WO2021063159A1 - 汽车的制动***、汽车及制动***的控制方法 - Google Patents

汽车的制动***、汽车及制动***的控制方法 Download PDF

Info

Publication number
WO2021063159A1
WO2021063159A1 PCT/CN2020/113986 CN2020113986W WO2021063159A1 WO 2021063159 A1 WO2021063159 A1 WO 2021063159A1 CN 2020113986 W CN2020113986 W CN 2020113986W WO 2021063159 A1 WO2021063159 A1 WO 2021063159A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
pressure
wheels
pipeline
control valve
Prior art date
Application number
PCT/CN2020/113986
Other languages
English (en)
French (fr)
Inventor
张永生
刘栋豪
刘晓康
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20872104.3A priority Critical patent/EP4029742A4/en
Publication of WO2021063159A1 publication Critical patent/WO2021063159A1/zh
Priority to US17/657,222 priority patent/US20220219661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/161Systems with master cylinder
    • B60T13/165Master cylinder integrated or hydraulically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/88Pressure measurement in brake systems

Definitions

  • This application relates to the automotive field, and more specifically, to the braking system of the automobile, the automobile and the control method of the braking system.
  • the braking system of a car is a system that applies a certain braking force to the wheels of the car to perform a certain degree of forced braking.
  • the function of the braking system is to force a driving car to decelerate or even stop according to the requirements of the driver or the controller, or to make a stopped car park stably under various road conditions (for example, on a ramp), or to make The speed of the car driving downhill remains stable.
  • the operation of the brake system is less dependent on the driver, making the requirement for the redundant performance of the brake system higher and higher, even if one or more parts of the brake system After component failure, the car is required to still have a braking function.
  • the electro-hydraulic brake system (Electro-Hydraulic Brake, EHB) as a popular braking system usually includes two-stage braking subsystems.
  • the first-stage braking system is controlled by the controller.
  • the control method controls the hydraulic cylinder to provide braking force for the wheels, and the second-stage braking subsystem uses the master cylinder to provide braking force for the wheels.
  • the master brake cylinder and hydraulic cylinder are adjusted separately by controlling the pressure of the brake fluid in two independent brake lines The braking force of the 4 wheels of the car. Specifically, by controlling the pressure of the brake fluid in the first brake pipe to adjust the braking force of the first group of wheels, and by controlling the pressure of the brake fluid in the second brake pipe to adjust the second group of wheels The braking force. In this way, when one of the brake lines fails, the car can also control the braking force of the corresponding wheel through another brake line, so that the braking performance of the electro-hydraulic brake system will not completely fail.
  • This application provides a brake system of an automobile, an automobile and a control method of the brake system, so as to improve the redundancy performance of the brake system.
  • the present application provides a brake system for an automobile.
  • the brake system includes a first booster device (110), a second booster device (120), and a first control valve (130).
  • a pressure boosting device (110) is used to control the braking force exerted on the first set of wheels (112) of the automobile by adjusting the pressure of the brake fluid in the first brake pipe (111);
  • the second pressure boosting device (120) is used to control the braking force exerted on the second set of wheels (122) of the automobile by adjusting the pressure of the brake fluid in the second brake pipeline (121).
  • a set of wheels (112) is different from the second set of wheels (122); the first control valve (130) is used to connect the first brake line (111) and the second brake line (121), if the first control valve (130) is in the conducting state, the first brake pipeline (111) is in communication with the second brake pipeline (121), if the first When the control valve (130) is in a disconnected state, the first brake pipeline (111) is disconnected from the second brake pipeline (121).
  • the first brake pipe 111 and the second brake pipe 121 are connected through the first control valve 130, so that when the first control valve 130 is in the conducting state, the first brake pipe 111 and The second brake pipeline 121 is connected, so that the brake fluid between the two brake pipelines can circulate, which is beneficial to improve the redundancy performance of the brake system. It avoids that the first brake pipe 111 and the second brake pipe 121 in the existing brake system are two independent brake pipes. When the pressure supply device (booster device and brake pipe) on one brake pipe After the main cylinder fails, the car will lose half of its braking force.
  • boost device and brake pipe boost pipe
  • the controller can control the first control valve 130 to be in a conducting state, so that the first brake line 111 communicates with the second brake line 121, so that The pressure of the brake fluid in the two brake lines is equalized to improve driving stability.
  • the first pressure-increasing device (110) is used to adjust the internal pressure of the first brake pipeline (111).
  • the pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake pipe (121); and/or if the first control valve (130) is in the conducting state, the second pressure increase
  • the device (120) is used to adjust the pressure of the brake fluid in the first brake line (111) by adjusting the pressure of the brake fluid in the second brake line (121).
  • the first pressure-increasing device 110 can pressurize the brake fluid in the second brake pipe 121 to control the brake fluid applied to the second group of wheels. Braking force on 122.
  • the second pressurizing device 120 can also pressurize the brake fluid in the first brake pipe 111 to control the braking force applied to the first set of wheels 112, which is beneficial to improve the redundancy of the braking system. performance.
  • the braking system further includes a series double-chamber master cylinder (210), and the first cavity (212) of the master cylinder (210) is connected to the first brake master cylinder (210).
  • the driving pipeline (111) is in communication, and is used to control the braking force exerted on the first set of wheels (112) by adjusting the pressure of the brake fluid in the first brake pipeline (111);
  • the second cavity (222) of the brake master cylinder (210) communicates with the second brake pipeline (121), and is used to adjust the brake fluid in the second brake pipeline (121). Pressure to control the braking force exerted on the second set of wheels (122).
  • the first chamber 212 can pressurize the brake fluid in the second brake pipeline 121 to control the application of the brake fluid on the second set of wheels 122 The braking force.
  • the second pressurizing device 120 can also pressurize the brake fluid in the first brake pipe 111 to control the braking force applied to the first set of wheels 112, which is beneficial to improve the redundancy of the braking system. performance.
  • the master brake cylinder (210) passes through the first cavity (212) to adjust the first brake pipeline (111) The pressure of the internal brake fluid to adjust the pressure of the brake fluid in the second brake line (121); and/or if the first control valve (130) is in the conducting state, the brake master The cylinder (210) adjusts the pressure of the brake fluid in the second brake pipe (121) through the second cavity (222) to adjust the brake in the first brake pipe (111) Fluid pressure.
  • the brake system further includes a liquid storage device (118) for storing brake fluid, a plurality of liquid outlet valves (140), and a second control valve (310).
  • the pressure outlet port of each outlet valve (140) is connected to the pressure inlet port of the outlet pipeline (117), and the pressure outlet port of the outlet pipeline (117) is connected to the inlet port of the liquid storage device (118).
  • the second control valve (310) is located on the liquid outlet pipeline (117) between the pressure inlet port of the liquid outlet pipeline (117) and the inlet port of the liquid storage device (118).
  • the second control valve 310 is provided on the outlet pipe 117 between the pressure inlet port of the outlet pipe 117 and the inlet port of the liquid storage device 118.
  • the fluid outlet pipe between the pressure inlet port of the fluid outlet pipe 117 and the second control valve 310 can be used as a brake pipe that provides braking force for the brake wheel cylinder to improve braking. The redundant performance of the system.
  • the target booster device is used to adjust the Describe the pressure of the brake fluid in the first section of the pipeline (320) of the fluid pipeline (117) to control the braking force applied to the first set of wheels (112) and/or the second set of automobile wheels, where:
  • the target pressure boosting device is the brake master cylinder (210), the first pressure boosting device (110) or the second pressure boosting device (120), and the first section of pipeline (320) is The liquid outlet pipeline between the pressure inlet port of the liquid outlet pipeline (117) and the second control valve (310).
  • the target booster can adjust the brake fluid in the first section of pipeline 320.
  • the braking system further includes a controller for sending first control information to the first boosting device (110) to control the first boosting device (110) The braking force applied to the first set of wheels (112); and/or the controller is also used to send second control information to the second supercharging device (120) to control the The braking force exerted by the second supercharging device (120) on the second set of wheels (122).
  • the controller can directly control the first supercharging device 110 and the second supercharging device 120 to provide braking force for the first group of wheels 112 and the second group of wheels 122, which is beneficial to improve the operation of the braking system. Diversity of patterns.
  • the brake system further includes a pressure sensor (330), and the pressure sensor (330) is located at the pressure outlet port of the brake master cylinder (210) and the first boost pressure
  • the first brake line (111) between the pressure outlet ports of the device (110), the pressure sensor (330) is used to detect the first brake line adjusted by the master brake cylinder (210) (111) the pressure of the brake fluid; the pressure sensor (330) is also used to send pressure information indicating the pressure to the controller, so that the controller determines the pressure applied to the car based on the pressure Braking force on the wheels.
  • the controller may determine the pressure of the brake fluid in the first brake pipe 111 based on the pressure sensor 330, thereby determining the braking force applied to the wheels of the automobile based on the pressure, which is beneficial to improve Diversity of brake system working modes.
  • the brake system further includes a pedal stroke sensor (420), the pedal stroke sensor (420) is used to detect the pedal stroke of the brake pedal of the automobile; the pedal stroke sensor (420) is also used to send stroke information indicating the pedal stroke to the controller, so that the controller determines the braking force applied to the wheels of the automobile based on the stroke.
  • the controller may determine the pedal stroke of the brake pedal based on the pedal stroke sensor 420, so as to determine the braking force applied to the wheels of the automobile based on the pedal stroke, which is beneficial to improve the variety of brake system operating modes. Sex.
  • the controller can determine the application of the pedal stroke sensor and pressure sensor 330 based on any one of the above-mentioned two kinds of information (pedal stroke and brake fluid pressure).
  • the braking force on the wheels of the automobile is beneficial to improve the redundancy performance of the braking system.
  • an automobile including a first set of wheels (112), a second set of wheels (122), a first supercharging device (110), a second supercharging device (120), and a first control valve (130) ), the first set of wheels (112) is different from the second set of wheels (122), and the first pressure-increasing device (110) is used to adjust the brake fluid in the first brake pipe (111) Pressure to apply braking force to the first set of wheels (112); the second pressure boosting device (120) is used to adjust the pressure of the brake fluid in the second brake line (121) to The second set of wheels (122) applies braking force, and the first set of wheels (112) is different from the second set of wheels (122); the first control valve (130) is used to connect the first The brake pipeline (111) and the second brake pipeline (121), if the first control valve (130) is in the conducting state, the first brake pipeline (111) and the The second brake pipeline (121) is in communication. If the first control valve (130) is in a
  • the first brake pipe 111 and the second brake pipe 121 are connected through the first control valve 130, so that when the first control valve 130 is in the conducting state, the first brake pipe 111 and The second brake pipeline 121 is connected, so that the brake fluid between the two brake pipelines can circulate, which is beneficial to improve the redundancy performance of the brake system. It avoids that the first brake pipe 111 and the second brake pipe 121 in the existing brake system are two independent brake pipes. When the pressure supply device (booster device and brake pipe) on one brake pipe After the main cylinder fails, the car will lose half of its braking force.
  • boost device and brake pipe boost pipe
  • the controller can control the first control valve 130 to be in a conducting state, so that the first brake line 111 communicates with the second brake line 121, so that The pressure of the brake fluid in the two brake lines is equalized to improve driving stability.
  • the first pressure-increasing device (110) is used to adjust the internal pressure of the first brake pipeline (111).
  • the pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake pipe (121); and/or if the first control valve (130) is in the conducting state, the second pressure increase
  • the device (120) is used to adjust the pressure of the brake fluid in the first brake line (111) by adjusting the pressure of the brake fluid in the second brake line (121).
  • the first pressure-increasing device 110 can pressurize the brake fluid in the second brake pipe 121 to control the brake fluid applied to the second group of wheels. Braking force on 122.
  • the second pressurizing device 120 can also pressurize the brake fluid in the first brake pipe 111 to control the braking force applied to the first set of wheels 112, which is beneficial to improve the redundancy of the braking system. performance.
  • the automobile further includes a series-connected dual-chamber brake master cylinder (210), and the first chamber (212) of the brake master cylinder (210) and the first brake pipe
  • the road (111) communicates with each other, and is used to control the braking force exerted on the first set of wheels (112) by adjusting the pressure of the brake fluid in the first brake pipe (111);
  • the second cavity (222) of the moving master cylinder (210) communicates with the second brake pipe (121), and is used to adjust the pressure of the brake fluid in the second brake pipe (121), To control the braking force applied to the second set of wheels (122).
  • the first chamber 212 can pressurize the brake fluid in the second brake pipeline 121 to control the application of the brake fluid on the second set of wheels 122 The braking force.
  • the second pressurizing device 120 can also pressurize the brake fluid in the first brake pipe 111 to control the braking force applied to the first set of wheels 112, which is beneficial to improve the redundancy of the braking system. performance.
  • the master brake cylinder (210) adjusts the inner part of the first brake pipeline (111) through the first cavity (212) The pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake line (121); and/or if the first control valve (130) is in the conducting state, the brake master cylinder (210) Adjust the pressure of the brake fluid in the second brake line (121) through the second cavity (222) to adjust the brake fluid pressure in the first brake line (111) pressure.
  • the automobile further includes a liquid storage device (118) for storing brake fluid, a plurality of liquid outlet valves (140), and a second control valve (310).
  • the pressure outlet port of the liquid valve (140) is connected to the pressure inlet port of the liquid outlet pipe (117), and the pressure outlet port of the liquid outlet pipe (117) is connected to the inlet port of the liquid storage device (118),
  • the second control valve (310) is located on the liquid outlet pipeline (117) between the pressure inlet port of the liquid outlet pipeline (117) and the inlet port of the liquid storage device (118).
  • the second control valve 310 is provided on the outlet pipe 117 between the pressure inlet port of the outlet pipe 117 and the inlet port of the liquid storage device 118.
  • the fluid outlet pipe between the pressure inlet port of the fluid outlet pipe 117 and the second control valve 310 can be used as a brake pipe that provides braking force for the brake wheel cylinder to improve braking. The redundant performance of the system.
  • the target booster device is used to adjust the Describe the pressure of the brake fluid in the first section of the pipeline (320) of the fluid pipeline (117) to control the braking force applied to the first set of wheels (112) and/or the second set of automobile wheels, where:
  • the target pressure boosting device is the brake master cylinder (210), the first pressure boosting device (110) or the second pressure boosting device (120), and the first section of pipeline (320) is The liquid outlet pipeline between the pressure inlet port of the liquid outlet pipeline (117) and the second control valve (310).
  • the target booster can adjust the brake fluid in the first section of pipeline 320.
  • the target booster can adjust the brake fluid in the first section of pipeline 320.
  • the automobile further includes a controller configured to send first control information to the first supercharging device (110) to control the first supercharging device (110) ) The braking force applied to the first set of wheels (112); and/or the controller is also used to send second control information to the second supercharging device (120) to control the second The braking force exerted by the supercharging device (120) on the second set of wheels (122).
  • the controller can directly control the first supercharging device 110 and the second supercharging device 120 to provide braking force for the first group of wheels 112 and the second group of wheels 122, which is beneficial to improve the operation of the braking system. Diversity of patterns.
  • the automobile further includes a pressure sensor (330), and the pressure sensor (330) is located at the pressure outlet port of the brake master cylinder (210) and the first boosting device ( 110) the first brake pipeline (111) between the pressure outlet ports, the pressure sensor (330) is used to detect the first brake pipeline (111) adjusted by the master brake cylinder (210) ) In the brake fluid pressure; the pressure sensor (330) is also used to send pressure information indicating the pressure to the controller, so that the controller determines the wheels applied to the car based on the pressure Braking force.
  • the pressure sensor (330) is located at the pressure outlet port of the brake master cylinder (210) and the first boosting device ( 110) the first brake pipeline (111) between the pressure outlet ports, the pressure sensor (330) is used to detect the first brake pipeline (111) adjusted by the master brake cylinder (210) ) In the brake fluid pressure; the pressure sensor (330) is also used to send pressure information indicating the pressure to the controller, so that the controller determines the wheels applied to the car based on the pressure Braking force.
  • the controller may determine the pressure of the brake fluid in the first brake pipe 111 based on the pressure sensor 330, thereby determining the braking force applied to the wheels of the automobile based on the pressure, which is beneficial to improve Diversity of brake system working modes.
  • the automobile further includes a pedal stroke sensor (420), the pedal stroke sensor (420) is used to detect the pedal stroke of the brake pedal of the automobile; the pedal stroke sensor (420) ) Is also used to send stroke information indicating the pedal stroke to the controller, so that the controller determines the braking force applied to the wheels of the automobile based on the stroke.
  • a pedal stroke sensor 420
  • the pedal stroke sensor (420) is used to detect the pedal stroke of the brake pedal of the automobile
  • the pedal stroke sensor (420) ) Is also used to send stroke information indicating the pedal stroke to the controller, so that the controller determines the braking force applied to the wheels of the automobile based on the stroke.
  • the first set of wheels (112) includes a right front wheel and a left front wheel
  • the second set of wheels (122) includes a right rear wheel and a left rear wheel
  • the first set of wheels (112) includes a right rear wheel and a left rear wheel
  • the group of wheels (112) includes a right front wheel and a left rear wheel
  • the second group of wheels (122) includes a left front wheel and a left rear wheel.
  • the controller may determine the pedal stroke of the brake pedal based on the pedal stroke sensor 420, so as to determine the braking force applied to the wheels of the automobile based on the pedal stroke, which is beneficial to improve the variety of brake system operating modes. Sex.
  • the controller can determine the application of the pedal stroke sensor and pressure sensor 330 based on any one of the above-mentioned two kinds of information (pedal stroke and brake fluid pressure).
  • the braking force on the wheels of the automobile is beneficial to improve the redundancy performance of the braking system.
  • the present application provides a control method of a brake system
  • the brake system includes a first booster device (110), a second booster device (120), and a first control valve (130).
  • the first pressure-increasing device (110) is used to control the braking force exerted on the first set of wheels (112) of the automobile by adjusting the pressure of the brake fluid in the first brake pipeline (111);
  • the second pressure-increasing device (120) is used to control the braking force exerted on the second set of wheels (122) of the automobile by adjusting the pressure of the brake fluid in the second brake pipeline (121).
  • the first group of wheels (112) is different from the second group of wheels (122); the first control valve (130) is used to connect the first brake pipe (111) and the second brake pipe If the first control valve (130) is in a disconnected state, the first brake pipeline (111) is disconnected from the second brake pipeline (121), and the method Including: if the controller controls the first control valve (130) to be in a conducting state, the first brake pipeline (111) and the second brake pipeline (121) Connected; if the controller controls the first control valve (130) to be in a disconnected state, the first brake pipeline (111) and the second brake pipeline (121) disconnect.
  • the controller when the pressure providing device on the target brake line fails, the controller can control the first control valve 130 to be in a conducting state, so that the first brake line 111 and the second brake line 121 Connected, the brake fluid can circulate in the two brake pipelines, which helps to improve the redundancy performance of the brake system. It avoids that the first brake pipe 111 and the second brake pipe 121 in the existing brake system are two independent brake pipes.
  • the pressure supply device boost device and brake pipe
  • the method includes: the controller determines that the pressure providing device on the target brake line is faulty, and the target brake line is the first brake line (111 ) Or the second brake pipeline (121); the controller controls the first control valve (130) to be in a conducting state, then the first brake pipeline (111) and the second The brake pipeline (121) is connected.
  • the controller when the pressure providing device on the target brake line fails, the controller can control the first control valve 130 to be in a conducting state, so that the first brake line 111 and the second brake line 121 Connected to balance the pressure of the brake fluid in the two brake pipelines to improve driving stability.
  • the target brake line is the first brake line (111)
  • the pressure providing device includes the first boosting device (110)
  • the method further Including: the controller controls the second pressure boosting device (120) to adjust the first brake line (111) by adjusting the pressure of the brake fluid in the second brake line (121) The pressure of the brake fluid inside.
  • the controller may control the first control valve 130 to be in a conducting state, so that the first brake pipeline 111 and the first brake pipeline 111 are in a conducting state.
  • the two brake pipelines 121 are connected, and the brake fluid can circulate in the two brake pipelines, which is beneficial to improve the redundancy performance of the braking system.
  • the target brake line is the second brake line (121)
  • the pressure providing device includes the second boosting device (120)
  • the method further Including: the controller controls the first pressure-increasing device (110) to adjust the second brake line (121) by adjusting the pressure of the brake fluid in the first brake line (111) The pressure of the brake fluid inside.
  • the controller can control the first control valve 130 to be in a conducting state, so that the first brake pipeline 111 and the second brake pipeline 111 are in a conducting state.
  • the two brake pipelines 121 are connected, and the brake fluid can circulate in the two brake pipelines, which is beneficial to improve the redundancy performance of the braking system.
  • the braking system further includes a series double-chamber master cylinder (210), and the first cavity (212) of the master cylinder (210) is connected to the first brake master cylinder (210).
  • the driving pipeline (111) is in communication, and is used to control the braking force exerted on the first set of wheels (112) by adjusting the pressure of the brake fluid in the first brake pipeline (111);
  • the second cavity (222) of the brake master cylinder (210) communicates with the second brake pipeline (121), and is used to adjust the brake fluid in the second brake pipeline (121).
  • the method further includes: if the first cavity (212) fails, the controller controls the first control valve (130) ) Is in a conducting state, so that the pressure of the brake fluid in the two brake pipes (121) is equal to the pressure of the brake fluid in the first brake pipe (111); if the second chamber ( 222) Failure, the controller controls the first control valve (130) to be in a conducting state, so that the pressure of the brake fluid in the first brake line (111) and the second brake line (121) The pressure of the internal brake fluid is equalized.
  • the controller when the first chamber 212 fails, the controller can control the first control valve 130 to be in a conducting state, so that the first brake pipeline 111 communicates with the second brake pipeline 121, and the brake fluid It can circulate in two brake pipelines, which is beneficial to improve the redundancy performance of the brake system.
  • the controller can control the first control valve 130 to be in a conducting state, so that the first brake pipeline 111 is connected to the second brake pipeline 121, and the brake fluid can be in the two brake pipes. Circulation in the road is conducive to improving the redundant performance of the braking system.
  • the brake system further includes a liquid storage device (118) for storing brake fluid, a plurality of liquid outlet valves (140), and a second control valve (310).
  • the pressure outlet port of each outlet valve (140) is connected to the pressure inlet port of the outlet pipeline (117), and the pressure outlet port of the outlet pipeline (117) is connected to the inlet port of the liquid storage device (118).
  • the second control valve (310) is located on the outlet pipe (117) between the pressure inlet port of the outlet pipe (117) and the inlet port of the liquid storage device (118), so The method further includes: the controller determines that the first pressure-increasing device (110) and the first control valve (130) are faulty; the controller controls the second control valve (310) to be in a disconnected state , And control the plurality of outlet valves (140) to be in a conducting state, so that the brake fluid in the first section of pipeline (320) is pressed into the automobile by the second pressure boosting device (120) The brake wheel cylinder of the wheel of the car is used to control the braking force applied to the wheel of the car.
  • the first section of pipeline (320) is the pressure inlet port and the pressure of the outlet pipeline (117).
  • the controller when the first pressurizing device 110 and the first control valve 130 fail, the controller can control the second control valve 310 to be in the off state, and control the multiple outlet valves 140 to be in the on state, so that The brake fluid in the first section of pipeline 320 is pressed into the brake wheel cylinders of the wheels of the automobile by the second pressurizing device 120, that is, the first section of pipeline 320 is used as the braking force for the wheel brake cylinders.
  • the brake pipeline to improve the redundant performance of the brake system.
  • the method further includes: the controller determines that the second booster device (120) and the first control valve (130) are faulty; and the controller controls the first control valve (130).
  • the second control valve (310) is in a disconnected state, and controls the plurality of outlet valves (140) to be in a conducting state, so that the brake fluid in the first section of pipeline (320) is increased by the first
  • the pressing device (110) presses into the brake wheel cylinders of the wheels of the automobile to control the braking force applied to the wheels of the automobile.
  • the controller can control the second control valve 310 to be in the off state, and control the multiple outlet valves 140 to be in the on state, so that The brake fluid in the first section of pipeline 320 is pressed into the brake wheel cylinders of the wheels of the car by the first pressurizing device 110, that is, the first section of pipeline 320 is used as a brake to provide braking force for the wheel brake cylinders. Move the pipeline to improve the redundancy performance of the braking system.
  • the brake system further includes a pressure sensor (330) and a pedal stroke sensor (420), and the pressure sensor (330) is used to detect the adjustment of the master brake cylinder (210).
  • the pressure of the brake fluid in the first brake pipeline (111), the pedal stroke sensor (420) is used to detect the pedal stroke of the brake pedal of the automobile, and the method further includes: the controller Receive the pressure information used to indicate the pressure sent by the pressure sensor (330); if the pedal stroke sensor (420) fails, the controller provides the first set of wheels (112) according to the pedal stroke And/or the second group of wheels (122) distributes braking force.
  • the controller can determine based on any one of the aforementioned two kinds of information (pedal stroke and brake fluid pressure)
  • the braking force applied to the wheels of the automobile is beneficial to improve the redundancy performance of the braking system.
  • a controller may be an independent device or a chip in the device.
  • the controller may include a processing unit and a sending unit.
  • the processing unit may be a processor, and the sending unit may be an input/output interface;
  • the device may also include a storage unit, and the storage unit may be a memory;
  • the storage unit is configured to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the device executes the method in the third aspect.
  • the processing unit may be a processor, the sending unit may be a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to enable the control
  • the device executes the method in the third aspect
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage device located outside the chip in the terminal device/network device. Unit (for example, read only memory, random access memory, etc.).
  • the memory is coupled with the processor, and it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • a computer program product includes computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above aspects.
  • Fig. 1 is a schematic diagram of a first-stage braking subsystem 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the second-stage braking subsystem 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a braking system 300 according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an automobile according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the flow path of the brake fluid in the brake system of the embodiment of the present application.
  • Fig. 6 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 7 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 10 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 12 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 13 is a flowchart of a control method of a braking system according to an embodiment of the present application.
  • Fig. 14 is a flowchart of a control method of a braking system according to another embodiment of the present application.
  • EHB as a popular braking system, usually contains two-stage braking subsystems.
  • the first-stage braking system is controlled by the controller to control the booster device to provide braking force for the wheels in a wire-controlled manner.
  • the second-stage brake subsystem provides braking force for the wheels by the brake master cylinder.
  • the master brake cylinder and hydraulic cylinder are adjusted separately by controlling the pressure of the brake fluid in two independent brake lines The braking force of the 4 wheels of the car. Specifically, by controlling the pressure of the brake fluid in the first brake line to adjust the braking force applied to the first group of wheels, and by controlling the pressure of the brake fluid in the second brake line to adjust the The braking force of the two sets of wheels. In this way, when one of the brake lines fails, the car can also control the braking force of the corresponding wheel through another brake line, so that the braking performance of the electro-hydraulic brake system will not completely fail.
  • the embodiment of the present application provides a new brake system, that is, the first brake pipe 111 and the second brake pipe 121 are connected through the first control valve 130. Therefore,
  • the first control valve 130 is also called a "communication valve".
  • the first control valve 130 can be controlled to be in a conducting state, so that the brakes in the two brake lines
  • the hydraulic fluid can circulate, or in other words, equalize the pressure of the brake fluid in the two brake lines.
  • the supercharging device can adjust the braking force applied to the wheels of the car through two connected brake lines.
  • the braking system of the embodiment of the present application will be introduced in conjunction with FIG. 1.
  • pressure outlet port can be understood as the port through which the brake fluid flows out
  • pressure inlet port can be understood as the port through which the brake fluid flows in.
  • pressure outlet port and “pressure inlet port” can be understood as the function of limiting the role of the port.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define a physical port to work in different ways.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” may also correspond to two different physical ports, which are not limited in the embodiment of the present application.
  • the pressure inlet port of the device A when connected to the pressure outlet port of the device B described below, it can be understood as corresponding to two physical ports and used to describe the connection relationship between the device A and the device B.
  • Fig. 1 is a schematic diagram of a first-stage braking subsystem 100 according to an embodiment of the present application.
  • the first-stage braking subsystem 100 shown in FIG. 1 includes a first pressure-increasing device 110, a second pressure-increasing device 120, and a first control valve 130.
  • the first pressure-increasing device 110 is used to control the braking force applied to the first set of wheels 112 of the automobile by adjusting the pressure of the brake fluid in the first brake pipeline 111.
  • the pressure outlet port of the first booster device 110 is connected to the pressure inlet port of the first brake pipeline 111.
  • the first brake pipeline 111 includes two pressure outlet ports (1, 2), and two pressure outlet ports ( 1, 2) are connected to the pressure inlet ports (5, 6) of the wheel brake cylinders of the first group of wheels 112.
  • the first pressurizing device 110 can be used to pressurize the brake fluid in the first brake line 111 to increase the braking force applied to the first set of wheels 112 of the automobile.
  • the first pressurizing device 110 includes a motor 113 and a hydraulic cylinder 114.
  • the motor 113 is used to drive the piston in the hydraulic cylinder 114 to make a linear reciprocating motion, and the brake hydraulic pressure in the hydraulic cylinder 114 is fed into the first brake pipeline. 111 to increase the pressure of the brake fluid in the first brake pipe 111.
  • the second supercharging device 120 is used to control the braking force applied to the second set of wheels 122 of the automobile by adjusting the pressure of the brake fluid in the second brake pipeline 121.
  • the pressure outlet port of the first booster device 120 is connected to the pressure inlet port of the second brake pipeline 121.
  • the second brake pipeline 121 includes two pressure outlet ports (3, 4), and two pressure outlet ports ( 3, 4) are connected to the pressure inlet ports (7, 8) of the wheel brake cylinders of the second set of wheels 122.
  • the second pressurizing device 120 can be used to pressurize the brake fluid in the second brake line 121 to increase the braking force applied to the second set of wheels 122 of the automobile.
  • the second pressurizing device 120 includes a motor 123 and a hydraulic cylinder 124.
  • the motor 123 is used to drive the piston in the hydraulic cylinder 124 to make a linear reciprocating motion, and to transfer the brake hydraulic pressure in the hydraulic cylinder 114 into the second brake pipeline. 121 to increase the pressure of the brake fluid in the second brake pipe 121.
  • the above-mentioned first group of wheels is different from the second group of wheels.
  • the first group of wheels includes the right front wheel and the left front wheel
  • the second group of wheels includes the right rear wheel and the left rear wheel, that is, the first-stage brake subsystem 100 is H Type layout.
  • the first group of wheels includes a right front wheel and a left rear wheel
  • the second group of wheels includes a left front wheel and a left rear wheel, that is, the first-stage braking subsystem 100 is an X-shaped arrangement.
  • the embodiments of this application do not limit this.
  • the first control valve 130 is used to connect the first brake pipeline 111 and the second brake pipeline 121. If the first control valve 130 is in a conducting state, the first brake The pipeline 111 is in communication with the second brake pipeline 121. If the first control valve 111 is in a disconnected state, the first brake pipeline 111 is disconnected from the second brake pipeline 121 .
  • the first brake pipe 111 and the second brake pipe 121 are independent brake pipes, and the pressure of the brake fluid in the two brake pipes is determined by the first brake pipe.
  • a supercharging device 110 and a second supercharging device 120 are controlled. If the first brake pipe 111 and the second brake pipe 121 are connected brake pipes when the first control valve 130 is in the conducting state, the brake fluid can flow in the first brake pipe 111 and the second brake pipe. The flow between the moving pipes 121 makes the pressure of the brake fluid in the two brake pipes equalize.
  • the first pressure-increasing device 110 is used to adjust the pressure of the brake fluid in the first brake pipe 111 to adjust the second Second, the pressure of the brake fluid in the brake pipeline 121.
  • the second pressure-increasing device 120 is used to adjust the pressure of the brake fluid in the second brake pipe 121 to adjust the first brake pipe Pressure of brake fluid in road 111.
  • the first control valve 130 can be controlled to be in a conducting state.
  • the second pressure-increasing device 120 pressurizes the brake fluid in the second brake line 121 to transfer the pressure of the brake fluid in the second brake line 121 to the first brake line 111, and finally By increasing the pressure of the brake fluid in the first brake line 111, braking force is applied to the first group of wheels 112.
  • the first control valve 130 can be controlled to be in a conducting state.
  • the first supercharging device 110 can be used for the first braking
  • the brake fluid in the pipe 111 is pressurized to transmit the pressure of the brake fluid in the first brake pipe 111 to the second brake pipe 121, and finally by increasing the brake fluid in the second brake pipe 121
  • the hydraulic pressure exerts a braking force on the wheels 122 of the second group.
  • a control valve 119 can be provided at the pressure outlet port of the first booster device 110.
  • the control valve 119 can be controlled to be in a disconnected state.
  • the first pressure-increasing device 110 is disconnected from the first brake pipeline 111.
  • a control valve 129 can also be provided at the pressure outlet port of the second booster device 120.
  • the control valve 129 can be controlled to be in a disconnected state.
  • the second booster device 120 120 is disconnected from the second brake pipeline 121, therefore, the above-mentioned control valve 119 and control valve 129 are also called "isolation valves".
  • an inlet valve (9, 10, 11, 12) on the brake line corresponding to the braking force of each wheel it is possible to configure an inlet valve (9, 10, 11, 12) on the brake line corresponding to the braking force of each wheel to independently manage the braking force applied to each wheel.
  • the inlet valve corresponding to the wheel that requires braking force is controlled to be in the on state
  • the inlet valve corresponding to the wheel that does not require braking force is controlled to be in the off state.
  • the brake fluid in the brake pipeline can flow to the wheel brake cylinders through the corresponding brake pipeline.
  • the brake fluid in the brake pipeline The brake fluid cannot flow to the wheel brake cylinders of the wheels through the corresponding brake pipes.
  • the first brake pipeline 111 may include a first branch 115 and a second branch 116 to respectively control the braking forces of two wheels in the first group of wheels 112.
  • the pressure outlet port of the first branch 115 is connected to the pressure inlet port 5 of the wheel brake cylinder 17 of the first group of wheels 112, and the pressure outlet port of the second branch 116 is connected to the pressure inlet port 5 of the wheel brake cylinder 17 of the first group of wheels 112.
  • the pressure of 18 is connected to port 6.
  • a liquid inlet valve 9 is provided between the pressure inlet port of the first branch 115 and the pressure inlet port 5 of the brake wheel cylinder 17, a liquid inlet valve 9 is provided.
  • the first branch can be increased by The pressure of the brake fluid in 115 increases the braking force applied to the wheel brake cylinder 17.
  • a liquid inlet valve 10 is provided between the pressure inlet port of the second branch 116 and the pressure inlet port 6 of the wheel brake cylinder 18.
  • the second branch can be increased by The pressure of the brake fluid in 116 increases the braking force applied to the wheel brake cylinder 18.
  • pressure inlet port of the first branch 115 and the pressure inlet port of the second branch 116 may be the pressure inlet port of the first brake line 111.
  • the second brake line 121 may include a first branch 125 and a second branch 126 to respectively control the braking force of two wheels in the second group of wheels 122.
  • the pressure outlet port of the first branch 125 is connected to the pressure inlet port 7 of the wheel brake cylinder 19 of the first group of wheels 122
  • the pressure outlet port of the second branch 126 is connected to the pressure inlet port 7 of the wheel brake cylinder 19 of the first group of wheels 122.
  • the pressure of 20 is connected to port 8. Between the pressure inlet port of the first branch 125 and the pressure inlet port 7 of the wheel brake cylinder 19, a liquid inlet valve 11 is provided.
  • the first branch can be increased by The pressure of the brake fluid in 125 increases the braking force applied to the wheel brake cylinder 19.
  • a liquid inlet valve 12 is provided between the pressure outlet port of the second branch 126 and the pressure inlet port 8 of the wheel brake cylinder 20, a liquid inlet valve 12 is provided.
  • the second branch can be increased by The pressure of the brake fluid in 126 increases the braking force applied to the wheel brake cylinder 20.
  • pressure inlet port of the first branch 125 and the pressure inlet port of the second branch 126 may be the pressure inlet port of the second brake pipeline 121.
  • a liquid outlet valve can be arranged on the brake line that controls each wheel, so as to independently manage the reduced braking force of each wheel. That is, the outlet valve corresponding to the wheel that needs to reduce the braking force is controlled to be in the on state, and the outlet valve corresponding to the other wheel that does not need to be reduced is controlled to be in the off state.
  • the outlet valve is in the conducting state, the brake fluid in the brake pipeline can flow to the outlet pipeline 117 through the outlet valve, and flow to the liquid storage device 118 through the outlet pipeline brake pipeline 117 for recycling.
  • the outlet valve is in the disconnected state, the brake fluid in the brake pipeline is blocked by the outlet valve and cannot flow to the liquid storage device.
  • the first brake pipeline 111 may include a first branch 115 and a second branch 116 to respectively control the braking forces of two wheels in the first group of wheels 112.
  • the pressure outlet port of the first branch 115 is connected to the pressure inlet port 5 of the wheel brake cylinder 17 of the first group of wheels 112, and the pressure outlet port of the second branch 116 is connected to the pressure inlet port 5 of the wheel brake cylinder 17 of the first group of wheels 112.
  • the pressure of 18 is connected to port 6.
  • a liquid outlet valve 13 is provided between the pressure inlet port of the first branch 115 and the pressure inlet port 5 of the wheel brake cylinder 17, a liquid outlet valve 13 is provided.
  • the brake in the first branch 115 When the liquid outlet valve 13 is in the conducting state, the brake in the first branch 115 The liquid can flow to the liquid outlet pipe 117 through the liquid outlet valve 13 and finally into the liquid storage device 118 to avoid pressurizing the wheel brake cylinder 17 through the brake fluid.
  • the brake fluid in the first branch 115 When the liquid outlet valve 13 is in an open state, the brake fluid in the first branch 115 is blocked by the liquid outlet valve 13 and cannot flow to the liquid outlet pipe 117.
  • a liquid outlet valve 14 is provided between the pressure inlet port 2 of the second branch 116 and the pressure inlet port 6 of the wheel brake cylinder 18.
  • the second branch 116 is controlled The hydraulic fluid can flow to the fluid outlet pipe 117 through the fluid outlet valve 14 and finally into the fluid storage device 118 to avoid pressurizing the wheel brake cylinder 18 through the brake fluid.
  • the brake fluid in the first branch 116 is blocked by the liquid outlet valve 14 and cannot flow to the liquid outlet pipe 117.
  • pressure inlet port of the first branch 115 and the pressure inlet port of the second branch 116 may be the pressure inlet port of the first brake line 111.
  • the second brake line 121 may include a first branch 125 and a second branch 126 to control the braking forces of two wheels in the second group of wheels 122, respectively.
  • the pressure outlet port of the first branch 125 is connected to the pressure inlet port 7 of the wheel brake cylinder 19 of the first group of wheels 122
  • the pressure outlet port of the second branch 126 is connected to the pressure inlet port 7 of the wheel brake cylinder 19 of the first group of wheels 122.
  • the pressure of 20 is connected to port 8. Between the pressure inlet port of the first branch 125 and the pressure inlet port 7 of the wheel brake cylinder 19, a liquid outlet valve 15 is provided.
  • the brake in the first branch 125 When the liquid outlet valve 15 is in the conducting state, the brake in the first branch 125 The liquid can flow through the liquid outlet valve 15 to the liquid outlet pipe 117 and finally into the liquid storage device 118 to avoid pressurizing the wheel brake cylinder 19 through the brake fluid.
  • the brake fluid in the first branch 125 When the liquid outlet valve 15 is in an open state, the brake fluid in the first branch 125 is blocked by the liquid outlet valve 15 and cannot flow to the liquid outlet pipe 117.
  • an outlet valve 16 is provided between the pressure inlet port 2 of the second branch 116 and the pressure inlet port 8 of the wheel brake cylinder 20, an outlet valve 16 is provided.
  • the second branch 126 When the outlet valve 16 is in a conducting state, the second branch 126 is controlled The hydraulic fluid can flow to the fluid outlet pipe 117 through the fluid outlet valve 16 and finally into the fluid storage device 118 to avoid pressurizing the wheel brake cylinder 20 through the brake fluid.
  • the brake fluid in the second branch 126 When the liquid outlet valve 16 is in an open state, the brake fluid in the second branch 126 is blocked by the liquid outlet valve 16 and cannot flow to the liquid outlet pipe 117.
  • pressure inlet port of the first branch 125 and the pressure inlet port of the second branch 126 may be the pressure inlet port of the second brake pipeline 121.
  • connection mode of the liquid outlet valve 13 and the liquid inlet valve 9 corresponding to the brake wheel cylinder 17 is taken as an example to introduce the connection mode between the liquid outlet valve 13 and the liquid inlet valve 9 provided in the embodiment of the present application.
  • connection mode of the outlet valve 14 and the inlet valve 10 corresponding to the brake wheel cylinder 18, the connection mode of the outlet valve 15 and the inlet valve 11 corresponding to the brake wheel cylinder 19, and the connection mode of the brake wheel cylinder 20 The corresponding connection modes of the liquid outlet valve 16 and the liquid inlet valve 12 can adopt the same connection mode.
  • the inlet valve 9 is located in the first branch 115 of the first brake pipeline 111 and between the pressure inlet port of the first branch 115 and the pressure inlet port 5 of the brake wheel cylinder 17, the inlet valve 9
  • the pressure outlet port of is connected to the pressure inlet port of the outlet valve 13, and at the same time, the pressure outlet port of the inlet valve 9 is also connected to the pressure inlet port 5 of the brake wheel cylinder 17.
  • the pressure outlet port of the liquid outlet valve 13 is connected to the liquid outlet pipe 117.
  • the first branch 115 may be divided into two independent branches connected in parallel, and the liquid inlet valve and the liquid outlet valve may be respectively arranged on the two independent branches.
  • the embodiments of this application do not limit this.
  • the above-mentioned braking system may further include a second-stage braking subsystem 200.
  • the second-stage brake subsystem 200 can be used in combination with the first-stage brake subsystem 100, can also be used as an independent brake system alone, or be combined with other forms of brake subsystems.
  • the application embodiment does not specifically limit this.
  • the second-stage braking subsystem of the embodiment of the present application will be introduced in conjunction with FIG. 2, and then the braking system of the first braking subsystem 100 and the second braking subsystem 200 will be introduced in conjunction with FIG. 3.
  • FIG. 2 is a schematic diagram of the second-stage braking subsystem 200 according to an embodiment of the present application.
  • the second-stage brake subsystem 200 shown in FIG. 2 includes a master brake cylinder 210, where the master brake cylinder 210 is used to convert the mechanical energy of the brake pedal into brake fluid pressure and pass the hydraulic pressure through the brake pipeline Pass to the brake wheel cylinder.
  • the components with the same function in FIG. 2 and the components with the same function in FIG. 1 have the same numbers. For the sake of brevity, the specific functions can be referred to the above description, which will not be repeated here.
  • the master brake cylinder 210 is used to control the braking force applied to the first group of wheels 112 by adjusting the pressure of the brake fluid in the first brake pipeline 211.
  • the above-mentioned brake master cylinder 210 may be a series double-chamber brake master cylinder, that is, the front chamber may be connected with the second brake pipeline 221, and the rear chamber may be connected with the first brake pipeline 211.
  • the above-mentioned master brake cylinder 210 may also be a single-chamber, and in this case, the two brake pipelines 211 and 221 are one physical pipeline.
  • the embodiment of the present application does not limit the specific form of the master brake cylinder 210.
  • the first pressure outlet port of the master brake cylinder 210 is connected to the pressure inlet port of the first brake pipe 211.
  • the pressure of the brake fluid in the first brake pipe 211 can be increased to increase the pressure applied to the first group Braking force on wheels 112.
  • the pressure outlet ports (1, 2) of the first brake pipeline 211 are connected with the pressure inlet ports (5, 6) of the wheel brake cylinders of the first group of wheels.
  • the master brake cylinder 210 is also used to control the braking force applied to the second set of wheels 122 by adjusting the pressure of the brake fluid in the second brake pipeline 221.
  • the second pressure outlet port of the master brake cylinder 210 is connected to the pressure inlet port of the second brake pipe 221.
  • the pressure of the brake fluid in the second brake pipe 211 can be increased to increase the pressure applied to the second group Braking force on wheels 122.
  • first pressure outlet port and the second pressure outlet port may be the same pressure outlet port, or two different pressure outlet ports, which are not limited in the embodiment of the present application.
  • the pressure outlet ports (1, 2) of the first brake pipeline 211 are connected with the pressure inlet ports (5, 6) of the wheel brake cylinders of the first group of wheels.
  • the master brake cylinder 210 when the above-mentioned master brake cylinder 210 is a series dual-chamber master cylinder, the master brake cylinder 210 includes a first cavity 212 and a second cavity 222.
  • the first piston in the first cavity 212 and the second piston in the second cavity 222 are connected by a spring.
  • the second piston When the first piston is displaced relative to the cylinder, the second piston can be pushed by the spring to generate relative to the cylinder.
  • the displacement of the body The pressure outlet port 21 of the first cavity 212 is connected to the pressure inlet port of the first brake pipe 211, and the pressure outlet port 22 of the second cavity 222 is connected to the pressure inlet port of the second brake pipe 221.
  • the first brake pipe 211 and the second brake pipe 221 are independent brake pipes, and the pressure of the brake fluid in the two brake pipes is determined by the first brake pipe.
  • the first cavity 212 and the second cavity 222 are controlled. If the first brake pipe 211 and the second brake pipe 221 are connected brake pipes when the first control valve 130 is in the conducting state, the brake fluid can be in the first brake pipe 211 and the second brake pipe.
  • the flow between the moving pipes 221 is beneficial to achieve the balance of the brake fluid pressure in the two brake pipes.
  • the first control valve 130 can be controlled to be in the conducting state, and then the second cavity 222 will pass through as the second brake pipeline 221
  • the brake fluid in the second brake line 221 is pressurized to transfer the pressure of the brake fluid in the second brake line 221 to the first brake line 211 to pressurize the brake fluid in the first brake line 211
  • the pressure exerts a braking force on the first set of wheels 112.
  • the first control valve 130 can be controlled to be in a conducting state, and then the first cavity 212 passes through the first brake pipeline 211.
  • the brake fluid is pressurized to transfer the pressure of the brake fluid in the first brake line 111 to the second brake line 221 to pressurize the pressure of the brake fluid in the second brake line 121 , Apply braking force to the second set of wheels 122.
  • a control valve 213 can be set at the pressure outlet port of the first cavity 212.
  • the control valve 213 is in a disconnected state.
  • the first cavity 212 is disconnected from the first brake pipeline 211.
  • a control valve 214 can also be provided at the pressure outlet port of the second cavity 222.
  • the control valve 214 can be controlled to be in a disconnected state.
  • the second cavity 222 and the second brake The pipelines 221 are disconnected. Therefore, the above-mentioned control valve 213 and control valve 214 are also called "isolation valves".
  • first brake pipeline 211 includes a first branch 115 and a second branch 116.
  • the second brake line may include a first branch 125 and a second branch 126.
  • connection modes of the above-mentioned four branches, and the configuration modes of the inlet valves and outlet valves in the four branches can be referred to the above introduction, and for the sake of brevity, it will not be repeated here.
  • FIG. 3 is a schematic diagram of a braking system 300 according to an embodiment of the present application.
  • the braking system 300 includes a first-stage braking sub-system 100 and a second-stage braking sub-system 200. It should be understood that the components with the same function in FIG. 2 and the components with the same function in FIG. 1 have the same numbers. For the sake of brevity, the specific functions can be referred to the above description, which will not be repeated here.
  • the first brake pipeline 111 in the first-stage brake subsystem 100 communicates with the first brake pipeline 211 in the second-stage brake subsystem 200
  • the The second brake pipeline 121 in the first-stage brake subsystem 100 communicates with the second brake pipeline 221 in the second-stage brake subsystem 200.
  • the first brake pipeline (111, 211) is equipped with the first pressure-increasing device 110 and the first chamber 212 of the brake master cylinder as the pressure providing device .
  • the second brake pipeline (121, 221) is equipped with a second booster device 120 and a second cavity 222 of the brake master cylinder as a pressure supply device.
  • any one of the above-mentioned master brake cylinder 210, the first pressure-increasing device 110, and the second pressure-increasing device 120 can be used as a pressure providing device of the braking system 300.
  • the aforementioned first-level braking subsystem 100 and second-level braking subsystem 200 cooperate with each other to improve the redundancy performance of the braking system 300.
  • a second control valve 310 can also be provided on the liquid outlet pipe 117.
  • the second control valve 310 is located at the pressure inlet port of the liquid outlet pipe 117 and the inlet of the liquid storage device 118.
  • the second control valve 310 when the first control valve 130 fails or is in the open state, the second control valve 310 can be controlled to be in the open state, and the multiple outlet valves (13, 14, 15, 16) can be controlled to be in the on state.
  • the two inlet valves (9, 10, 11, 12) are in a conducting state.
  • the pressure of the brake fluid in the first section of pipeline (320) between the outlet port and the second control valve 310 can be increased by increasing the pressure of the outlet valve (13, 14, 15, 16).
  • the brake wheel cylinder is pressurized.
  • the second control valve 310 can be controlled to be in an open state, and the liquid inlet valve (11, 12) In a conducting state, the outlet valves (15, 16) on the second brake pipe 121 are in a conducting state, and the outlet valves (13, 14) on the first brake pipe 111 are also in a conducting state. Pass state.
  • the brake fluid can flow into the second brake pipeline 121 from the pressure outlet port of the second booster device 120, and flow into the outlet valve through the two branches (125, 126) of the second brake pipeline 121 (15, 16), and then deliver the brake fluid to the outlet valve (13, 14) through the first section of pipeline 320, and pass the outlet valve (13, 14) along the branch of the first brake pipeline 111
  • the road (115, 116) is sent to the brake wheel cylinders (17, 18) of the first group of wheels 112 to provide braking force for the first group of wheels 112.
  • any brake wheel cylinders (17, 18, 19, 20) can be pressurized through the first section of the liquid outlet pipeline 320.
  • the specific method is the same as that described above through the first
  • the pressurization process of the section outlet pipeline 320 for the brake wheel cylinders (17, 18) is similar, and for the sake of brevity, it will not be described in detail below.
  • first control valve 130 can all be solenoid valves.
  • the controller can control the working state of the solenoid valve, that is, the on state or the off state.
  • the above-mentioned controller may also control the working state of the first booster device 110 and the second booster device 120 in a wire-by-wire manner.
  • the controller determines the required braking force required by the driver based on the obtained pedal stroke. Then, the controller may send first control information to the first supercharging device 110 based on the required braking force to control the braking force applied by the first supercharging device to the first set of wheels; to the second supercharging device 120 The second control information is sent to control the braking force exerted by the second supercharging device 120 on the second set of wheels.
  • the controller When the controller controls the first supercharging device 110 and/or the second supercharging device 120 to provide braking force for the wheels, the controller usually can only sense whether the first supercharging device 110 and/or the second supercharging device 120 is invalid. It is impossible to detect whether there is a fault in the first brake line 111 and the second brake line 121.
  • the pressure outlet port of the first booster device 110 can be The pressure sensor 1 is provided, and the controller can detect whether there is a fault in the first brake passage 111 through the pressure sensor 1.
  • a pressure sensor 2 can also be provided at the pressure outlet port of the second booster device 120, and the controller can sense whether a fault occurs in the second brake passage 121 through the pressure sensor 2 or not.
  • the controller can detect the displacement of the piston in the master cylinder relative to the cylinder of the master cylinder through the pedal stroke sensor 420, that is, the pedal stroke of the brake pedal. Specifically, after the pedal stroke sensor 420 detects the aforementioned displacement, the pedal stroke sensor 420 may send the displacement to the controller, and accordingly, the controller determines the braking force applied to the wheels of the automobile based on the displacement.
  • the controller detects the displacement through the pedal stroke sensor 420 and determines the braking force applied to the wheels of the automobile, if the pedal stroke sensor 420 fails, the controller cannot determine the braking force.
  • a pressure sensor 330 may also be provided on the first brake pipe 211 and/or the second brake pipe 222, so that when the pedal stroke sensor 420 fails Thereafter, the controller may also detect the brake fluid pressure in the first brake pipe 211 and/or the second brake pipe 222 through the pressure sensor 330, and determine the braking force applied to the wheels of the automobile based on the brake fluid pressure.
  • the braking system further includes a pressure sensor 330, which is located in the first brake pipe 211 between the master brake cylinder 210 and the first pressure boosting device 110, and the pressure sensor 330
  • the pressure sensor is used to detect the pressure of the brake fluid in the first brake pipe 211 adjusted by the master brake cylinder 210; the pressure sensor 330 is also used to send pressure information indicating the pressure to the controller .
  • the above-mentioned second-stage brake subsystem 200 may also include a pedal-feel simulation spring 223, which is located in the second brake pipe 221, so that the brake in the second brake pipe 221 The fluid can flow into the pedal-feeling simulation spring 223, so that the pedal-feeling simulation spring 223 can determine the displacement of the piston in the master brake cylinder 210 relative to the brake cylinder by sensing the pressure of the brake fluid in the second brake pipe 221.
  • the pedal feel simulation spring 223 can send the detected pressure of the brake fluid to the controller so that the controller can determine the braking force of the wheels.
  • the isolation valves 213 and 214 are in an open state.
  • the pedal feel simulation spring 223 can sense the second The pressure of the brake fluid in the brake pipe 221 sends the sensed pressure to the controller.
  • a control valve 224 can also be provided between the pressure inlet port of the pedal feel simulation spring 223 and the second brake pipe 221.
  • the control valve 224 can be controlled to be turned off.
  • the above-mentioned control valve 224 is also called an "isolation valve".
  • the braking system of the embodiment of the present application is described above in conjunction with FIGS. 1 to 3.
  • the braking system provided in the present application can be applied to automobiles.
  • the following describes automobiles that apply the above braking system in conjunction with FIG. 4.
  • Fig. 4 is a schematic diagram of an automobile according to an embodiment of the present application. It should be understood that the automobile 400 shown in FIG. 4 includes a first set of wheels 112, a second set of wheels 122, and any one of the braking systems described above. For the sake of brevity, the brake system will not be described in detail below.
  • the automobile 400 further includes a brake pedal 410 and a pedal stroke sensor 420.
  • the pedal stroke sensor 420 is used to detect that the brake pedal pushes the piston in the master brake cylinder relative to the brake.
  • the displacement of the cylinder body of the master cylinder, that is, the pedal stroke; the pedal stroke sensor 420 is also used to send the displacement to the controller so that the controller determines to apply to the wheels of the automobile based on the displacement The braking force.
  • the car 400 shown in FIG. 4 can be divided into three working modes: a non-pressurized manual braking mode, a brake-by-wire mode, and an active braking mode.
  • the non-pressurized human braking mode can be understood as only the second-stage braking subsystem 200 provides braking force for the wheels.
  • the active braking mode can be understood as only the first-level braking subsystem 100 provides braking force for the wheels, and can be applied to situations where adaptive cruise control, obstacle avoidance, and the like are controlled by an advanced driving assistance system (advanced driving assist system).
  • the brake-by-wire mode can be understood as the controller controlling the first booster device 110 and the second booster device 120 to provide braking force for the wheels based on the driver stepping on the pedal.
  • the implementation of some functions in different modes may be the same.
  • the boosting scheme used in different modes may be the same.
  • the pedal braking force demand calculation schemes used in different modes may be the same.
  • the redundancy schemes used in different modes may be the same. Therefore, for the sake of brevity, the functions implemented by the braking system are divided into the following three scenarios for introduction.
  • the isolation valves (119, 129) are normally open valves
  • the inlet valves (9, 10, 11, 12) are normally open valves
  • the outlet valves (13, 14, 15, 16) are normally open.
  • the valve is closed
  • the isolation valve (213, 214) is a normally open valve
  • the first control valve 130 is a normally closed valve
  • the second control valve 310 is a normally open valve
  • the control valve 224 is a normally closed valve.
  • the above-mentioned state of the normally open valve and normally closed valve is the default state of the control valve when no power is supplied to the control valve.
  • the controller needs to adjust the state of the control valve, it can supply power to the control valve in the state to be adjusted, so that the control valve can be controlled to be in the off state or the on state.
  • Scenario 1 In the brake-by-wire mode, the calculation scheme of the pedal braking force demand in the braking system, and the redundant scheme of the calculation of the pedal braking force demand.
  • the controller controls the isolation valves (213, 214) to be in a disconnected state, and the control valve 224 to be in a conductive state, so that the pedal feel simulator 223 is connected to the second brake pipeline 221, and the brake system
  • the other control valves maintain the above-mentioned default state.
  • the driver steps on the brake pedal 410 and pushes the piston of the master brake cylinder 210 to displace with respect to the master brake cylinder 210 through the push rod, and the brake hydraulic pressure in the second cavity 222 enters the second brake pipeline 221,
  • the brake hydraulic pressure in the first cavity 212 is fed into the first brake pipeline 211. Since the isolation valves (213, 214) are in a disconnected state, the brake fluid in the two brake lines is blocked at the isolation valves (213, 214), where the brake fluid in the second brake line 221
  • the pedal feel simulator 223 will be pressed through the control valve 224; the pressure of the brake fluid in the first brake pipe 211 will increase under the action of the master brake cylinder 210.
  • the controller measures the pedal displacement according to the pedal stroke sensor 420, calculates the required braking force of the driver, and feeds the required braking force back to the first boosting device 110 and the second boosting device 120.
  • the first boosting device 110 and the second boosting device 120 control the motors (113, 123) according to the above-mentioned required braking force, compress the brake fluid through the hydraulic cylinders (114, 124) and pass the isolation valves (119, 129) into the brake wheels. Cylinders (17, 18, 19, 20) provide braking force.
  • the pressure sensor 330 can be used to measure the pressure of the brake fluid in the first brake pipe 211 to determine the braking force required by the driver Then, the braking force is fed back to the first supercharging device 110 and the second supercharging device 120.
  • the first booster device 110 and the second booster device 120 control the motors (113, 123) according to the braking force, compress the brake fluid through the hydraulic cylinders (114, 124) and pass the isolation valves (119, 129) to brake Wheel cylinders (17, 18, 19, 20) provide braking force.
  • the flow path of the brake fluid in the brake system is shown in Figure 5.
  • the isolation valves (213, 214) can also be controlled to be in a conducting state, so that the brake fluid passes through the isolation valves (213, 214) and the second chamber 222 from the brake wheel cylinders (17, 18, 19, 20). And the first cavity 212 returns to the liquid storage device 118.
  • the outlet valve (13, 14, 15, 16) can be further opened to return the brake fluid in the brake wheel cylinder (17, 18, 19, 20) to the reservoir 118 .
  • Scenario two the active supercharging scheme in active braking mode and the redundant scheme of active supercharging.
  • the braking system can directly use the first supercharging device 110 and the second supercharging device 120 for braking.
  • the difference from the brake-by-wire mode introduced in scenario one is that the driver may not need to operate the brake pedal 410 in the active braking mode.
  • the controller judges that the car needs active braking mode by analyzing information such as environmental conditions, vehicle status, ADAS status, and driver input. Then the isolation valves (213, 214) are in a disconnected state, and other control valves maintain the above-mentioned default state.
  • the controller sends the required braking force to the first supercharging device 110 and the second supercharging device 120.
  • the first pressure boosting device 110 and the second pressure boosting device 120 provide brake pressure to the wheel brake cylinders (17, 18, 19, 20) based on the braking force.
  • the flow path of the brake fluid in the brake system is shown in Figure 6.
  • the first hydraulic cylinder 114 and the second hydraulic cylinder 124 work in reverse under the action of the motors (113, 123), and the pressure in the brake wheel cylinders (17, 18, 19, 20) is greater than the first hydraulic pressure
  • the pressure in the cylinder 114 and the second hydraulic cylinder 124, the brake fluid is routed by the brake wheel cylinders (17, 18, 19, 20) through their respective inlet valves (9, 10, 11, 12) and check valves.
  • the brake lines return to the first hydraulic cylinder 114 and the second hydraulic cylinder 124, respectively.
  • the isolation valves (213, 214) can also be controlled to be in a conducting state, so that the brake fluid passes through the isolation valves (213, 214) and the second chamber 222 from the brake wheel cylinders (17, 18, 19, 20). And the first cavity 212 returns to the liquid storage device 118.
  • the outlet valve (13, 14, 15, 16) can be further opened to return the brake fluid in the brake wheel cylinder (17, 18, 19, 20) to the reservoir 118 .
  • Redundant solution 1 When the first booster device 110 fails, the first control valve 130 is controlled to be in a conducting state. At this time, the first brake pipeline 111 and the second brake pipeline 121 are connected, and the second booster The device 120 works and provides brake pressure to the brake wheel cylinders (17, 18, 19, 20) according to the braking force fed back by the controller. At this time, the flow path of the brake fluid of the brake system can be shown in FIG. 7.
  • the first control valve 130 is controlled to be in a conducting state.
  • the first brake pipeline 111 and the second brake pipeline 121 are connected, and the first booster The device 110 works and provides brake pressure to the brake wheel cylinders (17, 18, 19, 20) according to the braking force fed back by the controller.
  • the flow path of the brake fluid in the brake system can be seen in FIG. 8.
  • Redundant solution three when the first pressure boosting device 110 and the first control valve 130 are both faulty, the second control valve 310 is controlled to be in a disconnected state, and all the outlet valves (13, 14, 15, 16) are opened, and other controls The valve is in the upper default state.
  • the second pressurizing device 120 works, and according to the braking force fed back by the controller, the brake hydraulic pressure enters the second brake pipeline 121, and flows in through the inlet valve (11, 12) and the outlet valve (15, 16) The first section of the liquid outlet line 320.
  • the second control valve 310 When the second control valve 310 is blocked, it flows into the outlet valve (13, 14) through the first section of the outlet pipe 320. Under the isolation of the one-way valve, the outlet valve (13, 14) flows out of the system.
  • the hydraulic fluid flows into the brake wheel cylinders (17, 18) through the first branch 115 and the second branch 116, and finally provides brake pressure for the brake wheel cylinders (17, 18).
  • a part of the brake fluid pressed into the second brake pipeline 121 can flow into the wheel brake cylinders (19, 20) through the first branch 125 and the second branch 126.
  • the flow path of the brake fluid in the brake system can be seen in FIG. 9.
  • Redundant solution four when the second pressure boosting device 120 and the first control valve 130 are both faulty, the second control valve 310 is controlled to be in a disconnected state, and all the outlet valves (13, 14, 15, 16) are opened, and other controls are The valve is in the upper default state.
  • the first pressurizing device 110 works, and according to the braking force fed back by the controller, the brake hydraulic pressure is fed into the first brake pipeline 111, and flows into it through the inlet valve (9, 10) and the outlet valve (13, 14) The first section of the liquid outlet line 320.
  • the second control valve 310 When the second control valve 310 is blocked, it flows into the outlet valve (15, 16) through the first section of the outlet pipe 320.
  • the outlet valve (15, 16) flows out of the system.
  • the hydraulic fluid flows into the wheel brake cylinders (19, 20) through the first branch 125 and the second branch 126, and finally provides brake pressure for the wheel brake cylinders (19, 20).
  • a part of the brake fluid pressed into the first brake line 111 can flow into the wheel brake cylinders (17, 18) through the first branch 115 and the second branch 116.
  • the flow path of the brake fluid in the brake system can be seen in Figure 10.
  • Scenario Three Redundant backup scheme for human braking. That is, when the first pressure boosting device 110 and the second pressure boosting device 120 both fail, the driver can still achieve mechanical braking by stepping on the pedal to ensure reliable deceleration of the vehicle.
  • All control valves in the brake system are in the default state.
  • the driver steps on the brake pedal 410 to push the brake fluid in the second chamber 222 into the second brake pipeline 221, and the brake in the first chamber 212
  • the fluid is pushed into the first brake pipe 211, and finally the brake fluid flows into the brake wheel along the first brake pipe 211 and the second brake pipe 221 through the liquid inlet valve (9, 10, 11, 12) Cylinders (17, 18, 19, 20) realize manual braking.
  • the flow path of the brake fluid in the brake system can be seen in Figure 11.
  • FIG. 13 The control method shown can be executed by the controller of the braking system.
  • Fig. 13 is a flowchart of a control method of a braking system according to an embodiment of the present application.
  • the method shown in FIG. 13 includes step 1310 to step 1320.
  • the method shown in Figure 13 can be used in conjunction with the braking system and automobile described above. Any one of the above-mentioned first brake line 111 and second brake line 121 is referred to as a “target brake line”.
  • the controller determines that the pressure supply device on the target brake line is faulty.
  • the above-mentioned pressure providing device may include a brake master cylinder 210 or a pressure boosting device. If the target brake line is the first brake line 111, the pressure providing device may be the master cylinder 210 or the first pressure-increasing device 110. If the target brake line is the second brake line 121, the pressure providing device may be the master cylinder 210 or the second pressure-increasing device 120.
  • the controller controls the first control valve 130 to be in a conducting state, and the first brake pipeline 111 is in communication with the second brake pipeline 121.
  • the first brake pipe 111 and the second brake pipe 121 are connected, the brake fluid can flow in the first brake pipe 111 and the second brake pipe 121, and the pressure of the brake fluid is the control
  • the moving wheel cylinder provides braking force.
  • the controller can control the first control valve 130 to be in a conducting state, so that the brake fluid flows between the first brake line 111 and the second brake line.
  • the flow in the moving pipeline 121 provides braking force for the brake wheel cylinders through the pressure of the brake fluid. It avoids that in the traditional brake system, the first brake line and the second brake line are two independent brake passages.
  • the pressure supply device in one of the brake lines fails, the brake The brake line cannot control the braking force of the wheel brake cylinder on the brake line, which is beneficial to improve the redundancy performance of the brake system.
  • the foregoing target brake line is the first brake line
  • the target brake line is the first brake line (111)
  • the pressure providing device includes the first brake line.
  • a booster device (110) the method further includes: the controller controls the second booster device (120) to adjust the pressure of the brake fluid in the second brake line (121) The pressure of the brake fluid in the first brake line (111).
  • the foregoing target brake line is the second brake line
  • the target brake line is the second brake line (121)
  • the pressure providing device includes the second brake line.
  • a booster device (120) the method further includes: the controller controls the first booster device (110) to adjust the pressure of the brake fluid in the first brake pipeline (111) to adjust The pressure of the brake fluid in the second brake line (121).
  • the braking system further includes a series double-chamber brake master cylinder (210), the first chamber (212) of the brake master cylinder (210) and the first brake pipeline (111) ) Communicated, used to control the braking force exerted on the first set of wheels (112) by adjusting the pressure of the brake fluid in the first brake pipeline (111); the master brake cylinder
  • the second chamber (222) of (210) communicates with the second brake pipe (121), and is used to control the application of brake fluid by adjusting the pressure of the brake fluid in the second brake pipe (121).
  • the method further includes: if the first chamber (212) fails, the controller controls the first control valve (130) to be in a conducting state , So that the pressure of the brake fluid in the second brake pipe (121) is equal to the pressure of the brake fluid in the first brake pipe (111); if the second chamber (222) fails, The controller controls the first control valve (130) to be in a conducting state, so that the pressure of the brake fluid in the first brake pipe (111) and the brake fluid in the second brake pipe (121) The pressure of the hydrodynamic fluid is equalized.
  • a second control valve 310 may also be provided on the liquid outlet pipe 117.
  • the first section of pipeline 320 can be used to provide braking force for the brake wheel cylinders (17, 18, 19, 20).
  • the brake system further includes a liquid storage device (118) for storing brake fluid, a plurality of liquid outlet valves (140), and a second control valve (310), and the plurality of liquid outlet valves (
  • the pressure outlet port of 140) is connected to the pressure inlet port of the outlet pipe (117), and the pressure outlet port of the outlet pipe (117) is connected to the inlet port of the liquid storage device (118).
  • the second control valve (310) is located on the liquid outlet pipeline (117) between the pressure inlet port of the liquid outlet pipeline (117) and the inlet port of the liquid storage device (118), and the method further includes: The controller determines that the first pressure-increasing device (110) and the first control valve (130) are faulty; the controller controls the second control valve (310) to be in a disconnected state, and controls the A plurality of fluid outlet valves (140) are in a conducting state, so that the brake fluid in the first section of pipeline (320) is pressed into the brake of the wheels of the automobile by the second pressurizing device (120) Brake wheel cylinder to control the braking force exerted on the wheels of the automobile, the first section of pipeline (320) is the pressure inlet port of the outlet pipeline (117) and the second control valve (310) The pipeline between.
  • the method further includes: the controller determines that the second pressure-increasing device (120) and the first control valve (130) are faulty; the controller controls the first control valve (310) ) Is in a disconnected state, and the plurality of outlet valves (140) are controlled to be in a conducting state, so that the brake fluid in the first section of pipeline (320) is transferred from the first pressure-increasing device (110) The brake wheel cylinder is pressed into the wheel of the automobile to control the braking force applied to the wheel of the automobile.
  • the controller In the non-pressurized manual braking mode and the brake-by-wire mode of the braking system, the controller usually needs to determine the braking force required by the driver through the pedal stroke sensor 420. However, if the pedal stroke sensor 420 fails, the controller cannot Perceive the braking force required by the driver.
  • the brake system provided in the embodiment of the present application is also provided with a pressure sensor 330, which is located in the first brake pipe 212 and/or the second brake pipe 222, and is used to sense the slave brake
  • the pressure of the master cylinder 210 is output from the outlet port and flows into the first brake pipe 212 and/or the pressure of the brake fluid of the second brake pipe 222.
  • the controller determines the pressure of the brake fluid in the first brake line 212 and/or the second brake line 222 through the pressure controller 330, it can determine the brake required by the driver based on the pressure of the brake fluid. power.
  • the braking system further includes a pressure sensor (330) and a pedal stroke sensor (420), and the pressure sensor (330) is used to detect the first brake adjustment of the master brake cylinder (210).
  • the pressure of the brake fluid in the moving pipeline (111), the pedal stroke sensor (420) is used to detect the pedal stroke of the brake pedal of the automobile, and the method further includes: the controller receives the pressure sensor (330) The pressure information sent to indicate the pressure; if the pedal stroke sensor (420) fails, the controller provides the first group of wheels (112) and/or the first set of wheels (112) and/or the pedal stroke according to the pedal stroke.
  • the second group of wheels (122) distributes the braking force.
  • control method for providing a braking system according to another embodiment of the present application is introduced.
  • the control method can be used in conjunction with the braking system 300 or the automobile 400.
  • the control method shown in FIG. 14 includes step 1410 to step 1426.
  • step 1410 The controller determines the operating mode of the braking system. If it is determined to enter the brake-by-wire mode, step 1411 is executed. If it is determined to enter the active braking mode, step 1412 is executed.
  • the controller determines whether the pedal stroke sensor 420 is invalid. If the pedal travel sensor 420 fails, step 1413 is executed. If the pedal travel sensor 420 works normally, step 1414 is executed.
  • step 1413 The controller determines whether the pressure sensor 330 is invalid. If the pressure sensor 330 fails, step 1415 is executed. If the pressure sensor 330 works normally, step 1414 is executed.
  • the controller informs the driver that the braking system enters the manual braking mode.
  • the foregoing notification method may be presented through a user interface or a voice reminder, which is not limited in the embodiment of the present application.
  • the controller executes the calculation of the pedal total braking force demand, and executes step 1416.
  • the controller calculates the braking force required by the car through the automatic driving controller (for example, ADAS), and then executes step 1416.
  • the automatic driving controller for example, ADAS
  • the controller determines whether the first booster device 110 and the second booster device 120 are all disabled. If all failures are invalid, step 1415 is executed. If not all failed, step 1417 is executed.
  • the controller calculates the boosting braking force to determine the braking force that the boosting device (the first boosting device 110 and/or the second boosting device 120) needs to provide, and execute step 1418.
  • the controller determines whether the first booster device 110 has failed. If the first supercharging device 110 fails, step 1419 is executed. If the first pressurizing device 110 has not failed, step 1420 is executed.
  • step 1418 is executed when the first supercharging device 110 and the second supercharging device 120 have not all failed, so when step 1419 is executed, the second supercharging device 120 has not failed.
  • step 1419 The controller determines whether the first control valve 130 fails. If the first control valve 130 fails, step 1421 is executed. If the first control valve 130 has not failed, step 1422 is executed.
  • the controller controls the operation of the second pressurizing device 120, the second control valve 310 is in the off state, and the outlet valves (13, 14, 15, 16) are in the on state.
  • the controller controls the operation of the second pressurizing device 120, and the second control valve 310 is in a conducting state.
  • the controller determines whether the second booster device 120 fails. If the second supercharging device 120 has not failed, step 1423 is executed. If the second supercharging device 120 fails, step 1424 is executed.
  • step 1424 is executed when the first supercharging device 110 and the second supercharging device 120 have not all failed. Then, when step 1424 is executed, the first supercharging device 110 has not failed.
  • the controller determines that the first pressure boosting device 110 and the second pressure boosting device 120 are working at the same time to provide braking force for the wheel brake cylinders (17, 18, 19, 20). At this time, the first control valve 130 is in a disconnected state .
  • the controller determines whether the first control valve 130 fails. If the first control valve 130 fails, step 1425 is executed. If the first control valve 130 has not failed, step 1426 is executed.
  • the controller controls the operation of the first pressure-increasing device 110, the second control valve 310 is in the off state, and the outlet valves (13, 14, 15, 16) are in the on state.
  • the controller controls the operation of the first pressurizing device 110, and the second control valve 310 is in a conducting state.
  • the memory may include a read-only memory and a random access memory, and provides instructions and data to the processor.
  • Part of the processor may also include non-volatile random access memory.
  • the processor can also store device type information.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种汽车的制动***(300)、汽车(400)及制动***(300)的控制方法,在制动***(300)中,通过第一控制阀(130)连接第一制动管路(111)与第二制动管路(121),使得第一控制阀(130)处于导通状态时,第一制动管路(111)与第二制动管路(121)连通,使得两条制动管路(111、121)之间的制动液可以流通,有利于提高制动***(300)的冗余性能。

