A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115923749A (zh) * 2022-11-24 2023-04-07 上海千顾汽车科技有限公司 一种新型全解耦电子液压制动***及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556025A (zh) * 2010-12-22 2012-07-11 本田技研工业株式会社 车辆用制动装置
CN102656068A (zh) * 2009-12-23 2012-09-05 罗伯特·博世有限公司 具有压力调节缸的制动***
CN105691370A (zh) * 2014-12-09 2016-06-22 株式会社万都 电子制动***
CN109552291A (zh) * 2017-09-25 2019-04-02 株式会社万都 电子制动***以及工作方法
CN209955966U (zh) * 2018-12-28 2020-01-17 万向钱潮股份有限公司 一种分体式电液制动装置
CN111038470A (zh) * 2018-10-15 2020-04-21 现代自动车株式会社 车辆的制动装置及其控制方法
US20200180580A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company Electronic brake system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328297B2 (en) * 2006-06-06 2012-12-11 Honda Motor Co., Ltd. Brake system
JP5123972B2 (ja) * 2010-04-05 2013-01-23 本田技研工業株式会社 車両用ブレーキ装置および車両用ブレーキ装置の制御方法
DE102010023865B4 (de) * 2010-06-15 2024-03-28 Zf Active Safety Gmbh Hydraulikdruckerzeuger für eine Fahrzeug-Bremsanlage
KR102435304B1 (ko) * 2015-10-19 2022-08-24 주식회사 만도 전자식 브레이크 시스템
DE102016216973A1 (de) * 2016-09-07 2018-03-08 Robert Bosch Gmbh Steuervorrichtung und Verfahren zum Steigern mindestens eines Bremsdrucks in mindestens einem Radbremszylinder eines Bremssystems eines Fahrzeugs
CN109552290B (zh) * 2017-09-25 2022-12-23 株式会社万都 电子制动***以及工作方法
US11046294B2 (en) * 2017-09-29 2021-06-29 Mando Corporation Electronic brake system and method for operating the same
US11541859B2 (en) * 2018-04-26 2023-01-03 Hl Mando Corporation Electric brake system and operating method of thereof
KR20190136207A (ko) * 2018-05-30 2019-12-10 주식회사 만도 전자식 브레이크 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656068A (zh) * 2009-12-23 2012-09-05 罗伯特·博世有限公司 具有压力调节缸的制动***
CN102556025A (zh) * 2010-12-22 2012-07-11 本田技研工业株式会社 车辆用制动装置
CN105691370A (zh) * 2014-12-09 2016-06-22 株式会社万都 电子制动***
CN109552291A (zh) * 2017-09-25 2019-04-02 株式会社万都 电子制动***以及工作方法
CN111038470A (zh) * 2018-10-15 2020-04-21 现代自动车株式会社 车辆的制动装置及其控制方法
US20200180580A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company Electronic brake system
CN209955966U (zh) * 2018-12-28 2020-01-17 万向钱潮股份有限公司 一种分体式电液制动装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180289A4 *

Also Published As

Publication number Publication date
JP7474384B2 (ja) 2024-04-24
EP4180289A1 (en) 2023-05-17
JP2023536127A (ja) 2023-08-23
EP4180289A4 (en) 2023-08-30
CN112703136A (zh) 2021-04-23
CN112703136B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2021063159A1 (zh) 汽车的制动***、汽车及制动***的控制方法
WO2021248396A1 (zh) 踏板感觉模拟***、液压调节单元及控制方法
WO2021208594A1 (zh) 汽车中制动***的液压调节单元、制动***及控制方法
US20230092225A1 (en) Hydraulic control unit, braking system, and control method
US20230077277A1 (en) Hydraulic adjustment unit, brake system, and control method
US20220219665A1 (en) Distributed Braking System in Automobile, Automobile, and Control Method Therefor
WO2022021106A1 (zh) 液压调节单元、制动***、车辆及控制方法
WO2021098345A1 (zh) 汽车制动***中的液压调节单元、汽车及控制方法
WO2021226889A1 (zh) 液压调节装置、液压调节***、制动***及控制方法
CN113085827A (zh) 制动***及汽车
WO2022016347A1 (zh) 制动控制装置、制动控制***及控制方法
JP7511676B2 (ja) 油圧制御ユニット、ブレーキシステム、および制御方法
US20240132037A1 (en) Braking System and Method for Controlling Braking System
US20230148031A1 (en) Control method for electronic hydraulic brake
CN218907206U (zh) 冗余线控液压制动***
CN117962840A (zh) 冗余线控液压制动***
CN118025109A (zh) 一种自动驾驶制动***和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506039

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020947081

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE