WO2024095878A1 - Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition - Google Patents

Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition Download PDF

Info

Publication number
WO2024095878A1
WO2024095878A1 PCT/JP2023/038644 JP2023038644W WO2024095878A1 WO 2024095878 A1 WO2024095878 A1 WO 2024095878A1 JP 2023038644 W JP2023038644 W JP 2023038644W WO 2024095878 A1 WO2024095878 A1 WO 2024095878A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin
aromatic hydrocarbon
hydrogenated aromatic
Prior art date
Application number
PCT/JP2023/038644
Other languages
French (fr)
Japanese (ja)
Inventor
尚樹 釜谷
雄吾 佐俣
陽水 山口
幸泰 西岡
徹也 柏原
慶輝 張
翼 伊藤
昭寛 川端
功基 柴地
隆 中谷
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Publication of WO2024095878A1 publication Critical patent/WO2024095878A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a modifier for thermoplastic resins, a resin composition, the use of hydrogenated aromatic hydrocarbon resins, a tackifier, and a pressure-sensitive adhesive composition.
  • Hydrogenated aromatic hydrocarbon resins such as aromatic petroleum resins and pure monomer resins (hydrogenated aromatic hydrocarbon resins) are widely used as modifiers for thermoplastic resins such as polyolefin resins and engineering plastics, tackifiers for adhesives such as hot melts and pressure-sensitive adhesives, and binder resins for paints and inks.
  • thermoplastic resins are used in various industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automobile materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength.
  • the above thermoplastic resins, particularly engineering plastics and super engineering plastics often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resins to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
  • the above-mentioned adhesives and pressure-sensitive adhesives are primarily composed of base polymers such as acrylic polymers, rubber-based elastomers (natural rubber, synthetic rubber), and ethylene-vinyl acetate copolymers.
  • base polymers such as acrylic polymers, rubber-based elastomers (natural rubber, synthetic rubber), and ethylene-vinyl acetate copolymers.
  • these adhesives are used as compositions containing tackifiers such as rosin esters, various petroleum resins, and terpene resins (Patent Document 3).
  • thermoplastic resins particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher).
  • the addition of conventional lubricants can cause smoke during melting.
  • adhesives and pressure-sensitive adhesives do not have sufficient adhesive strength even when conventional tackifiers are used. Furthermore, adhesives and pressure-sensitive adhesives that use conventional tackifiers may emit an odor during production and use.
  • the present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
  • the present invention also aims to provide a novel tackifier that can suppress odors in adhesives and provide high adhesive strength to adhesives and adhesives.
  • thermoplastic resins that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the inventors have also discovered that the above problem can be solved by using a tackifier that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
  • MMAP mixed methylcyclohexaneaniline cloud point
  • the present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
  • (Item 2) A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
  • the mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more
  • the mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C. Hydrogenated aromatic hydrocarbon resins, Tackifier.
  • a pressure-sensitive adhesive composition comprising the tackifier according to item 5 and a base polymer.
  • the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below).
  • the range of the value ⁇ may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A
  • Modifier for thermoplastic resin The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a hydrogenated aromatic hydrocarbon resin (hereinafter also referred to as hydrogenated aromatic hydrocarbon resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 64 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 5°C or more and less than 40°C.
  • a hydrogenated aromatic hydrocarbon resin hereinafter also referred to as hydrogenated aromatic hydrocarbon resin having a mass retention rate (hereinafter also referred to as mass retention rate) of 64 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 5°C or more and less than 40°C.
  • MMAP mixed methylcyclohexaneaniline
  • the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
  • the hydrogenated aromatic hydrocarbon resin is not particularly limited as long as it is a hydrogenated aromatic hydrocarbon resin having a mass residual ratio and MMAP within the above range, and various known hydrogenated aromatic hydrocarbon resins can be used.
  • the hydrogenated aromatic hydrocarbon resins may be used alone or in combination of two or more.
  • aromatic hydrocarbon resin examples include aromatic petroleum resins and pure monomer resins.
  • the aromatic hydrocarbon resins may be used alone or in combination of two or more.
  • the aromatic petroleum resins include, for example, C9 petroleum resins obtained from C9 petroleum fractions of naphtha, and copolymers obtained by polymerizing the C9 petroleum resins alone or in combination.
  • C9 petroleum fractions include aromatic compounds with 8 carbon atoms such as styrene; aromatic compounds with 9 carbon atoms such as ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, and indene; aromatic compounds with 10 carbon atoms such as 2-isopropenyltoluene, 4-isopropenyltoluene, 1-methylindene, 2-methylindene, and 3-methylindene; aromatic compounds with 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; and mixtures of these.
  • the pure monomer resins mentioned above include, for example, resins obtained by polymerizing polymerizable monomers (styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, indene) obtained by refining the above C9 petroleum fraction through cationic polymerization, radical polymerization, etc.
  • polymerizable monomers styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, indene
  • the method for producing the aromatic hydrocarbon resin is not particularly limited, but examples include a method in which raw materials such as petroleum fractions and polymerizable monomers are cationic polymerized in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
  • a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
  • the hydrogenated aromatic hydrocarbon resin is preferably a hydrogenated aromatic petroleum resin.
  • Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, and 64 mass%, etc.
  • the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is preferably 64% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass, from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin.
  • the mass retention rate is measured by the method described in the Examples below.
  • thermoplastic resins particularly engineering plastics and super engineering plastics
  • the molding temperature of thermoplastic resins is often 250°C or higher.
  • the present inventors have hypothesized that when hydrogenated aromatic hydrocarbon resins are used as thermoplastic resins and emit smoke when melted, the hydrogenated aromatic hydrocarbon resins have many components that can volatilize and structures that can thermally decompose at the molding temperature, and therefore the smoke is generated by the volatile components and thermal decomposition products.
  • the present inventors have evaluated the mass retention rate of hydrogenated aromatic hydrocarbon resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the molding temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 64% or more have few such components and structures, and therefore suppress smoke generation even when used in the molding of thermoplastic resins.
  • the inventors since it is difficult to specify the details of hydrogenated aromatic hydrocarbon resins, such as the components that may volatilize at molding processing temperatures and the structures that may thermally decompose, the inventors have specified hydrogenated aromatic hydrocarbon resins that can suppress smoke generation when the thermoplastic resin is melted by defining the hydrogenated aromatic hydrocarbon resins based on the above mass residual ratio.
  • the heating conditions are mild, making it difficult to properly evaluate the tendency of hydrogenated aromatic hydrocarbon resins to emit smoke when the thermoplastic resin is melted.
  • the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
  • the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is less than 64 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin may be, for example, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, 29°C, 28°C, 27°C, 26°C, 25°C, 24°C, 23°C, 22°C, 21°C, 20°C, 19°C, 18°C, 17°C, 16°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, or 5°C.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin is preferably 5°C or more and less than 40°C, more preferably 5°C to 35°C, and even more preferably 5°C to 20°C, in order to improve the fluidity of the thermoplastic resin when melted.
  • MMAP is measured by the method described in the Examples below.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin is less than 5°C, or if the MMAP is 40°C or higher, the flowability of the thermoplastic resin when melted tends to decrease.
  • the hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP.
  • Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen.
  • the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
  • the weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,100, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, etc.
  • the aromatic hydrogen content is preferably less than 40%, more preferably 37% or less, in order to further suppress smoke generation during melting of the thermoplastic resin.
  • the content of the aromatic hydrogen is preferably 10% or more and less than 40%, more preferably about 10 to 37%, and even more preferably 16 to 37%, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when it is melted.
  • the aromatic hydrogen refers to a hydrogen atom covalently bonded to an aromatic ring in the hydrogenated aromatic hydrocarbon resin.
  • the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
  • Aromatic hydrogen content (H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%) (1)
  • the olefin content of the hydrogenated aromatic hydrocarbon resin may be, for example, 1.0%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0%.
  • the olefin content is preferably about 0 to 1.0%, more preferably about 0 to 0.5%, and even more preferably 0%, in order to further suppress coloration of the thermoplastic resin when melted.
  • olefin refers to the olefinic double bonds contained in the hydrogenated aromatic hydrocarbon resin, and does not include carbon-carbon double bonds in the aromatic ring.
  • the olefin content is determined by an NMR measurement method, and is calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from an olefinic double bond appearing at 5 to 6 ppm in the 1H -NMR, according to the following formula (2).
  • Olefin content (H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%) (2)
  • the hydrogenated aromatic hydrocarbon resin can be obtained by any of various known means. Specifically, for example, the hydrogenated aromatic hydrocarbon resin can be obtained by hydrogenating any of various known aromatic hydrocarbon resins under known hydrogenation conditions.
  • aromatic hydrocarbon resin examples include the aromatic petroleum resin and the pure monomer resin.
  • the hydrogenation conditions include, for example, a method in which the aromatic hydrocarbon resin is heated to about 200 to 350°C in the presence of a hydrogenation catalyst at a hydrogen partial pressure of about 0.2 to 30 MPa.
  • a hydrogenation catalyst include metals such as nickel, palladium, cobalt, ruthenium, platinum, and rhodium, and oxides of these metals.
  • the amount of the hydrogenation catalyst used is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the raw material resin.
  • the above hydrogenation is carried out with the aromatic hydrocarbon resin melted or dissolved in a solvent.
  • the solvent for dissolving the petroleum resin is not particularly limited, but any solvent that is inert to the reaction and easily dissolves the raw materials and products may be used.
  • cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more.
  • the amount of solvent used is usually 10% by mass or more of solids relative to the petroleum resin, and preferably 10 to 70% by mass. Note that the above hydrogenation conditions are described for a batch-type reaction format, but a flow-type reaction format (fixed bed type, fluidized bed type, etc.) can also be used.
  • the content of aromatic hydrogen in the hydrogenated aromatic hydrocarbon resin can be appropriately set by adjusting the hydrogenation rate of the aromatic rings of the aromatic hydrocarbon resin. Specifically, the higher the hydrogenation rate of the aromatic rings, the lower the content of aromatic hydrogen, and the lower the hydrogenation rate of the aromatic rings, the higher the content of aromatic hydrogen.
  • the weight average molecular weight of the above aromatic hydrocarbon resins may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc.
  • the weight average molecular weight of the aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high.
  • the weight average molecular weight of the aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the hydrogenated aromatic hydrocarbon resin may contain any of various known additives, provided that the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, ultraviolet absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the modifier may contain any of various known additives as long as the effects of the present invention are not impaired.
  • additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers.
  • the additives may be used alone or in combination of two or more.
  • the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
  • thermoplastic resins (Use of modifiers for thermoplastic resins)
  • the above-mentioned modifier can be used for various known thermoplastic resins.
  • the thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
  • the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin, in order to further improve the fluidity during melting.
  • the modifier contains the hydrogenated aromatic hydrocarbon resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the modifier used is not particularly limited.
  • the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress the generation of smoke when the thermoplastic resin is melted.
  • the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress the generation of smoke when the thermoplastic resin is melted.
  • the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin.
  • the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted.
  • the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
  • the method of using the modifier is not particularly limited.
  • the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer.
  • the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
  • the present disclosure relates to a resin composition
  • a resin composition comprising the above-mentioned modifier (or the above-mentioned hydrogenated aromatic hydrocarbon resin) and a thermoplastic resin.
  • thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • thermoplastic resin examples include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
  • the polyolefin resin is not particularly limited, and various known polyolefin resins can be used.
  • the polyolefin resins may be used alone or in combination of two or more.
  • the polyolefin resins include, for example, homopolymers of ⁇ -olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins; binary or ternary (co)polymers of the above-mentioned ⁇ -olefins with ⁇ -olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
  • Examples of the ⁇ -olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene.
  • Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride.
  • the unsaturated carboxylic acids may be neutralized with a base or the like.
  • Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these ⁇ -olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
  • the polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and
  • the styrene-based resin is not particularly limited, and various known styrene-based resins can be used.
  • the styrene-based resins may be used alone or in combination of two or more.
  • styrene resin examples include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer.
  • styrene compound examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like.
  • Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, ⁇ , ⁇ -unsaturated carboxylic acids and their anhydrides, and the like.
  • Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and ⁇ -olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers.
  • the styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more.
  • the styrene-based resin is preferably polystyrene.
  • polyamide The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  • the polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials.
  • the polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
  • amino acids examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
  • lactams examples include ⁇ -caprolactam and ⁇ -laurolactam.
  • diamines examples include aliphatic diamines, aromatic diamines, alicyclic diamines, etc.
  • examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc.
  • aromatic diamines examples include metaxylylene diamine, paraxylylene diamine, etc.
  • alicyclic diamines examples include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
  • Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  • polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11).
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polypentamethylene adipamide polyamide 56
  • polytetramethylene adipamide polyamide 46
  • polyhexamethylene sebacamide polyamide 610
  • polypentamethylene sebacamide polyamide 510
  • polyhexamethylene dodecamide polyamide 612
  • polyundecane amide polyamide 11
  • polydodecanamide polyamide 12
  • polynonane terephthalamide polyamide 9T
  • polycaproamide/polyhexamethylene terephthalamide copolymer polyamide 6/6T
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer polyamide 66/6T
  • polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer polyamide 6T/6I
  • polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • polyhexamethylene adipamide/polyhexamethylene terephthalamide/polydodecanamide copolymer polyamide 6T/12
  • the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, or polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, or polyamide 9T.
  • polyester The polyester is not particularly limited, and various known polyesters can be used. The polyesters may be used alone or in combination of two or more.
  • the polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof.
  • a polycarboxylic acid or an ester-forming derivative thereof
  • a polyhydric alcohol or an ester-forming derivative thereof
  • two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
  • the polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid.
  • Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Examples of tricarboxylic acids include trimellitic acid.
  • the polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof.
  • the aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol.
  • the alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A.
  • the aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
  • polyesters examples include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
  • the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
  • the polycarbonate is not particularly limited, and various known polycarbonates can be used.
  • the polycarbonates may be used alone or in combination of two or more.
  • the polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor.
  • the polycarbonate may be linear or may have a branched structure.
  • the aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc.
  • the aromatic dihydroxy compounds may be used alone or in combination of two or more.
  • bis(hydroxyaryl)alkanes examples include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ...
  • Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  • 1,1-bis(4-hydroxyphenyl)cyclohexane also known as bisphenol Z
  • 1,1-bis(4-hydroxyphenyl)cyclopentane 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
  • 1,1-bis(4-hydroxyphenyl)cyclohexane 1,1-bis(4-hydroxyphenyl)cyclooctane
  • the dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc.
  • the dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc.
  • the dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc.
  • the dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  • the carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc.
  • One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  • the carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds.
  • the carbonyl halides may be used alone or in combination of two or more.
  • the above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, and carbonates of dihydroxy compounds such as cyclic carbonates.
  • One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
  • polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  • the polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
  • the polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used.
  • the polyphenylene ethers may be used alone or in combination of two or more.
  • the polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
  • R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.
  • Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  • copolymers examples include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
  • the method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
  • the polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention.
  • the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units.
  • a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin.
  • it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer).
  • modified polyphenylene ether resins may be used alone or in combination of two or more.
  • the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  • the polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides.
  • aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
  • the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
  • modified polyphenylene ether resins include, for example, "Iupiace” (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL” (registered trademark) manufactured by SABIC Corporation, and "Zylon” (registered trademark) manufactured by Asahi Kasei Corporation.
  • the polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used.
  • the polycarbonate may be used alone or in combination of two or more kinds.
  • the polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
  • polyhalogenated aromatic compound examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
  • Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred.
  • Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred.
  • These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides.
  • the sulfidizing agents may be used alone or in combination of two or more.
  • the sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
  • the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these
  • the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
  • the polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332.
  • the polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with an organic solvent, hot water, an acid aqueous solution, or activation with a functional group-containing compound such as an acid anhydride, an amine, an isocyanate, or a functional group-containing disulfide compound.
  • polyphenylene sulfide products include, for example, “TORELINA” (registered trademark) manufactured by Toray Industries, Inc., “DIC.PPS” (registered trademark) manufactured by DIC Corporation, and “DURAFIDE” (registered trademark) manufactured by Polyplastics Co., Ltd.
  • the liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used.
  • the liquid crystal polymer may be used alone or in combination of two or more kinds.
  • the liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide.
  • the liquid crystal polyester may be, but is not limited to, an aromatic polyester.
  • the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers.
  • the liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide.
  • the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers.
  • the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
  • the aromatic polyester is not particularly limited, but may be, for example, (1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
  • the aromatic polyester amide is not particularly limited, but may be, for example, (1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof; (2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof; (c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
  • the aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or
  • aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxy
  • aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-
  • aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alk
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
  • aromatic diamine examples include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
  • the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
  • the method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means.
  • the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers).
  • melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used.
  • a compound capable of forming an ester it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization.
  • the acylating agent include carboxylic anhydrides such as acetic anhydride.
  • catalysts may be used in the polymerization.
  • the catalyst include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
  • the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
  • the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, and more preferably includes at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin, in view of excellent fluidity when the resin composition is melted.
  • the resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
  • the resin composition may optionally contain a filler.
  • the filler is not particularly limited, and various known fillers can be used.
  • the filler may be used alone or in combination of two or more.
  • the filler may be, for example, spherical, needle-like, fibrous, or plate-like.
  • the above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc.
  • Specific examples of metals constituting metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • the fibers are not particularly limited and various known fibers can be used.
  • the fibers include glass fibers, alumina fibers, polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, polyphenylene sulfide fibers, and other organic fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • the fibers may be used alone or in combination of two or more.
  • the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers.
  • the filler preferably contains at least one selected from the group consisting of glass fiber and carbon powder, in order to provide the resin composition with excellent impact resistance.
  • the melt viscosity of the resin composition was very high due to the filler, which sometimes resulted in extremely poor moldability.
  • the resin composition of the present disclosure uses the above-mentioned modifier, which reduces the melt viscosity even when the resin composition contains the above-mentioned filler, resulting in excellent moldability.
  • the resin composition may contain any additives as long as the effects of the present invention are not impaired.
  • the additives include flame retardants, conductive agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the hydrogenated aromatic hydrocarbon resins, and light stabilizers.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass.
  • the content of the modifier in the resin composition is not particularly limited.
  • the content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
  • the content of the filler in the resin composition is not particularly limited.
  • the content of the filler in the resin composition may be, for example, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin.
  • the content of the filler in the resin composition is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in view of superior fluidity when the resin composition is melted.
  • the content of the additive in the resin composition is not particularly limited.
  • the content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition.
  • the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
  • the method for producing the resin composition is not particularly limited, and various known methods can be adopted.
  • the method for producing the resin composition includes, for example, a method in which the modifier (or the hydrogenated aromatic hydrocarbon resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader.
  • the temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30 ° C to the melting point +30 ° C.
  • the use of the modifier or the hydrogenated aromatic hydrocarbon resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in conventional resin compositions containing fillers, the filler makes the resin composition have a very high melt viscosity, which significantly reduces the fluidity when melt-kneaded. However, when the modifier or the hydrogenated aromatic hydrocarbon resin is used, the fluidity when melt-kneaded is increased, even in the production of a resin composition containing a filler.
  • the molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods.
