WO2024095880A1 - Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin - Google Patents

Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin Download PDF

Info

Publication number
WO2024095880A1
WO2024095880A1 PCT/JP2023/038654 JP2023038654W WO2024095880A1 WO 2024095880 A1 WO2024095880 A1 WO 2024095880A1 JP 2023038654 W JP2023038654 W JP 2023038654W WO 2024095880 A1 WO2024095880 A1 WO 2024095880A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin
aromatic hydrocarbon
hydrogenated aromatic
Prior art date
Application number
PCT/JP2023/038654
Other languages
French (fr)
Japanese (ja)
Inventor
尚樹 釜谷
雄吾 佐俣
陽水 山口
弘貴 落合
遼 芝原
翼 伊藤
昭寛 川端
功基 柴地
隆 中谷
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Publication of WO2024095880A1 publication Critical patent/WO2024095880A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a modifier for thermoplastic resins, a resin composition, and the use of a hydrogenated aromatic hydrocarbon resin.
  • thermoplastic resins are used in a variety of industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automotive materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength.
  • thermoplastic resins particularly engineering plastics and super engineering plastics, often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resin to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
  • thermoplastic resins particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher).
  • the addition of conventional lubricants can cause smoke during melting.
  • the present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
  • thermoplastic resins that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
  • the mass retention rate after heating at 300° C. for 2 hours is 65% by mass or more
  • the mixed methylcyclohexaneaniline cloud point (MMAP) of the hydrogenated aromatic hydrocarbon resin is 40 to 95° C. Modifier for thermoplastic resins.
  • (Item 2) A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
  • the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below).
  • the range of the value ⁇ may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A
  • Modifier for thermoplastic resin The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a hydrogenated aromatic hydrocarbon resin (hereinafter also referred to as hydrogenated aromatic hydrocarbon resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 65 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 40 to 95°C.
  • a hydrogenated aromatic hydrocarbon resin hereinafter also referred to as hydrogenated aromatic hydrocarbon resin having a mass retention rate (hereinafter also referred to as mass retention rate) of 65 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 40 to 95°C.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
  • the hydrogenated aromatic hydrocarbon resin is not particularly limited as long as it is a hydrogenated aromatic hydrocarbon resin having a mass residual ratio and MMAP within the above range, and various known hydrogenated aromatic hydrocarbon resins can be used.
  • the hydrogenated aromatic hydrocarbon resins may be used alone or in combination of two or more.
  • aromatic hydrocarbon resin examples include aromatic petroleum resins and pure monomer resins.
  • the aromatic hydrocarbon resins may be used alone or in combination of two or more.
  • the aromatic petroleum resins include, for example, C9 petroleum resins obtained from C9 petroleum fractions of naphtha, and copolymers obtained by polymerizing the C9 petroleum resins alone or in combination.
  • C9 petroleum fractions include aromatic compounds with 8 carbon atoms such as styrene; aromatic compounds with 9 carbon atoms such as ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, and indene; aromatic compounds with 10 carbon atoms such as 2-isopropenyltoluene, 4-isopropenyltoluene, 1-methylindene, 2-methylindene, and 3-methylindene; aromatic compounds with 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; and mixtures of these.
  • the pure monomer resins mentioned above include, for example, resins obtained by polymerizing polymerizable monomers (styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, indene) obtained by refining the above C9 petroleum fraction through cationic polymerization, radical polymerization, etc.
  • polymerizable monomers styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, indene
  • the method for producing the aromatic hydrocarbon resin is not particularly limited, but examples include a method in which raw materials such as petroleum fractions and polymerizable monomers are cationic polymerized in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
  • a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
  • the hydrogenated aromatic hydrocarbon resin is preferably a hydrogenated aromatic petroleum resin.
  • Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, and 65 mass%, etc.
  • the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is preferably 65% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass, from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin.
  • the mass retention rate is measured by the method described in the Examples below.
  • Thermoplastic resins are often molded at temperatures of 250°C or higher.
  • the inventors of the present invention have hypothesized that when a modifier containing a hydrogenated aromatic hydrocarbon resin is used in a thermoplastic resin and smokes when melted, the hydrogenated aromatic hydrocarbon resin has many components that can volatilize and structures that can thermally decompose at the molding temperature, and that the smoke is generated by the volatile components and thermal decomposition products.
  • the inventors of the present invention have evaluated the mass retention rate of hydrogenated aromatic hydrocarbon resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the molding temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 65% or more have few such components and structures, and therefore smoke generation is suppressed even when used in molding of thermoplastic resins.
  • the inventors since it is difficult to specify the details of hydrogenated aromatic hydrocarbon resins, such as the components that may volatilize at molding processing temperatures and the structures that may thermally decompose, the inventors have specified hydrogenated aromatic hydrocarbon resins that can suppress smoke generation when the thermoplastic resin is melted by defining the hydrogenated aromatic hydrocarbon resins based on the above mass residual ratio.
  • the heating conditions are mild, making it difficult to properly evaluate the tendency of hydrogenated aromatic hydrocarbon resins to emit smoke when the thermoplastic resin is melted.
  • the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
  • the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is less than 65 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
  • the MMAP of the above hydrogenated aromatic hydrocarbon resin may, for example, be 95°C, 94°C, 93°C, 92°C, 91°C, 90°C, 89°C, 88°C, 87°C, 86°C, 85°C, 84°C, 83°C, 82°C, 81°C, 80°C, 79°C, 78°C, 77°C, 76°C, 75°C, 74°C, 73°C, 72°C, 71°C, 70°C, 69°C, 68°C, 67°C, 66°C, 65°C, 64°C, 63°C, 62°C, 61°C, 60°C, 59°C, 58°C, 57°C, 56°C, 55°C, 54°C, 53°C, 52°C, 51°C, 50°C, 49°C, 48°C, 47°C, 46°C, 45°C, 44°C
  • MMAP is measured by the method described in the Examples below.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin is less than 40°C or more than 95°C, the flowability of the thermoplastic resin when melted tends to decrease.
  • the hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP.
  • Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen.
  • the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
  • the weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0%, etc.
  • the aromatic hydrogen content is preferably less than 15%, more preferably less than 10%, even more preferably 5% or less, and particularly preferably 0%, in order to further suppress smoke generation during melting of the thermoplastic resin.
  • the aromatic hydrogen refers to hydrogen atoms covalently bonded to aromatic rings in the hydrogenated aromatic hydrocarbon resin.
  • the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
  • Aromatic hydrogen content (H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%) (1)
  • the hydrogenated aromatic hydrocarbon resin can be obtained by any of various known means. Specifically, for example, the hydrogenated aromatic hydrocarbon resin can be obtained by hydrogenating any of various known aromatic hydrocarbon resins under known hydrogenation conditions.
  • aromatic hydrocarbon resin examples include the aromatic petroleum resin and the pure monomer resin.
  • the hydrogenation conditions include, for example, a method in which the aromatic hydrocarbon resin is heated to about 200 to 350°C in the presence of a hydrogenation catalyst at a hydrogen partial pressure of about 0.2 to 30 MPa.
  • a hydrogenation catalyst include metals such as nickel, palladium, cobalt, ruthenium, platinum, and rhodium, and oxides of these metals.
  • the amount of the hydrogenation catalyst used is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the raw material resin.
  • the above hydrogenation is carried out with the aromatic hydrocarbon resin melted or dissolved in a solvent.
  • the solvent for dissolving the petroleum resin is not particularly limited, but any solvent that is inert to the reaction and easily dissolves the raw materials and products may be used.
  • cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more.
  • the amount of solvent used is usually 10% by mass or more of solids relative to the petroleum resin, and preferably 10 to 70% by mass. Note that the above hydrogenation conditions are described for a batch-type reaction format, but a flow-type reaction format (fixed bed type, fluidized bed type, etc.) can also be used.
  • the content of aromatic hydrogen in the hydrogenated aromatic hydrocarbon resin can be appropriately set by adjusting the hydrogenation rate of the aromatic rings of the aromatic hydrocarbon resin. Specifically, the higher the hydrogenation rate of the aromatic rings, the lower the content of aromatic hydrogen, and the lower the hydrogenation rate of the aromatic rings, the higher the content of aromatic hydrogen.
  • the weight average molecular weight of the above aromatic hydrocarbon resins may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc.
  • the weight average molecular weight of the aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high.
  • the weight average molecular weight of the aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the hydrogenated aromatic hydrocarbon resin may contain any of various known additives, provided that the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, ultraviolet absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the modifier may optionally contain various known additives as long as the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
  • thermoplastic resins (Use of modifiers for thermoplastic resins)
  • the above-mentioned modifier can be used for various known thermoplastic resins.
  • the thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
  • the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, from the viewpoint of further improving the fluidity during melting, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
  • the modifier contains the hydrogenated aromatic hydrocarbon resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the modifier used is not particularly limited.
  • the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted. In one embodiment, the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted.
  • the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted.
  • the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
  • the method of using the modifier is not particularly limited.
  • the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer.
  • the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
  • the present disclosure relates to a resin composition
  • a resin composition comprising the above-mentioned modifier (or the above-mentioned hydrogenated aromatic hydrocarbon resin) and a thermoplastic resin.
  • thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • thermoplastic resin examples include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
  • the polyolefin resin is not particularly limited, and various known polyolefin resins can be used.
  • the polyolefin resins may be used alone or in combination of two or more.
  • the polyolefin resins include, for example, homopolymers of ⁇ -olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins with ⁇ -olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
  • Examples of the ⁇ -olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene.
  • Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride.
  • the unsaturated carboxylic acids may be neutralized with a base or the like.
  • Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these ⁇ -olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
  • the polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and
  • the styrene-based resin is not particularly limited, and various known styrene-based resins can be used.
  • the styrene-based resins may be used alone or in combination of two or more.
  • styrene resin examples include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer.
  • styrene compound examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like.
  • Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, ⁇ , ⁇ -unsaturated carboxylic acids and their anhydrides, and the like.
  • Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and ⁇ -olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers.
  • the styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more.
  • the styrene-based resin is preferably polystyrene.
  • polyamide The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  • the polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials.
  • the polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
  • amino acids examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
  • lactams examples include ⁇ -caprolactam and ⁇ -laurolactam.
  • diamines examples include aliphatic diamines, aromatic diamines, alicyclic diamines, etc.
  • examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc.
  • aromatic diamines examples include metaxylylene diamine, paraxylylene diamine, etc.
  • alicyclic diamines examples include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
  • Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  • polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11).
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polypentamethylene adipamide polyamide 56
  • polytetramethylene adipamide polyamide 46
  • polyhexamethylene sebacamide polyamide 610
  • polypentamethylene sebacamide polyamide 510
  • polyhexamethylene dodecamide polyamide 612
  • polyundecane amide polyamide 11
  • polydodecanamide polyamide 12
  • polynonane terephthalamide polyamide 9T
  • polycaproamide/polyhexamethylene terephthalamide copolymer polyamide 6/6T
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer polyamide 66/6T
  • polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer polyamide 6T/6I
  • polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, or polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, or polyamide 9T.
  • polyester The polyester is not particularly limited, and various known polyesters can be used. The polyester may be used alone or in combination of two or more.
  • the polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof.
  • a polycarboxylic acid or an ester-forming derivative thereof
  • a polyhydric alcohol or an ester-forming derivative thereof
  • two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
  • the polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid.
  • Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Examples of tricarboxylic acids include trimellitic acid.
  • the polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof.
  • the aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol.
  • the alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A.
  • the aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
  • polyesters examples include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
  • the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
  • the polycarbonate is not particularly limited, and various known polycarbonates can be used.
  • the polycarbonates may be used alone or in combination of two or more.
  • the polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor.
  • the polycarbonate may be linear or may have a branched structure.
  • the aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc.
  • the aromatic dihydroxy compounds may be used alone or in combination of two or more.
  • bis(hydroxyaryl)alkanes examples include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ...
  • Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  • 1,1-bis(4-hydroxyphenyl)cyclohexane also known as bisphenol Z
  • 1,1-bis(4-hydroxyphenyl)cyclopentane 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
  • 1,1-bis(4-hydroxyphenyl)cyclohexane 1,1-bis(4-hydroxyphenyl)cyclooctane
  • the dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc.
  • the dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc.
  • the dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc.
  • the dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  • the carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc.
  • One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  • the carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds.
  • the carbonyl halides may be used alone or in combination of two or more.
  • the above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, and carbonates of dihydroxy compounds such as cyclic carbonates.
  • One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
  • polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  • the polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
  • the polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used.
  • the polyphenylene ethers may be used alone or in combination of two or more.
  • the polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
  • R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.
  • Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  • copolymers examples include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
  • the method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
  • the polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention.
  • the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units.
  • a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin.
  • it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer).
  • modified polyphenylene ether resins may be used alone or in combination of two or more.
  • the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  • the polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides.
  • aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
  • the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
  • modified polyphenylene ether resins include, for example, "Iupiace” (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL” (registered trademark) manufactured by SABIC Corporation, and "Zylon” (registered trademark) manufactured by Asahi Kasei Corporation.
  • the polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used.
  • the polycarbonate may be used alone or in combination of two or more kinds.
  • the polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
  • polyhalogenated aromatic compound examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
  • Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred.
  • Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred.
  • These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides.
  • the sulfidizing agents may be used alone or in combination of two or more.
  • the sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
  • the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these
  • the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
  • the polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332.
  • the polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with organic solvents, hot water, acid aqueous solutions, and activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates, and functional group-containing disulfide compounds.
  • polyphenylene sulfide products include, for example, “TORELINA” (registered trademark) manufactured by Toray Industries, Inc., “DIC.PPS” (registered trademark) manufactured by DIC Corporation, and “DURAFIDE” (registered trademark) manufactured by Polyplastics Co., Ltd.
  • the liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used.
  • the liquid crystal polymer may be used alone or in combination of two or more kinds.
  • the liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide.
  • the liquid crystal polyester may be, but is not limited to, an aromatic polyester.
  • the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers.
  • the liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide.
  • the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers.
  • the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
  • the aromatic polyester is not particularly limited, but may be, for example, (1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
  • the aromatic polyester amide is not particularly limited, but may be, for example, (1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
  • the aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or
  • aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxy
  • aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-
  • aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alk
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
  • aromatic diamine examples include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
  • the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
  • the method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means.
  • the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers).
  • melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used.
  • a compound capable of forming an ester it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization.
  • the acylating agent include carboxylic anhydrides such as acetic anhydride.
  • catalysts may be used in the polymerization.
  • catalysts include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
  • the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
  • the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, and more preferably includes at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide, in view of excellent fluidity when the resin composition is melted.
  • the resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
  • the resin composition may optionally contain a filler.
  • the filler is not particularly limited, and various known fillers can be used.
  • the filler may be used alone or in combination of two or more.
  • the filler may be, for example, spherical, needle-like, fibrous, or plate-like.
  • the above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc.
  • Specific examples of metals constituting metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • the above-mentioned fibers are not particularly limited, and various known fibers can be used.
  • the above-mentioned fibers include glass fibers; alumina fibers; organic fibers such as polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, and polyphenylene sulfide fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • the above-mentioned fibers may be used alone or in combination of two or more
  • the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers.
  • the filler preferably contains at least one selected from the group consisting of glass fiber and carbon powder, in order to provide the resin composition with excellent impact resistance.
  • resin compositions containing fillers could have extremely poor moldability because the fillers made the resin compositions have very high melt viscosity, but the resin composition of the present invention uses the modifier, which reduces the melt viscosity even when the resin composition contains the fillers, resulting in excellent moldability.
  • the resin composition may contain any additives as long as the effects of the present invention are not impaired.
  • the additives include flame retardants, conductive agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the hydrogenated aromatic hydrocarbon resins, and light stabilizers.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the filler in the resin composition is not particularly limited.
  • the content of the filler in the resin composition may be, for example, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the filler in the resin composition is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in view of superior fluidity when the resin composition is melted.
  • the content of the additive in the resin composition is not particularly limited.
  • the content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition.
  • the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
  • the method for producing the resin composition is not particularly limited, and various known methods can be adopted.
  • the method for producing the resin composition includes, for example, a method in which the modifier (or the hydrogenated aromatic hydrocarbon resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30 ° C to the melting point +30 ° C.
  • the use of the above modifier or the above hydrogenated aromatic hydrocarbon resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in the production of resin compositions containing fillers, the filler makes the melt viscosity of the resin composition very high, resulting in an extremely low fluidity when melt-kneaded. However, when the above modifier or the above hydrogenated aromatic hydrocarbon resin is used, the fluidity when melt-kneaded is increased, even in the production of resin compositions containing fillers.
  • the molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods.
  • the shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  • the method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  • the above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
  • the hydrogenated aromatic hydrocarbon resin can be used as a modifier for a thermoplastic resin.
  • the hydrogenated aromatic hydrocarbon resin is used in a thermoplastic resin, the flowability of the thermoplastic resin during melting is improved.
  • the thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
  • the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
  • the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for thermoplastic resins having high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the hydrogenated aromatic hydrocarbon resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the modifier used described above.
  • the present disclosure provides the following: (Item A1) The mass retention rate after heating at 300° C. for 2 hours is 65% by mass or more, Mixed methylcyclohexaneaniline cloud point (MMAP) is 40-95°C; Hydrogenated aromatic hydrocarbon resins, Modifier for thermoplastic resins. (Item A2) The thermoplastic resin modifier according to the above item, wherein the hydrogenated aromatic hydrocarbon resin is a hydrogenated aromatic petroleum resin. (Item A3) The modifier for thermoplastic resin according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of 60°C to 95°C.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • thermoplastic resins according to any of the preceding items wherein the color tone of the hydrogenated aromatic hydrocarbon resin is 10 to 200 Hazen.
  • the modifier for thermoplastic resins according to any of the preceding items wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 900 to 4,000.
  • the modifier for thermoplastic resins according to any of the preceding items wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 3,000.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 2,500.
  • Item A8 2.
  • thermoplastic resin according to any one of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an aromatic hydrogen content of less than 15%.
  • a resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66 and polyphenylene sulfide.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66 and polyphenylene sulfide.
  • the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • the content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 70 parts by mass or less per 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
  • the modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability.
  • the modifier when used in thermoplastic resins, can also suppress smoke generation when melted.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,250 and an aromatic hydrogen content of 1%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,600 and an aromatic hydrogen content of 2%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,440 and an aromatic hydrogen content of 7%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,810 and an aromatic hydrogen content of 3% was obtained.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,910 and an aromatic hydrogen content of 8%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 2,330 and an aromatic hydrogen content of 1% was obtained.
  • Production Example 7 100 parts of the hydrogenated C9 petroleum resin obtained in Production Example 6 was heated to 260°C, and water vapor at normal pressure (0.1 MPa) was blown in for 4 hours to remove moisture and the like under reduced pressure, yielding as the residue a hydrogenated C9 petroleum resin having a weight average molecular weight of 2,130 and an aromatic hydrogen content of 2%.
  • Production Example 8 100 parts of the hydrogenated C9 petroleum resin obtained in Production Example 6 was dissolved in 250 parts of 2-ethylhexanol. After dissolution, 250 parts of 2-propanol was added dropwise to obtain a hydrogenated C9 petroleum resin having a weight average molecular weight of 3,240 and an aromatic hydrogen content of 2% as a precipitate.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230 and an aromatic hydrogen content of 15% was obtained.
  • Comparative Production Example 1 100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 4.8 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 260°C, and reaction time 4 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,260 and an aromatic hydrogen content of 8%.
  • Comparative Production Example 2 100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.0 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230 and an aromatic hydrogen content of 21% was obtained.
  • Comparative Production Example 3 100 parts of C9 petroleum resin (color tone 7 Gardner, weight average molecular weight 1,265) and 5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 330°C, and reaction time 3 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 830 and an aromatic hydrogen content of 28%.
  • Thermogravimetric differential thermal analysis (TG/DTA) and thermogravimetric analysis (TGA) can be used to measure the heat loss at temperatures of 1%, 3%, and 5% weight loss (1% weight loss temperature, 3% weight loss temperature, 5% weight loss temperature) at heating rates of 5°C/min and 10°C/min, etc.
  • TG/DTA Thermogravimetric differential thermal analysis
  • TGA thermogravimetric analysis
  • the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Production Example 1 is 250°C
  • the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Comparative Production Example 1 is 257°C
  • the 5% weight loss temperature of the C9 petroleum resin used in Comparative Production Example 5 described later is 300°C. Therefore, the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Production Example 1 is lower than the other two, but as shown in Table 1, the mass retention rate (%) after heating at 300°C for 2 hours is higher for the hydrogenated aromatic petroleum resin of Production Example 1 than for the other two. And, as shown in Table 2 described later, the pellets using the hydrogenated aromatic petroleum resin of Production Example 1 suppressed smoke generation, but the pellets using the hydrogenated aromatic petroleum resin of Comparative Production Example 1 and the above C9 petroleum resin generated a lot of smoke.
  • the 5% weight loss temperature of the hydrogenated aromatic petroleum resins of Production Example 1 and Comparative Production Example 1, and the C9 petroleum resin used in Comparative Example 5 was measured using a simultaneous differential thermal and gravimetric analyzer (manufactured by Hitachi High-Tech Science Corporation, device name "STA7200") in a nitrogen atmosphere, with a sample amount of 10 mg, a measurement temperature of 30 to 500°C, a heating rate of 10°C/min, and a nitrogen flow rate of 250 ml/min, to determine the temperature at which the sample weight decreased by 5%.
  • a simultaneous differential thermal and gravimetric analyzer manufactured by Hitachi High-Tech Science Corporation, device name "STA7200
  • Aromatic hydrogen content (H-spectrum area derived from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%)
  • Example 1 100 parts of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Corporation, product name “Iupilon S-2000”) and 1 part of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”), and kneaded for 5 minutes at a roller rotation speed of 40 rpm and a temperature of 270 ° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 270 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pellets with a cutter.
  • Example 2 Example 2 to 3, 5 and 7 to 11
  • Example 1 except that the hydrogenated aromatic petroleum resin of Production Example 1 was replaced with the hydrogenated aromatic petroleum resin of Production Examples 2 to 9 as the modifier, the same preparation as in Example 1 was carried out to obtain pellets.
  • Example 4 In Example 1, except that 0.5 parts of the hydrogenated aromatic petroleum resin of Production Example 4 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, the same preparation as in Example 1 was performed to obtain pellets.
  • Example 6 In Example 1, except that 3 parts of the hydrogenated aromatic petroleum resin of Production Example 4 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, preparation was performed in the same manner as in Example 1 to obtain pellets.
  • Comparative Example 1 100 parts of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Corporation, product name "Iupilon S-2000”) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 5 minutes at a roller rotation speed of 40 rpm and a temperature of 270°C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 200°C, molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • Example 5 instead of the hydrogenated aromatic petroleum resin of Production Example 1, a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C was used as a modifier in part. Preparation was performed in the same manner as in Example 1 to obtain pellets.
  • the rate of increase in MFR of the pellets of Examples 1 to 11 and Comparative Examples 2 to 5 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The larger the rate of increase in MFR, the more excellent the moldability. ⁇ : The increase in MFR compared to the blank was 20% or more. ⁇ : The increase in MFR compared to the blank was 5% or more but less than 20%. ⁇ : The increase in MFR compared to the blank was less than 5%.
  • Table 2 The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows. *Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
  • PC Polycarbonate resin, product name "Iupilon S-2000", manufactured by Mitsubishi Engineering Plastics Corporation
  • Example 12 A roller mixer type kneader (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") was charged with 100 parts of glass fiber reinforced polybutylene terephthalate resin (manufactured by Toray Industries, Inc., product name “Trecon 1101G-30", polybutylene terephthalate resin 70% by mass, glass fiber 30% by mass) and 5 parts of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier, and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 245 ° C.
  • the obtained kneaded product (resin composition) was removed from the kneader, hot pressed at 250 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pellets with a cutter.
  • Example 12 Except that the hydrogenated aromatic petroleum resin of Production Example 1 was changed to the hydrogenated aromatic petroleum resins of Production Examples 2-3, 5-6 and 9 as the modifier, the same preparation as in Example 12 was performed to obtain pellets.
  • Example 17 In Example 12, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 1 as a modifier, the same preparation as in Example 12 was performed to obtain pellets.
  • Comparative Example 6 100 parts of glass fiber reinforced polybutylene terephthalate resin (manufactured by Toray Industries, Inc., product name “Trecon 1101G-30", 70% by mass of polybutylene terephthalate resin, 30% by mass of glass fiber) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 245°C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 320°C, molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • the increase rate of MFR of the pellets of Examples 12 to 18 and Comparative Examples 7 to 9 relative to the MFR of Comparative Example 6 (blank) was evaluated according to the following criteria. The results are shown in Table 3. The larger the increase rate of MFR, the more excellent the moldability.
  • The increase in MFR compared to blank is 30% or more.
  • The increase in MFR compared to blank is 10% or more but less than 30%.
  • The increase in MFR compared to blank is less than 10%.
  • Example 19 A roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") was charged with 100 parts of glass fiber reinforced polyphenylene sulfide resin (manufactured by Toray Industries, Inc., product name "TORELINA A504X90", polyphenylene sulfide resin 60% by mass, glass fiber 40% by mass) and 5 parts of hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 310 ° C.
  • the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 320 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
  • Example 20 to 21, 23 and 25 to 27 In Example 19, except that the hydrogenated aromatic petroleum resin of Production Example 3 was changed to the hydrogenated aromatic petroleum resin of Production Examples 4 to 9 as the modifier, the same preparation as in Example 19 was performed to obtain pellets.
  • Example 22 In Example 19, except that 2.5 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, the same preparation as in Example 19 was performed to obtain pellets.
  • Example 24 In Example 19, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, the same preparation as in Example 19 was performed to obtain pellets.
  • Comparative Example 10 100 parts of glass fiber reinforced polyphenylene sulfide resin (manufactured by Toray Industries, Inc., product name “TORELINA A504X90", 60% by mass of polyphenylene sulfide resin, 40% by mass of glass fiber) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 310 ° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 320 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
  • Example 19 Comparative Examples 11 to 13 In Example 19, except that the hydrogenated aromatic petroleum resin of Production Example 3 was replaced with the hydrogenated aromatic petroleum resin of Comparative Production Examples 1 to 3 as the modifier, the same preparation as in Example 19 was carried out to obtain pellets.
  • Example 19 instead of the hydrogenated aromatic petroleum resin of Production Example 3, 5 parts of a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C were used as a modifier. Preparation was performed in the same manner as in Example 19, and pellets were obtained.
  • the melt viscosity reduction rate of the pellets of Examples 19 to 27 and Comparative Examples 11 to 14 relative to the melt viscosity of Comparative Example 10 (blank) was evaluated according to the following criteria. The results are shown in Table 4. The larger the melt viscosity reduction rate, the more excellent the moldability.
  • The decrease in melt viscosity compared to the blank is 50% or more.
  • The decrease in melt viscosity compared to the blank is 20% or more but less than 50%.
  • The decrease in melt viscosity compared to the blank is less than 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a modifying agent for thermoplastic resins, the modifying agent containing a hydrogenated aromatic hydrocarbon resin that has a residual mass ratio of 65% by mass or more after being heated at 300°C for two hours, while having a mixed methylcyclohexane aniline cloud point (MMAP) of 40°C to 95°C.

Description

熱可塑性樹脂用の改質剤、樹脂組成物及び水素化芳香族系炭化水素樹脂の使用Use of modifier for thermoplastic resin, resin composition and hydrogenated aromatic hydrocarbon resin
  本発明は、熱可塑性樹脂用の改質剤、樹脂組成物及び水素化芳香族系炭化水素樹脂の使用に関する。 The present invention relates to a modifier for thermoplastic resins, a resin composition, and the use of a hydrogenated aromatic hydrocarbon resin.
熱可塑性樹脂は、工業的に様々な分野で用いられており、その中でも、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、その優れた耐熱性と、強度のバランスから自動車材料、電気電子機器材料、住宅・建材材料として幅広く利用されている。一方で、上記熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、成形加工温度が高く、溶融流動性に劣るものが多いため、通常は、熱可塑性樹脂に滑剤等の添加剤を添加することにより、溶融時における見かけの流動粘度を低下させて、成形加工性を向上させている(特許文献1、2)。 Thermoplastic resins are used in a variety of industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automotive materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength. However, the above-mentioned thermoplastic resins, particularly engineering plastics and super engineering plastics, often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resin to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
特開2012-009754号公報JP 2012-009754 A 特開2004-137423号公報JP 2004-137423 A
しかしながら、熱可塑性樹脂においては、従来の滑剤を用いた場合であっても、溶融時の流動性が未だに不十分であり、成形加工性に劣るものがある。また、熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの融点が凡そ200℃以上と高いため、高温下(250℃以上)にて溶融させるが、従来の滑剤を添加すると溶融の際に発煙が生じる場合がある。 However, even when conventional lubricants are used, some thermoplastic resins still have insufficient fluidity when melted, resulting in poor moldability. Furthermore, thermoplastic resins, particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher). However, the addition of conventional lubricants can cause smoke during melting.
そこで、本発明は、熱可塑性樹脂の溶融時の発煙を抑制し、熱可塑性樹脂の成形加工性を向上し得る、新規な熱可塑性樹脂用の改質剤を提供することを目的とする。 The present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
 本発明者は、鋭意検討を重ねた結果、300℃で2時間加熱後の質量残留率が高く、特定の混合メチルシクロヘキサンアニリン曇点(MMAP)を有する水素化芳香族系炭化水素樹脂を含む熱可塑性樹脂用の改質剤によって、上記課題を解決することを見出した。 After extensive research, the inventors discovered that the above problems could be solved by using a modifier for thermoplastic resins that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
なお、本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
(項目1)
300℃で2時間加熱後の質量残留率が65質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、40~95℃である
水素化芳香族系炭化水素樹脂を含む、
熱可塑性樹脂用の改質剤。
(Item 1)
The mass retention rate after heating at 300° C. for 2 hours is 65% by mass or more,
The mixed methylcyclohexaneaniline cloud point (MMAP) of the hydrogenated aromatic hydrocarbon resin is 40 to 95° C.
Modifier for thermoplastic resins.
(項目2)
項目1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(Item 2)
A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
(項目3)
熱可塑性樹脂に用いる改質剤としての、項目1に記載の水素化芳香族系炭化水素樹脂の使用。
(Item 3)
2. Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 as a modifier for thermoplastic resins.
(項目4)
熱可塑性樹脂を含む樹脂組成物を製造するための、項目1に記載の水素化芳香族系炭化水素樹脂の使用。
(Item 4)
2. Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 for producing a resin composition containing a thermoplastic resin.
 本開示の全体にわたり、各物性値、含有量等の数値の範囲は、適宜(例えば下記の各項目に記載の値から選択して)設定され得る。具体的には、数値αの例示がA3、A2、A1(A3>A2>A1とする)である場合、数値αの範囲は、例えば、A3以下、A2以下、A3未満、A2未満、A1以上、A2以上、A1より大きい、A2より大きい、A1~A2(A1以上A2以下)、A1~A3、A2~A3、A1以上A3未満、A1以上A2未満、A2以上A3未満、A1より大きくA3未満、A1より大きくA2未満、A2より大きくA3未満、A1より大きくA3以下、A1より大きくA2以下、A2より大きくA3以下等が挙げられる。なお、本開示において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。以下では、本開示の構成要素や製造方法等について詳細に説明する。 Throughout this disclosure, the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below). Specifically, when the examples of the value α are A3, A2, and A1 (A3>A2>A1), the range of the value α may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, and so on. In this disclosure, the word "to" is used to mean that the values described before and after it are included as the lower and upper limits. Below, the components and manufacturing methods of this disclosure will be described in detail.
[熱可塑性樹脂用の改質剤]
本開示は、300℃で2時間加熱後の質量残留率(以下、質量残留率とも記す。)が65質量%以上であり、混合メチルシクロヘキサンアニリン曇点(MMAP)(以下、MMAPとも記す。)が40~95℃である水素化芳香族系炭化水素樹脂(以下、水素化芳香族系炭化水素樹脂とも記す)を含む、熱可塑性樹脂用の改質剤(以下、改質剤とも記す)に関する。
[Modifier for thermoplastic resin]
The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a hydrogenated aromatic hydrocarbon resin (hereinafter also referred to as hydrogenated aromatic hydrocarbon resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 65 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 40 to 95°C.
 上記改質剤は、熱可塑性樹脂に用いることにより、熱可塑性樹脂における溶融時の流動性を向上し得るように機能(流動性向上剤)する。 When used in thermoplastic resins, the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
<水素化芳香族系炭化水素樹脂>
上記水素化芳香族系炭化水素樹脂は、質量残留率及びMMAPが上記範囲である芳香族系炭化水素樹脂の水素化物であれば、特に限定されず、各種公知のものを使用できる。上記水素化芳香族系炭化水素樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Hydrogenated aromatic hydrocarbon resin>
The hydrogenated aromatic hydrocarbon resin is not particularly limited as long as it is a hydrogenated aromatic hydrocarbon resin having a mass residual ratio and MMAP within the above range, and various known hydrogenated aromatic hydrocarbon resins can be used. The hydrogenated aromatic hydrocarbon resins may be used alone or in combination of two or more.
上記芳香族系炭化水素樹脂は、例えば、芳香族系石油樹脂、ピュアモノマー樹脂等が挙げられる。芳香族系炭化水素樹脂は、1種を単独で、又は2種以上を組み合わせても良い。 Examples of the aromatic hydrocarbon resin include aromatic petroleum resins and pure monomer resins. The aromatic hydrocarbon resins may be used alone or in combination of two or more.
 上記芳香族系石油樹脂は、例えば、ナフサのC9石油留分から得られるC9系石油樹脂、該C9系石油樹脂を単独、又は複数重合させた共重合体等が挙げられる。C9石油留分は、例えば、スチレン等の炭素数8の芳香族化合物;α-メチルスチレン、β-メチルスチレン、ビニルトルエン、インデン等の炭素数9の芳香族化合物;2-イソプロペニルトルエン、4-イソプロペニルトルエン、1-メチルインデン、2-メチルインデン、3-メチルインデン等の炭素数10の芳香族化合物;2,3-ジメチルインデン、2,5-ジメチルインデン等の炭素数11の芳香族化合物;これらの混合物等が挙げられる。 The aromatic petroleum resins include, for example, C9 petroleum resins obtained from C9 petroleum fractions of naphtha, and copolymers obtained by polymerizing the C9 petroleum resins alone or in combination. Examples of C9 petroleum fractions include aromatic compounds with 8 carbon atoms such as styrene; aromatic compounds with 9 carbon atoms such as α-methylstyrene, β-methylstyrene, vinyltoluene, and indene; aromatic compounds with 10 carbon atoms such as 2-isopropenyltoluene, 4-isopropenyltoluene, 1-methylindene, 2-methylindene, and 3-methylindene; aromatic compounds with 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; and mixtures of these.
 上記ピュアモノマー樹脂は、例えば、上記C9石油留分を精製して得られる重合性モノマー(スチレン、ビニルトルエン、α-メチルスチレン、イソプロペニルトルエン、インデン)をカチオン重合やラジカル重合等により重合して得られる樹脂が挙げられる。 The pure monomer resins mentioned above include, for example, resins obtained by polymerizing polymerizable monomers (styrene, vinyltoluene, α-methylstyrene, isopropenyltoluene, indene) obtained by refining the above C9 petroleum fraction through cationic polymerization, radical polymerization, etc.
上記芳香族系炭化水素樹脂の製造方法は、特に限定されないが、例えば、原料となる石油留分や重合性モノマーを、塩化アルミニウムや三フッ化ホウ素等のフリーデルクラフト触媒の存在下でカチオン重合させる方法等が挙げられる。 The method for producing the aromatic hydrocarbon resin is not particularly limited, but examples include a method in which raw materials such as petroleum fractions and polymerizable monomers are cationic polymerized in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
 1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、好ましくは上記芳香族系石油樹脂の水素化物が挙げられる。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably a hydrogenated aromatic petroleum resin.
(水素化芳香族系炭化水素樹脂の物性)
上記水素化芳香族系炭化水素樹脂の上記質量残留率は、例えば、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%、83質量%、82質量%、81質量%、80質量%、79質量%、78質量%、77質量%、76質量%、75質量%、74質量%、73質量%、72質量%、71質量%、70質量%、69質量%、68質量%、67質量%、66質量%、65質量%等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の上記質量残留率は、熱可塑性樹脂の溶融時における発煙を抑制し得る点から、好ましくは65質量%以上が挙げられ、より好ましくは70質量%以上が挙げられ、さらに好ましくは80質量%以上が挙げられ、さらに好ましくは90質量%以上が挙げられ、特に好ましくは100質量%が挙げられる。上記水素化芳香族系炭化水素樹脂の上記質量残留率が高い程、熱可塑性樹脂の溶融時における発煙をより抑制し得る。
(Physical Properties of Hydrogenated Aromatic Hydrocarbon Resins)
Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, and 65 mass%, etc. In one embodiment, the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is preferably 65% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass, from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin. The higher the mass residual ratio of the hydrogenated aromatic hydrocarbon resin, the more smoke generation during melting of the thermoplastic resin can be suppressed.
なお、本開示において、上記質量残留率は、後述の実施例に記載の方法で測定されるものである。 In this disclosure, the mass retention rate is measured by the method described in the Examples below.
熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの成形加工温度は250℃以上である場合が多い。本発明者らは、熱可塑性樹脂に水素化芳香族系炭化水素樹脂を含む改質剤を用いて、その溶融時において発煙する場合、当該水素化芳香族系炭化水素樹脂が成形加工温度において揮発し得る成分及び熱分解し得る構造を多く有しているために、その揮発成分及び熱分解物により発煙が生じると推察した。そして、本発明者らは、水素化芳香族系炭化水素樹脂について、成形加工温度と同等又はそれ以上の温度(300℃)で、且つ長時間(2時間)加熱する過酷な条件下での質量残留率を評価し、その質量残留率が65質量%以上のものは、そのような成分や構造が少ないために、熱可塑性樹脂の成形加工において使用しても発煙が抑制されることを見出した。 Thermoplastic resins, particularly engineering plastics and super engineering plastics, are often molded at temperatures of 250°C or higher. The inventors of the present invention have hypothesized that when a modifier containing a hydrogenated aromatic hydrocarbon resin is used in a thermoplastic resin and smokes when melted, the hydrogenated aromatic hydrocarbon resin has many components that can volatilize and structures that can thermally decompose at the molding temperature, and that the smoke is generated by the volatile components and thermal decomposition products. The inventors of the present invention have evaluated the mass retention rate of hydrogenated aromatic hydrocarbon resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the molding temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 65% or more have few such components and structures, and therefore smoke generation is suppressed even when used in molding of thermoplastic resins.
そして、水素化芳香族系炭化水素樹脂においては、成形加工温度において揮発し得る成分や熱分解し得る構造について、その詳細は多岐にわたり特定するのは困難であるため、本発明者らは、上記質量残留率で水素化芳香族系炭化水素樹脂を規定することにより、熱可塑性樹脂の溶融時における発煙を抑制し得るものを特定している。 In addition, since it is difficult to specify the details of hydrogenated aromatic hydrocarbon resins, such as the components that may volatilize at molding processing temperatures and the structures that may thermally decompose, the inventors have specified hydrogenated aromatic hydrocarbon resins that can suppress smoke generation when the thermoplastic resin is melted by defining the hydrogenated aromatic hydrocarbon resins based on the above mass residual ratio.
 なお、上記質量残留率において加熱温度が300℃より低い場合、及び/又は、加熱時間が2時間より短い場合、加熱条件が温和なために、水素化芳香族系炭化水素樹脂においては、熱可塑性樹脂の溶融時における発煙の傾向を適切に評価することが困難となる。また、熱可塑性樹脂の溶融時に発煙する場合、発煙による装置汚れ・金型汚れが発生するが、加熱時間が2時間より短いと、実際の成形加工における装置汚れ・金型汚れを反映できないため、それら汚れ具合を適切に評価することが困難となる。 When the heating temperature is lower than 300°C and/or the heating time is shorter than 2 hours at the above mass retention rate, the heating conditions are mild, making it difficult to properly evaluate the tendency of hydrogenated aromatic hydrocarbon resins to emit smoke when the thermoplastic resin is melted. In addition, when the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
上記水素化芳香族系炭化水素樹脂の上記質量残留率が65質量%未満である場合は、熱可塑性樹脂に使用すると、その溶融時において発煙が多く発生する傾向にある。 If the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is less than 65 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
上記水素化芳香族系炭化水素樹脂のMMAPは、例えば、95℃、94℃、93℃、92℃、91℃、90℃、89℃、88℃、87℃、86℃、85℃、84℃、83℃、82℃、81℃、80℃、79℃、78℃、77℃、76℃、75℃、74℃、73℃、72℃、71℃、70℃、69℃、68℃、67℃、66℃、65℃、64℃、63℃、62℃、61℃、60℃、59℃、58℃、57℃、56℃、55℃、54℃、53℃、52℃、51℃、50℃、49℃、48℃、47℃、46℃、45℃、44℃、43℃、42℃、41℃、40℃等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂のMMAPは、熱可塑性樹脂の溶融時における流動性を向上させる点から、好ましくは40~95℃が挙げられ、より好ましくは60℃~95℃が挙げられ、さらに好ましくは80℃~95℃が挙げられる。 The MMAP of the above hydrogenated aromatic hydrocarbon resin may, for example, be 95°C, 94°C, 93°C, 92°C, 91°C, 90°C, 89°C, 88°C, 87°C, 86°C, 85°C, 84°C, 83°C, 82°C, 81°C, 80°C, 79°C, 78°C, 77°C, 76°C, 75°C, 74°C, 73°C, 72°C, 71°C, 70°C, 69°C, 68°C, 67°C, 66°C, 65°C, 64°C, 63°C, 62°C, 61°C, 60°C, 59°C, 58°C, 57°C, 56°C, 55°C, 54°C, 53°C, 52°C, 51°C, 50°C, 49°C, 48°C, 47°C, 46°C, 45°C, 44°C, 43°C, 42°C, 41°C, or 40°C. In one embodiment, the MMAP of the hydrogenated aromatic hydrocarbon resin is preferably 40 to 95°C, more preferably 60 to 95°C, and even more preferably 80 to 95°C, in order to improve the fluidity of the thermoplastic resin when melted.
なお、本開示において、MMAPは、後述の実施例に記載の方法で測定されるものである。 Note that in this disclosure, MMAP is measured by the method described in the Examples below.
上記水素化芳香族系炭化水素樹脂のMMAPは、上記水素化芳香族系炭化水素樹脂における芳香族性の特質を示すものである。上記水素化芳香族系炭化水素樹脂における芳香族部分の割合が高いと、MMAPは低い傾向にあり、芳香族部分の割合が低いと、MMAPは高い傾向にある。 The MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
上記水素化芳香族系炭化水素樹脂のMMAPが40℃未満である場合、又は、MMAPが95℃超である場合、熱可塑性樹脂の溶融時における流動性が低下する傾向にある。 If the MMAP of the hydrogenated aromatic hydrocarbon resin is less than 40°C or more than 95°C, the flowability of the thermoplastic resin when melted tends to decrease.
上記水素化芳香族系炭化水素樹脂は、上記質量残留率及びMMAP以外の物性は特に限定されない。上記水素化芳香族系炭化水素樹脂の色調は、例えば、400ハーゼン、350ハーゼン、300ハーゼン、250ハーゼン、200ハーゼン、150ハーゼン、100ハーゼン、95ハーゼン、90ハーゼン、85ハーゼン、80ハーゼン、75ハーゼン、70ハーゼン、65ハーゼン、60ハーゼン、55ハーゼン、50ハーゼン、45ハーゼン、40ハーゼン、35ハーゼン、30ハーゼン、25ハーゼン、20ハーゼン、15ハーゼン、10ハーゼン、5ハーゼン等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の色調は、着色が抑制される点から、好ましくは10~400ハーゼン程度が挙げられ、より好ましくは10~200ハーゼン程度が挙げられる。なお、本開示において、色調は、ハーゼン単位はJIS K 0071-1に準拠して、ガードナー単位はJIS K 0071-2に準拠して測定されたものである。 The hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP. Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen. In one embodiment, the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
上記水素化芳香族系炭化水素樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは900以上が挙げられ、より好ましくは1,000以上が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制し、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは900~4,000程度が挙げられ、より好ましくは1,000~3,000程度が挙げられ、さらに好ましくは1,000~2,500程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
上記水素化芳香族系炭化水素樹脂の重量平均分子量が高い程、上記質量残留率は高い傾向にある。 The higher the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin, the higher the mass retention rate tends to be.
 上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率は、例えば、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0%等が挙げられる。1つの実施形態において上記芳香族水素の含有率は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは15%未満が挙げられ、より好ましくは10%未満が挙げられ、さらに好ましくは5%以下が挙げられ、特に好ましくは0%が挙げられる。なお、上記芳香族水素とは、上記水素化芳香族系炭化水素樹脂における芳香環に共有結合している水素原子のことを意味する。 The aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0%, etc. In one embodiment, the aromatic hydrogen content is preferably less than 15%, more preferably less than 10%, even more preferably 5% or less, and particularly preferably 0%, in order to further suppress smoke generation during melting of the thermoplastic resin. The aromatic hydrogen refers to hydrogen atoms covalently bonded to aromatic rings in the hydrogenated aromatic hydrocarbon resin.
なお、本開示において、上記芳香族水素の含有率は、NMR測定法により求められ、水素化芳香族系炭化水素樹脂におけるH-NMRの全H-スペクトル面積と、そのH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積から、以下の(1)式に基づいて計算する。
芳香族水素の含有率=(H-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%)・・・(1)
In the present disclosure, the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
Aromatic hydrogen content=(H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%) (1)
上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、上記質量残留率は高い傾向にある。また、上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、MMAPは高い傾向にあり、上当該芳香族水素の含有率が高い程、MMAPは低い傾向にある。 The lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the mass residual ratio tends to be. In addition, the lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the MMAP tends to be, and the higher the aromatic hydrogen content, the lower the MMAP tends to be.
(水素化芳香族系炭化水素樹脂の製造方法)
 上記水素化芳香族系炭化水素樹脂は、各種公知の手段を用いて得ることができる。具体的には、例えば、公知の水素化条件を用いて、各種公知の芳香族系炭化水素樹脂を水素化することにより得ることができる。
(Method for producing hydrogenated aromatic hydrocarbon resin)
The hydrogenated aromatic hydrocarbon resin can be obtained by any of various known means. Specifically, for example, the hydrogenated aromatic hydrocarbon resin can be obtained by hydrogenating any of various known aromatic hydrocarbon resins under known hydrogenation conditions.
上記芳香族系炭化水素樹脂は、例えば、上記芳香族系石油樹脂、上記ピュアモノマー樹脂等が挙げられる。 Examples of the aromatic hydrocarbon resin include the aromatic petroleum resin and the pure monomer resin.
 水素化条件は、例えば、水素化触媒の存在下、水素分圧が0.2~30MPa程度で、200~350℃程度に、上記芳香族系炭化水素樹脂を加熱する方法等が挙げられる。水素化触媒としては、例えば、ニッケル、パラジウム、コバルト、ルテニウム、白金及びロジウム等の金属や、該金属の酸化物が挙げられる。1つの実施形態において、水素化触媒の使用量は、原料樹脂100質量部に対して、好ましくは0.01~10質量部程度が挙げられる。 The hydrogenation conditions include, for example, a method in which the aromatic hydrocarbon resin is heated to about 200 to 350°C in the presence of a hydrogenation catalyst at a hydrogen partial pressure of about 0.2 to 30 MPa. Examples of the hydrogenation catalyst include metals such as nickel, palladium, cobalt, ruthenium, platinum, and rhodium, and oxides of these metals. In one embodiment, the amount of the hydrogenation catalyst used is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the raw material resin.
 上記水素化は、上記芳香族系炭化水素樹脂を溶融して、又は溶剤に溶解した状態で行う。該石油樹脂を溶解する溶剤は特に限定されないが、反応に不活性で原料や生成物が溶解し易い溶剤であればよい。例えば、シクロヘキサン、n-ヘキサン、n-ヘプタン、デカリン、テトラヒドロフラン、ジオキサン等を1種または2種以上を組み合わせて使用できる。1つの実施形態において、溶剤の使用量は、通常、該石油樹脂に対して固形分10質量%以上が挙げられ、好ましくは10~70質量%が挙げられる。なお、上記水素化条件は反応形式として回分式を採用した場合について説明しているが、反応形式としては流通式(固定床式、流動床式等)を採用することもできる。 The above hydrogenation is carried out with the aromatic hydrocarbon resin melted or dissolved in a solvent. The solvent for dissolving the petroleum resin is not particularly limited, but any solvent that is inert to the reaction and easily dissolves the raw materials and products may be used. For example, cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more. In one embodiment, the amount of solvent used is usually 10% by mass or more of solids relative to the petroleum resin, and preferably 10 to 70% by mass. Note that the above hydrogenation conditions are described for a batch-type reaction format, but a flow-type reaction format (fixed bed type, fluidized bed type, etc.) can also be used.
 上記水素化においては、上記芳香族系炭化水素樹脂の芳香環に対する水素化率を調整することにより、上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率を適宜設定できる。具体的には、当該芳香環に対する水素化率が高い程、上記芳香族水素の含有率は低くなり、当該芳香環に対する水素化率が低い程、上記芳香族水素の含有率は高くなる。 In the hydrogenation, the content of aromatic hydrogen in the hydrogenated aromatic hydrocarbon resin can be appropriately set by adjusting the hydrogenation rate of the aromatic rings of the aromatic hydrocarbon resin. Specifically, the higher the hydrogenation rate of the aromatic rings, the lower the content of aromatic hydrogen, and the lower the hydrogenation rate of the aromatic rings, the higher the content of aromatic hydrogen.
なお、上記芳香族系炭化水素樹脂の芳香環に対する水素化率は、NMR測定法により求められ、上記芳香族系炭化水素樹脂及びそれから得られる水素化芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積から以下の式に基づき算出する。
 