Description

汽车的制动***、汽车及制动***的控制方法
本申请要求于2019年09月30日提交中国专利局、申请号为201910940787.2、申请名称为“汽车的制动***、汽车及制动***的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车领域,并且更具体地,涉及汽车的制动***、汽车及制动***的控制方法。
背景技术
汽车的制动***是通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的***。制动***作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车速度保持稳定。随着汽车电动化和智能化的发展,汽车对制动***的要求也越来越高。例如,随着自动驾驶等级的提升,减少了制动***的运行对驾驶员的依赖,使得对制动***的冗余性能的要求越来越高,即使制动***的某一部件或多个部件失效后要求汽车仍具有制动功能。
为了提高制动***的冗余性能,电液制动***(Electro-Hydraulic Brake,EHB)作为流行的制动***,通常包含两级制动子***,第一级制动***由控制器以线控的方式控制液压缸为车轮提供制动力,第二级制动子***由制动主缸为车轮提供制动力。
无论是在第一级制动子***中还是第二级制动子***中,制动主缸以及液压缸都是通过控制两条独立的制动管路内制动液的压力,以分别调整汽车的4个车轮的制动力。具体地,通过控制第一制动管路中制动液的压力,以调整第一组车轮的制动力,并通过控制第二制动管路中制动液的压力,以调整第二组车轮的制动力。这样,当其中某一制动管路出现故障后,汽车还可以通过另外一条制动管路控制对应的车轮的制动力,使得电液制动***的制动性能不至于完全失效。然而,在上述这种电液制动***中,当一条制动管路上压力提供装置(增压装置和制动主缸)失效后,汽车会失去一半的制动力,无法满足目前自动驾驶对制动***的冗余性能的要求。
发明内容
本申请提供了汽车的制动***、汽车及制动***的控制方法,以提高制动***的冗余性能。
第一方面,本申请提供一种汽车的制动***,所述制动***包括第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以控制施加在所述汽车的第一组车轮(112)上的 制动力;所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以控制施加在所述汽车的第二组车轮(122)上的制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通,若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开。
在本申请实施例中,通过第一控制阀130连接第一制动管路111与第二制动管路121,使得第一控制阀130处于导通状态时,第一制动管路111与第二制动管路121连通,使得两条制动管路之间的制动液可以流通,有利于提高制动***的冗余性能。避免了现有的制动***中第一制动管路111与第二制动管路121为两条相互独立的制动管路,当一条制动管路上压力提供装置(增压装置和制动主缸)失效后,汽车便会失去一半的制动力。
另一方面,当目标制动管路上的压力提供装置故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,使得两条制动管路中的制动液的压力均衡,以提高行车的稳定性。
在一种可能的实现方式中,若所述第一控制阀(130)处于导通状态,所述第一增压装置(110)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或若所述第一控制阀(130)处于导通状态,所述第二增压装置(120)用于通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
在本申请实施例中,若第一控制阀130处于导通状态,第一增压装置110便可以为第二制动管路121内的制动液增压,以控制施加在第二组车轮122上的制动力。相应地,第二增压装置120也可以为第一制动管路111内的制动液增压,以控制施加在第一组车轮112上的制动力,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述制动***还包括串联双腔式制动主缸(210),所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力。
在本申请实施例中,若第一控制阀130处于导通状态,第一腔212便可以为第二制动管路121内的制动液增压,以控制施加在第二组车轮122上的制动力。相应地,第二增压装置120也可以为第一制动管路111内的制动液增压,以控制施加在第一组车轮112上的制动力,有利于提高制动***的冗余性能。
可选地,若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第一腔(212),调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第二腔(222),调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
在一种可能的实现方式中,所述制动***还包括用于储藏制动液的储液装置(118)、 多个出液阀(140)以及第二控制阀(310),所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上。
在本申请实施例中,通过在出液管路117的压力入端口与储液装置118的入端口之间的出液管路117上设置第二控制阀310,当第二控制阀310处于断开状态时,使得出液管路117的压力入端口与所述第二控制阀310之间的出液管路,可以作为为制动轮缸提供制动力的制动管路,以提高制动***的冗余性能。
在一种可能的实现方式中,若所述第二控制阀(310)处于断开状态,且所述多个出液阀(140)处于导通状态时,目标增压装置用于通过调节所述出液管路(117)的第一段管路(320)内制动液的压力,以控制施加在第一组车轮(112)和/或第二组汽车轮上的制动力,其中,所述目标增压装置为所述制动主缸(210)、所述第一增压装置(110)或所述第二增压装置(120),所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的出液管路。
在本申请实施例中,若第二控制阀310处于断开状态,且所述多个出液阀140处于导通状态时,目标增压装置可以通过调节第一段管路320内制动液的压力,以控制施加在第一组车轮112和/或第二组汽车轮122上的制动力,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述制动***还包括控制器,所述控制器用于向所述第一增压装置(110)发送第一控制信息,以控制所述第一增压装置(110)施加在所述第一组车轮(112)上的制动力;和/或所述控制器还用于向所述第二增压装置(120)发送第二控制信息,以控制所述第二增压装置(120)施加在所述第二组车轮(122)上的制动力。
在本申请实施例中,控制器可以直接控制第一增压装置110和第二增压装置120,分别为第一组车轮112和第二组车轮122提供制动力,有利于提高制动***工作模式的多样性。
在一种可能的实现方式中,所述制动***还包括压力传感器(330),所述压力传感器(330)位于所述制动主缸(210)的压力出端口与所述第一增压装置(110)的压力出端口之间的第一制动管路(111),所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)中制动液的压力;所述压力传感器(330)还用于将指示所述压力的压力信息发送至所述控制器,以便所述控制器基于所述压力确定施加于所述汽车的车轮上的制动力。
在本申请实施例中,控制器可以基于压力传感器330确定第一制动管路111中制动液的压力,从而基于所述压力确定施加于所述汽车的车轮上的制动力,有利于提高制动***工作模式的多样性。
在一种可能的实现方式中,所述制动***还包括踏板行程传感器(420),所述踏板行程传感器(420)用于检测所述汽车的制动踏板的踏板行程;所述踏板行程传感器(420)还用于将指示所述踏板行程的行程信息发送至所述控制器,以便所述控制器基于所述行程确定施加于所述汽车的车轮上的制动力。
在本申请实施例中,控制器可以基于踏板行程传感器420确定制动踏板的踏板行程,从而基于踏板行程确定施加于所述汽车的车轮上的制动力,有利于提高制动***工作模式 的多样性。
另一方面,当上述踏板行程传感器420与压力传感器330应用于一个制动***时,控制器可以基于上述两种信息(踏板行程以及制动液的压力)中的任一种,确定施加于所述汽车的车轮上的制动力,有利于提高制动***的冗余性能。
第二方面,提供一种汽车,包括第一组车轮(112)、第二组车轮(122)、第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),所述第一组车轮(112)与所述第二组车轮(122)不同,所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以向所述第一组车轮(112)施加制动力;所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以向所述第二组车轮(122)施加制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通,若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开。
在本申请实施例中,通过第一控制阀130连接第一制动管路111与第二制动管路121,使得第一控制阀130处于导通状态时,第一制动管路111与第二制动管路121连通,使得两条制动管路之间的制动液可以流通,有利于提高制动***的冗余性能。避免了现有的制动***中第一制动管路111与第二制动管路121为两条相互独立的制动管路,当一条制动管路上压力提供装置(增压装置和制动主缸)失效后,汽车便会失去一半的制动力。
另一方面,当目标制动管路上的压力提供装置故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,使得两条制动管路中的制动液的压力均衡,以提高行车的稳定性。
在一种可能的实现方式中,若所述第一控制阀(130)处于导通状态,所述第一增压装置(110)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或若所述第一控制阀(130)处于导通状态,所述第二增压装置(120)用于通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
在本申请实施例中,若第一控制阀130处于导通状态,第一增压装置110便可以为第二制动管路121内的制动液增压,以控制施加在第二组车轮122上的制动力。相应地,第二增压装置120也可以为第一制动管路111内的制动液增压,以控制施加在第一组车轮112上的制动力,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述汽车还包括串联双腔式制动主缸(210),所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力。
在本申请实施例中,若第一控制阀130处于导通状态,第一腔212便可以为第二制动管路121内的制动液增压,以控制施加在第二组车轮122上的制动力。相应地,第二增压 装置120也可以为第一制动管路111内的制动液增压,以控制施加在第一组车轮112上的制动力,有利于提高制动***的冗余性能。
可选地,若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第一腔(212)调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第二腔(222)调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
在一种可能的实现方式中,所述汽车还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上。
在本申请实施例中,通过在出液管路117的压力入端口与储液装置118的入端口之间的出液管路117上设置第二控制阀310,当第二控制阀310处于断开状态时,使得出液管路117的压力入端口与所述第二控制阀310之间的出液管路,可以作为为制动轮缸提供制动力的制动管路,以提高制动***的冗余性能。
在一种可能的实现方式中,若所述第二控制阀(310)处于断开状态,且所述多个出液阀(140)处于导通状态时,目标增压装置用于通过调节所述出液管路(117)的第一段管路(320)内制动液的压力,以控制施加在第一组车轮(112)和/或第二组汽车轮上的制动力,其中,所述目标增压装置为所述制动主缸(210)、所述第一增压装置(110)或所述第二增压装置(120),所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的出液管路。
在本申请实施例中,若第二控制阀310处于断开状态,且所述多个出液阀140处于导通状态时,目标增压装置可以通过调节第一段管路320内制动液的压力,以控制施加在第一组车轮112和/或第二组车轮122上的制动力,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述汽车还包括控制器,所述控制器用于向所述第一增压装置(110)发送第一控制信息,以控制所述第一增压装置(110)施加在所述第一组车轮(112)上的制动力;和/或所述控制器还用于向所述第二增压装置(120)发送第二控制信息,以控制所述第二增压装置(120)施加在所述第二组车轮(122)上的制动力。
在本申请实施例中,控制器可以直接控制第一增压装置110和第二增压装置120,分别为第一组车轮112和第二组车轮122提供制动力,有利于提高制动***工作模式的多样性。
在一种可能的实现方式中,所述汽车还包括压力传感器(330),所述压力传感器(330)位于所述制动主缸(210)的压力出端口与所述第一增压装置(110)的压力出端口之间的第一制动管路(111),所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)中制动液的压力;所述压力传感器(330)还用于将指示所述压力的压力信息发送至所述控制器,以便所述控制器基于所述压力确定施加于所述汽车的车轮上的制动力。
在本申请实施例中,控制器可以基于压力传感器330确定第一制动管路111中制动液 的压力,从而基于所述压力确定施加于所述汽车的车轮上的制动力,有利于提高制动***工作模式的多样性。
在一种可能的实现方式中,所述汽车还包括踏板行程传感器(420),所述踏板行程传感器(420)用于检测所述汽车的制动踏板的踏板行程;所述踏板行程传感器(420)还用于将指示所述踏板行程的行程信息发送至所述控制器,以便所述控制器基于所述行程确定施加于所述汽车的车轮上的制动力。
在一种可能的实现方式中,所述第一组车轮(112)包括右前轮和左前轮,所述第二组车轮(122)包括右后轮和左后轮;或所述第一组车轮(112)包括右前轮和左后轮,所述第二组车轮(122)包括左前轮和左后轮。
在本申请实施例中,控制器可以基于踏板行程传感器420确定制动踏板的踏板行程,从而基于踏板行程确定施加于所述汽车的车轮上的制动力,有利于提高制动***工作模式的多样性。
另一方面,当上述踏板行程传感器420与压力传感器330应用于一个制动***时,控制器可以基于上述两种信息(踏板行程以及制动液的压力)中的任一种,确定施加于所述汽车的车轮上的制动力,有利于提高制动***的冗余性能。
第三方面,本申请提供一种制动***的控制方法,所述制动***包括第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以控制施加在所述汽车的第一组车轮(112)上的制动力;所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以控制施加在所述汽车的第二组车轮(122)上的制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开,所述方法包括:若所述控制器所述控制器控制所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通;若所述控制器所述控制器控制所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开。
在本申请实施例中,当目标制动管路上的压力提供装置故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,制动液可以在两条制动管路中流通,有利于提高制动***的冗余性能。避免了现有的制动***中第一制动管路111与第二制动管路121为两条相互独立的制动管路,当一条制动管路上压力提供装置(增压装置和制动主缸)失效后,汽车便会失去一半的制动力。
在一种可能的实现方式中,所述方法包括:所述控制器确定所述目标制动管路上的压力提供装置故障,所述目标制动管路为所述第一制动管路(111)或所述第二制动管路(121);所述控制器控制所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通。
在本申请实施例中,当目标制动管路上的压力提供装置故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,使得两条制动管路中的制动液的压力均衡,以提高行车的稳定性。
在一种可能的实现方式中,所述目标制动管路为所述第一制动管路(111),所述压 力提供装置包括所述第一增压装置(110),所述方法还包括:所述控制器控制所述第二增压装置(120)通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
在本申请实施例中,当第一制动管路111上的第一增压装置110故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,制动液可以在两条制动管路中流通,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述目标制动管路为所述第二制动管路(121),所述压力提供装置包括所述第二增压装置(120),所述方法还包括:所述控制器控制所述第一增压装置(110)通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内的制动液的压力。
在本申请实施例中,当第二制动管路121上的第二增压装置120故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,制动液可以在两条制动管路中流通,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述制动***还包括串联双腔式制动主缸(210),所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力,所述方法还包括:若所述第一腔(212)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述二制动管路(121)内制动液的压力与所述第一制动管路(111)内制动液的压力均衡;若所述第二腔(222)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述第一制动管路(111)内制动液的压力与所述第二制动管路(121)内制动液的压力均衡。
在本申请实施例中,当第一腔212故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,制动液可以在两条制动管路中流通,有利于提高制动***的冗余性能。
当第二腔222故障后,控制器可以控制第一控制阀130处于导通状态,使得第一制动管路111与第二制动管路121连通,制动液可以在两条制动管路中流通,有利于提高制动***的冗余性能。
在一种可能的实现方式中,所述制动***还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上,所述方法还包括:所述控制器确定所述第一增压装置(110)以及所述第一控制阀(130)故障;所述控制器控制所述第二控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第二增压装置(120)压入所述汽车的车轮的制动制动轮缸,以控制施加在所述汽车的车轮上的制动力,所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的管路。
在本申请实施例中,当第一增压装置110以及第一控制阀130故障,控制器可以控制第二控制阀310处于断开状态,并控制多个出液阀140处于导通状态,以便第一段管路320内的制动液由第二增压装置120压入所述汽车的车轮的制动制动轮缸,即利用第一段管路320作为为制动轮缸提供制动力的制动管路,以提高制动***的冗余性能。
在一种可能的实现方式中,所述方法还包括:所述控制器确定所述第二增压装置(120)以及所述第一控制阀(130)故障;所述控制器控制所述第二控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第一增压装置(110)压入所述汽车的车轮的制动制动轮缸,控制施加在所述汽车的车轮上的制动力。
在本申请实施例中,当第二增压装置120以及第一控制阀130故障,控制器可以控制第二控制阀310处于断开状态,并控制多个出液阀140处于导通状态,以便第一段管路320内的制动液由第一增压装置110压入汽车的车轮的制动制动轮缸,即利用第一段管路320作为为制动轮缸提供制动力的制动管路,以提高制动***的冗余性能。
在一种可能的实现方式中,所述制动***还包括压力传感器(330)以及踏板行程传感器(420),所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)内制动液的压力,所述踏板行程传感器(420)用于检测所述汽车的制动踏板的踏板行程,所述方法还包括:所述控制器接收所述压力传感器(330)发送的用于指示所述压力的压力信息;若所述踏板行程传感器(420)失效,所述控制器根据所述踏板行程为所述第一组车轮(112)和/或所述第二组车轮(122)分配制动力。
在本申请实施例中,当上述踏板行程传感器420与压力传感器330应用于一个制动***时,控制器可以基于上述两种信息(踏板行程以及制动液的压力)中的任一种,确定施加于所述汽车的车轮上的制动力,有利于提高制动***的冗余性能。
第四方面,提供一种控制器,所述控制器可以是独立的设备,也可以是设备内的芯片。所述控制器可以包括处理单元和发送单元。当所述控制器是独立的设备时,所述处理单元可以是处理器,所述发送单元可以是输入/输出接口;所述设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述设备执行第三方面中的方法。当所述控制器是设备内的芯片时,所述处理单元可以是处理器,所述发送单元可以是管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述控制器执行第三方面中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备/网络设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
在上述第四方面中,存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第六方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所 述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是本申请实施例的第一级制动子***100的示意图。
图2是本申请实施例的第二级制动子***200的示意图。
图3是本申请实施例的制动***300的示意图。
图4是本申请实施例的汽车的示意图。
图5是本申请实施例的制动***中制动液的流动路径的示意图。
图6是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图7是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图8是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图9是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图10是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图11是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图12是本申请实施例的制动***中另一种制动液的流动路径的示意图。
图13是本申请实施例的制动***的控制方法的流程图。
图14是本申请另一实施例的制动***的控制方法的流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在现有的制动***中,EHB作为流行的制动***,通常包含两级制动子***,第一级制动***由控制器以线控的方式控制增压装置为车轮提供制动力,第二级制动子***由制动主缸为车轮提供制动力。
无论是在第一级制动子***中还是第二级制动子***中,制动主缸以及液压缸都是通过控制两条独立的制动管路内制动液的压力,以分别调整汽车的4个车轮的制动力。具体地,通过控制第一制动管路中制动液的压力,以调整施加在第一组车轮上的制动力,并通过控制第二制动管路中制动液的压力,以调整第二组车轮的制动力。这样,当其中某一制动管路出现故障后,汽车还可以通过另外一条制动管路控制对应的车轮的制动力,使得电液制动***的制动性能不至于完全失效。然而,在上述这种电液制动***中,当一条制动管路上压力提供装置(增压装置和制动主缸)失效后,汽车会失去一半的制动力,无法满足目前自动驾驶对制动***的冗余性能的要求。
为了提高制动***的冗余性能,本申请实施例提供了一种新的制动***,即通过第一控制阀130连接第一制动管路111与第二制动管路121,因此,第一控制阀130又称“连通阀”。当两条制动管路(111、121)中有一条制动管路中的增压装置故障时,则可以控制第一控制阀130处于导通状态,使得两条制动管路中的制动液可以流通,或者说,使得两条制动管路中的制动液的压力均衡。此时,增压装置可以通过两个连通的制动管路,调节施加在汽车的车轮上的制动力。下文将结合图1介绍本申请实施例的制动***。
需要说明的是,为了便于描述制动***中各个制动制动元件之间的连接关系,会使用“压力出端口”以及“压力入端口”等术语。其中,“压力出端口”可以理解为制动液流出的端 口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用,上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口,本申请实施例对此不做限定。
通常,下文中介绍设备A的压力入端口与设备B的压力出端口相连时,可以理解为对应两个物理端口,并且用于描述设备A与设备B之间的连接关系。
图1是本申请实施例的第一级制动子***100的示意图。图1所示的第一级制动子***100包括第一增压装置110,第二增压装置120,以及第一控制阀130。
所述第一增压装置110用于通过调节第一制动管路111内制动液的压力,以控制施加在所述汽车的第一组车轮112上的制动力。
上述第一增压装置110的压力出端口与第一制动管路111的压力入端口相连,第一制动管路111包括两个压力出端口(1,2),两个压力出端口(1,2)与第一组车轮112的制动轮缸的压力入端口(5,6)相连。
相应地,第一增压装置110可以用于为第一制动管路111的制动液进行增压,以增加施加在汽车的第一组车轮112上的制动力。
可选地,第一增压装置110包括电机113以及液压缸114,电机113用于驱动液压缸114中的活塞做直线往复运动,将液压缸114内的制动液压入第一制动管路111中,以增加第一制动管路111内制动液的压力。
所述第二增压装置120用于通过调节第二制动管路121内制动液的压力,以控制施加在所述汽车的第二组车轮122上的制动力。