  • the shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  • the method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  • the above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
  • the hydrogenated aromatic hydrocarbon resin can be used as a modifier for a thermoplastic resin.
  • the flowability of the thermoplastic resin is improved when the thermoplastic resin is melted.
  • the thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
  • the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin.
  • the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for thermoplastic resins having high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
  • the amount of the hydrogenated aromatic hydrocarbon resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the modifier used described above.
  • the present disclosure relates to a tackifier comprising the hydrogenated aromatic hydrocarbon resin.
  • the tackifier is used in a pressure-sensitive adhesive (including a pressure-sensitive adhesive composition described below) to improve the adhesive strength of the pressure-sensitive adhesive.
  • the hydrogenated aromatic hydrocarbon resin in the tackifier is preferably a hydrogenated aromatic petroleum resin.
  • Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, and 64 mass%, etc.
  • the mass residual rate of the hydrogenated aromatic hydrocarbon resin is preferably 64 mass% or more, more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 100 mass% from the viewpoint of suppressing odor in the pressure-sensitive adhesive or adhesive.
  • the mass retention rate is measured by the method described in the Examples below.
  • the inventors have found that when an odor is generated during the production and/or use of an adhesive, it is the tackifier used in the adhesive that emits such an odor, and have surprisingly found that the use of a hydrogenated aromatic hydrocarbon resin having a mass residual rate of 64% or more in the adhesive can suppress odor during the production and/or use of the adhesive. Although the details of how odor is suppressed in the adhesive are unclear, it is presumed that this is because hydrogenated aromatic hydrocarbon resins having a mass residual rate of 64% or more contain less volatile components that cause odor and/or decomposition products that are generated when heated during the production and use of the adhesive.
  • the heating temperature is lower than 300°C and/or the heating time is shorter than 2 hours at the above mass retention rate, the heating conditions are mild, making it difficult to properly evaluate the odor tendency in the manufacture and/or use of the adhesive for hydrogenated aromatic hydrocarbon resins.
  • the mass residual rate of the hydrogenated aromatic hydrocarbon resin is less than 64 mass%, when it is used in a pressure-sensitive adhesive, it tends to emit an odor during its production and/or use.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin may be, for example, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, 29°C, 28°C, 27°C, 26°C, 25°C, 24°C, 23°C, 22°C, 21°C, 20°C, 19°C, 18°C, 17°C, 16°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, or 5°C.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin is preferably 5°C or more and less than 40°C, more preferably 5°C to 35°C, and even more preferably 5°C to 20°C, in order to improve the adhesive strength of the adhesive.
  • MMAP is measured by the method described in the Examples below.
  • the MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
  • the adhesive strength of the pressure-sensitive adhesive tends to decrease.
  • the hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP.
  • Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen.
  • the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration.
  • color tones are measured in Hazen units according to JIS K 0071-1 and in Gardner units according to JIS K 0071-2.
  • the weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing odor in the adhesive/tackifier.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,100, from the viewpoint of further suppressing odor in the adhesive/tackifier and further improving adhesive strength in the adhesive/tackifier.
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, etc.
  • the aromatic hydrogen content is preferably less than 40%, more preferably 37% or less, from the viewpoint of further suppressing the odor of the adhesive/adhesive and further improving the adhesive strength of the adhesive/adhesive.
  • the aromatic hydrogen content is preferably 10% or more and less than 40%, more preferably about 10 to 37%, and even more preferably 16 to 37%.
  • the aromatic hydrogen refers to a hydrogen atom that is covalently bonded to an aromatic ring in the hydrogenated aromatic hydrocarbon resin.
  • the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
  • Aromatic hydrogen content (H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%) (1)
  • the olefin content of the hydrogenated aromatic hydrocarbon resin may be, for example, 1.0%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0%.
  • the olefin content is preferably about 0 to 1.0%, more preferably about 0 to 0.5%, and even more preferably 0%, in order to further suppress coloration in the adhesive.
  • olefin refers to the olefinic double bond contained in the hydrogenated aromatic hydrocarbon resin, and does not include the carbon-carbon double bond in the aromatic ring.
  • the olefin content is determined by an NMR measurement method, and is calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from an olefinic double bond appearing at 5 to 6 ppm in the 1H -NMR, according to the following formula (2).
  • Olefin content (H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%) (2)
  • the tackifier may contain any of various known additives as long as the effects of the present invention are not impaired.
  • additives include crosslinkers, dehydrating agents, crystal nucleating agents, plasticizers, flow improvers, weathering agents, antioxidants, UV absorbers, heat stabilizers, light stabilizers, and tackifiers other than the hydrogenated aromatic hydrocarbon resin.
  • the additives may be used alone or in combination of two or more.
  • the content of the additive is preferably 0.1 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
  • the tackifier can be used for various known adhesives and pressure-sensitive adhesives.
  • the adhesives and pressure-sensitive adhesives may be used alone or in combination of two or more. Examples of the adhesives and pressure-sensitive adhesives include those described below.
  • the tackifier is preferably used in a pressure-sensitive adhesive that contains an acrylic polymer as the base polymer (acrylic pressure-sensitive adhesive) in order to further improve the adhesive strength of the pressure-sensitive adhesive.
  • the amount of the tackifier used in the acrylic pressure-sensitive adhesive is not particularly limited.
  • the amount of the tackifier used in the acrylic pressure-sensitive adhesive is, for example, 70 parts by weight, 69 parts by weight, 68 parts by weight, 67 parts by weight, 66 parts by weight, 65 parts by weight, 64 parts by weight, 63 parts by weight, 62 parts by weight, 61 parts by weight, 60 parts by weight, 59 parts by weight, 58 parts by weight, 57 parts by weight, 56 parts by weight, 55 parts by weight, 54 parts by weight, 53 parts by weight, 52 parts by weight, 51 parts by weight, 50 parts by weight, 49 parts by weight, 48 parts by weight, 47 parts by weight, 46 parts by weight, 45 parts by weight, 44 parts by weight, 43 parts by weight, 42 parts by weight, 41 parts by weight, 42 parts by weight, 43 parts by weight, 4 ...
  • the amount of the tackifier used in the acrylic pressure-sensitive adhesive is preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in terms of solid content, from the viewpoints that the effect of modification by the tackifier can be fully exerted and the decrease in heat resistance retention, tackiness, etc. can be further suppressed.
  • the method of using the tackifier is not particularly limited.
  • Examples of the method of using the tackifier include a method of mixing the tackifier with various known base polymers used in pressure-sensitive adhesives and adhesives, and, if necessary, various known organic solvents and additives. There are no particular limitations on the mixing method, and various known methods can be used. Examples of base polymers used in pressure-sensitive adhesives and adhesives include those described below.
  • the present disclosure relates to a pressure-sensitive adhesive composition
  • a pressure-sensitive adhesive composition comprising the above tackifier (or the above hydrogenated aromatic hydrocarbon resin) and a base polymer.
  • the pressure-sensitive adhesive composition can be used as a pressure-sensitive adhesive.
  • the term "pressure-sensitive adhesive” clearly includes either or both of a pressure-sensitive adhesive and an adhesive.
  • the base polymer examples include acrylic polymers, synthetic rubber elastomers, and olefin polymers.
  • the base polymer may be used alone or in combination of two or more. If necessary, the base polymer may further contain a crosslinking agent, a filler, a release adjuster, a plasticizer, a softener, a colorant (pigment, dye, etc.), a surfactant, an antistatic agent, an antiaging agent, an ultraviolet absorber, an antioxidant, a light stabilizer, etc.
  • the acrylic polymer may be one generally used in various acrylic adhesives, such as a polymer of a monomer component containing alkyl (meth)acrylate.
  • the acrylic polymer may be produced by any of various known polymerization methods, such as a method of radically polymerizing the monomer component in the presence of a polymerization initiator.
  • the polymerization method may be, for example, solution polymerization, suspension polymerization, bulk polymerization, etc.
  • the acrylic polymer may be used alone or in combination of two or more.
  • (meth)acrylic means “at least one selected from the group consisting of acrylic and methacrylic.”
  • (meth)acrylate means “at least one selected from the group consisting of acrylate and methacrylate”
  • (meth)acryloyl group means “at least one selected from the group consisting of acryloyl group and methacryloyl group.”
  • alkyl (meth)acrylates include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, Examples of alkyl (meth)acrylate include acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth
  • the monomer components in the acrylic polymer may further include other monomers that are copolymerizable with the alkyl (meth)acrylate.
  • monomers include carboxyl group-containing monomers, hydroxyl group-containing monomers, amide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, keto group-containing monomers, monomers having a nitrogen atom-containing ring, alkoxysilyl group-containing monomers, (meth)acrylates having an alicyclic structure, (meth)acrylates having an aromatic structure, polyfunctional monomers, etc.
  • carboxyl group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as acrylic acid (AA), methacrylic acid (MAA), and crotonic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, itaconic acid, and citraconic acid, and their anhydrides (maleic anhydride, itaconic anhydride, etc.).
  • ethylenically unsaturated monocarboxylic acids such as acrylic acid (AA), methacrylic acid (MAA), and crotonic acid
  • ethylenically unsaturated dicarboxylic acids such as maleic acid, itaconic acid, and citraconic acid, and their anhydrides (maleic anhydride, itaconic anhydride, etc.).
  • hydroxyl group-containing monomer examples include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate
  • unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • amide group-containing monomer examples include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N-butyl(meth)acrylamide, N-methylol(meth)acrylamide, N-methylolpropane(meth)acrylamide, N-methoxymethyl(meth)acrylamide, and N-butoxymethyl(meth)acrylamide.
  • amino group-containing monomer examples include aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate.
  • Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate, methyl glycidyl (meth)acrylate, and allyl glycidyl ether.
  • Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile.
  • Examples of the keto group-containing monomer include diacetone (meth)acrylamide, diacetone (meth)acrylate, vinyl methyl ketone, vinyl ethyl ketone, allyl acetoacetate, and vinyl acetoacetate.
  • Examples of the monomer having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N-vinylcaprolactam, and N-(meth)acryloylmorpholine.
  • alkoxysilyl group-containing monomer examples include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, and 3-(meth)acryloxypropylmethyldiethoxysilane.
  • Examples of the (meth)acrylate having an alicyclic structure include cyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
  • Examples of the (meth)acrylate having the aromatic structure include aryl (meth)acrylate (e.g., phenyl (meth)acrylate), aryloxyalkyl (meth)acrylate (e.g., phenoxyethyl (meth)acrylate), and arylalkyl (meth)acrylate (e.g., benzyl (meth)acrylate).
  • aryl (meth)acrylate e.g., phenyl (meth)acrylate
  • aryloxyalkyl (meth)acrylate e.g., phenoxyethyl (meth)acrylate
  • arylalkyl (meth)acrylate e.g., benzyl (meth)acrylate
  • polyfunctional monomer examples include 1,6-hexanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, glycerin di(
  • the content of other monomers copolymerizable with the alkyl (meth)acrylate in the monomer component is preferably about 40% by mass or less relative to 100% by mass of the monomer component.
  • the monomer components may further include vinyl ester monomers such as vinyl acetate and vinyl propionate; aromatic vinyl compounds such as styrene, substituted styrenes (such as ⁇ -methylstyrene) and vinyl toluene; olefin monomers such as ethylene, propylene, isoprene, butadiene and isobutylene; chlorine-containing monomers such as vinyl chloride and vinylidene chloride; isocyanate group-containing monomers such as 2-(meth)acryloyloxyethyl isocyanate; alkoxy group-containing monomers such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate; vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether. In one embodiment, the content of these monomers is about 10% by mass or less relative to 100% by mass of the monomer components.
  • the polymerization initiator is not particularly limited, and examples thereof include azo-based initiators such as 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylpropionamidine) disulfate, 2,2'-azobis(2-methylpropionamidine) dihydrochloride, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] hydrate, 2,2'-azobis(N,N'-dimethyleneisobutylamidine), and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride; 1,1-bis(t-hexylperoxy)-3,3,5-tetrahydrofuran;
  • the polymerization initiator include peroxide initiators such as trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxy
  • the weight average molecular weight (Mw) of the acrylic polymer is not particularly limited, but is usually in the range of about 100,000 to 5,000,000. In one embodiment, the weight average molecular weight (Mw) of the acrylic polymer is preferably 1,500,000 or less, more preferably 1,000,000 or less, from the viewpoint of improving adhesive properties, and is preferably 200,000 or more, more preferably 300,000 or more, from the viewpoint of cohesiveness, etc. In this disclosure, the weight average molecular weight refers to a polystyrene equivalent value in the gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the content of the tackifier in the adhesive composition is not particularly limited.
  • the content of the tackifier in the adhesive composition is, for example, 70 parts by mass, 69 parts by mass, 68 parts by mass, 67 parts by mass, 66 parts by mass, 65 parts by mass, 64 parts by mass, 63 parts by mass, 62 parts by mass, 61 parts by mass, 60 parts by mass, 59 parts by mass, 58 parts by mass, 57 parts by mass, 56 parts by mass, 55 parts by mass, 54 parts by mass, 53 parts by mass, 52 parts by mass, 51 parts by mass, 50 parts by mass, 49 parts by mass, 48 parts by mass, 47 parts by mass, 46 parts by mass, 45 parts by mass, 44 parts by mass, 43 parts by mass, 42 parts by mass, 41 parts by mass, or the like, based on 100 parts by mass of the acrylic polymer, in terms of solid content.
  • the content of the tackifier in the pressure-sensitive adhesive composition is, in terms of solid content, preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 70 parts by mass, 69 parts by mass, 68 parts by mass, 67 parts by mass, 66 parts by mass, 65 parts by mass, 64 parts by mass, 63 parts by mass, 62 parts by mass, 61 parts by mass, 60 parts by mass, 59 parts by mass, 58 parts by mass, 57 parts by mass, 56 parts by mass, 55 parts by mass, 54 parts by mass, 53 parts by mass, 52 parts by mass, 51 parts by mass, 50 parts by mass, 49 parts by mass, 48 parts by mass, 47 parts by mass, 46 parts by mass, 45 parts by mass, 44 parts by mass, 43 parts by mass, 42 parts by mass,
  • Examples of the compound include 41 parts by mass, 40 parts by mass, 39 parts by mass, 38 parts by mass, 37 parts by mass, 36 parts by mass, 35 parts by mass, 34 parts by mass, 33 parts by mass, 32
  • the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is, in terms of solid content, preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • Synthetic rubber elastomer As the synthetic rubber elastomer, various known synthetic rubber elastomers used in pressure-sensitive adhesive compositions can be used. The synthetic rubber elastomers may be used alone or in combination of two or more.
  • Examples of the synthetic rubber elastomers include polyisoprene, styrene-butadiene rubber (SBR), styrene-isoprene (SI) rubber, styrene-isoprene-styrene block copolymer (SIS) rubber, styrene-butadiene-styrene block copolymer (SBS) rubber, styrene-ethylene-butylene-styrene block copolymer (SEBS) rubber, styrene-ethylene-propylene-styrene block copolymer (SEPS) rubber, styrene-ethylene-propylene block copolymer (SEP) rubber, reclaimed rubber, butyl rubber, polyisobutylene, styrene-butadiene-vinylpyridine rubber, polybutadiene, methyl methacrylate-butadiene rubber, acrylonitrile-butadiene
  • the content of the tackifier in the adhesive composition is not particularly limited.
  • the content of the tackifier in the adhesive composition is, for example, 210 parts by mass, 205 parts by mass, 200 parts by mass, 195 parts by mass, 190 parts by mass, 185 parts by mass, 180 parts by mass, 175 parts by mass, 170 parts by mass, 165 parts by mass, 160 parts by mass, 155 parts by mass, 150 parts by mass, 145 parts by mass, 140 parts by mass
  • Examples of the tackifier include 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts
  • the content of the tackifier in the pressure-sensitive adhesive composition is preferably about 15 to 210 parts by mass, in terms of solid content, per 100 parts by mass of the synthetic rubber-based elastomer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 210 parts by mass, 205 parts by mass, 200 parts by mass, 195 parts by mass, 190 parts by mass, 185 parts by mass, 180 parts by mass, 175 parts by mass, 170 parts by mass, 165 parts by mass, 160 parts by mass, 155 parts by mass, 150 parts by mass, 145 parts by mass, 140 parts by mass, 15 ...
  • parts by mass 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, etc.
  • the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is preferably about 15 to 210 parts by mass, in terms of solid content, relative to 100 parts by mass of the synthetic rubber-based elastomer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • the olefin-based polymer is not particularly limited as long as it is a polymer of a monomer component containing various olefins, and various known polymers can be used.
  • the olefin-based polymer include an olefin-based homopolymer, which is a homopolymer of various olefins, and an olefin-based copolymer, which is a copolymer of various olefins and a copolymerizable monomer.
  • the olefin-based polymer may be used alone or in combination of two or more kinds.
  • the above olefins include, for example, ethylene, propylene, butene, butylene, isoprene, pentene, pentadiene, octene, isooctene, various isomers of hexene and hexadiene, various isomers of heptene and heptadiene; various alpha-olefins; and cyclic olefins such as cyclopentene, cyclohexene, norbornene, and dicyclopentadienyl.
  • the above olefins may be used alone or in combination of two or more.
  • Examples of the monomers copolymerizable with the olefins include vinyl acetate and the (meth)acrylic acid esters.
  • the copolymerizable monomer is preferably vinyl acetate.
  • the copolymerizable monomers may be used alone or in combination of two or more.
  • the amount of the copolymerizable monomer used in the olefin-based copolymer is preferably about 20 to 45% by mass relative to 100% by mass of the olefin-based copolymer.
  • the above-mentioned olefin-based homopolymers include, for example, polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, amorphous atactic polypropylene, etc.
  • the above-mentioned olefin-based copolymers include, for example, ethylene acrylic acid copolymer (EAA), ethylene methacrylic acid copolymer (EMAA), ethylene vinyl acetate copolymer (EVA), ethylene ethyl acrylate copolymer (EEA), ethylene methyl acrylate copolymer (EMA), ethylene methyl methacrylate copolymer (EMMA), etc.
  • EAA ethylene acrylic acid copolymer
  • EAA ethylene methacrylic acid copolymer
  • EVA ethylene vinyl acetate copolymer
  • EAA ethylene ethyl acrylate copolymer
  • EMA ethylene methyl acrylate copolymer
  • EMMA methyl
  • the content of the tackifier in the adhesive composition is not particularly limited.
  • the content of the tackifier in the adhesive composition is, for example, 150 parts by mass, 145 parts by mass, 140 parts by mass, 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, etc., based on the solid content.
  • the content of the tackifier in the adhesive composition is preferably about 50 to 150 parts by mass based on the solid content, based on 100 parts by mass of the olefin-based polymer, in order to increase the adhesive strength of the adhesive.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited.
  • the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 150 parts by mass, 145 parts by mass, 140 parts by mass, 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, etc., based on 100 parts by mass of the olefin polymer, in terms of solid content.
  • the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is preferably about 50 to 150 parts by mass, in terms of solid content, per 100 parts by mass of the olefin polymer, since this increases the adhesive strength of the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive composition is preferably an acrylic pressure-sensitive adhesive composition containing the acrylic polymer as the base polymer, because of the high effect of modification by the tackifier (or the hydrogenated aromatic hydrocarbon resin).