水素化率={1-(水素化芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積)}×100(%)。
The hydrogenation rate of the aromatic rings in the aromatic hydrocarbon resin is determined by NMR measurement and calculated based on the following formula from the H-spectrum area derived from the aromatic rings appearing at about 7 ppm in 1H -NMR of the aromatic hydrocarbon resin and the hydrogenated aromatic hydrocarbon resin obtained therefrom.

Hydrogenation rate={1-(H-spectrum area derived from aromatic rings appearing near 7 ppm in 1 H-NMR of hydrogenated aromatic hydrocarbon resin/H-spectrum area derived from aromatic rings appearing near 7 ppm in 1 H-NMR of aromatic hydrocarbon resin)}×100 (%).
また、上記芳香族系炭化水素樹脂の重量平均分子量が高い程、上記水素化芳香族系炭化水素樹脂の質量残留率は高い傾向にある。 Furthermore, the higher the weight average molecular weight of the aromatic hydrocarbon resin, the higher the mass retention rate of the hydrogenated aromatic hydrocarbon resin tends to be.
上記芳香族系炭化水素樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900等が挙げられる。1つの実施形態において、上記芳香族系炭化水素樹脂の重量平均分子量は、上記水素化芳香族系炭化水素樹脂の質量残留率が高い点から、好ましくは900以上が挙げられ、より好ましくは1,000以上が挙げられる。1つの実施形態において、上記芳香族系炭化水素樹脂の重量平均分子量は、上記水素化芳香族系炭化水素樹脂の質量残留率が高い点から、好ましくは900~4,000程度が挙げられ、より好ましくは1,000~3,000程度が挙げられ、さらに好ましくは1,000~2,500程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the above aromatic hydrocarbon resins may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc. In one embodiment, the weight average molecular weight of the aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high. In one embodiment, the weight average molecular weight of the aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。 In one embodiment, the hydrogenated aromatic hydrocarbon resin may contain any of various known additives, provided that the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, ultraviolet absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more.
(添加剤)
1つの実施形態において、上記改質剤は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。1つの実施形態において、上記添加剤の含有量は、上記水素化芳香族系炭化水素樹脂100質量部に対して、好ましくは0.5~10質量部が挙げられる。
(Additive)
In one embodiment, the modifier may optionally contain various known additives as long as the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more. In one embodiment, the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
(熱可塑性樹脂用の改質剤の使用)
上記改質剤は、各種公知の熱可塑性樹脂に対して用いることができる。熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。熱可塑性樹脂は、例えば、後述のものが挙げられる。
(Use of modifiers for thermoplastic resins)
The above-mentioned modifier can be used for various known thermoplastic resins. The thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
 1つの実施形態において、上記改質剤は、溶融時における流動性をより向上させる点から、好ましくはポリエステル、ポリフェニレンエーテル、ポリカーボネート、ポリアミド及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用され、より好ましくはポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用される。 In one embodiment, the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, from the viewpoint of further improving the fluidity during melting, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
1つの実施形態において、上記改質剤は、上記水素化芳香族系炭化水素樹脂を含むため、好ましくは成形加工温度の高い熱可塑性樹脂、特に好ましくは、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いられる。 In one embodiment, the modifier contains the hydrogenated aromatic hydrocarbon resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
上記改質剤の使用量は、特に限定されない。上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。 The amount of the modifier used is not particularly limited. For example, the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted. In one embodiment, the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when melted.
また、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは5~10質量部程度が挙げられる。 In addition, when a filler described below is used in combination with the thermoplastic resin, the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
 上記改質剤の使用方法は、特に限定されない。上記改質剤の使用方法は、例えば、混合機に、熱可塑性樹脂と共に改質剤を添加し、当該混合機で溶融混練する方法等が挙げられる。上記混合機は、例えば、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。 The method of using the modifier is not particularly limited. For example, the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer. Examples of the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
[樹脂組成物]
本開示は、上記改質剤(又は上記水素化芳香族系炭化水素樹脂)及び熱可塑性樹脂を含む樹脂組成物に関する。
[Resin composition]
The present disclosure relates to a resin composition comprising the above-mentioned modifier (or the above-mentioned hydrogenated aromatic hydrocarbon resin) and a thermoplastic resin.
<熱可塑性樹脂>
上記熱可塑性樹脂は、特に限定されず、各種公知のものを使用できる。上記熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Thermoplastic resin>
The thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used. The thermoplastic resins may be used alone or in combination of two or more.
 上記熱可塑性樹脂は、例えば、ポリオレフィン系樹脂、スチレン系樹脂、ABS樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、液晶ポリマー、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリアリレート、フッ素樹脂等が挙げられる。 Examples of the thermoplastic resin include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
(ポリオレフィン系樹脂)
上記ポリオレフィン系樹脂は、特に限定されず、各種公知のものを使用できる。上記ポリオレフィン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(Polyolefin resin)
The polyolefin resin is not particularly limited, and various known polyolefin resins can be used. The polyolefin resins may be used alone or in combination of two or more.
上記ポリオレフィン系樹脂は、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~8程度のα-オレフィンの単独重合体;前記α-オレフィンの二元又は三元の(共)重合体;前記α-オレフィンと、炭素数9~18程度のα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステル及び酢酸ビニル等との二元又は三元の(共)重合体等が挙げられる。 The polyolefin resins include, for example, homopolymers of α-olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned α-olefins; binary or ternary (co)polymers of the above-mentioned α-olefins with α-olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
上記炭素数2~18程度のα-オレフィンは、例えば、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-オクタデセン等が挙げられる。上記共役ジエン、非共役ジエンは、例えば、ブタジエン、イソプレン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエン等が挙げられる。上記不飽和カルボン酸は、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。また、上記不飽和カルボン酸は、塩基等により中和されていてもよい。上記(メタ)アクリル酸エステルは、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソオクチル等が挙げられる。これらα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステルは、2種以上を用いてもよい。 Examples of the α-olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene. Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene. Examples of the unsaturated carboxylic acids include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride. The unsaturated carboxylic acids may be neutralized with a base or the like. Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these α-olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
 上記ポリオレフィン系樹脂は、例えば、ポリエチレン、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ヘプテン共重合体、エチレン-1-オクテン共重合体等のエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-4-メチル-1-ペンテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体等のプロピレン系樹脂;1-ブテン単独重合体、1-ブテン-エチレン共重合体、1-ブテン-プロピレン共重合体等の1-ブテン系樹脂;4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン-エチレン共重合体等の4-メチル-1-ペンテン系樹脂等が挙げられる。 The polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and 4-methyl-1-pentene-ethylene copolymer.
(スチレン系樹脂)
上記スチレン系樹脂は、特に限定されず、各種公知のものを使用できる。上記スチレン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(styrene resin)
The styrene-based resin is not particularly limited, and various known styrene-based resins can be used. The styrene-based resins may be used alone or in combination of two or more.
  上記スチレン系樹脂は、例えば、ゴム質重合体存在下又は非存在下で、スチレン系化合物と必要に応じてこれらと共重合可能な他の化合物とを重合して得られる樹脂等が挙げられる。上記スチレン系化合物は、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等が挙げられる。上記スチレン系化合物と共重合可能な他の化合物は、例えば、シアン化ビニル化合物、アクリル酸エステル、メタクリル酸エステル、エポキシ基含有メタクリル酸エステル、マレイミド系化合物、α、β-不飽和カルボン酸及びその無水物等が挙げられる。上記ゴム質重合体は、例えば、ポリブタジエン、ポリイソプレン、ジエン系共重合体、エチレンとα-オレフィンとの共重合体、エチレンと不飽和カルボン酸エステルとの共重合体、エチレンとプロピレンと非共役ジエンターポリマー、アクリル系ゴム等が挙げられる。上記スチレン系化合物、上記スチレン系化合物と共重合可能な他の化合物及び上記ゴム質重合体は、1種を単独で、又は2種以上を併用してもよい。1つの実施形態において、上記スチレン系樹脂は、好ましくはポリスチレンが挙げられる。 Examples of the styrene resin include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer. Examples of the styrene compound include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like. Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, α,β-unsaturated carboxylic acids and their anhydrides, and the like. Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and α-olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers. The styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more. In one embodiment, the styrene-based resin is preferably polystyrene.
(ポリアミド)
上記ポリアミドは、特に限定されず、各種公知のものを使用できる。上記ポリアミドは、1種を単独で又は2種以上を組み合わせても良い。
(polyamide)
The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  上記ポリアミドは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる原料とするものである。上記ポリアミドは、これら原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。また、これら原料は2種以上を併用してもよい。 The polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials. The polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
 上記アミノ酸は、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。 Examples of the above amino acids include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
 上記ラクタムは、例えば、ε-カプロラクタム、ω-ラウロラクタム等が挙げられる。 Examples of the lactams include ε-caprolactam and ω-laurolactam.
 上記ジアミンは、例えば、脂肪族ジアミン、芳香族ジアミン、脂環族ジアミン等が挙げられる。脂肪族ジアミンは、例えば、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン等が挙げられる。芳香族ジアミンは、例えば、メタキシレンジアミン、パラキシリレンジアミン等が挙げられる。脂環族ジアミンは、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジン等挙げられる。 Examples of the diamines include aliphatic diamines, aromatic diamines, alicyclic diamines, etc. Examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc. Examples of the aromatic diamines include metaxylylene diamine, paraxylylene diamine, etc. Examples of alicyclic diamines include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
 上記ジカルボン酸は、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂環族ジカルボン酸は、例えば、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等が挙げられる。 Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids. Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  上記ポリアミド樹脂は、例えば、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリノナンテレフタルアミド(ポリアミド9T)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ポリアミド6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリキシリレンアジパミド(ポリアミドXD6)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/5T)およびこれらの混合物ないし共重合体などが挙げられる。 The above polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11). , polydodecanamide (polyamide 12), polynonane terephthalamide (polyamide 9T), polycaproamide/polyhexamethylene terephthalamide copolymer (polyamide 6/6T), polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer (polyamide 66/6T), polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6I), polyhexamethylene adipamide/ Polyhexamethylene isophthalamide/polycaproamide copolymer (polyamide 66/6I/6), polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 6T/6I), polyhexamethylene terephthalamide/polydodecanamide copolymer (polyamide 6T/12), polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide Polyamide 66/6T/6I), polyxylylene adipamide (polyamide XD6), polymetaxylylene adipamide (polyamide MXD6), polyhexamethylene terephthalamide/poly-2-methylpentamethylene terephthalamide copolymer (polyamide 6T/M5T), polyhexamethylene terephthalamide/polypentamethylene terephthalamide copolymer (polyamide 6T/5T), and mixtures or copolymers thereof.
  1つの実施形態において、上記ポリアミドは、好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9T、ポリアミド6/66コポリマー、ポリアミド6/12コポリマーが挙げられ、同様の点から、より好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9Tが挙げられる。 In one embodiment, the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, or polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, or polyamide 9T.
(ポリエステル)
上記ポリエステルは、特に限定されず、各種公知のものを使用できる。上記ポリエステルは、1種を単独で又は2種以上を組み合わせても良い。
(polyester)
The polyester is not particularly limited, and various known polyesters can be used. The polyester may be used alone or in combination of two or more.
上記ポリエステルは、多価カルボン酸(あるいは、そのエステル形成性誘導体)と多価アルコール(あるいはそのエステル形成性誘導体)とを主成分とする縮合反応により得られる重合体ないしは共重合体、あるいはこれらの混合物が挙げられる。また、多価カルボン酸及び多価アルコールは、それぞれ2種以上を併用してもよい。 The polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof. In addition, two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
上記多価カルボン酸は、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環式ジカルボン酸、トリカルボン酸およびこれらのエステル形成性誘導体等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸等が挙げられる。脂環式ジカルボン酸は、例えば、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。トリカルボン酸は、例えば、トリメリット酸等が挙げられる。 The polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid. Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of tricarboxylic acids include trimellitic acid.
上記多価アルコールは、例えば、脂肪族グリコール、脂環式ジオール、芳香族ジオール、トリメチロールプロパン、ペンタエリスリトール、グリセロールおよびこれらのエステル形成性誘導体等が挙げられる。上記脂肪族グリコールは、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記脂環式ジオールは、例えば、シクロペンタンジオール、シクロヘキサンジオール、水素化ビスフェノールA等が挙げられる。上記芳香族ジオールは、例えば、ビスフェノールAエチレンオキシド(1モル~100モル)付加物、ビスフェノールAプロピレンオキシド(1モル~100モル)付加物、キシレングリコール等が挙げられる。 The polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof. The aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol. The alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A. The aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
上記ポリエステルは、例えば、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリブチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリエチレンナフタレ-ト、ポリシクロヘキサンジメチレンテレフタレート等が挙げられる。 Examples of the polyester include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
1つの実施形態において、上記ポリエステルは、好ましくはポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/アジペート)、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートが挙げられ、より好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが挙げられる。 In one embodiment, the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
(ポリカーボネート)
上記ポリカーボネートは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polycarbonate)
The polycarbonate is not particularly limited, and various known polycarbonates can be used. The polycarbonates may be used alone or in combination of two or more.
 上記ポリカーボネートは、例えば、芳香族ジヒドロキシ化合物とカーボネート前駆体とを反応させることにより得られるものが挙げられる。また、上記ポリカーボネートは、直鎖状でもよく、分岐構造を有していても良い。 The polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor. The polycarbonate may be linear or may have a branched structure.
  上記芳香族ジヒドロキシ化合物は、例えば、ビス(ヒドロキシアリール)アルカン、ビス(ヒドロキシアリール)シクロアルカン、ジヒドロキシジアリールエーテル、ジヒドロキシジアリールスルフィド、ジヒドロキシジアリールスルホキシド、ジヒドロキシジアリールスルホン、ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシベンゾフェノン等が挙げられる。該芳香族ジヒドロキシ化合物は、1種を単独で、又は2種以上を併用してもよい。 The aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc. The aromatic dihydroxy compounds may be used alone or in combination of two or more.
  上記ビス(ヒドロキシアリール)アルカンは、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(所謂ビスフェノールA)、テトラブロモビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン,2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン等が挙げられる。 Examples of the bis(hydroxyaryl)alkanes include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ... , 1-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3-phenyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, etc.
  上記ビス(ヒドロキシアリール)シクロアルカンは、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(所謂ビスフェノールZ)、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1,-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等が挙げられる。 Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  上記ジヒドロキシジアリールエーテルは、例えば、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等が挙げられる。上記ジヒドロキシジアリールスルフィドは、例えば、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。上記ジヒドロキシジアリールスルホキシドは、例えば、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。上記ジヒドロキシジアリールスルホンは、例えば、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。 The dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc. The dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc. The dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc. The dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  上記カーボネート前駆体は、例えば、カルボニルハライド、炭酸ジエステル等が挙げられる。該カーボネート前駆体は、1種を単独で、又は2種以上を併用してもよい。 The carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc. One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  上記カルボニルハライドは、例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。該カルボニルハライドは、1種を単独で、又は2種以上を併用してもよい。 The carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds. The carbonyl halides may be used alone or in combination of two or more.
  上記炭酸ジエステルは、例えば、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジ-tert-ブチルカーボネート、ジシクロヘキシルカーボネート等のジアルキルカーボネート;ジヒドロキシ化合物のビスカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。該炭酸エステルは、1種を単独で、又は2種以上を併用してもよい。 The above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, and carbonates of dihydroxy compounds such as cyclic carbonates. One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
上記ポリカーボネートの製造方法は、例えば、界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法等が挙げられる。 The above-mentioned polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  また、上記ポリカーボネートは、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂であってもよいし、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂であってもよいし、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂であってもよいし、かかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂であってもよい。これらポリカーボネートは、2種以上を用いてもよい。   The polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
(ポリフェニレンエーテル)
上記ポリフェニレンエーテルは、特に限定されず、各種公知のものを使用できる。ポリフェニレンエーテルは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene ether)
The polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used. The polyphenylene ethers may be used alone or in combination of two or more.
 上記ポリフェニレンエーテルは、例えば、下記一般式(1)で表される繰り返し単位からなる単独重合体、或いは共重合体等が挙げられる。 The polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
(式(1)中、R1、R2、R3、R4はそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していても良いアルキル基、アルコキシ基又は置換基を有していても良いアリール基であり、nは繰り返し数である。) (In formula (1), R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.)
  上記一般式(1)で表される単独重合体としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル等が挙げられる。   Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  又、共重合体としては、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体等が挙げられる。 Examples of copolymers include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