上述第一增压装置120的压力出端口与第二制动管路121的压力入端口相连,第二制动管路121包括两个压力出端口(3,4),两个压力出端口(3,4)与第二组车轮122的制动轮缸的压力入端口(7,8)相连。
相应地,第二增压装置120可以用于为第二制动管路121的制动液进行增压,以增加施加在汽车的第二组车轮122上的制动力。
可选地,第二增压装置120包括电机123以及液压缸124,电机123用于驱动液压缸124中的活塞做直线往复运动,将液压缸114内的制动液压入第二制动管路121中,以增加第二制动管路121内制动液的压力。
上述第一组车轮与第二组车轮不同,第一组车轮包括右前轮和左前轮,且第二组车轮包括右后轮和左后轮,即第一级制动子***100为H型布置。或者,第一组车轮包括右前轮和左后轮,第二组车轮包括左前轮和左后轮,即第一级制动子***100为X型布置。本申请实施例对此不做限定。
所述第一控制阀130用于连接所述第一制动管路111与所述第二制动管路121,若所述第一控制阀130处于导通状态,则所述第一制动管路111与所述第二制动管路121连通,若所述第一控制阀111处于断开状态,则所述第一制动管路111与所述第二制动管路121断开。
若第一控制阀130处于断开状态时,第一制动管路111和第二制动管路121为独立的制动管路,两个制动管路内制动液的压力分别由第一增压装置110和第二增压装置120控制。若第一控制阀130处于导通状态时第一制动管路111和第二制动管路121为相通的制 动管路,制动液可以在第一制动管路111和第二制动管路121之间流动,使得两条制动管路中制动液的压力均衡。
可选地,若所述第一控制阀130处于导通状态,所述第一增压装置110用于通过调节所述第一制动管路111内制动液的压力,以调节所述第二制动管路121内制动液的压力。若所述第一控制阀130处于导通状态,所述第二增压装置120用于通过调节所述第二制动管路121内制动液的压力,以调节所述第一制动管路111内制动液的压力。
如此,基于本申请介绍的上述制动***,当第一增压装置110故障,但需要为第一组车轮112施加制动力时,可以控制第一控制阀130处于导通状态,此时可以由第二增压装置120通过为第二制动管路121中的制动液增压,以将第二制动管路121内制动液的压力传递到第一制动管路111中,最终通过增加第一制动管路111中的制动液的压力,为第一组车轮112施加制动力。
当第二增压装置120故障,但需要为第二组车轮122施加制动力时,可以控制第一控制阀130处于导通状态,此时可以由第一增压装置110通过为第一制动管路111中的制动液增压,以将第一制动管路111内制动液的压力传递到第二制动管路121中,最终通过增加第二制动管路121中的制动液的压力,为第二组车轮122施加制动力。
通常,当第一增压装置110故障时,为了避免第一增压装置110间歇性为制动***加压等情况的出现,可以在第一增压装置110的压力出端口设置控制阀119,当第一增压装置110故障后,可以控制该控制阀119处于断开状态,此时,第一增压装置110与第一制动管路111之间断开。相应地,也可以在第二增压装置120的压力出端口设置控制阀129,当第二增压装置120故障后,可以控制该控制阀129处于断开状态,此时,第二增压装置120与第二制动管路121之间断开,因此,上述控制阀119、控制阀129又称“隔离阀”。
对于制动***而言,通常需要为不同的车轮施加不同的制动力。因此,可以在控制每个车轮的制动力对应的制动管路上配置进液阀(9、10、11、12),以便独立管理向每个车轮施加的制动力。
即,控制需要施加制动力的车轮对应的进液阀处于导通状态,控制其他不需要施加制动力的车轮对应的进液阀处于断开状态。当进液阀处于导通状态时,制动管路内的制动液可以通过相应的制动管路流向车轮的制动轮缸,当进液阀处于断开状态时,制动管路内的制动液无法通过相应的制动管路内流向车轮的制动轮缸。
例如,如图1所示,第一制动管路111可以包括第一支路115和第二支路116,以分别控制第一组车轮112中的两个车轮的制动力。其中,第一支路115的压力出端口与第一组车轮112的制动轮缸17的压力入端口5相连,第二支路116的压力出端口与第一组车轮112的制动轮缸18的压力入端口6相连。在第一支路115的压力入端口与制动轮缸17的压力入端口5之间,设置有进液阀9,当进液阀9处于导通状态时,可以通过增大第一支路115中制动液的压力,增大施加到制动轮缸17的制动力。在第二支路116的压力入端口与制动轮缸18的压力入端口6之间,设置有进液阀10,当进液阀10处于导通状态时,可以通过增大第二支路116中制动液的压力,增大施加到制动轮缸18上的制动力。
需要说明的是,上述第一支路115的压力入端口,第二支路116的压力入端口可以是第一制动管路111的压力入端口。
第二制动管路121可以包括第一支路125和第二支路126,以分别控制第二组车轮122 中的两个车轮的制动力。其中,第一支路125的压力出端口与第一组车轮122的制动轮缸19的压力入端口7相连,第二支路126的压力出端口与第一组车轮122的制动轮缸20的压力入端口8相连。在第一支路125的压力入端口与制动轮缸19的压力入端口7之间,设置有进液阀11,当进液阀11处于导通状态时,可以通过增大第一支路125中制动液的压力,增大施加到制动轮缸19的制动力。在第二支路126的压力出端口与制动轮缸20的压力入端口8之间,设置有进液阀12,当进液阀12处于导通状态时,可以通过增大第二支路126中制动液的压力,增大施加到制动轮缸20的制动力。
需要说明的是,上述第一支路125的压力入端口,第二支路126的压力入端口可以是第二制动管路121的压力入端口。
对于制动***而言,在一些情况下,还需要减小在车轮上的制动力。因此,可以在控制每个车轮的制动管路上配置出液阀(140),以便独立管理每个车轮减小的制动力。即控制需要减小制动力的车轮对应的出液阀处于导通状态,控制其他不需要减小制动力的车轮对应的出液阀处于断开状态。当出液阀处于导通状态时,制动管路内的制动液可以通过出液阀流向出液管路117,并通过出油管制动管路117流向储液装置118,以便循环利用。当出液阀处于断开状态时,制动管路内的制动液被出液阀阻断,无法流向储液装置。
例如,如图1所示,第一制动管路111可以包括第一支路115和第二支路116,以分别控制第一组车轮112中的两个车轮的制动力。其中,第一支路115的压力出端口与第一组车轮112的制动轮缸17的压力入端口5相连,第二支路116的压力出端口与第一组车轮112的制动轮缸18的压力入端口6相连。在第一支路115的压力入端口与制动轮缸17的压力入端口5之间,设置有出液阀13,当出液阀13处于导通状态时,第一支路115中制动液的可以通过出液阀13流向出液管路117,最后流入储液装置118,以避免通过制动液向制动轮缸17加压。当出液阀13处于断开状态时,第一支路115中制动液被出液阀13阻断,无法流向出液管路117。在第二支路116的压力入端口2与制动轮缸18的压力入端口6之间,设置有出液阀14,当出液阀14处于导通状态时,第二支路116中制动液的可以通过出液阀14流向出液管路117,最后流入储液装置118,以避免通过制动液向制动轮缸18加压。当出液阀14处于断开状态时,第一支路116中制动液被出液阀14阻断,无法流向出液管路117。
需要说明的是,上述第一支路115的压力入端口,第二支路116的压力入端口可以是第一制动管路111的压力入端口。
第二制动管路121可以包括第一支路125和第二支路126,以分别控制第二组车轮122中的两个车轮的制动力。其中,第一支路125的压力出端口与第一组车轮122的制动轮缸19的压力入端口7相连,第二支路126的压力出端口与第一组车轮122的制动轮缸20的压力入端口8相连。在第一支路125的压力入端口与制动轮缸19的压力入端口7之间,设置有出液阀15,当出液阀15处于导通状态时,第一支路125中制动液的可以通过出液阀15流向出液管路117,最后流入储液装置118,以避免通过制动液向制动轮缸19加压。当出液阀15处于断开状态时,第一支路125中制动液被出液阀15阻断,无法流向出液管路117。在第二支路116的压力入端口2与制动轮缸20的压力入端口8之间,设置有出液阀16,当出液阀16处于导通状态时,第二支路126中制动液的可以通过出液阀16流向出液管路117,最后流入储液装置118,以避免通过制动液向制动轮缸20加压。当出液 阀16处于断开状态时,第二支路126中制动液被出液阀16阻断,无法流向出液管路117。
需要说明的是,上述第一支路125的压力入端口,第二支路126的压力入端口可以是第二制动管路121的压力入端口。
上述出液阀的方案和进液阀的方案可以单独配置在制动***中使用,也可以与相互配合使用在一个制动***中。下文结合图1以制动轮缸17对应的出液阀13、进液阀9的连接方式为例,介绍本申请实施例提供的出液阀13、进液阀9之间的连接方式。需要说明的是,制动轮缸18对应的出液阀14、进液阀10的连接方式,制动轮缸19对应的出液阀15、进液阀11的连接方式,制动轮缸20对应的出液阀16、进液阀12的连接方式,可以采用相同的连接方式。
进液阀9位于在第一制动管路111的第一支路115中,且位于第一支路115的压力入端口与制动轮缸17的压力入端口5之间,进液阀9的压力出端口与出液阀13的压力入端口相连,同时,进液阀9的压力出端口还与制动轮缸17的压力入端口5相连。出液阀13的压力出端口与出液管路117相连。通常,为了防止制动液由制动轮缸17向第一增压装置方向流动,即制动液回流,还可以在进液阀9的两端(压力出端口以及压力入端口)并联单向阀119。
需要说明的是,上述进液阀和出液阀的配合方式有很多种,上文仅列中了其中的一种。例如,还可以将第一支路115分继续为两个并联的独立支路,将进液阀和出液阀分别配置在这两个独立的支路上。本申请实施例对此不做限定。
为了提高制动***的冗余性能,上述制动***还可以包括第二级制动子***200。需要说明的是,第二级制动子***200可以与第一级制动子***100结合使用,也可以单独作为一个独立的制动***,或者分别与其他形式的制动子***结合,本申请实施例对此不做具体限定。下文先结合图2介绍本申请实施例的第二级制动子***,再结合图3介绍第一制动子***100与第二制动子***200配合的制动***。
图2是本申请实施例的第二级制动子***200的示意图。图2所示的第二级制动子***200包含制动主缸210,其中,制动主缸210用于将制动踏板的机械能转变成制动液压力,并把液压通过制动管路传到制动轮缸上。应理解,图2中功能相同的部件与图1中功能相同的部件使用相同的编号,为了简洁,具体功能可以参见上文描述,在此不再赘述。
制动主缸210用于通过调节第一制动管路211内的制动液的压力,以控制施加在第一组车轮112上的制动力。
上述制动主缸210可以是串联双腔式制动主缸,即前腔可以与第二制动管路221相连,后腔可以与第一制动管路211相连。当然上述制动主缸210还可以是单腔的,此时两个制动管路211、221为一个物理管路。本申请实施例对制动主缸210的具体形式不做限定。
制动主缸210的第一压力出端口与第一制动管路211的压力入端口相连,可以通过增加第一制动管路211内的制动液的压力,以增加施加在第一组车轮112上的制动力。
上述第一制动管路211的压力出端口(1、2)与第一组车轮的制动轮缸的压力(5、6)入端口相连。
制动主缸210还用于通过调节第二制动管路221内的制动液的压力,以控制施加在所述第二组车轮122上的制动力。
制动主缸210的第二压力出端口与第二制动管路221的压力入端口相连,可以通过增 加第二制动管路211内的制动液的压力,以增加施加在第二组车轮122上的制动力。
上述第一压力出端口和第二压力出端口可以为相同的压力出端口,或者为两个不同的压力出端口,本申请实施例对此不做限定。
上述第一制动管路211的压力出端口(1、2)与第一组车轮的制动轮缸的压力(5、6)入端口相连。
可选地,上述制动主缸210为串联双腔式制动主缸时,制动主缸210包括第一腔212和第二腔222。其中,第一腔212中的第一活塞与第二腔222中的第二活塞之间通过弹簧相连,当第一活塞相对于缸体产生位移时,可以通过弹簧推动第二活塞产生相对于缸体的位移。其中,第一腔212的压力出端口21与第一制动管路211的压力入端口相连,第二腔222的压力出端口22与第二制动管路221的压力入端口相连。
若第一控制阀130处于断开状态时,第一制动管路211和第二制动管路221为独立的制动管路,两个制动管路内制动液的压力分别由第一腔212和第二腔222控制。若第一控制阀130处于导通状态时第一制动管路211和第二制动管路221为相通的制动管路,制动液可以在第一制动管路211和第二制动管路221之间流动,有利于实现两个制动管路内制动液压力的均衡。
如此,当第一腔212故障,但需要为第一组车轮112施加制动力时,可以控制第一控制阀130处于导通状态,然后,由第二腔222通过为第二制动管路221中的制动液增压,以将第二制动管路221内制动液的压力传递到第一制动管路211中,以通过增压第一制动管路211中的制动液的压力,为第一组车轮112施加制动力。
当第二腔222故障,但需要为第二组车轮122施加制动力时,可以控制第一控制阀130处于导通状态,然后,由第一腔212通过为第一制动管路211中的制动液增压,以将第一制动管路111内制动液的压力传递到第二制动管路221中,以通过增压第二制动管路121中的制动液的压力,为第二组车轮122施加制动力。
通常,当第一腔212故障时,为了避免第一腔212间歇性加压等情况的出现,可以在第一腔212的压力出端口设置控制阀213,当第一腔212故障后,可以控制该控制阀213处于断开状态,此时,第一腔212与第一制动管路211之间断开。相应地,也可以在第二腔222的压力出端口设置控制阀214,当第二腔222故障后,可以控制该控制阀214处于断开状态,此时,第二腔222与第二制动管路221之间断开,因此,上述控制阀213、控制阀214又称“隔离阀”。
需要说明的是,上述第一制动管路211包括第一支路115和第二支路116。第二制动管路可以包括第一支路125和第二支路126。其中,上述4条支路的连接方式,4条支路中进液阀和出液阀的配置方式可以参见上文的介绍,为了简洁,在此不再赘述。
下文结合图3介绍本申请实施例的制动***。图3是本申请实施例的制动***300的示意图。制动***300包含第一级制动子***100和第二级制动子***200。应理解,图2中功能相同的部件与图1中功能相同的部件使用相同的编号,为了简洁,具体功能可以参见上文描述,在此不再赘述。
在图3所示的制动***300中,第一级制动子***100中的第一制动管路111与第二级制动子***200中的第一制动管路211相通,第一级制动子***100中的第二制动管路121与第二级制动子***200中的第二制动管路221相通。
也就是说,在第一控制阀130处于断开状态时,第一制动管路(111、211)上配有第一增压装置110以及制动主缸的第一腔212作为压力提供装置。第二制动管路(121、221)上配有第二增压装置120以及制动主缸的第二腔222作为压力提供装置。当第一控制阀130处于导通状态时,上述制动主缸210、第一增压装置110以及第二增压装置120中的任意一种都可以作为制动***300的压力提供装置。上述第一级制动子***100和第二级制动子***200相互配合,提高了制动***300的冗余性能。
在上文介绍的制动***中,若第一控制阀130故障后,第一制动管路(111、211)以及第二制动管路(121、221)变为独立的管路,此时,制动***的冗余度为2。为了进一步提高制动***的冗余性能,还可以在出液管路117上设置第二控制阀310,第二控制阀310位于出液管路117的压力入端口与与储液装置118的入端口之间的出液管路上,或者说,位于多个出液阀(13、14、15、16)的压力出端口与储液装置118的入端口之间的出液管路上。
相应地,当第一控制阀130故障或处于断开状态时,可以控制第二控制阀310处于断开状态,控制多个出液阀(13、14、15、16)处于导通状态,多个进液阀(9、10、11、12)处于导通状态。此时,可以通过增加出液阀(13、14、15、16)的压力出端口与第二控制阀310之间的第一段管路(320)中的制动液的压力,为相应地制动轮缸增压。
例如,在第一控制阀130处于断开状态,或者第一控制阀130故障,且第一制动管路111上的压力提供装置故障的情况下,需要增加第一组车轮112的制动力,那么,可以由第二制动管路121上的压力提供装置为第一组车轮112提供制动力。假设由第二增压装置120为第一组车轮112提供制动力,此时,可以控制第二控制阀310处于断开状态,且控制第二制动管路121上的进液阀(11、12)处于导通状态,第二制动管路121上的出液阀(15、16)处于导通状态,且第一制动管路111上的出液阀(13、14)也处于导通状态。
相应地,制动液可以从第二增压装置120的压力出端口流入第二制动管路121,并通过第二制动管路121的两个支路(125、126)流入出液阀(15、16),再经过上述第一段管路320将制动液输送到出液阀(13、14),并通过出液阀(13、14)沿第一制动管路111的支路(115、116)输送到第一组车轮112的制动轮缸(17、18),以为第一组车轮112提供制动力。
需要说明的是,可以通过第一段出液管路320为制动轮缸(17、18、19、20)中的任意制动轮缸进行增压,具体的方法与上文通过通过第一段出液管路320为制动轮缸(17、18)增压过程类似,为了简洁,下文不再赘述。
可选地,上文中涉及的第一控制阀130,第二控制阀310、出液阀(13、14、15、16)、进液阀(9、10、11、12)、隔离阀(119、129、213、214)等都可以是电磁阀,当制动***为供电后,可以通过控制器控制电磁阀的工作状态,即导通状态或断开状态。
可选地,上述控制器还可以以线控制动的方式,控制第一增压装置110以及第二增压装置120的工作状态。可以控制隔离阀(213、214)处于断开状态后,控制器基于获取的踏板行程确定驾驶员所需的需求制动力。之后控制器可以基于需求制动力向第一增压装置110发送第一控制信息,以控制所述第一增压装置施加在所述第一组车轮上的制动力;向第二增压装置120发送第二控制信息,以控制第二增压装置120施加在第二组车轮上的制动力。
在控制器控制第一增压装置110和/或第二增压装置120为车轮提供制动力时,控制器通常只能感知第一增压装置110和/或第二增压装置120是否失效,而无法感知第一制动管路111和第二制动管路121中是否出现故障。
因此,为了使得控制器可以感知第一制动管路111和第二制动管路121中是否出现故障,以及时确定制动***的工作方式,可以在第一增压装置110的压力出端口设置压力传感器1,控制器可以通过压力传感器1感知第一制动通路111中是否出现故障。相应地,还可以在第二增压装置120的压力出端口设置压力传感器2,控制器可以通过压力传感器2感知第二制动通路121中是否出现故障。
通常,控制器可以通过踏板行程传感器420检测制动主缸中的活塞相对于制动主缸的缸体的位移,即制动踏板的踏板行程。具体而言,踏板行程传感器420用于检测到上述位移后,踏板行程传感器420可以将位移发送至控制器,相应地,控制器基于位移确定施加于汽车的车轮上的制动力。
然而,上述控制器通过踏板行程传感器420检测位移,确定施加于汽车的车轮上的制动力的方案中,若踏板行程传感器420故障,则控制器无法确定制动力。
为了避免这种情况,在本申请提供的制动***中,还可以在第一制动管路211和/或第二制动管路222上设置压力传感器330,这样,当踏板行程传感器420失效后,控制器还可以通过压力传感器330检测第一制动管路211和/或第二制动管路222内制动液压力,基于制动液压力确定施加于汽车的车轮上的制动力。
即,制动***还包括压力传感器330,所述压力传感器330位于所述制动主缸210与所述第一增压装置110之间的第一制动管路211,所述压力传感330器用于检测所述制动主缸210调节的所述第一制动管路211中制动液的压力;所述压力传感器330还用于将指示所述压力的压力信息发送至所述控制器。
可选地,上述第二级制动子***200中还可以包括踏板感觉模拟弹簧223,踏板感觉模拟弹簧223位于第二制动管路221,这样,第二制动管路221内的制动液可以流入踏板感觉模拟弹簧223,使得踏板感觉模拟弹簧223通过感知第二制动管路221中制动液的压力,确定制动主缸210中活塞相对于制动缸体的位移。这样,踏板感觉模拟弹簧223可以将检测到的制动液的压力发送至控制器,以便控制器确定车轮的制动力。
通常,在第二级制动子***200发生故障,或制动***进入线控制动的工作模式后,隔离阀213、214处于断开状态,此时,上述踏板感觉模拟弹簧223可以感知第二制动管路221内的制动液的压力,并将感知到的压力发送至控制器。
当然,在上述踏板感觉模拟弹簧223的压力入端口与第二制动管路221之间,还可以设置控制阀224,当不需要踏板感觉模拟弹簧223工作时,可以控制控制阀224处于断开状态,以隔离第二制动管路221与踏板感觉模拟弹簧223,因此,上述控制阀224又称“隔离阀”。当控制阀224处于导通状态,第二制动管路221与踏板感觉模拟弹簧223相通,踏板感觉模拟弹簧223处于工作状态。
上文结合图1至图3介绍了本申请实施例的制动***。本申请提供的制动***可以应用于汽车中,下文结合图4介绍应用上述制动***的汽车。
图4是本申请实施例的汽车的示意图。应理解,图4所示的汽车400包括第一组车轮112、第二组车轮122,以及上文中介绍的任意一种制动***。为了简洁,下文不再详细 介绍制动***。
可选地,所述汽车400还包括制动踏板410以及踏板行程传感器420,所述踏板行程传感器420用于检测所述制动踏板推动所述制动主缸中的活塞相对于所述制动主缸的缸体的位移,即踏板行程;所述踏板行程传感器420还用于将所述位移发送至所述控制器,以便所述控制器基于所述位移确定施加于所述汽车的车轮上的制动力。
上文结合图1至图4介绍了制动***内制动元件之间的连接方式,下文结合图5至图12介绍制动***的多种工作模式。需要说明的是,本申请对这多种工作模式之间的优先级不做具体限定。
图4所示的汽车400可以分为三种工作模式:非增压人力制动模式、线控制动模式和主动制动模式。其中,非增压人力制动模式可以理解为仅由第二级制动子***200为车轮提供制动力。主动制动模式可以理解为仅由第一级制动子***100为车轮提供制动力,可以应用于自适应巡航控制、避障等由高级驾驶辅助***(advanced driving assistant system)控制的情况中。线控制动模式可以理解为,由控制器基于驾驶员踩踏踏板控制第一增压装置110和第二增压装置120为车轮提供制动力。
在上述3种工作模式中,不同模式中的部分功能的实现方式可能是相同的。例如,不同模式中使用的增压方案有可能是相同的。又例如,不同模式中使用的踏板制动力需求计算方案有可能是相同的。又例如,不同模式中使用的冗余方案有可能是相同的。因此,为了简洁,下文将制动***的实现的功能划分为以下三种场景分别进行介绍。
假设制动***300中,隔离阀(119、129)为常开阀,进液阀(9、10、11、12)为常开阀,出液阀(13、14、15、16)为常闭阀,隔离阀(213、214)为常开阀,第一控制阀130为常闭阀,第二控制阀310为常开阀,控制阀224为常闭阀。
需要说明的是,上述状态常开阀、常闭阀为未给控制阀供电时,控制阀的默认状态。当控制器需要调整控制阀的状态时,可以待调整状态的控制阀供电,这样可以控制控制阀处于断开状态或导通状态。
场景一,线控制动模式下,制动***中踏板制动力需求计算方案,及踏板制动力需求计算的冗余方案。
在线控制动模式下,控制器控制隔离阀(213、214)处于断开状态,控制阀224处于导通状态,使得踏板感觉模拟器223与第二制动管路221连通,制动***中的其他控制阀保持上述默认状态。
如此,驾驶员踩下制动踏板410通过推杆推动制动主缸210的活塞相对于制动主缸210发生位移,将第二腔222内的制动液压入第二制动管路221,将第一腔212内的制动液压入第一制动管路211。由于隔离阀(213、214)处于断开状态,两条制动管路内的制动液被阻断在隔离阀(213、214)处,其中,第二制动管路221的制动液会通过控制阀224压入踏板感觉模拟器223;第一制动管路211内的制动液的压力会在制动主缸210的作用下升高。
下面基于上文介绍的线控制动模式下制动***中各制动元件的工作状态,介绍本申请实施例的踏板制动力需求计算方案。
控制器根据踏板行程传感器420测量踏板位移,计算驾驶员的需求制动力,并将需求制动力反馈给第一增压装置110和第二增压装置120。
第一增压装置110和第二增压装置120按照上述需求制动力控制电机(113、123), 通过液压缸(114、124)压缩制动液通过隔离阀(119、129)为制动轮缸(17、18、19、20)提供制动力。
作为踏板制动力需求计算方案的一种冗余方案,当踏板行程传感器42031出现故障时,可以采用压力传感器330测量第一制动管路211内制动液的压力,确定驾驶员需求的制动力,再将制动力反馈给第一增压装置110和第二增压装置120。
相应地,第一增压装置110和第二增压装置120按照制动力控制电机(113、123),通过液压缸(114、124)压缩制动液通过隔离阀(119、129)为制动轮缸(17、18、19、20)提供制动力。其中,制动***中制动液流动的路径参见图5。
需要说明的是,上述关于踏板感觉模拟的两种方案都不会直接影响制动防抱死***(antilock brake system,ABS)、牵引力控制***(traction control system,TCS)和电子稳定***(electronic stability system,ESC)等动力学功能的实现。实现TCS、ABS和ESC等动力学控制算法,需要对单个制动轮缸进行控制,此时可以在第一增压装置110和第二增压装置120的辅助下,通过控制单个进液阀和出液阀实现单个制动轮缸的增压、保压和减压操作。
当驾驶员松开制动踏板410,制动主缸内活塞与缸体的位移恢复为0。踏板感觉模拟器223中的制动液由控制阀224沿相反方向回流至第二腔222,最后流入储液装置118。第一增压装置110和第二增压装置120中的液压缸(114、124)反向工作,制动轮缸(17、18、19、20)内的压力大于液压缸(114、124)内的压力,制动液由制动轮缸(17、18、19、20)分别通过各自对应的进液阀(9、10、11、12)和单向阀沿制动管路分别返回液压缸(114、124)。
可选地,还可以控制隔离阀(213、214)处于导通状态,使制动液由制动轮缸(17、18、19、20)通过隔离阀(213、214)、第二腔222和第一腔212返回储液装置118中。
当需要快速减压时,还可以进一步打开出液阀(13、14、15、16),使制动轮缸(17、18、19、20)内的制动液回流至储液装置118中。
场景二,主动制动模式下的主动增压方案以及主动增压的冗余方案。
与场景一中介绍的线控制动模式下的主动增压方案相似,制动***可直接使用第一增压装置110和第二增压装置120进行制动。与场景一中介绍的线控制动模式的区别在于,主动制动模式下可以不需要驾驶员操作制动踏板410。
控制器通过分析环境条件、车辆状态、ADAS状态和驾驶员输入等信息,判断汽车需要进行主动制动模式,则隔离阀(213、214)处于断开状态,其它控制阀保持上述默认状态。控制器将需求制动力发送给第一增压装置110和第二增压装置120。第一增压装置110和第二增压装置120基于制动力为制动轮缸(17、18、19、20)提供制动压力。其中,制动***中制动液流动的路径参见图6。
当需要减压时,第一液压缸114和第二液压缸124电机(113、123)的作用下反向工作,制动轮缸(17、18、19、20)内的压力大于第一液压缸114和第二液压缸124内的压力,制动液由制动轮缸(17、18、19、20)分别通过各自的进液阀(9、10、11、12)和单向阀沿制动管路分别返回第一液压缸114和第二液压缸124。
可选地,还可以控制隔离阀(213、214)处于导通状态,使制动液由制动轮缸(17、18、19、20)通过隔离阀(213、214)、第二腔222和第一腔212返回储液装置118中。
当需要快速减压时,还可以进一步打开出液阀(13、14、15、16),使制动轮缸(17、18、19、20)内的制动液回流至储液装置118中。
需要说明的是,上述关于踏板感觉模拟的两种方案都不会直接影响ABS、TCS和ESC等动力学功能的实现。实现TCS、ABS和ESC等动力学控制算法,需要对单个制动轮缸进行控制,此时可以在第一增压装置110和第二增压装置120的辅助下,通过控制单个进液阀和出液阀实现单个制动轮缸的增压、保压和减压操作。
下文介绍主动制动模式下的主动增压的4种冗余方案。需要说明的是,该主动增压的冗余方案还可以应用于线控制动模式,由于方案本质相同,为了简洁,下文不再具体介绍线控制动模式下的主动增压的冗余方案。