  • the above pressure-sensitive adhesive composition can be used in either a varnish type or hot melt type.
  • the organic solvent is not particularly limited, but specific examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, cyclohexane, methylcyclohexane, methanol, ethanol, propanol, isopropanol, and hexylene glycol.
  • the amount of the organic solvent used is not particularly limited, but is usually about 100 to 500 parts by mass per 100 parts by mass of the base polymer.
  • the organic solvent that can be used in the varnish type is not particularly required.
  • the pressure-sensitive adhesive composition may optionally contain various additives such as a crosslinking agent, oil, wax, a tackifier other than the hydrogenated aromatic hydrocarbon resin, an antifoaming agent, a viscosity modifier, a filler, an antioxidant, a water-resistant agent, a film-forming assistant, a preservative, a pH adjuster such as ammonia water or sodium bicarbonate, a leveling agent, a release adjuster, a plasticizer, a softener, a colorant (pigment, dye, etc.), a surfactant, an antistatic agent, an antiaging agent, an ultraviolet absorber, an antioxidant, and a light stabilizer, so long as the desired properties are not impaired.
  • additives such as a crosslinking agent, oil, wax, a tackifier other than the hydrogenated aromatic hydrocarbon resin, an antifoaming agent, a viscosity modifier, a filler, an antioxidant, a water-resistant agent, a film-forming assistant, a pre
  • crosslinking agent examples include isocyanate-based crosslinking agents and epoxy-based crosslinking agents.
  • content of the crosslinking agent is typically 10 parts by mass or less per 100 parts by mass of the base polymer, and preferably about 0.01 to 1.0 part by mass.
  • the above-mentioned isocyanate-based crosslinking agents include, for example, lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; alicyclic polyisocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, and hydrogenated xylene diisocyanate; aromatic polyisocyanates such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate; and biuret, isocyanurate, allophanate, and adduct forms thereof, as well as complexes obtained by reacting two or more selected from the group consisting of biuret, isocyanurate,
  • the above-mentioned epoxy crosslinking agents include, for example, compounds having two or more epoxy groups in the molecule, such as bisphenol A epichlorohydrin type epoxy resins, ethylene diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N'-diamine glycidylaminomethyl)cyclohexane.
  • bisphenol A epichlorohydrin type epoxy resins ethylene diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidy
  • the oil may be, for example, a naphthenic oil, a paraffinic oil, or a plasticizing oil such as an aromatic oil.
  • the oil may preferably be a naphthenic process oil, a paraffinic process oil, or a liquid polybutene.
  • the content of the oil is preferably about 4 to 200 parts by mass per 100 parts by mass of the base polymer.
  • the above waxes include, for example, animal-derived waxes such as beeswax, spermaceti, and shellac wax, vegetable-derived waxes such as carnauba wax, Japan wax, rice bran wax, and candelilla wax, petroleum-derived waxes such as paraffin wax and microcrystalline wax, synthetic waxes such as Fischer-Tropsch wax and low molecular weight polyethylene wax, and mineral-derived waxes such as montan wax and ozokerite.
  • animal-derived waxes such as beeswax, spermaceti, and shellac wax
  • vegetable-derived waxes such as carnauba wax, Japan wax, rice bran wax, and candelilla wax
  • petroleum-derived waxes such as paraffin wax and microcrystalline wax
  • synthetic waxes such as Fischer-Tropsch wax and low molecular weight polyethylene wax
  • mineral-derived waxes such as montan wax and ozokerite.
  • the above waxes may be used alone or in
  • the wax content is preferably about 10 to 100 parts by mass per 100 parts by mass of the base polymer.
  • the pressure-sensitive adhesive composition is obtained by mixing the tackifier (or the hydrogenated aromatic hydrocarbon resin) and the base polymer, and, if necessary, the organic solvent and the additives. There are no particular limitations on the mixing method, and various known methods can be used.
  • the present disclosure relates to an active energy ray-curable acrylic pressure-sensitive adhesive composition
  • an active energy ray-curable acrylic pressure-sensitive adhesive composition comprising the tackifier (or the hydrogenated aromatic hydrocarbon resin), an acrylic monomer, an acrylic oligomer, and a photopolymerization initiator.
  • the acrylic monomer may be, for example, the monomer component that is the raw material for the acrylic polymer.
  • the acrylic oligomer is a polymerizable polymer (macromonomer) containing a (meth)acryloyl group
  • any known raw material can be used without particular limitation as long as it is a raw material that synthesizes a polymer by a curing reaction in a relatively low polymerization degree of about 2 to 20.
  • Specific examples include polyacryl (meth)acrylate, polyurethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, etc.
  • photopolymerization initiator various known ones can be used without any particular limitation as long as they can be decomposed by active energy rays to generate radicals and initiate polymerization.
  • Specific examples include 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and 4-methylbenzophenone.
  • the content of each component in the active energy ray-curable acrylic pressure-sensitive adhesive composition is not particularly limited.
  • the content of the tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, etc., relative to 100 parts by mass of the total of the acrylic monomer and acrylic oligomer, calculated as solid content.
  • the content of the tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition is preferably about 1 to 100 parts by mass, calculated as solid content, per 100 parts by mass of the acrylic monomer and acrylic oligomer combined, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • the content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic adhesive/tackifier composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, etc., relative to 100 parts by mass of the total of the acrylic monomer and acrylic oligomer, calculated on a solid content basis.
  • the content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic pressure-sensitive adhesive composition is preferably about 1 to 100 parts by mass per 100 parts by mass of the acrylic monomer and acrylic oligomer in total, in terms of solid content, in order to increase the adhesive strength of the pressure-sensitive adhesive.
  • the content of the photopolymerization initiator in the active energy ray curable acrylic adhesive composition is, for example, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., based on 100 parts by mass of the acrylic monomer and acrylic oligomer in total, calculated as solid content.
  • the content of the photopolymerization initiator in the active energy ray curable acrylic adhesive composition is, for example, about 0.1 to 100 parts by mass based on 100 parts by mass of the acrylic monomer and acrylic oligomer in total, calculated as solid content.
  • the active energy ray-curable acrylic pressure-sensitive adhesive composition may contain various additives as long as the desired properties are not impaired.
  • the active energy ray-curable acrylic pressure-sensitive adhesive composition may contain additives such as the above-mentioned crosslinking agent, surface conditioner, surfactant, ultraviolet absorber, antioxidant, light stabilizer, tackifier other than the above-mentioned tackifier resin, plasticizer, inorganic filler, silane coupling agent, colloidal silica, defoamer, wetting agent, and rust inhibitor.
  • the active energy ray-curable acrylic pressure-sensitive adhesive composition is obtained by mixing the tackifier (or the hydrogenated aromatic hydrocarbon resin), the acrylic monomer, the acrylic oligomer, and the photopolymerization initiator, and, if necessary, the additives.
  • the mixing method There are no particular limitations on the mixing method, and various known methods can be used.
  • the hydrogenated aromatic hydrocarbon resin can be used as a tackifier for adhesives.
  • the adhesive strength of the adhesive is improved.
  • the adhesive is not particularly limited, and examples thereof include those mentioned above.
  • the hydrogenated aromatic hydrocarbon resin is preferably used as a tackifier in an acrylic pressure-sensitive adhesive composition in order to further improve the adhesive strength of the pressure-sensitive adhesive.
  • the amount of the hydrogenated aromatic hydrocarbon resin used as a tackifier in the acrylic adhesive composition is not particularly limited.
  • the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the tackifier used described above.
  • some conventional tackifiers when used in active energy ray-curable acrylic pressure-sensitive adhesive compositions, absorb active energy rays such as ultraviolet rays and inhibit the polymerization reaction of acrylic monomers and acrylic oligomers (hereinafter also referred to as polymerization inhibition), which causes a problem of a decrease in the adhesive strength of the pressure-sensitive adhesive composition.
  • the hydrogenated aromatic hydrocarbon resin has a low or zero olefin content and can suppress the polymerization inhibition of acrylic monomers and acrylic oligomers, and is therefore preferably used as a tackifier for use in active energy ray-curable acrylic pressure-sensitive adhesive compositions.
  • the amount of the hydrogenated aromatic hydrocarbon resin used as a tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition is not particularly limited.
  • Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic pressure-sensitive adhesive composition.
  • the present disclosure provides the following: (Item A1) The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more, The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C. Hydrogenated aromatic hydrocarbon resins, Modifier for thermoplastic resins. (Item A2) The thermoplastic resin modifier according to the above item, wherein the hydrogenated aromatic hydrocarbon resin is a hydrogenated aromatic petroleum resin. (Item A3) The modifier for thermoplastic resin according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of 5°C to 35°C.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • thermoplastic resins according to any of the preceding items wherein the color tone of the hydrogenated aromatic hydrocarbon resin is 10 to 200 Hazen.
  • the modifier for thermoplastic resins according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a weight average molecular weight of 900 to 4,000.
  • the modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 3,000.
  • the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 2,100.
  • thermoplastic resin according to any of the preceding items, wherein the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin is 10 to 37%.
  • a resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
  • the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
  • the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • the content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 70 parts by mass or less per 100 parts by mass of the thermoplastic resin.
  • (Item A16) A molded article obtained by molding any one of the resin compositions described above.
  • (Item A17) 2. Use of the hydrogenated aromatic hydrocarbon resin according to any of the preceding items as a modifier for thermoplastic resins.
  • (Item A18) The use of the hydrogenated aromatic hydrocarbon resin according to item A17, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
  • (Item A19) The use of the hydrogenated aromatic hydrocarbon resin according to the above item A17 or A18, wherein the amount of the hydrogenated aromatic hydrocarbon resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin.
  • thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin.
  • MMAP mixed methylcyclohexaneaniline cloud point
  • (Item A31) The tackifier of any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an olefin content of 0 to 0.5%.
  • (Item A32) A pressure-sensitive adhesive composition comprising any one of the tackifiers described above and a base polymer.
  • (Item A33) The pressure-sensitive adhesive composition according to the above item, wherein the base polymer comprises an acrylic polymer.
  • An active energy ray-curable acrylic pressure-sensitive adhesive composition comprising the tackifier according to any one of the above items, an acrylic monomer, an acrylic oligomer, and a photopolymerization initiator.
  • An active energy ray-curable acrylic pressure-sensitive adhesive composition comprising the tackifier according to any one of the above items, an acrylic monomer, an acrylic oligomer, and a photopolymerization initiator.
  • (Item A37) Use of the hydrogenated aromatic hydrocarbon resin according to item A36, in which the amount of the precursor hydrogenated aromatic hydrocarbon resin used is 2 to 70 parts by mass per 100 parts by mass of the acrylic polymer.
  • the modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability.
  • the modifier when used in thermoplastic resins, can also suppress smoke generation when melted.
  • the tackifier provided in this disclosure can improve the adhesive strength of adhesives and pressure-sensitive adhesives by using it in those adhesives and pressure-sensitive adhesives.
  • the tackifier can suppress odors during the production and/or use of adhesives and pressure-sensitive adhesives when used in those adhesives and pressure-sensitive adhesives.
  • Example 1 100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 2 parts of a palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 285°C, and a reaction time of 1 hour. After completion of the reaction, the resulting resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,210, an aromatic hydrogen content of 36%, and an olefin content of 0%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,290, an aromatic hydrogen content of 26%, and an olefin content of 0%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,300, an aromatic hydrogen content of 19%, and an olefin content of 0%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,340, an aromatic hydrogen content of 35%, and an olefin content of 0%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 2,060, an aromatic hydrogen content of 37%, and an olefin content of 0%.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230, an aromatic hydrogen content of 21%, and an olefin content of 0% was obtained.
  • Comparative Production Example 1 100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature was gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230, an aromatic hydrogen content of 15%, and an olefin content of 0% was obtained.
  • Comparative Production Example 2 100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 7.7 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m2/g) were subjected to a hydrogenation reaction in a shaking autoclave under the conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 275°C, and a reaction time of 5 hours. After the reaction was completed, the resulting resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was then placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, resulting in a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,060, an aromatic hydrogen content of 2%, and an olefin content of 0%.
  • Comparative Production Example 3 100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 1.5 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250°C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,130, an aromatic hydrogen content of 59%, and an olefin content of 0%.
  • Comparative Example 4 100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 2.0 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 280 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration.
  • the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,240, an aromatic hydrogen content of 35%, and an olefin content of 0% was obtained.
  • Aromatic hydrogen content (H-spectrum area derived from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100(%)
  • Olefin content (H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR) ⁇ 100 (%)
  • Example 1 100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Co., Ltd., product name "Iupiace AH40") and 5 parts of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250 ° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
  • Example 2 to 3 and 5 to 7 The same preparation as in Example 1 was carried out, except that in Example 1, the hydrogenated aromatic petroleum resin of Production Example 1 was used as the modifier, and the hydrogenated aromatic petroleum resin of Production Examples 2 to 6 was used, to obtain pellets.
  • Example 4 In Example 1, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 3 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, the same preparation as in Example 1 was performed to obtain pellets.
  • Comparative Example 1 100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100”) and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C.
  • a roller mixer type kneading device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100
  • the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
  • Example 6 instead of the hydrogenated aromatic petroleum resin of Production Example 1, 5 parts of a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, an olefin content of 1.3%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C were used as a modifier. Preparation was performed in the same manner as in Example 1 to obtain pellets.
  • the rate of increase in MFR of the pellets of Examples 1 to 7 and Comparative Examples 2 to 6 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The greater the rate of increase in MFR, the better the moldability. ⁇ : The increase in MFR compared to blank is 30% or more. ⁇ : The increase in MFR compared to blank is 10% or more but less than 30%. ⁇ : The increase in MFR compared to blank is less than 10%.
  • Table 2 The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows. *Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured. mPPE: modified polyphenylene ether resin, product name "Iupiace AH40", manufactured by Global Polyacetal Co., Ltd.
  • Example 8 80 parts (solid content equivalent) of an acrylic polymer (manufactured by Soken Chemical & Engineering Co., Ltd., product name "SK Dyne 1451", solid content 30%) and 20 parts of the hydrogenated aromatic petroleum resin of Production Example 1 as a tackifier were thoroughly kneaded, and then 0.3 parts of an isocyanate crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., product name "Coronate L”) was added to obtain an acrylic pressure-sensitive adhesive composition.
  • an acrylic polymer manufactured by Soken Chemical & Engineering Co., Ltd., product name "SK Dyne 1451", solid content 30%
  • an isocyanate crosslinking agent manufactured by Nippon Polyurethane Co., Ltd., product name "Coronate L
  • Example 8 Except that the hydrogenated aromatic petroleum resin of Production Example 1 was changed to the hydrogenated aromatic petroleum resin of Production Examples 2 to 6 as a tackifier, the same preparation as in Example 8 was performed to obtain an acrylic pressure-sensitive adhesive composition.
  • Example 14 An acrylic pressure-sensitive adhesive composition was obtained in the same manner as in Example 8, except that 5 parts of the hydrogenated aromatic petroleum resin of Production Example 1 was used as a tackifier.
  • Example 15 An acrylic pressure-sensitive adhesive composition was obtained in the same manner as in Example 8, except that 40 parts of the hydrogenated aromatic petroleum resin of Production Example 1 was used as a tackifier.
  • Comparative Example 7 An acrylic pressure-sensitive adhesive composition was obtained by adding 0.3 parts of an isocyanate crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., product name "Coronate L”) to 100 parts (solid content equivalent) of an acrylic polymer (manufactured by Soken Chemical & Engineering Co., Ltd., product name "SK Dyne 1451", solid content 30%).
  • Example 8 except that the hydrogenated aromatic petroleum resin of Production Example 1 was used as the tackifier in place of the hydrogenated aromatic petroleum resins of Comparative Production Examples 1 and 4, preparation was performed in the same manner as in Example 8 to obtain an acrylic pressure-sensitive adhesive composition.
  • the above sample tape was cut to a width of 25 mm, and was laminated to a polyethylene plate (PE plate) by rolling it back and forth once with a 2 kg roller, and was left to stand for one day. Then, a 180-degree peel test was performed under conditions of a pulling speed of 300 mm/min and a measurement temperature of 40° C., and the adhesive strength (N/25 mm) was measured. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This modifier for a thermoplastic resin comprises a hydrogenated aromatic hydrocarbon resin having a mass residual rate of at least 64 mass% after heating at 300ºC for 2 hours, and a mixed methylcyclohexane-aniline cloud point (MMAP) of 5-40ºC (exclusive of 40).

Description

熱可塑性樹脂用の改質剤、樹脂組成物、水素化芳香族系炭化水素樹脂の使用、粘着付与剤及び粘・接着剤組成物Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and adhesive/adhesive composition
  本発明は、熱可塑性樹脂用の改質剤、樹脂組成物、水素化芳香族系炭化水素樹脂の使用、粘着付与剤及び粘・接着剤組成物に関する。 The present invention relates to a modifier for thermoplastic resins, a resin composition, the use of hydrogenated aromatic hydrocarbon resins, a tackifier, and a pressure-sensitive adhesive composition.
芳香族系石油樹脂、ピュアモノマー樹脂等の芳香族系炭化水素樹脂の水素化物(水素化芳香族系炭化水素樹脂)は、ポリオレフィン系樹脂やエンジニアリングプラスチック等の熱可塑性樹脂用の改質剤、ホットメルトや感圧型接着剤等の粘・接着剤用の粘着付与剤、塗料やインキ用のバインダー樹脂として、広く使用されている。 Hydrogenated aromatic hydrocarbon resins such as aromatic petroleum resins and pure monomer resins (hydrogenated aromatic hydrocarbon resins) are widely used as modifiers for thermoplastic resins such as polyolefin resins and engineering plastics, tackifiers for adhesives such as hot melts and pressure-sensitive adhesives, and binder resins for paints and inks.
上記熱可塑性樹脂は、工業的に様々な分野で用いられており、その中でも、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、その優れた耐熱性と、強度のバランスから自動車材料、電気電子機器材料、住宅・建材材料として幅広く利用されている。一方で、上記熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックは、成形加工温度が高く、溶融流動性に劣るものが多いため、通常は、熱可塑性樹脂に滑剤等の添加剤を添加することにより、溶融時における見かけの流動粘度を低下させて、成形加工性を向上させている(特許文献1、2)。 The above thermoplastic resins are used in various industrial fields, and among them, engineering plastics and super engineering plastics are widely used as automobile materials, electrical and electronic equipment materials, and housing and building materials due to their excellent balance of heat resistance and strength. On the other hand, the above thermoplastic resins, particularly engineering plastics and super engineering plastics, often have high molding temperatures and poor melt fluidity, so additives such as lubricants are usually added to the thermoplastic resins to reduce the apparent flow viscosity during melting and improve molding processability (Patent Documents 1 and 2).