上記ポリフェニレンエーテルの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、米国特許第3306874号明細書、同第3306875号明細書、同第3257357号明細書、同第3257358号明細書、特開昭50-51197号公報、特公昭52-17880号公報、及び同63-152628号公報等に記載された製造方法等が挙げられる。 The method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
上記ポリフェニレンエーテルは、本発明の効果を損なわない範囲において、他の種々のフェニレンエーテルユニットを部分構造として含んでいてもよい。前記フェニレンエーテルユニットとしては、例えば、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニットや、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等が挙げられる。また、上記ポリフェニレンエーテル樹脂の主鎖中にジフェノキノン等が少量結合したものであっても良い。更には、マレイン酸、フマル酸、クロロマレイン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸及びこれらの酸無水物等やこれら不飽和ジカルボン酸の2個のカルボキシル基のうちの1個または2個がエステルになっているもの、アリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタアクリレート、ステアリルアクリレート、スチレン、エポキシ化天然油脂等、アリルアルコール、4-ペンテン-1-オール、1,4-ペンタジエン-3-オールなどの一般式CnH2n-3OH(nは正の整数)の不飽和アルコール、一般式CnH2n-5OH、CnH2n-7OH(nは正の整数)等の不飽和アルコール等によって変性されているポリフェニレンエーテル樹脂であっても良い。これら変性されたポリフェニレンエーテル樹脂は、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。また、上記の変性されたポリフェニレンエーテル樹脂の融点は、示差熱走査型熱量計(DSC)の測定において、20℃/分で昇温するときに得られる温度-熱流量グラフで観測されるピークのピークトップ温度で定義され、ピークトップ温度が複数ある場合にはその内の最高の温度で定義される。 The polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention. Examples of the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units. In addition, a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin. Furthermore, it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer). These modified polyphenylene ether resins may be used alone or in combination of two or more. In addition, the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  上記ポリフェニレンエーテルは、芳香族ビニル系重合体、ポリアミド等のポリフェニレンエーテル以外の樹脂成分を含有しても良い。芳香族ビニル系重合体としては、例えば、アタクティックポリスチレン、ハイインパクトポリスチレン、シンジオタクティックポリスチレン、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びアクリロニトリル-スチレン共重合体等が挙げられる。 The polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides. Examples of aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
1つの実施形態において、上記ポリフェニレンエーテルが、ポリフェニレンエーテル及びポリスチレンを含む混合物(いわゆる変性ポリフェニレンエーテル樹脂)である場合、ポリフェニレンエーテルの含有量は、ポリフェニレンエーテルとポリスチレンとの合計量に対して、通常70質量%以上が挙げられ、好ましくは80質量%以上が挙げられる。 In one embodiment, when the polyphenylene ether is a mixture containing polyphenylene ether and polystyrene (so-called modified polyphenylene ether resin), the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
上記変性ポリフェニレンエーテル樹脂の市販品は、例えば、三菱エンジニアリングプラスチックス(株)製「ユピエース」(登録商標)、SABIC社製「NORYL」(登録商標)、旭化成(株)製「ザイロン」(登録商標)等が挙げられる。 Commercially available modified polyphenylene ether resins include, for example, "Iupiace" (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL" (registered trademark) manufactured by SABIC Corporation, and "Zylon" (registered trademark) manufactured by Asahi Kasei Corporation.
(ポリフェニレンサルファイド)
上記ポリフェニレンサルファイドは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene sulfide)
The polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used. The polycarbonate may be used alone or in combination of two or more kinds.
上記ポリフェニレンサルファイドは、例えば、ポリハロゲン芳香族化合物とスルフィド化剤とを極性有機溶媒中で反応させて得られるものが挙げられる。 The polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
上記ポリハロゲン芳香族化合物は、例えば、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼン等が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。また、異なる2種以上のポリハロゲン芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジハロゲン芳香族化合物を主要成分とすることが好ましい。 Examples of the polyhalogenated aromatic compound include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
 上記スルフィド化剤は、例えば、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素等が挙げられる。上記アルカリ金属硫化物は、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。上記アルカリ金属水硫化物は、例えば、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物及び水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。上記スルフィド化剤は、1種を単独で、又は2種以上を併用してもよい。 Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide. Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred. Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred. These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides. The sulfidizing agents may be used alone or in combination of two or more.
 また、上記スルフィド化剤は、アルカリ金属水硫化物とアルカリ金属水酸化物から調製されるアルカリ金属硫化物;水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から調製されるアルカリ金属硫化物等も用いることができる。 The sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
なお、上記スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。1つの実施形態において、アルカリ金属水酸化物は、好ましくは水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物が挙げられ、アルカリ土類金属水酸化物は、例えば、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、好ましくは水酸化ナトリウムが挙げられる。 It is also possible to use an alkali metal hydroxide and/or an alkaline earth metal hydroxide together with the sulfidizing agent. In one embodiment, the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these, and the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
上記ポリフェニレンサルファイドは、回収および後処理することで、高収率で製造することができる。具体的には、特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きな重合体を得る方法などによっても製造できる。前記の方法で得られたポリフェニレンスルフィド樹脂を空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水、酸水溶液などによる洗浄、酸無水物、アミン、イソシアネート、官能基含有ジスルフィド化合物などの官能基含有化合物による活性化など種々の処理を施した上で使用することもできる。 The polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332. The polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with organic solvents, hot water, acid aqueous solutions, and activation with functional group-containing compounds such as acid anhydrides, amines, isocyanates, and functional group-containing disulfide compounds.
上記ポリフェニレンサルファイドの市販品は、例えば、東レ(株)製“トレリナ”(登録商標)、DIC(株)製“DIC.PPS”(登録商標)、ポリプラスチックス(株)製“ジュラファイド”(登録商標)等が挙げられる。 Commercially available polyphenylene sulfide products include, for example, "TORELINA" (registered trademark) manufactured by Toray Industries, Inc., "DIC.PPS" (registered trademark) manufactured by DIC Corporation, and "DURAFIDE" (registered trademark) manufactured by Polyplastics Co., Ltd.
(液晶ポリマー)
上記液晶ポリマーは、特に限定されず、各種公知のものを使用できる。液晶ポリマーは、1種を単独で又は2種以上を組み合わせても良い。
(Liquid Crystal Polymer)
The liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used. The liquid crystal polymer may be used alone or in combination of two or more kinds.
上記液晶ポリマーは、例えば、液晶ポリエステル、液晶ポリエステルアミド等が挙げられる。液晶ポリエステルは、特に限定されないが、例えば、芳香族ポリエステル等が挙げられる。1つの実施形態において、液晶ポリエステルは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルが挙げられる。液晶ポリエステルアミドは、特に限定されないが、例えば、芳香族ポリエステルアミド等が挙げられる。1つの実施形態において、液晶ポリエステルアミドは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルアミドが挙げられる。また、上記液晶ポリマーとしては、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルを用いることもできる。 The liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide. The liquid crystal polyester may be, but is not limited to, an aromatic polyester. In one embodiment, the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers. The liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide. In one embodiment, the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers. In addition, the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
上記芳香族ポリエステルは、特に限定されないが、例えば、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上とからなるポリエステル;
(3)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステル等、が挙げられる。
The aromatic polyester is not particularly limited, but may be, for example,
(1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
上記芳香族ポリエステルアミドは、特に限定されないが、例えば、
(1)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド等、が挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
The aromatic polyester amide is not particularly limited, but may be, for example,
(1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
 上記芳香族ヒドロキシカルボン酸は、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸等の芳香族ヒドロキシカルボン酸、または3-メチル-4-ヒドロキシ安息香酸、3,5-ジメチル-4-ヒドロキシ安息香酸、2,6-ジメチル-4-ヒドロキシ安息香酸、3-メトキシ-4-ヒドロキシ安息香酸、3,5-ジメトキシ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-メチル-2-ナフトエ酸、6-ヒドロキシ-5-メトキシ-2-ナフトエ酸、2-クロロ-4-ヒドロキシ安息香酸、3-クロロ-4-ヒドロキシ安息香酸、2,3-ジクロロ-4-ヒドロキシ安息香酸、3,5-ジクロロ-4-ヒドロキシ安息香酸、2,5-ジクロロ-4-ヒドロキシ安息香酸、3-ブロモ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-クロロ-2-ナフトエ酸、6-ヒドロキシ-7-クロロ-2-ナフトエ酸、6-ヒドロキシ-5,7-ジクロロ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸のアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 The aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or Examples of aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxybenzoic acid, 2,5-dichloro-4-hydroxybenzoic acid, 3-bromo-4-hydroxybenzoic acid, 6-hydroxy-5-chloro-2-naphthoic acid, 6-hydroxy-7-chloro-2-naphthoic acid, and 6-hydroxy-5,7-dichloro-2-naphthoic acid.
上記芳香族ジオールは、例えば、4,4'-ジヒドロキシビフェニル、3,3'-ジヒドロキシビフェニル、4,4'-ジヒドロキシテルフェニル、ハイドロキノン、レゾルシン、2,6-ナフタレンジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェノキシ)エタン、3,3'-ジヒドロキシジフェニルエーテル、1,6-ナフタレンジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン等の芳香族ジオール、またはクロロハイドロキノン、メチルハイドロキノン、tert-ブチルハイドロキノン、フェニルハイドロキノン、メトキシハイドロキノン、フェノキシハイドロキノン、4-クロロレゾルシン、4-メチルレゾルシン等の芳香族ジオールのアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-methylresorcinol.
上記芳香族ジカルボン酸は、例えば、テレフタル酸、4,4'-ビフェニルジカルボン酸、4,4'-トリフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルエーテル-4,4'-ジカルボン酸、ジフェノキシエタン-4,4'-ジカルボン酸、ジフェノキシブタン-4,4'-ジカルボン酸、ジフェニルエタン-4,4'-ジカルボン酸、イソフタル酸、ジフェニルエーテル-3,3'-ジカルボン酸、ジフェノキシエタン-3,3'-ジカルボン酸、ジフェニルエタン-3,3'-ジカルボン酸、1,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、またはクロロテレフタル酸、ジクロロテレフタル酸、ブロモテレフタル酸、メチルテレフタル酸、ジメチルテレフタル酸、エチルテレフタル酸、メトキシテレフタル酸、エトキシテレフタル酸等で代表される上記芳香族ジカルボン酸のアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alkoxy, or halogen-substituted derivatives of the above aromatic dicarboxylic acids, such as chloroterephthalic acid, dichloroterephthalic acid, bromoterephthalic acid, methylterephthalic acid, dimethylterephthalic acid, ethylterephthalic acid, methoxyterephthalic acid, and ethoxyterephthalic acid.
上記芳香族ヒドロキシアミンは、例えば、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、2-クロロ-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4'-ヒドロキシビフェニル、4-アミノ-4'-ヒドロキシジフェニルエーテル、4-アミノ-4'-ヒドロキシジフェニルメタン、4-アミノ-4'-ヒドロキシジフェニルスルフィド等が挙げられる。
上記芳香族ジアミンは、例えば、1,4-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N'-ジメチル-1,4-フェニレンジアミン、4,4'-ジアミノフェニルスルフィド(チオジアニリン)、4,4'-ジアミノジフェニルスルホン、2,5-ジアミノトルエン、4,4'-エチレンジアニリン、4,4'-ジアミノジフェノキシエタン、4,4'-ジアミノジフェニルメタン(メチレンジアニリン)、4,4'-ジアミノジフェニルエーテル(オキシジアニリン)等が挙げられる。
Examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
Examples of the aromatic diamine include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
1つの実施形態において、上記芳香族ポリエステルは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルが挙げられる。1つの実施形態において、上記芳香族ポリエステルアミドは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルアミドが挙げられる。 In one embodiment, the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
上記液晶ポリマーの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、上述した原料モノマー化合物(又は原料モノマーの混合物)を用いて、直接重合法やエステル交換法を用いて、公知の方法で製造することができるが、通常は、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する化合物である場合は、そのままの形で重合に用いてもよく、また、重合の前段階でアシル化剤等を用いて前駆体から該エステル形成能を有する誘導体に変性されたものを用いてもよい。アシル化剤としては、無水酢酸等の無水カルボン酸等を挙げることができる。 The method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means. Specifically, for example, the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers). Usually, melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used. In the case of a compound capable of forming an ester, it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization. Examples of the acylating agent include carboxylic anhydrides such as acetic anhydride.
上記重合に際しては、種々の触媒を使用してもよい。当該触媒は、例えば、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は、通常はモノマーの全質量に対して、約0.001~1質量%であり、特に、約0.01~0.2質量%が好ましい。 Various catalysts may be used in the polymerization. Examples of such catalysts include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine. The amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
 1つの実施形態において、上記液晶ポリマーは、樹脂組成物の耐熱性及び高強度に優れる点から、好ましくは液晶ポリエステルが挙げられ、同様の点から、より好ましくは全芳香族ポリエステルが挙げられる。 In one embodiment, the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
 1つの実施形態において、上記樹脂組成物における熱可塑性樹脂としては、樹脂組成物の溶融時における流動性に優れる点から、好ましくはポリエステル、ポリフェニレンエーテル、ポリカーボネート、ポリアミド及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含むことが挙げられ、より好ましくはポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含むことが挙げられる。 In one embodiment, the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, and more preferably includes at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide, in view of excellent fluidity when the resin composition is melted.
 上記樹脂組成物は、その成形温度が高い場合、例えば、熱可塑性樹脂としてエンジニアリングプラスチックやスーパーエンジニアリングプラスチックを使用した場合であっても、上記改質剤を含むことにより、溶融時における発煙が抑制され、且つ溶融時における流動性に優れている。 The resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
(フィラー)
1つの実施形態において、上記樹脂組成物は、任意で、フィラーを含み得る。フィラーは、特に限定されず、各種公知のものを使用できる。フィラーは、1種を単独で又は2種以上を組み合わせても良い。
(Filler)
In one embodiment, the resin composition may optionally contain a filler. The filler is not particularly limited, and various known fillers can be used. The filler may be used alone or in combination of two or more.
 上記フィラーの形状は、例えば、球状、針状、繊維状、板状等が挙げられる。 The filler may be, for example, spherical, needle-like, fibrous, or plate-like.
上記フィラーは、例えば、繊維、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、ケイ砂、タルク、カオリン、マイカ、クレー、ベントナイト、セリサイト、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、二硫化モリブデン、ワラストナイト、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物(アルミナ、酸化亜鉛、酸化チタン等)、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、カーボンナノチューブ等が挙げられる。なお、金属粉、金属フレーク、金属リボンを構成する金属の具体例としては、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。 The above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc. Specific examples of metals constituting metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
上記繊維は、特に限定されず各種公知のものを使用できる。上記繊維は、例えば、ガラス繊維;アルミナ繊維;ポリエステル繊維、ポリアミド繊維、ポリイミド繊維、ポリビニルアルコール変性繊維、ポリ塩化ビニル繊維、ポリオレフィン(ポリエチレン、ポリプロピレン)繊維、フッ素樹脂系繊維、ポリベンゾイミダゾール繊維、アクリル繊維、フェノール繊維、ポリアミド繊維、アラミド繊維、セルロース(ナノ)繊維、液晶ポリマー(液晶ポリエステル、液晶ポリエステルアミド)繊維、ポリエーテルケトン繊維、ポリエーテルスルホン繊維、ポリフェニレンエーテル繊維、ポリフェニレンサルファイド繊維等の有機繊維;鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる金属繊維等が挙げられる。上記繊維は、1種を単独で使用してもよく、2種以上を併用してもよい。 The above-mentioned fibers are not particularly limited, and various known fibers can be used. Examples of the above-mentioned fibers include glass fibers; alumina fibers; organic fibers such as polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, and polyphenylene sulfide fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel. The above-mentioned fibers may be used alone or in combination of two or more types.
1つの実施形態において、上記繊維は、好ましくはガラス繊維及び有機繊維からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers.
 1つの実施形態において、上記フィラーは、樹脂組成物の耐衝撃性に優れる点から、好ましくはガラス繊維及びカーボン粉末からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the filler preferably contains at least one selected from the group consisting of glass fiber and carbon powder, in order to provide the resin composition with excellent impact resistance.
従来、フィラーを含む樹脂組成物においては、当該フィラーにより、樹脂組成物の溶融粘度が非常に高くなるため、成形加工性が極端に劣ってしまう場合があったが、本発明の樹脂組成物は、上記改質剤を用いることにより、上記フィラーを含む場合であっても、その溶融粘度が低くなるため、成形加工性に優れる。 In the past, resin compositions containing fillers could have extremely poor moldability because the fillers made the resin compositions have very high melt viscosity, but the resin composition of the present invention uses the modifier, which reduces the melt viscosity even when the resin composition contains the fillers, resulting in excellent moldability.
(添加剤)
1つの実施形態において、上記樹脂組成物は、本発明の効果を損なわない限りにおいて、任意で、添加剤を含み得る。添加剤は、例えば、難燃剤、導電付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、着色剤、染料、発泡剤、制泡剤、カップリング剤、無機顔料、有機顔料、上記水素化芳香族系炭化水素樹脂以外の流動性改良剤、光安定剤等が挙げられる。
(Additive)
In one embodiment, the resin composition may contain any additives as long as the effects of the present invention are not impaired. Examples of the additives include flame retardants, conductive agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the hydrogenated aromatic hydrocarbon resins, and light stabilizers.
(各成分の含有量)
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。
(Content of each ingredient)
When the resin composition does not contain the filler, the content of the modifier in the resin composition is not particularly limited.The content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは2~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the modifier in the resin composition is not particularly limited. The content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass.
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~5質量部程度が挙げられる。 When the resin composition does not contain the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 5 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは2~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 2 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
 上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物におけるフィラーの含有量は、特に限定されない。上記樹脂組成物におけるフィラーの含有量は、例えば、熱可塑性樹脂100質量部に対して、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0質量部等が挙げられる。1つの実施形態において、上記樹脂組成物におけるフィラーの含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは70質量部以下が挙げられ、より好ましくは50質量部以下が挙げられる。 When the resin composition contains the filler, the content of the filler in the resin composition is not particularly limited. The content of the filler in the resin composition may be, for example, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the filler in the resin composition is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in view of superior fluidity when the resin composition is melted.
上記樹脂組成物における上記添加剤の含有量は、特に限定されない。上記樹脂組成物における上記添加剤の含有量は、例えば、上記樹脂組成物100質量部に対して、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0.5質量部、0.1質量部、0.05質量部、0.01質量部、0.005質量部、0.001質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは0.001質量部以上が挙げられ、より好ましくは0.005質量部以上が挙げられ、さらに好ましくは0.01質量部以上が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは100質量部以下が挙げられ、より好ましくは50質量部以下が挙げられる。 The content of the additive in the resin composition is not particularly limited. The content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
(樹脂組成物の製造方法)
 上記樹脂組成物の製造方法は、特に限定されず、各種公知の方法を採用できる。上記樹脂組成物の製造方法は、例えば、上記改質剤(又は上記水素化芳香族系炭化水素樹脂)、上記熱可塑性樹脂、並びに必要に応じて上記フィラー及び上記添加剤を、タンブラーミキサーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、上記熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。