冗余方案一,当第一增压装置110故障时,控制第一控制阀130处于导通状态,此时,第一制动管路111和第二制动管路121连通,第二增压装置120工作并按照控制器反馈的制动力为制动轮缸(17、18、19、20)提供制动压力,此时,制动***制动液的流动路径可以参见图7所示。
冗余方案二,当第二增压装置120故障时,控制第一控制阀130处于导通状态,此时,第一制动管路111和第二制动管路121连通,第一增压装置110工作并按照控制器反馈的制动力为制动轮缸(17、18、19、20)提供制动压力。此时,制动***中制动液的流动路径可以参见图8所示。
需要说明的是,上述关于踏板感觉模拟的两种方案都不会直接影响ABS、TCS和ESC等动力学功能的实现。实现TCS、ABS和ESC等动力学控制算法,需要对单个制动轮缸进行控制,此时可以在第一增压装置110和第二增压装置120的辅助下,通过控制单个进液阀和出液阀实现单个制动轮缸的增压、保压和减压操作。
冗余方案三,当第一增压装置110和第一控制阀130都故障时,控制第二控制阀310处于断开状态,打开所有出液阀(13、14、15、16),其他控制阀处于上默认状态。第二增压装置120工作,并按照控制器反馈的制动力,将制动液压入第二制动管路121,并通过进液阀(11、12)、出液阀(15、16)流入第一段出液管路320。在第二控制阀310阻断的情况下,通过第一段出液管路320流入出液阀(13、14),在单向阀的隔离下,出液阀(13、14)流出的制动液通过第一支路115和第二支路116流入制动轮缸(17、18),最终为制动轮缸(17、18)提供制动压力。相应地,压入第二制动管路121的制动液还有一部分可以通过第一支路125和第二支路126流入制动轮缸(19、20)。制动***中制动液的流动路径可以参见图9所示。
冗余方案四,当第二增压装置120和第一控制阀130都故障时,控制第二控制阀310处于断开状态,打开所有出液阀(13、14、15、16),其他控制阀处于上默认状态。第一增压装置110工作,并按照控制器反馈的制动力,将制动液压入第一制动管路111,并通过进液阀(9、10)、出液阀(13、14)流入第一段出液管路320。在第二控制阀310阻断的情况下,通过第一段出液管路320流入出液阀(15、16),在单向阀的隔离下,出液阀(15、16)流出的制动液通过第一支路125和第二支路126流入制动轮缸(19、20),最终为制动轮缸(19、20)提供制动压力。相应地,压入第一制动管路111的制动液还有一部分可以通过第一支路115和第二支路116流入制动轮缸(17、18)。制动***中制动液的流动路径可以参见图10所示。
场景三,人力制动的冗余备份方案。即,在第一增压装置110和第二增压装置120均失效时,驾驶员踩下踏板,仍然可以实现机械制动,保证车辆可靠减速。
制动***中的所有控制阀均处于默认状态,驾驶员踩下制动踏板410,将第二腔222内的制动液推入第二制动管路221,将第一腔212内的制动液推入第一制动管路211,最终制动液沿第一制动管路211以及第二制动管路221,通过进液阀(9,10,11,12)流入制动轮缸(17、18、19、20),实现人力制动。制动***中制动液的流动路径可以参见图11所示。
当驾驶员松开制动踏板410,制动主缸的活塞在回位弹簧的作用下返回初始位置,同时通过推杆使制动踏板410返回初始位置。此时,制动液由制动轮缸(17、18、19、20)通过进液阀(9、10、11、12)和单向阀沿相反方向回流至第二腔222和第一腔212,最后流入储液装置118。制动***中制动液的流动路径可以参见图12所示。
上文结合图1至图12介绍本申请实施例的制动***和汽车,下文结合图13和图14介绍本申请实施例提供的基于上述制动***的控制方法,需要说明的是,图13所示的控制方法可以由制动***的控制器执行。
图13是本申请实施例的制动***的控制方法的流程图。图13所示的方法包括步骤1310至步骤1320。图13所示的方法可与上文介绍的制动***和汽车配合使用。上述第一制动管路111和第二制动管路121中的任一条制动管路称为“目标制动管路”。
1310,控制器确定目标制动管路上的压力提供装置故障。
上述压力提供装置可以包括制动主缸210或者增压装置。若目标制动管路为第一制动管路111时,压力提供装置可以为制动主缸210或第一增压装置110。若目标制动管路为第二制动管路121时,压力提供装置可以为制动主缸210或第二增压装置120。
1320,控制器控制所述第一控制阀130处于导通状态,则所述第一制动管路111与所述第二制动管路121连通。
上述第一制动管路111和第二制动管路121连通,则制动液可以在第一制动管路111和第二制动管路121中流动,通过制动液的压力为制动轮缸提供制动力。
在本申请实施例中,若目标制动管路上的压力提供装置故障,则控制器可以控制第一控制阀130处于导通状态,使得制动液在第一制动管路111和第二制动管路121内流动,通过制动液的压力为制动轮缸提供制动力。避免了传统的制动***中,第一制动管路和第二制动管路为相互独立的两条制动通路,当其中一条制动管路中的压力提供装置故障后,则该制动管路无法控制该制动管路上的制动轮缸的制动力,有利于提高制动***的冗余性能。
可选地,上述目标制动管路为所述第一制动管路,所述目标制动管路为所述第一制动管路(111),所述压力提供装置包括所述第一增压装置(110),所述方法还包括:所述控制器控制所述第二增压装置(120)通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
可选地,上述目标制动管路为所述第二制动管路,所述目标制动管路为所述第二制动管路(121),所述压力提供装置包括所述第二增压装置(120),所述方法还包括:所述控制器控制所述第一增压装置(110)通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内的制动液的压力。
可选地,所述制动***还包括串联双腔式制动主缸(210),所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力,所述方法还包括:若所述第一腔(212)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述二制动管路(121)内制动液的压力与所述第一制动管路(111)内制动液的压力均衡;若所述第二腔(222)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述第一制动管路(111)内制动液的压力与所述第二制动管路(121)内制动液的压力均衡。
为了进一步提高制动***的冗余性能,还可以在出液管路117上设置第二控制阀310。当第二控制阀310处于断开状态后,第一段管路320可以用于为制动轮缸(17、18、19、20)提供制动力。
可选地,所述制动***还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上,所述方法还包括:所述控制器确定所述第一增压装置(110)以及所述第一控制阀(130)故障;所述控制器控制所述第二控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第二增压装置(120)压入所述汽车的车轮的制动制动轮缸,以控制施加在所述汽车的车轮上的制动力,所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的管路。
可选地,所述方法还包括:所述控制器确定所述第二增压装置(120)以及所述第一控制阀(130)故障;所述控制器控制所述第一控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第一增压装置(110)压入所述汽车的车轮的制动制动轮缸,控制施加在所述汽车的车轮上的制动力。
在制动***的非增压人力制动模式、线控制动模式下,控制器通常需要通过踏板行程传感器420确定驾驶员所需制动力,然而,若踏板行程传感器420故障后,控制器则无法感知驾驶员所需制动力。
因此,为了避免上述情况,本申请实施例提供的制动***中还设置有压力传感器330,位于第一制动管路212和/或第二制动管路222中,用于感知从制动主缸210的压力出端口输出并流入第一制动管路212和/或第二制动管路222的制动液的压力。这样,控制器在通过压力控制器330确定第一制动管路212和/或第二制动管路222的制动液的压力后,可以基于制动液的压力确定驾驶员所需的制动力。
可选地,所述制动***还包括压力传感器(330)以及踏板行程传感器(420),所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)内制动液的压力,所述踏板行程传感器(420)用于检测所述汽车的制动踏板的踏板行程,所 述方法还包括:所述控制器接收所述压力传感器(330)发送的用于指示所述压力的压力信息;若所述踏板行程传感器(420)失效,所述控制器根据所述踏板行程为所述第一组车轮(112)和/或所述第二组车轮(122)分配制动力。
下文结合图14介绍本申请另一实施例的提供制动***的控制方法,该控制方法可以与制动***300或者汽车400配合使用。图14所示的控制方法包括步骤1410至步骤1426。
1410,控制器确定制动***的工作模式。若确定进入线控制动模式则执行步骤1411。若确定进入主动制动模式则执行步骤1412。
1411,控制器确定踏板行程传感器420是否失效。若踏板行程传感器420失效,则执行步骤1413。若踏板行程传感器420正常工作,则执行步骤1414。
1413,控制器确定压力传感器330是否失效。若压力传感器330失效,则执行步骤1415。若压力传感器330正常工作,则执行步骤1414。
1415,控制器通知驾驶员制动***进入人力制动工作模式。
具体的,上述通知方式可以采用通过用户界面呈现,或者语音提醒的方式,本申请实施例对此不做限定。
1414,控制器执行踏板总制动力需求计算,并执行步骤1416。
1412,控制器通过自动驾驶控制器(例如,ADAS)计算汽车所需的制动力,之后执行步骤1416。
1416,控制器确定第一增压装置110和第二增压装置120是否全部失效。若全部失效失效,则执行步骤1415。若未全部失效,则执行步骤1417。
1417,控制器计算增压制动力,以确定增压装置(第一增压装置110和/或第二增压装置120)需要提供的制动力,并执行步骤1418。
1418,控制器确定第一增压装置110是否失效。若第一增压装置110失效,则执行步骤1419。若第一增压装置110未失效,则执行步骤1420。
需要说明的是,步骤1418是在第一增压装置110和第二增压装置120未全部失效的情况下执行的,那么执行步骤1419时,第二增压装置120未失效。
1419,控制器确定第一控制阀130是否失效。若第一控制阀130失效,则执行步骤1421。若第一控制阀130未失效,则执行步骤1422。
1421,控制器控制第二增压装置120工作,第二控制阀310处于断开状态,出液阀(13、14、15、16)处于导通状态。
1422,控制器控制第二增压装置120工作,第二控制阀310处于导通状态。
1420,控制器确定第二增压装置120是否失效。若第二增压装置120未失效,则执行步骤1423。若第二增压装置120失效,则执行步骤1424。
需要说明的是,步骤1424是在第一增压装置110和第二增压装置120未全部失效的情况下执行的,那么执行步骤1424时,第一增压装置110未失效。
1423,控制器确定第一增压装置110和第二增压装置120同时工作,为制动轮缸(17、18、19、20)提供制动力,此时第一控制阀130处于断开状态。
1424,控制器确定第一控制阀130是否失效。若第一控制阀130失效,则执行步骤1425。若第一控制阀130未失效,则执行步骤1426。
1425,控制器控制第一增压装置110工作,第二控制阀310处于断开状态,出液阀(13、 14、15、16)处于导通状态。
1426,控制器控制第一增压装置110工作,第二控制阀310处于导通状态。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种汽车的制动***,其特征在于,所述制动***包括第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),
    所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以控制施加在所述汽车的第一组车轮(112)上的制动力;
    所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以控制施加在所述汽车的第二组车轮(122)上的制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;
    所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通,若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开。
  2. 如权利要求1所述的制动***,其特征在于,若所述第一控制阀(130)处于导通状态,所述第一增压装置(110)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或
    若所述第一控制阀(130)处于导通状态,所述第二增压装置(120)用于通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
  3. 如权利要求1或2所述的制动***,其特征在于,所述制动***还包括串联双腔式制动主缸(210),
    所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;
    所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力。
  4. 如权利要求3所述的制动***,其特征在于,若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第一腔(212),调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或
    若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第二腔(222),调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
  5. 如权利要求1-4中任一项所述的制动***,其特征在于,所述制动***还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),
    所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路 (117)上。
  6. 如权利要求5所述的制动***,其特征在于,若所述第二控制阀(310)处于断开状态,且所述多个出液阀(140)处于导通状态时,目标增压装置用于通过调节所述出液管路(117)的第一段管路(320)内制动液的压力,以控制施加在所述第一组车轮(112)和/或所述第二组汽车轮上的制动力,
    其中,所述目标增压装置为所述制动主缸(210)、所述第一增压装置(110)或所述第二增压装置(120),所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的出液管路。
  7. 如权利要求1-6中任一项所述的制动***,其特征在于,所述制动***还包括控制器,所述控制器用于向所述第一增压装置(110)发送第一控制信息,以控制所述第一增压装置(110)施加在所述第一组车轮(112)上的制动力;和/或
    所述控制器还用于向所述第二增压装置(120)发送第二控制信息,以控制所述第二增压装置(120)施加在所述第二组车轮(122)上的制动力。
  8. 如权利要求7所述的制动***,其特征在于,所述制动***还包括压力传感器(330),所述压力传感器(330)位于所述制动主缸(210)的压力出端口与所述第一增压装置(110)的压力出端口之间的第一制动管路(111),
    所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)中制动液的压力;
    所述压力传感器(330)还用于将指示所述压力的压力信息发送至所述控制器,以便所述控制器基于所述压力确定施加于所述汽车的车轮上的制动力。
  9. 如权利要求8所述的制动***,其特征在于,所述制动***还包括踏板行程传感器(420),
    所述踏板行程传感器(420)用于检测所述汽车的制动踏板的行程;
    所述踏板行程传感器(420)还用于将指示所述行程的行程信息发送至所述控制器,以便所述控制器基于所述行程确定施加于所述汽车的车轮上的制动力。
  10. 一种汽车,其特征在于,包括第一组车轮(112)、第二组车轮(122)、第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),所述第一组车轮(112)与所述第二组车轮(122)不同,
    所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以向所述第一组车轮(112)施加制动力;
    所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以向所述第二组车轮(122)施加制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;
    所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通,若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开。
  11. 如权利要求10所述的汽车,其特征在于,若所述第一控制阀(130)处于导通状态,所述第一增压装置(110)用于通过调节所述第一制动管路(111)内制动液的压力, 以调节所述第二制动管路(121)内制动液的压力;和/或
    若所述第一控制阀(130)处于导通状态,所述第二增压装置(120)用于通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
  12. 如权利要求10或11所述的汽车,其特征在于,所述汽车还包括串联双腔式制动主缸(210),
    所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;
    所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力。
  13. 如权利要求12所述的汽车,其特征在于,若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第一腔(212)调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内制动液的压力;和/或
    若所述第一控制阀(130)处于导通状态,所述制动主缸(210)通过所述第二腔(222)调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
  14. 如权利要求10-13中任一项所述的汽车,其特征在于,所述汽车还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),
    所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上。
  15. 如权利要求14所述的汽车,其特征在于,若所述第二控制阀(310)处于断开状态,且所述多个出液阀(140)处于导通状态时,目标增压装置用于通过调节所述出液管路(117)的第一段管路(320)内制动液的压力,以控制施加在所述第一组车轮(112)和/或所述第二组汽车轮上的制动力,
    其中,所述目标增压装置为所述制动主缸(210)、所述第一增压装置(110)或所述第二增压装置(120),所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的出液管路。
  16. 如权利要求10-15中任一项所述的汽车,其特征在于,所述汽车还包括控制器,所述控制器用于向所述第一增压装置(110)发送第一控制信息,以控制所述第一增压装置(110)施加在所述第一组车轮(112)上的制动力;和/或
    所述控制器还用于向所述第二增压装置(120)发送第二控制信息,以控制所述第二增压装置(120)施加在所述第二组车轮(122)上的制动力。
  17. 如权利要求16所述的汽车,其特征在于,所述汽车还包括压力传感器(330),所述压力传感器(330)位于所述制动主缸(210)的压力出端口与所述第一增压装置(110)的压力出端口之间的第一制动管路(111),
    所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)中制动液的压力;
    所述压力传感器(330)还用于将指示所述压力的压力信息发送至所述控制器,以便所述控制器基于所述压力确定施加于所述汽车的车轮上的制动力。
  18. 如权利要求17所述的汽车,其特征在于,所述汽车还包括踏板行程传感器(420),
    所述踏板行程传感器(420)用于检测所述汽车的制动踏板的行程;
    所述踏板行程传感器(420)还用于将指示所述行程的行程信息发送至所述控制器,以便所述控制器基于所述行程确定施加于所述汽车的车轮上的制动力。
  19. 如权利要求10-18中任一项所述的汽车,其特征在于,所述第一组车轮(112)包括右前轮和左前轮,所述第二组车轮(122)包括右后轮和左后轮;或
    所述第一组车轮(112)包括右前轮和左后轮,所述第二组车轮(122)包括左前轮和左后轮。
  20. 一种制动***的控制方法,其特征在于,所述制动***包括第一增压装置(110)、第二增压装置(120)以及第一控制阀(130),
    所述第一增压装置(110)用于通过调节第一制动管路(111)内制动液的压力,以控制施加在所述汽车的第一组车轮(112)上的制动力;
    所述第二增压装置(120)用于通过调节第二制动管路(121)内制动液的压力,以控制施加在所述汽车的第二组车轮(122)上的制动力,所述第一组车轮(112)与所述第二组车轮(122)不同;
    所述第一控制阀(130)用于连接所述第一制动管路(111)与所述第二制动管路(121),若所述第一控制阀(130)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(121)断开,
    所述方法包括:
    所述控制器确定所述目标制动管路上的压力提供装置故障,所述目标制动管路为所述第一制动管路(111)或所述第二制动管路(121);
    所述控制器控制所述第一控制阀(130)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(121)连通。
  21. 如权利要求20所述的方法,其特征在于,所述目标制动管路为所述第一制动管路(111),所述压力提供装置包括所述第一增压装置(110),
    所述方法还包括:
    所述控制器控制所述第二增压装置(120)通过调节所述第二制动管路(121)内制动液的压力,以调节所述第一制动管路(111)内的制动液的压力。
  22. 如权利要求20所述的方法,其特征在于,所述目标制动管路为所述第二制动管路(121),所述压力提供装置包括所述第二增压装置(120),
    所述方法还包括:
    所述控制器控制所述第一增压装置(110)通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(121)内的制动液的压力。
  23. 如权利要求20-22中任一项所述的方法,其特征在于,所述制动***还包括串联双腔式制动主缸(210),
    所述制动主缸(210)的第一腔(212)与所述第一制动管路(111)相通,用于通过调节所述第一制动管路(111)内的制动液的压力,以控制施加在所述第一组车轮(112)上的制动力;
    所述制动主缸(210)的第二腔(222)与所述第二制动管路(121)相通,用于通过调节所述第二制动管路(121)内的制动液的压力,以控制施加在所述第二组车轮(122)上的制动力,
    所述方法还包括:
    若所述第一腔(212)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述二制动管路(121)内制动液的压力与所述第一制动管路(111)内制动液的压力均衡;
    若所述第二腔(222)故障,所述控制器控制所述第一控制阀(130)处于导通状态,以便所述第一制动管路(111)内制动液的压力与所述第二制动管路(121)内制动液的压力均衡。
  24. 如权利要求20-23中任一项所述的方法,其特征在于,所述制动***还包括用于储藏制动液的储液装置(118)、多个出液阀(140)以及第二控制阀(310),所述多个出液阀(140)的压力出端口与出液管路(117)的压力入端口相连,所述出液管路(117)的压力出端口与所述储液装置(118)的入端口相连,所述第二控制阀(310)位于所述出液管路(117)的压力入端口与所述储液装置(118)的入端口之间的出液管路(117)上,
    所述方法还包括:
    所述控制器确定所述第一增压装置(110)以及所述第一控制阀(130)故障;
    所述控制器控制所述第二控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第二增压装置(120)压入所述汽车的车轮的制动制动轮缸,以控制施加在所述汽车的车轮上的制动力,所述第一段管路(320)为所述出液管路(117)的压力入端口与所述第二控制阀(310)之间的管路。
  25. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述第二增压装置(120)以及所述第一控制阀(130)故障;
    所述控制器控制所述第一控制阀(310)处于断开状态,并控制所述多个出液阀(140)处于导通状态,以便所述第一段管路(320)内的制动液由所述第一增压装置(110)压入所述汽车的车轮的制动制动轮缸,控制施加在所述汽车的车轮上的制动力。
  26. 如权利要求20-25中任一项所述的方法,其特征在于,所述制动***还包括压力传感器(330)以及踏板行程传感器(420),所述压力传感器(330)用于检测所述制动主缸(210)调节的所述第一制动管路(111)内制动液的压力,所述踏板行程传感器(420)用于检测所述汽车的制动踏板的踏板行程,
    所述方法还包括:
    所述控制器接收所述压力传感器(330)发送的用于指示所述压力的压力信息;
    若所述踏板行程传感器(420)失效,所述控制器根据所述踏板行程为所述第一组车轮(112)和/或所述第二组车轮(122)分配制动力。
PCT/CN2020/113986 2019-09-30 2020-09-08 汽车的制动***、汽车及制动***的控制方法 WO2021063159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20872104.3A EP4029742A4 (en) 2019-09-30 2020-09-08 MOTOR VEHICLE BRAKE SYSTEM, MOTOR VEHICLE AND CONTROL METHOD FOR A BRAKE SYSTEM
US17/657,222 US20220219661A1 (en) 2019-09-30 2022-03-30 Brake System of Vehicle, Vehicle, and Control Method for Brake System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910940787.2 2019-09-30
CN201910940787.2A CN112572380A (zh) 2019-09-30 2019-09-30 汽车的制动***、汽车及制动***的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,222 Continuation US20220219661A1 (en) 2019-09-30 2022-03-30 Brake System of Vehicle, Vehicle, and Control Method for Brake System