また、上記粘・接着剤は、アクリル系重合体、ゴム系エラストマー(天然ゴム、合成ゴム)、エチレン-酢酸ビニル共重合体等のベースポリマーを主成分とするものであるが、一般にベースポリマーだけではさまざまな被着体に対する接着力が不十分なため、ロジンエステル、各種石油樹脂、テルペン樹脂等の粘着付与剤を配合した組成物として用いられている(特許文献3)。 The above-mentioned adhesives and pressure-sensitive adhesives are primarily composed of base polymers such as acrylic polymers, rubber-based elastomers (natural rubber, synthetic rubber), and ethylene-vinyl acetate copolymers. However, because the base polymer alone generally does not provide sufficient adhesive strength to various adherends, these adhesives are used as compositions containing tackifiers such as rosin esters, various petroleum resins, and terpene resins (Patent Document 3).
特開2012-009754号公報JP 2012-009754 A 特開2004-137423号公報JP 2004-137423 A 特開2004-143248号公報JP 2004-143248 A
しかしながら、熱可塑性樹脂においては、従来の滑剤を用いた場合であっても、溶融時の流動性が未だに不十分であり、成形加工性に劣るものがある。また、熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの融点が凡そ200℃以上と高いため、高温下(250℃以上)にて溶融させるが、従来の滑剤を添加すると溶融の際に発煙が生じる場合がある。 However, even when conventional lubricants are used, some thermoplastic resins still have insufficient fluidity when melted, resulting in poor moldability. Furthermore, thermoplastic resins, particularly engineering plastics and super engineering plastics, have high melting points of approximately 200°C or higher, and are melted at high temperatures (250°C or higher). However, the addition of conventional lubricants can cause smoke during melting.
また、粘・接着剤においては、従来の粘着付与剤を使用した場合であっても、接着力が十分でないものがある。さらに、従来の粘着付与剤を使用した粘・接着剤においては、その製造や使用の際に臭気を発する場合がある。 In addition, some adhesives and pressure-sensitive adhesives do not have sufficient adhesive strength even when conventional tackifiers are used. Furthermore, adhesives and pressure-sensitive adhesives that use conventional tackifiers may emit an odor during production and use.
そこで、本発明は、熱可塑性樹脂の溶融時の発煙を抑制し、熱可塑性樹脂の成形加工性を向上し得る、新規な熱可塑性樹脂用の改質剤を提供することを目的とする。 The present invention aims to provide a novel modifier for thermoplastic resins that can suppress smoke generation during melting of the thermoplastic resin and improve the molding processability of the thermoplastic resin.
また、本発明は、粘・接着剤における臭気を抑制し、粘・接着剤に高い接着力を付与し得る、新規な粘着付与剤を提供することを目的とする。 The present invention also aims to provide a novel tackifier that can suppress odors in adhesives and provide high adhesive strength to adhesives and adhesives.
 本発明者は、鋭意検討を重ねた結果、300℃で2時間加熱後の質量残留率が高く、特定の混合メチルシクロヘキサンアニリン曇点(MMAP)を有する水素化芳香族系炭化水素樹脂を含む熱可塑性樹脂用の改質剤によって、上記課題を解決することを見出した。 After extensive research, the inventors discovered that the above problems could be solved by using a modifier for thermoplastic resins that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
 また、本発明者は、300℃で2時間加熱後の質量残留率が高く、特定の混合メチルシクロヘキサンアニリン曇点(MMAP)を有する水素化芳香族系炭化水素樹脂を含む粘着付与剤によって、上記課題を解決することを見出した。 The inventors have also discovered that the above problem can be solved by using a tackifier that contains a hydrogenated aromatic hydrocarbon resin that has a high mass retention rate after heating at 300°C for two hours and a specific mixed methylcyclohexaneaniline cloud point (MMAP).
なお、本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least some of the problems described above, and can be realized in the following aspects or application examples.
(項目1)
300℃で2時間加熱後の質量残留率が64質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
水素化芳香族系炭化水素樹脂を含む、
熱可塑性樹脂用の改質剤。
(Item 1)
The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more,
The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
Hydrogenated aromatic hydrocarbon resins,
Modifier for thermoplastic resins.
(項目2)
項目1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(Item 2)
A resin composition comprising the modifier according to item 1 and a thermoplastic resin.
(項目3)
熱可塑性樹脂に用いる改質剤としての、項目1に記載の水素化芳香族系炭化水素樹脂の使用。
(Item 3)
2. Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 as a modifier for thermoplastic resins.
(項目4)
熱可塑性樹脂を含む樹脂組成物を製造するための、項目1に記載の水素化芳香族系炭化水素樹脂の使用。
(Item 4)
2. Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 for producing a resin composition containing a thermoplastic resin.
(項目5)
300℃で2時間加熱後の質量残留率が64質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
水素化芳香族系炭化水素樹脂を含む、
粘着付与剤。
(Item 5)
The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more,
The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
Hydrogenated aromatic hydrocarbon resins,
Tackifier.
(項目6)
項目5に記載の粘着付与剤及びベースポリマーを含む、粘・接着剤組成物。
(Item 6)
Item 6. A pressure-sensitive adhesive composition comprising the tackifier according to item 5 and a base polymer.
(項目7)
粘・接着剤組成物に使用する粘着付与剤としての、項目5に記載の水素化芳香族系炭化水素樹脂の使用。
(Item 7)
Use of the hydrogenated aromatic hydrocarbon resin according to item 5 as a tackifier for use in a pressure-sensitive adhesive composition.
 本開示の全体にわたり、各物性値、含有量等の数値の範囲は、適宜(例えば下記の各項目に記載の値から選択して)設定され得る。具体的には、数値αの例示がA3、A2、A1(A3>A2>A1とする)である場合、数値αの範囲は、例えば、A3以下、A2以下、A3未満、A2未満、A1以上、A2以上、A1より大きい、A2より大きい、A1~A2(A1以上A2以下)、A1~A3、A2~A3、A1以上A3未満、A1以上A2未満、A2以上A3未満、A1より大きくA3未満、A1より大きくA2未満、A2より大きくA3未満、A1より大きくA3以下、A1より大きくA2以下、A2より大きくA3以下等が挙げられる。なお、本開示において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。以下では、本開示の構成要素や製造方法等について詳細に説明する。 Throughout this disclosure, the range of the values of each physical property, content, etc. may be set as appropriate (for example, by selecting from the values described in each item below). Specifically, when the examples of the value α are A3, A2, and A1 (A3>A2>A1), the range of the value α may be, for example, A3 or less, A2 or less, less than A3, less than A2, A1 or more, A2 or more, greater than A1, greater than A2, A1 to A2 (A1 or more and A2 or less), A1 to A3, A2 to A3, A1 or more and less than A3, A1 or more and less than A2, A2 or more and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, greater than A1 and less than A3, greater than A1 and less than A2, greater than A2 and less than A3, and so on. In this disclosure, the word "to" is used to mean that the values described before and after it are included as the lower and upper limits. Below, the components and manufacturing methods of this disclosure will be described in detail.
[熱可塑性樹脂用の改質剤]
本開示は、300℃で2時間加熱後の質量残留率(以下、質量残留率とも記す。)が64質量%以上であり、混合メチルシクロヘキサンアニリン曇点(MMAP)(以下、MMAPとも記す。)が5℃以上40℃未満である水素化芳香族系炭化水素樹脂(以下、水素化芳香族系炭化水素樹脂とも記す)を含む、熱可塑性樹脂用の改質剤(以下、改質剤とも記す)に関する。
[Modifier for thermoplastic resin]
The present disclosure relates to a modifier for thermoplastic resins (hereinafter also referred to as modifier), which contains a hydrogenated aromatic hydrocarbon resin (hereinafter also referred to as hydrogenated aromatic hydrocarbon resin) having a mass retention rate (hereinafter also referred to as mass retention rate) of 64 mass% or more after heating at 300°C for 2 hours and a mixed methylcyclohexaneaniline cloud point (MMAP) (hereinafter also referred to as MMAP) of 5°C or more and less than 40°C.
 上記改質剤は、熱可塑性樹脂に用いることにより、熱可塑性樹脂における溶融時の流動性を向上し得るように機能(流動性向上剤)する。 When used in thermoplastic resins, the above modifiers function to improve the fluidity of the thermoplastic resin when melted (fluidity improvers).
<水素化芳香族系炭化水素樹脂>
上記水素化芳香族系炭化水素樹脂は、質量残留率及びMMAPが上記範囲である芳香族系炭化水素樹脂の水素化物であれば、特に限定されず、各種公知のものを使用できる。上記水素化芳香族系炭化水素樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Hydrogenated aromatic hydrocarbon resin>
The hydrogenated aromatic hydrocarbon resin is not particularly limited as long as it is a hydrogenated aromatic hydrocarbon resin having a mass residual ratio and MMAP within the above range, and various known hydrogenated aromatic hydrocarbon resins can be used. The hydrogenated aromatic hydrocarbon resins may be used alone or in combination of two or more.
上記芳香族系炭化水素樹脂は、例えば、芳香族系石油樹脂、ピュアモノマー樹脂等が挙げられる。芳香族系炭化水素樹脂は、1種を単独で、又は2種以上を組み合わせても良い。 Examples of the aromatic hydrocarbon resin include aromatic petroleum resins and pure monomer resins. The aromatic hydrocarbon resins may be used alone or in combination of two or more.
 上記芳香族系石油樹脂は、例えば、ナフサのC9石油留分から得られるC9系石油樹脂、該C9系石油樹脂を単独、又は複数重合させた共重合体等が挙げられる。C9石油留分は、例えば、スチレン等の炭素数8の芳香族化合物;α-メチルスチレン、β-メチルスチレン、ビニルトルエン、インデン等の炭素数9の芳香族化合物;2-イソプロペニルトルエン、4-イソプロペニルトルエン、1-メチルインデン、2-メチルインデン、3-メチルインデン等の炭素数10の芳香族化合物;2,3-ジメチルインデン、2,5-ジメチルインデン等の炭素数11の芳香族化合物;これらの混合物等が挙げられる。 The aromatic petroleum resins include, for example, C9 petroleum resins obtained from C9 petroleum fractions of naphtha, and copolymers obtained by polymerizing the C9 petroleum resins alone or in combination. Examples of C9 petroleum fractions include aromatic compounds with 8 carbon atoms such as styrene; aromatic compounds with 9 carbon atoms such as α-methylstyrene, β-methylstyrene, vinyltoluene, and indene; aromatic compounds with 10 carbon atoms such as 2-isopropenyltoluene, 4-isopropenyltoluene, 1-methylindene, 2-methylindene, and 3-methylindene; aromatic compounds with 11 carbon atoms such as 2,3-dimethylindene and 2,5-dimethylindene; and mixtures of these.