(Method for producing resin composition)
The method for producing the resin composition is not particularly limited, and various known methods can be adopted. The method for producing the resin composition includes, for example, a method in which the modifier (or the hydrogenated aromatic hydrocarbon resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30 ° C to the melting point +30 ° C.
 上記樹脂組成物の製造においては、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用することにより、樹脂組成物の溶融混練時における流動性が高くなるため、生産性に優れる。また、従来、フィラーを含む樹脂組成物の製造においては、フィラーによって樹脂組成物の溶融粘度が非常に高くなるため、溶融混練時における流動性が極端に低下するが、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用すると、フィラーを含む樹脂組成物の製造においても、溶融混練時における流動性が高くなる。 In the production of the above resin composition, the use of the above modifier or the above hydrogenated aromatic hydrocarbon resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in the production of resin compositions containing fillers, the filler makes the melt viscosity of the resin composition very high, resulting in an extremely low fluidity when melt-kneaded. However, when the above modifier or the above hydrogenated aromatic hydrocarbon resin is used, the fluidity when melt-kneaded is increased, even in the production of resin compositions containing fillers.
また、上記樹脂組成物の製造においては、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用しても、溶融混練時における発煙が抑制されている。 In addition, when the resin composition is produced using the modifier or the hydrogenated aromatic hydrocarbon resin, smoke emission during melt kneading is suppressed.
[成形体]
  本開示の成形体は、各種公知の成形法により、上記樹脂組成物を成形して得られる。成形体の形状としては、特に制限はなく、成形体の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。
[Molded body]
The molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods. The shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  上記成形体を成形する方法としては、特に制限されず、従来公知の成形法を採用できる。具体的には、例えば、射出成形法、射出圧縮成形法、押出成形法、延伸フィルム成形、インフレーション成形、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、プレス成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。中でも、成形は射出成形法により行われることが好ましい。射出成形機としては、超高速射出成形機、射出圧縮成形機等の公知の射出成形機等が挙げられる。 The method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  上記成形体は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる The above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
[熱可塑性樹脂用の改質剤としての使用]
 上記水素化芳香族系炭化水素樹脂は、熱可塑性樹脂に用いる改質剤として使用することができる。上記水素化芳香族系炭化水素樹脂を熱可塑性樹脂に使用すると、熱可塑性樹脂の溶融時における流動性を向上させる。熱可塑性樹脂は、特に限定されず、例えば、前述のものが挙げられる。
[Use as a modifier for thermoplastic resins]
The hydrogenated aromatic hydrocarbon resin can be used as a modifier for a thermoplastic resin. When the hydrogenated aromatic hydrocarbon resin is used in a thermoplastic resin, the flowability of the thermoplastic resin during melting is improved. The thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
 1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、溶融時における流動性をより向上させる点から、好ましくはポリエステル、ポリフェニレンエーテル、ポリカーボネート、ポリアミド及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用され、より好ましくはポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用される。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyester, polyphenylene ether, polycarbonate, polyamide, and polyphenylene sulfide, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、好ましくは成形加工温度が高い熱可塑性樹脂、特に好ましくはエンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いる改質剤として使用される。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for thermoplastic resins having high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
熱可塑性樹脂に用いる改質剤としての上記水素化芳香族系炭化水素樹脂の使用量は、特に限定されない。当該水素化芳香族系炭化水素樹脂の使用量は、例えば、上述した上記改質剤の使用量等が挙げられる。 The amount of the hydrogenated aromatic hydrocarbon resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the modifier used described above.
 本開示により以下の項目が提供される。
(項目A1)
300℃で2時間加熱後の質量残留率が65質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、40~95℃である、
水素化芳香族系炭化水素樹脂を含む、
熱可塑性樹脂用の改質剤。
(項目A2)
前記水素化芳香族系炭化水素樹脂が、芳香族系石油樹脂の水素化物である、上記項目の熱可塑性樹脂用の改質剤。
(項目A3)
前記水素化芳香族系炭化水素樹脂の混合メチルシクロヘキサンアニリン曇点(MMAP)が、60℃~95℃である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A4)
前記水素化芳香族系炭化水素樹脂の色調が、10~200ハーゼンである、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A5)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、900~4,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A6)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~3,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A7)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~2,500である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A8)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、15%未満である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A9)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、10%未満である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A10)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、5%以下である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A11)
上記項目のいずれかの改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(項目A12)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む、上記項目の樹脂組成物。
(項目A13)
さらに、フィラーを含む、上記項目のいずれかの樹脂組成物。
(項目A14)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目のいずれかの樹脂組成物。
(項目A15)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.5~15質量部であり、前記フィラーの含有量が、熱可塑性樹脂100質量部に対して、70質量部以下である、上記項目のいずれかの樹脂組成物。
(項目A16)
上記項目のいずれかの樹脂組成物を成形して得られる、成形体。
(項目A17)
熱可塑性樹脂に用いる改質剤としての、上記項目のいずれかの水素化芳香族系炭化水素樹脂の使用。
(項目A18)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む、項目A17の水素化芳香族系炭化水素樹脂の使用。
(項目A19)
前記水素化芳香族系炭化水素樹脂の使用量が、前記熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目A17又は項目A18の水素化芳香族系炭化水素樹脂の使用。
(項目A20)
熱可塑性樹脂を含む樹脂組成物を製造するための、上記項目のいずれかの水素化芳香族系炭化水素樹脂の使用。
(項目A21)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、変性ポリフェニレンエーテル樹脂、ポリカーボネート、ポリアミド66及びポリフェニレンサルファイドからなる群から選択される少なくとも1種を含む、項目A20の水素化芳香族系炭化水素樹脂の使用。
The present disclosure provides the following:
(Item A1)
The mass retention rate after heating at 300° C. for 2 hours is 65% by mass or more,
Mixed methylcyclohexaneaniline cloud point (MMAP) is 40-95°C;
Hydrogenated aromatic hydrocarbon resins,
Modifier for thermoplastic resins.
(Item A2)
The thermoplastic resin modifier according to the above item, wherein the hydrogenated aromatic hydrocarbon resin is a hydrogenated aromatic petroleum resin.
(Item A3)
The modifier for thermoplastic resin according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of 60°C to 95°C.
(Item A4)
The modifier for thermoplastic resins according to any of the preceding items, wherein the color tone of the hydrogenated aromatic hydrocarbon resin is 10 to 200 Hazen.
(Item A5)
The modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 900 to 4,000.
(Item A6)
The modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 3,000.
(Item A7)
The modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 2,500.
(Item A8)
2. The modifier for thermoplastic resin according to any one of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an aromatic hydrogen content of less than 15%.
(Item A9)
2. The modifier for thermoplastic resin according to any one of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an aromatic hydrogen content of less than 10%.
(Item A10)
2. The thermoplastic resin modifier according to claim 1, wherein the hydrogenated aromatic hydrocarbon resin has an aromatic hydrogen content of 5% or less.
(Item A11)
A resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
(Item A12)
The resin composition according to the above item, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66 and polyphenylene sulfide.
(Item A13)
The resin composition of any of the preceding items, further comprising a filler.
(Item A14)
The resin composition according to any one of the preceding items, wherein the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A15)
The content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 70 parts by mass or less per 100 parts by mass of the thermoplastic resin.
(Item A16)
A molded article obtained by molding any one of the resin compositions described above.
(Item A17)
2. Use of the hydrogenated aromatic hydrocarbon resin according to any of the preceding items as a modifier for thermoplastic resins.
(Item A18)
The use of the hydrogenated aromatic hydrocarbon resin according to item A17, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66 and polyphenylene sulfide.
(Item A19)
The use of the hydrogenated aromatic hydrocarbon resin according to the above item A17 or A18, wherein the amount of the hydrogenated aromatic hydrocarbon resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A20)
Use of the hydrogenated aromatic hydrocarbon resin according to any of the preceding items for producing a resin composition comprising a thermoplastic resin.
(Item A21)
The use of the hydrogenated aromatic hydrocarbon resin according to item A20, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, modified polyphenylene ether resin, polycarbonate, polyamide 66, and polyphenylene sulfide.
本開示で提供する熱可塑性樹脂用の改質剤は、熱可塑性樹脂に用いることにより、その溶融時の流動性を向上させて、成形加工性を向上し得る。また、上記改質剤は、熱可塑性樹脂に用いても、その溶融時における発煙を抑制し得る。 The modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability. In addition, when used in thermoplastic resins, the modifier can also suppress smoke generation when melted.
以下、本発明の実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらの実
施例に限定されるものではない。なお、例中の「部」および「%」とあるのは、それぞれ
「質量部」および「質量%」を表す。
The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples. In the examples, "parts" and "%" represent "parts by mass" and "% by mass", respectively.
<水素化芳香族系炭化水素樹脂の製造>
製造例1
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)7.6部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度265℃、反応時間5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,250、芳香族水素の含有率1%の水素化C9系石油樹脂を得た。
<Production of Hydrogenated Aromatic Hydrocarbon Resin>
Production Example 1
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 7.6 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 265°C, and reaction time 5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,250 and an aromatic hydrogen content of 1%.
製造例2
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)7.6部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度255℃、反応時間5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,600、芳香族水素の含有率2%の水素化C9系石油樹脂を得た。
Production Example 2
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 7.6 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 255°C, and reaction time 5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,600 and an aromatic hydrogen content of 2%.
製造例3
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,440、芳香族水素の含有率7%の水素化C9系石油樹脂を得た。
Production Example 3
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 5 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250°C, and reaction time 4 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,440 and an aromatic hydrogen content of 7%.
製造例4
C9系石油樹脂(色調10ガードナー、重量平均分子量1,575)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)7.6部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,810、芳香族水素の含有率3%の水素化C9系石油樹脂を得た。
Production Example 4
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,575) and 7.6 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250°C, and reaction time 5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,810 and an aromatic hydrogen content of 3% was obtained.
製造例5
C9系石油樹脂(色調9ガードナー、重量平均分子量2,377)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)5.5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,910、芳香族水素の含有率8%の水素化C9系石油樹脂を得た。
Production Example 5
100 parts of C9 petroleum resin (Gardner color tone 9, weight average molecular weight 2,377) and 5.5 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250°C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,910 and an aromatic hydrogen content of 8%.
製造例6
C9系石油樹脂(色調9ガードナー、重量平均分子量2,377)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)8.5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度255℃、反応時間5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量2,330、芳香族水素の含有率1%の水素化C9系石油樹脂を得た。
Production Example 6
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 2,377) and 8.5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 255 ° C, and reaction time 5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 2,330 and an aromatic hydrogen content of 1% was obtained.
製造例7
製造例6で得た水素化C9系石油樹脂100部を260℃に加熱し、常圧(0.1MPa)の水蒸気を4時間吹き込み、減圧下に水分等を除去し、残存物として重量平均分子量2,130、芳香族水素の含有率2%の水素化C9系石油樹脂を得た。
Production Example 7
100 parts of the hydrogenated C9 petroleum resin obtained in Production Example 6 was heated to 260°C, and water vapor at normal pressure (0.1 MPa) was blown in for 4 hours to remove moisture and the like under reduced pressure, yielding as the residue a hydrogenated C9 petroleum resin having a weight average molecular weight of 2,130 and an aromatic hydrogen content of 2%.
製造例8
製造例6で得た水素化C9系石油樹脂100部を2エチルヘキサノール250部に溶解させた。溶解後に2-プロパノール250部を滴下し、析出物として重量平均分子量3,240、芳香族水素の含有率2%の水素化C9系石油樹脂を得た。
Production Example 8
100 parts of the hydrogenated C9 petroleum resin obtained in Production Example 6 was dissolved in 250 parts of 2-ethylhexanol. After dissolution, 250 parts of 2-propanol was added dropwise to obtain a hydrogenated C9 petroleum resin having a weight average molecular weight of 3,240 and an aromatic hydrogen content of 2% as a precipitate.
製造例9
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)3.5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,230、芳香族水素の含有率15%の水素化C9系石油樹脂を得た。
Production Example 9
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230 and an aromatic hydrogen content of 15% was obtained.
比較製造例1
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)4.8部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度260℃、反応時間4時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,260、芳香族水素の含有率8%の水素化C9系石油樹脂を得た。
Comparative Production Example 1
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 4.8 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 260°C, and reaction time 4 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,260 and an aromatic hydrogen content of 8%.
比較製造例2
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)3.0部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,230、芳香族水素の含有率21%の水素化C9系石油樹脂を得た。
Comparative Production Example 2
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.0 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230 and an aromatic hydrogen content of 21% was obtained.
比較製造例3
C9系石油樹脂(色調7ガードナー、重量平均分子量1,265)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度330℃、反応時間3時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量830、芳香族水素の含有率28%の水素化C9系石油樹脂を得た。
Comparative Production Example 3
100 parts of C9 petroleum resin (color tone 7 Gardner, weight average molecular weight 1,265) and 5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 330°C, and reaction time 3 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 830 and an aromatic hydrogen content of 28%.
(重量平均分子量(Mw)の測定)
 製造例1~9及び比較製造例1~3の水素化芳香族系石油樹脂、後述のC9系石油樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレンの検量線から求めた、ポリスチレン換算値として算出した。なお、GPC法は以下の条件で測定した。結果を表1に示す。
 分析装置:HLC-8320(東ソー(株)製)
 カラム:TSKgelSuperHM-L×3本
 溶離液:テトラヒドロフラン
 注入試料濃度:5mg/mL
 流量:0.6mL/min
 注入量:40μL
 カラム温度:40℃
 検出器:RI
(Measurement of weight average molecular weight (Mw))
The weight average molecular weight (Mw) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 3 and the C9 petroleum resin described below was calculated as a polystyrene equivalent value obtained from a calibration curve of standard polystyrene by gel permeation chromatography (GPC). The GPC method was measured under the following conditions. The results are shown in Table 1.
Analytical device: HLC-8320 (manufactured by Tosoh Corporation)
Column: TSKgel Super HM-L x 3 Eluent: Tetrahydrofuran Injected sample concentration: 5 mg/mL
Flow rate: 0.6 mL/min
Injection volume: 40 μL
Column temperature: 40°C
Detector: RI
(300℃で2時間加熱後の質量残留率(%))
製造例1~9及び比較製造例1~3の水素化芳香族系石油樹脂、後述のC9系石油樹脂の300℃で2時間加熱後の質量残留率(%)は、示差熱・重量同時測定装置((株)日立ハイテクサイエンス製、装置名「STA7200」)を使用して、窒素雰囲気下、サンプル質量10mg、窒素流量250ml/分の条件にて、30℃から300℃まで10℃/分で昇温し、300℃で2時間加熱した後のサンプル質量を測定して、(加熱後サンプル質量)/(加熱前サンプル質量)×100(%)から算出した。結果を表1に示す。
(Mass retention rate (%) after heating at 300°C for 2 hours)
The mass residual rate (%) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 3 and the C9 petroleum resin described below after heating at 300 ° C. for 2 hours was measured using a differential thermal / gravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., device name "STA7200") under a nitrogen atmosphere, sample mass 10 mg, nitrogen flow rate 250 ml / min, and the sample mass after heating at 300 ° C. for 2 hours was measured and calculated from (sample mass after heating) / (sample mass before heating) × 100 (%). The results are shown in Table 1.
熱重量示差熱分析(TG/DTA)や熱重量分析(TGA)を使用して測定される加熱減量としては、昇温速度5℃/分、10℃/分等の条件における1%、3%、5%重量減少時の温度(1%重量減少温度、3%重量減少温度、5%重量減少温度)を測定する方法もあるが、本発明者らが検討した結果、それら重量減少温度では、水素化芳香族系炭化水素樹脂の熱可塑性樹脂の溶融時における発煙の傾向を十分に評価できないことがわかった。 Thermogravimetric differential thermal analysis (TG/DTA) and thermogravimetric analysis (TGA) can be used to measure the heat loss at temperatures of 1%, 3%, and 5% weight loss (1% weight loss temperature, 3% weight loss temperature, 5% weight loss temperature) at heating rates of 5°C/min and 10°C/min, etc. However, the inventors' investigations have revealed that these weight loss temperatures are not sufficient to adequately evaluate the tendency for hydrogenated aromatic hydrocarbon resins to emit smoke when the thermoplastic resin is melted.