Publications (1)

Publication Number Publication Date
WO2021063159A1 true WO2021063159A1 (zh) 2021-04-08

Family

ID=75116245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113986 WO2021063159A1 (zh) 2019-09-30 2020-09-08 汽车的制动***、汽车及制动***的控制方法

Country Status (4)

Country Link
US (1) US20220219661A1 (zh)
EP (1) EP4029742A4 (zh)
CN (1) CN112572380A (zh)
WO (1) WO2021063159A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561953B (zh) * 2021-07-27 2022-11-25 中国北方车辆研究所 一种重载车辆线控冗余制动操纵***及其容错控制方法
CN113866086A (zh) * 2021-09-27 2021-12-31 中汽创智科技有限公司 一种摩擦副摩擦系数检测方法、装置、设备及存储介质
WO2023240514A1 (zh) * 2022-06-15 2023-12-21 华为技术有限公司 一种制动***测试装置、方法及设备
WO2024021030A1 (zh) * 2022-07-29 2024-02-01 华为技术有限公司 一种控制方法、控制装置和车辆
WO2024065714A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 一种制动***、液压装置及控制方法
WO2024098335A1 (zh) * 2022-11-10 2024-05-16 华为技术有限公司 制动***的控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582605A (zh) * 2012-03-27 2012-07-18 清华大学 一种带有保压阀的汽车分布式电子液压制动***
CN102826080A (zh) * 2011-06-15 2012-12-19 日立汽车***株式会社 制动控制装置
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
CN203558059U (zh) * 2013-11-18 2014-04-23 扬州泰博汽车电子智能科技有限公司 一种具有多工作模式和调压方式的双电机线控制动***
CN106379302A (zh) * 2016-09-26 2017-02-08 安徽工程大学 一种车辆液压主动制动***及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827250B2 (ja) * 1996-07-02 2006-09-27 トヨタ自動車株式会社 ブレーキ液圧制御装置
DE102012205859A1 (de) * 2011-04-19 2012-10-25 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betrieb einer Bremsanlage
DE102013223861A1 (de) * 2013-11-21 2015-05-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftahrzeuge
JP6439170B2 (ja) * 2015-02-17 2018-12-19 日立オートモティブシステムズ株式会社 ブレーキ装置
DE102017222445A1 (de) * 2017-01-11 2018-07-12 Continental Teves Ag & Co. Ohg Bremsanlage für ein Kraftfahrzeug und Verfahren zum Betrieb einer Bremsanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826080A (zh) * 2011-06-15 2012-12-19 日立汽车***株式会社 制动控制装置
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
CN102582605A (zh) * 2012-03-27 2012-07-18 清华大学 一种带有保压阀的汽车分布式电子液压制动***
CN203558059U (zh) * 2013-11-18 2014-04-23 扬州泰博汽车电子智能科技有限公司 一种具有多工作模式和调压方式的双电机线控制动***
CN106379302A (zh) * 2016-09-26 2017-02-08 安徽工程大学 一种车辆液压主动制动***及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029742A4

Also Published As

Publication number Publication date
EP4029742A4 (en) 2022-10-19
CN112572380A (zh) 2021-03-30
US20220219661A1 (en) 2022-07-14
EP4029742A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2021063159A1 (zh) 汽车的制动***、汽车及制动***的控制方法
US10391994B2 (en) Brake system for motor vehicles
US9221449B2 (en) Electric brake system for vehicle
CN106864442B (zh) 电子液压制动***
WO2021208594A1 (zh) 汽车中制动***的液压调节单元、制动***及控制方法
WO2021248396A1 (zh) 踏板感觉模拟***、液压调节单元及控制方法
US10189456B2 (en) Vehicle brake system and method of operating
CN110356381B (zh) 车辆制动***
KR20220106462A (ko) 전자식 유압 브레이크 장치 및 제어방법
US20220219665A1 (en) Distributed Braking System in Automobile, Automobile, and Control Method Therefor
WO2021098345A1 (zh) 汽车制动***中的液压调节单元、汽车及控制方法
CN113561954B (zh) 汽车中制动***的液压调节单元、制动***及控制方法
JP7474384B2 (ja) 油圧調整ユニット、ブレーキシステム、車両、及び制御方法
WO2023272668A1 (zh) 制动***及制动***的控制方法
KR20220075734A (ko) 차량의 제동장치 및 그 제동방법
CN112638728A (zh) 制动控制装置、制动控制***及控制方法
US20240132039A1 (en) Brake-by-wire system and control method
WO2024098335A1 (zh) 制动***的控制方法和装置
WO2021193715A1 (ja) 車両用制動装置
CN117465401A (zh) 一种储能与电机直推融合的集成式线控制动***及方法
CN115402281A (zh) 一种电子液压制动***及方法
KR20220098060A (ko) 회생제동이 가능한 자율주행 차량용 브레이크 시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872104

Country of ref document: EP

Effective date: 20220412