 例えば、製造例1の水素化芳香族系石油樹脂の5%重量減少温度は250℃であるが、比較製造例1の水素化芳香族系石油樹脂の5%重量減少温度は257℃であり、後述の比較例5で使用されるC9系石油樹脂の5%重量減少温度は300℃であるため、製造例1の水素化芳香族系石油樹脂が他2点より5%重量減少温度は低くなるが、表1より、300℃で2時間加熱後の質量残留率(%)は、製造例1の水素化芳香族系石油樹脂が他2点より高くなっている。そして、後述の表2より、製造例1の水素化芳香族系石油樹脂を使用したペレットでは発煙が抑制されているが、比較製造例1の水素化芳香族系石油樹脂及び上記C9系石油樹脂を使用したペレットでは発煙が多く生じている。 For example, the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Production Example 1 is 250°C, the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Comparative Production Example 1 is 257°C, and the 5% weight loss temperature of the C9 petroleum resin used in Comparative Production Example 5 described later is 300°C. Therefore, the 5% weight loss temperature of the hydrogenated aromatic petroleum resin of Production Example 1 is lower than the other two, but as shown in Table 1, the mass retention rate (%) after heating at 300°C for 2 hours is higher for the hydrogenated aromatic petroleum resin of Production Example 1 than for the other two. And, as shown in Table 2 described later, the pellets using the hydrogenated aromatic petroleum resin of Production Example 1 suppressed smoke generation, but the pellets using the hydrogenated aromatic petroleum resin of Comparative Production Example 1 and the above C9 petroleum resin generated a lot of smoke.
なお、製造例1及び比較製造例1の水素化芳香族系石油樹脂、比較例5で使用されるC9系石油樹脂の5%重量減少温度は、示差熱・重量同時測定装置((株)日立ハイテクサイエンス製、装置名「STA7200」)にて、窒素雰囲気下、サンプル量10mg、測定温度30~500℃、昇温速度:10℃/分、窒素流量250ml/分にて、サンプル重量が5%減少した温度を測定したものである。 The 5% weight loss temperature of the hydrogenated aromatic petroleum resins of Production Example 1 and Comparative Production Example 1, and the C9 petroleum resin used in Comparative Example 5 was measured using a simultaneous differential thermal and gravimetric analyzer (manufactured by Hitachi High-Tech Science Corporation, device name "STA7200") in a nitrogen atmosphere, with a sample amount of 10 mg, a measurement temperature of 30 to 500°C, a heating rate of 10°C/min, and a nitrogen flow rate of 250 ml/min, to determine the temperature at which the sample weight decreased by 5%.
(混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)の測定)
製造例1~9及び比較製造例1~3の水素化芳香族系石油樹脂、後述のC9系石油樹脂の混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)は、それぞれの成分1g、メチルシクロヘキサン1mL及びアニリン2mLの加熱された均一な溶液を冷却し、溶液に濁りが生じたときの温度を測定した。結果を表1に示す。
(Measurement of Mixed Methylcyclohexaneaniline Cloud Point (° C.) (MMAP))
The mixed methylcyclohexaneaniline cloud points (°C) (MMAP) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 3 and the C9 petroleum resin described below were measured by cooling a heated homogeneous solution of 1 g of each component, 1 mL of methylcyclohexane, and 2 mL of aniline, and measuring the temperature at which the solution became cloudy. The results are shown in Table 1.
(芳香族水素の含有率)
 製造例1~9及び比較製造例1~3の水素化芳香族系石油樹脂、後述のC9系石油樹脂について、それぞれ重クロロホルム溶媒に溶解させて5%(w/v)の溶液を調製し、この溶液について、市販の1H-NMR装置(製品名「Varian Unityy INOVA-400」、400MHzタイプ、Varian社製)を用いて1H-NMRスペクトルを得た。そして、以下の数式より、各成分における芳香族水素の含有率(%)を算出した。結果を表1に示す。
(Aromatic Hydrogen Content)
The hydrogenated aromatic petroleum resins of Production Examples 1 to 9 and Comparative Production Examples 1 to 3, and the C9 petroleum resin described below were each dissolved in deuterated chloroform solvent to prepare a 5% (w/v) solution, and a 1H-NMR spectrum was obtained for this solution using a commercially available 1H-NMR device (product name "Varian Unityy INOVA-400", 400 MHz type, manufactured by Varian). The content (%) of aromatic hydrogen in each component was then calculated from the following formula. The results are shown in Table 1.
芳香族水素の含有率=(H-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%) Aromatic hydrogen content=(H-spectrum area derived from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%)
表1中の注釈は、以下の通りである。
(1)300℃で2時間加熱後の質量残留率
(2)比較例5、14で使用したC9系石油樹脂
The notes in Table 1 are as follows:
(1) Mass retention rate after heating at 300° C. for 2 hours (2) C9 petroleum resin used in Comparative Examples 5 and 14
[樹脂組成物及び成形体の調製]
実施例1
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製、商品名「ユーピロンS-2000」)を100部及び改質剤として製造例1の水素化芳香族系石油樹脂を1部投入し、ローラ回転数40rpm、温度270℃で5分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、270℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 1
100 parts of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Corporation, product name "Iupilon S-2000") and 1 part of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100"), and kneaded for 5 minutes at a roller rotation speed of 40 rpm and a temperature of 270 ° C. Thereafter, the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 270 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pellets with a cutter.
実施例2~3、5及び7~11
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂を製造例2~9の水素化芳香族系石油樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Examples 2 to 3, 5 and 7 to 11
In Example 1, except that the hydrogenated aromatic petroleum resin of Production Example 1 was replaced with the hydrogenated aromatic petroleum resin of Production Examples 2 to 9 as the modifier, the same preparation as in Example 1 was carried out to obtain pellets.
実施例4
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、製造例4の水素化芳香族系石油樹脂を0.5部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Example 4
In Example 1, except that 0.5 parts of the hydrogenated aromatic petroleum resin of Production Example 4 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, the same preparation as in Example 1 was performed to obtain pellets.
実施例6
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、製造例4の水素化芳香族系石油樹脂を3部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Example 6
In Example 1, except that 3 parts of the hydrogenated aromatic petroleum resin of Production Example 4 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, preparation was performed in the same manner as in Example 1 to obtain pellets.
比較例1
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製、商品名「ユーピロンS-2000」)を100部投入し、ローラ回転数40rpm、温度270℃で5分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、200℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 1
100 parts of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Corporation, product name "Iupilon S-2000") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 5 minutes at a roller rotation speed of 40 rpm and a temperature of 270°C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 200°C, molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
比較例2~4
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂を比較製造例1~3の水素化芳香族系石油樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Comparative Examples 2 to 4
In Example 1, except that the hydrogenated aromatic petroleum resin of Production Example 1 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Comparative Production Examples 1 to 3, the same preparation as in Example 1 was carried out to obtain pellets.
比較例5
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、重量平均分子量2,380、芳香族水素の含有率40%、300℃で2時間加熱後の質量残留率61%、及びMMAP12℃のC9系石油樹脂を1部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Comparative Example 5
In Example 1, instead of the hydrogenated aromatic petroleum resin of Production Example 1, a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C was used as a modifier in part. Preparation was performed in the same manner as in Example 1 to obtain pellets.
(発煙の評価)
実施例1~11及び比較例1~5のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて280℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表2に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 1 to 11 and Comparative Examples 1 to 5 were injection molded at 280°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 2.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例1~11及び比較例1~5のペレットを温度300℃、荷重1.20kgの条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 1 to 11 and Comparative Examples 1 to 5 was measured under conditions of a temperature of 300° C. and a load of 1.20 kg.
そして、比較例1(ブランク)のMFRに対する、実施例1~11及び比較例2~5のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表2に示す。MFRの上昇率が大きいほど、成形加工性に優れている。
〇:ブランク対比でMFRの上昇率が20%以上
△:ブランク対比でMFRの上昇率が5%以上20%未満
×:ブランク対比でMFRの上昇率が5%未満
The rate of increase in MFR of the pellets of Examples 1 to 11 and Comparative Examples 2 to 5 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The larger the rate of increase in MFR, the more excellent the moldability.
◯: The increase in MFR compared to the blank was 20% or more. △: The increase in MFR compared to the blank was 5% or more but less than 20%. ×: The increase in MFR compared to the blank was less than 5%.
表2の配合量は、質量部の値である。表2中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
PC:ポリカーボネート樹脂、商品名「ユーピロンS-2000」、三菱エンジニアリングプラスチックス(株)製
The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
PC: Polycarbonate resin, product name "Iupilon S-2000", manufactured by Mitsubishi Engineering Plastics Corporation
[樹脂組成物及び成形体の調製]
実施例12
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ガラス繊維強化ポリブチレンテレフタレート樹脂(東レ(株)製、商品名「トレコン 1101G-30」、ポリブチレンテレフタレート樹脂70質量%、ガラス繊維30質量%)を100部及び改質剤として製造例1の水素化芳香族系石油樹脂を5部投入し、ローラ回転数40rpm、温度245℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、250℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 12
A roller mixer type kneader (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") was charged with 100 parts of glass fiber reinforced polybutylene terephthalate resin (manufactured by Toray Industries, Inc., product name "Trecon 1101G-30", polybutylene terephthalate resin 70% by mass, glass fiber 30% by mass) and 5 parts of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier, and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 245 ° C. Thereafter, the obtained kneaded product (resin composition) was removed from the kneader, hot pressed at 250 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pellets with a cutter.
実施例13~16及び18
 実施例12において、改質剤として、製造例1の水素化芳香族系石油樹脂を製造例2~3、5~6及び9の水素化芳香族系石油樹脂に変えた以外は、実施例12と同様に調製を行い、ペレットを得た。
Examples 13 to 16 and 18
In Example 12, except that the hydrogenated aromatic petroleum resin of Production Example 1 was changed to the hydrogenated aromatic petroleum resins of Production Examples 2-3, 5-6 and 9 as the modifier, the same preparation as in Example 12 was performed to obtain pellets.
実施例17
 実施例12において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、製造例6の水素化芳香族系石油樹脂を8部使用した以外は、実施例12と同様に調製を行い、ペレットを得た。
Example 17
In Example 12, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 1 as a modifier, the same preparation as in Example 12 was performed to obtain pellets.
比較例6
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ガラス繊維強化ポリブチレンテレフタレート樹脂(東レ(株)製、商品名「トレコン 1101G-30」、ポリブチレンテレフタレート樹脂70質量%、ガラス繊維30質量%)を100部投入し、ローラ回転数40rpm、温度245℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、320℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 6
100 parts of glass fiber reinforced polybutylene terephthalate resin (manufactured by Toray Industries, Inc., product name "Trecon 1101G-30", 70% by mass of polybutylene terephthalate resin, 30% by mass of glass fiber) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 245°C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 320°C, molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
比較例7~9
 実施例12において、改質剤として、製造例1の水素化芳香族系石油樹脂を比較製造例1~3の水素化芳香族系石油樹脂に変えた以外は、実施例12と同様に調製を行い、ペレットを得た。
Comparative Examples 7 to 9
In Example 12, except that the hydrogenated aromatic petroleum resin of Production Example 1 was changed to the hydrogenated aromatic petroleum resin of Comparative Production Examples 1 to 3 as the modifier, the same preparation as in Example 12 was carried out to obtain pellets.
(発煙の評価)
実施例12~18及び比較例6~9のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて350℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表3に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 12 to 18 and Comparative Examples 6 to 9 were injection molded at 350°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 3.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例12~18及び比較例6~9のペレットを温度250℃、荷重11.8N(1.2kg)の条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 12 to 18 and Comparative Examples 6 to 9 was measured under conditions of a temperature of 250° C. and a load of 11.8 N (1.2 kg).
そして、比較例6(ブランク)のMFRに対する、実施例12~18及び比較例7~9のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表3に示す。MFRの上昇率が大きいほど、成形加工性に優れている。
〇:ブランク対比でMFRの上昇率が30%以上
△:ブランク対比でMFRの上昇率が10%以上30%未満
×:ブランク対比でMFRの上昇率が10%未満
The increase rate of MFR of the pellets of Examples 12 to 18 and Comparative Examples 7 to 9 relative to the MFR of Comparative Example 6 (blank) was evaluated according to the following criteria. The results are shown in Table 3. The larger the increase rate of MFR, the more excellent the moldability.
◯: The increase in MFR compared to blank is 30% or more. △: The increase in MFR compared to blank is 10% or more but less than 30%. ×: The increase in MFR compared to blank is less than 10%.
表3の配合量は、質量部の値である。表3中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
PBT:ポリブチレンテレフタレート樹脂
The blending amounts in Table 3 are values in parts by mass. The abbreviations and notes in Table 3 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
PBT: Polybutylene terephthalate resin
[樹脂組成物及び成形体の調製]
実施例19
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ガラス繊維強化ポリフェニレンサルファイド樹脂(東レ(株)製、商品名「トレリナ A504X90」、ポリフェニレンサルファイド樹脂60質量%、ガラス繊維40質量%)を100部及び改質剤として製造例3の水素化芳香族系石油樹脂を5部投入し、ローラ回転数40rpm、温度310℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、320℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 19
A roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") was charged with 100 parts of glass fiber reinforced polyphenylene sulfide resin (manufactured by Toray Industries, Inc., product name "TORELINA A504X90", polyphenylene sulfide resin 60% by mass, glass fiber 40% by mass) and 5 parts of hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 310 ° C. Thereafter, the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 320 ° C., molded into a sheet having a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
実施例20~21、23及び25~27
 実施例19において、改質剤として、製造例3の水素化芳香族系石油樹脂を製造例4~9の水素化芳香族系石油樹脂に変えた以外は、実施例19と同様に調製を行い、ペレットを得た。
Examples 20 to 21, 23 and 25 to 27
In Example 19, except that the hydrogenated aromatic petroleum resin of Production Example 3 was changed to the hydrogenated aromatic petroleum resin of Production Examples 4 to 9 as the modifier, the same preparation as in Example 19 was performed to obtain pellets.
実施例22
 実施例19において、改質剤として、製造例3の水素化芳香族系石油樹脂の代わりに、製造例6の水素化芳香族系石油樹脂を2.5部使用した以外は、実施例19と同様に調製を行い、ペレットを得た。
Example 22
In Example 19, except that 2.5 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, the same preparation as in Example 19 was performed to obtain pellets.
実施例24
 実施例19において、改質剤として、製造例3の水素化芳香族系石油樹脂の代わりに、製造例6の水素化芳香族系石油樹脂を8部使用した以外は、実施例19と同様に調製を行い、ペレットを得た。
Example 24
In Example 19, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 6 was used instead of the hydrogenated aromatic petroleum resin of Production Example 3 as a modifier, the same preparation as in Example 19 was performed to obtain pellets.
比較例10
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、ガラス繊維強化ポリフェニレンサルファイド樹脂(東レ(株)製、商品名「トレリナ A504X90」、ポリフェニレンサルファイド樹脂60質量%、ガラス繊維40質量%)を100部投入し、ローラ回転数40rpm、温度310℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、320℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 10
100 parts of glass fiber reinforced polyphenylene sulfide resin (manufactured by Toray Industries, Inc., product name "TORELINA A504X90", 60% by mass of polyphenylene sulfide resin, 40% by mass of glass fiber) was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 310 ° C. Thereafter, the obtained kneaded product (resin composition) was removed from the kneading device, hot pressed at 320 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
比較例11~13
 実施例19において、改質剤として、製造例3の水素化芳香族系石油樹脂を比較製造例1~3の水素化芳香族系石油樹脂に変えた以外は、実施例19と同様に調製を行い、ペレットを得た。
Comparative Examples 11 to 13
In Example 19, except that the hydrogenated aromatic petroleum resin of Production Example 3 was replaced with the hydrogenated aromatic petroleum resin of Comparative Production Examples 1 to 3 as the modifier, the same preparation as in Example 19 was carried out to obtain pellets.
比較例14
 実施例19において、改質剤として、製造例3の水素化芳香族系石油樹脂の代わりに、重量平均分子量2,380、芳香族水素の含有率40%、300℃で2時間加熱後の質量残留率61%、及びMMAP12℃のC9系石油樹脂を5部使用した以外は、実施例19と同様に調製を行い、ペレットを得た。
Comparative Example 14
In Example 19, instead of the hydrogenated aromatic petroleum resin of Production Example 3, 5 parts of a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C were used as a modifier. Preparation was performed in the same manner as in Example 19, and pellets were obtained.
(発煙の評価)
実施例19~27及び比較例10~14のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて350℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表4に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 19 to 27 and Comparative Examples 10 to 14 were injection molded at 350°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 4.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(溶融粘度の評価)
実施例19~27及び比較例10~14のペレットについて、JIS K7199に準拠して、温度310℃、せん断速度2432(1/sec)の見かけの溶融粘度を、市販のキャピラリーレオメータ((株)東洋精機製作所製、装置名「キャピログラフ1C」)を用いて測定した。
(Evaluation of Melt Viscosity)
For the pellets of Examples 19 to 27 and Comparative Examples 10 to 14, the apparent melt viscosity at a temperature of 310° C. and a shear rate of 2432 (1/sec) was measured in accordance with JIS K7199 using a commercially available capillary rheometer (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Capillograph 1C").
そして、比較例10(ブランク)の溶融粘度に対する、実施例19~27及び比較例11~14のペレットの溶融粘度の低下率を、以下の基準にて評価した。結果を表4に示す。溶融粘度の低下率が大きいほど、成形加工性に優れている。
〇:ブランク対比で溶融粘度の低下率が50%以上
△:ブランク対比で溶融粘度の低下率が20%以上50%未満
×:ブランク対比で溶融粘度の低下率が20%未満
The melt viscosity reduction rate of the pellets of Examples 19 to 27 and Comparative Examples 11 to 14 relative to the melt viscosity of Comparative Example 10 (blank) was evaluated according to the following criteria. The results are shown in Table 4. The larger the melt viscosity reduction rate, the more excellent the moldability.
◯: The decrease in melt viscosity compared to the blank is 50% or more. △: The decrease in melt viscosity compared to the blank is 20% or more but less than 50%. ×: The decrease in melt viscosity compared to the blank is less than 20%.
表4の配合量は、質量部の値である。表4中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、溶融粘度は測定しなかった。
PPS:ポリフェニレンサルファイド樹脂
The blending amounts in Table 4 are in parts by mass. The abbreviations and notes in Table 4 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the melt viscosity was not measured.
PPS: Polyphenylene sulfide resin

Claims (4)

  1. 300℃で2時間加熱後の質量残留率が65質量%以上であり、
    混合メチルシクロヘキサンアニリン曇点(MMAP)が、40~95℃である
    水素化芳香族系炭化水素樹脂を含む、
    熱可塑性樹脂用の改質剤。
    The mass retention rate after heating at 300° C. for 2 hours is 65% by mass or more,
    The mixed methylcyclohexaneaniline cloud point (MMAP) of the hydrogenated aromatic hydrocarbon resin is 40 to 95° C.
    Modifier for thermoplastic resins.
  2. 請求項1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。 A resin composition comprising the modifier according to claim 1 and a thermoplastic resin.
  3. 熱可塑性樹脂に用いる改質剤としての、請求項1に記載の水素化芳香族系炭化水素樹脂の使用。 Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 as a modifier for use in thermoplastic resins.
  4. 熱可塑性樹脂を含む樹脂組成物を製造するための、請求項1に記載の水素化芳香族系炭化水素樹脂の使用。
     

     
    10. Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 for producing a resin composition comprising a thermoplastic resin.


PCT/JP2023/038654 2022-11-01 2023-10-26 Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin WO2024095880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022175829 2022-11-01
JP2022-175829 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024095880A1 true WO2024095880A1 (en) 2024-05-10

Family

ID=90930408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038654 WO2024095880A1 (en) 2022-11-01 2023-10-26 Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin

Country Status (1)

Country Link
WO (1) WO2024095880A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Similar Documents

Publication Publication Date Title
JP2022173091A (en) Resin composition, molding and fluidity improver for low dielectric resin
JPH10511418A (en) Thermoplastically processable mixture of elastomer and thermoplast with high impact strength
JPS63500387A (en) Solvent-resistant compatible blends of polyphenylene ether and linear polyester
JPH0341151A (en) Thermoplastic resin composition
EP0373834A2 (en) Hydrogenated diene copolymer-containing resin composition and process for producing the same
WO2021006192A1 (en) Thermoplastic resin composition, molded article and product
JP5654377B2 (en) High brightness, low gas thin-walled resin reflector
JP6010403B2 (en) Resin composition and molded article for light reflecting component
WO2024095880A1 (en) Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin
US5110866A (en) Thermoplastic polyester resin composition having improved impact resistance
WO2024095883A1 (en) Modifier for thermoplastic resin, resin composition, and use of rosin resin
WO2024095878A1 (en) Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition
JP2945404B2 (en) Resin composition
JPH10219074A (en) Resin composition
JP5084002B2 (en) Polyphenylene ether reinforced resin composition
JP2934940B2 (en) Heat resistant resin composition
WO2023281602A1 (en) Thermoplastic resin composition, molded article and product
JPH11181224A (en) Resin composition and blow molded product using the same
JPH01256560A (en) Thermoplastic resin composition containing ester and/or carbonate bond in its main chain
JPH08199012A (en) Thermoplastic resin composition
JPS60258249A (en) Resin composition
JPH11181169A (en) Thermoplastic elastomer composition
JP2021014581A (en) Thermoplastic resin composition, molded article and product
JPH03252455A (en) Thermoplastic resin composition
JPH08165422A (en) Polyphenylene ether resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885636

Country of ref document: EP

Kind code of ref document: A1