 上記ピュアモノマー樹脂は、例えば、上記C9石油留分を精製して得られる重合性モノマー(スチレン、ビニルトルエン、α-メチルスチレン、イソプロペニルトルエン、インデン)をカチオン重合やラジカル重合等により重合して得られる樹脂が挙げられる。 The pure monomer resins mentioned above include, for example, resins obtained by polymerizing polymerizable monomers (styrene, vinyltoluene, α-methylstyrene, isopropenyltoluene, indene) obtained by refining the above C9 petroleum fraction through cationic polymerization, radical polymerization, etc.
上記芳香族系炭化水素樹脂の製造方法は、特に限定されないが、例えば、原料となる石油留分や重合性モノマーを、塩化アルミニウムや三フッ化ホウ素等のフリーデルクラフト触媒の存在下でカチオン重合させる方法等が挙げられる。 The method for producing the aromatic hydrocarbon resin is not particularly limited, but examples include a method in which raw materials such as petroleum fractions and polymerizable monomers are cationic polymerized in the presence of a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride.
 1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、好ましくは上記芳香族系石油樹脂の水素化物が挙げられる。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably a hydrogenated aromatic petroleum resin.
(水素化芳香族系炭化水素樹脂の物性)
上記水素化芳香族系炭化水素樹脂の上記質量残留率は、例えば、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%、83質量%、82質量%、81質量%、80質量%、79質量%、78質量%、77質量%、76質量%、75質量%、74質量%、73質量%、72質量%、71質量%、70質量%、69質量%、68質量%、67質量%、66質量%、65質量%、64質量%等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の上記質量残留率は、熱可塑性樹脂の溶融時における発煙を抑制し得る点から、好ましくは64質量%以上が挙げられ、より好ましくは70質量%以上が挙げられ、さらに好ましくは80質量%以上が挙げられ、さらに好ましくは90質量%以上が挙げられ、特に好ましくは100質量%が挙げられる。上記水素化芳香族系炭化水素樹脂の上記質量残留率が高い程、熱可塑性樹脂の溶融時における発煙をより抑制し得る。
(Physical Properties of Hydrogenated Aromatic Hydrocarbon Resins)
Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, and 64 mass%, etc. In one embodiment, the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is preferably 64% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass, from the viewpoint of suppressing smoke generation during melting of the thermoplastic resin. The higher the mass residual ratio of the hydrogenated aromatic hydrocarbon resin, the more smoke generation during melting of the thermoplastic resin can be suppressed.
なお、本開示において、上記質量残留率は、後述の実施例に記載の方法で測定されるものである。 In this disclosure, the mass retention rate is measured by the method described in the Examples below.
熱可塑性樹脂、特にエンジニアリングプラスチックやスーパーエンジニアリングプラスチックにおいては、それらの成形加工温度は250℃以上である場合が多い。本発明者らは、水素化芳香族系炭化水素樹脂を熱可塑性樹脂に用いて、その溶融時において発煙する場合、水素化芳香族系炭化水素樹脂が成形加工温度において揮発し得る成分及び熱分解し得る構造を多く有しているために、その揮発成分及び熱分解物により発煙が生じると推察した。そして、本発明者らは、水素化芳香族系炭化水素樹脂について、成形加工温度と同等又はそれ以上の温度(300℃)で、且つ長時間(2時間)加熱する過酷な条件下での質量残留率を評価し、その質量残留率が64質量%以上のものは、そのような成分や構造が少ないために、熱可塑性樹脂の成形加工において使用しても発煙が抑制されることを見出した。 The molding temperature of thermoplastic resins, particularly engineering plastics and super engineering plastics, is often 250°C or higher. The present inventors have hypothesized that when hydrogenated aromatic hydrocarbon resins are used as thermoplastic resins and emit smoke when melted, the hydrogenated aromatic hydrocarbon resins have many components that can volatilize and structures that can thermally decompose at the molding temperature, and therefore the smoke is generated by the volatile components and thermal decomposition products. The present inventors have evaluated the mass retention rate of hydrogenated aromatic hydrocarbon resins under harsh conditions of heating at a temperature (300°C) equal to or higher than the molding temperature for a long period of time (2 hours), and have found that those with a mass retention rate of 64% or more have few such components and structures, and therefore suppress smoke generation even when used in the molding of thermoplastic resins.
そして、水素化芳香族系炭化水素樹脂においては、成形加工温度において揮発し得る成分や熱分解し得る構造について、その詳細は多岐にわたり特定するのは困難であるため、本発明者らは、上記質量残留率で水素化芳香族系炭化水素樹脂を規定することにより、熱可塑性樹脂の溶融時における発煙を抑制し得るものを特定している。 In addition, since it is difficult to specify the details of hydrogenated aromatic hydrocarbon resins, such as the components that may volatilize at molding processing temperatures and the structures that may thermally decompose, the inventors have specified hydrogenated aromatic hydrocarbon resins that can suppress smoke generation when the thermoplastic resin is melted by defining the hydrogenated aromatic hydrocarbon resins based on the above mass residual ratio.
 なお、上記質量残留率において加熱温度が300℃より低い場合、及び/又は、加熱時間が2時間より短い場合、加熱条件が温和なために、水素化芳香族系炭化水素樹脂においては、熱可塑性樹脂の溶融時における発煙の傾向を適切に評価することが困難となる。また、熱可塑性樹脂の溶融時に発煙する場合、発煙による装置汚れ・金型汚れが発生するが、加熱時間が2時間より短いと、実際の成形加工における装置汚れ・金型汚れを反映できないため、それら汚れ具合を適切に評価することが困難となる。 When the heating temperature is lower than 300°C and/or the heating time is shorter than 2 hours at the above mass retention rate, the heating conditions are mild, making it difficult to properly evaluate the tendency of hydrogenated aromatic hydrocarbon resins to emit smoke when the thermoplastic resin is melted. In addition, when the thermoplastic resin emits smoke when melted, the smoke causes equipment and mold contamination, but when the heating time is shorter than 2 hours, it is difficult to properly evaluate the degree of contamination because it is not possible to reflect the equipment and mold contamination that occurs in actual molding processing.
上記水素化芳香族系炭化水素樹脂の上記質量残留率が64質量%未満である場合は、熱可塑性樹脂に使用すると、その溶融時において発煙が多く発生する傾向にある。 If the mass residual ratio of the hydrogenated aromatic hydrocarbon resin is less than 64 mass%, when it is used in a thermoplastic resin, it tends to emit a lot of smoke when melted.
上記水素化芳香族系炭化水素樹脂のMMAPは、例えば、39℃、38℃、37℃、36℃、35℃、34℃、33℃、32℃、31℃、30℃、29℃、28℃、27℃、26℃、25℃、24℃、23℃、22℃、21℃、20℃、19℃、18℃、17℃、16℃、15℃、14℃、13℃、12℃、11℃、10℃、9℃、8℃、7℃、6℃、5℃等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂のMMAPは、熱可塑性樹脂の溶融時における流動性を向上させる点から、好ましくは5℃以上40℃未満が挙げられ、より好ましくは5℃~35℃が挙げられ、さらに好ましくは5~20℃が挙げられる。 The MMAP of the hydrogenated aromatic hydrocarbon resin may be, for example, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, 29°C, 28°C, 27°C, 26°C, 25°C, 24°C, 23°C, 22°C, 21°C, 20°C, 19°C, 18°C, 17°C, 16°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, or 5°C. In one embodiment, the MMAP of the hydrogenated aromatic hydrocarbon resin is preferably 5°C or more and less than 40°C, more preferably 5°C to 35°C, and even more preferably 5°C to 20°C, in order to improve the fluidity of the thermoplastic resin when melted.
なお、本開示において、MMAPは、後述の実施例に記載の方法で測定されるものである。 Note that in this disclosure, MMAP is measured by the method described in the Examples below.
上記水素化芳香族系炭化水素樹脂のMMAPは、上記水素化芳香族系炭化水素樹脂における芳香族性の特質を示すものである。上記水素化芳香族系炭化水素樹脂における芳香族部分の割合が高いと、MMAPは低い傾向にあり、芳香族部分の割合が低いと、MMAPは高い傾向にある。 The MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
上記水素化芳香族系炭化水素樹脂のMMAPが5℃未満である場合、又は、MMAPが40℃以上である場合、熱可塑性樹脂の溶融時における流動性が低下する傾向にある。 If the MMAP of the hydrogenated aromatic hydrocarbon resin is less than 5°C, or if the MMAP is 40°C or higher, the flowability of the thermoplastic resin when melted tends to decrease.
上記水素化芳香族系炭化水素樹脂は、上記質量残留率及びMMAP以外の物性は特に限定されない。上記水素化芳香族系炭化水素樹脂の色調は、例えば、400ハーゼン、350ハーゼン、300ハーゼン、250ハーゼン、200ハーゼン、150ハーゼン、100ハーゼン、95ハーゼン、90ハーゼン、85ハーゼン、80ハーゼン、75ハーゼン、70ハーゼン、65ハーゼン、60ハーゼン、55ハーゼン、50ハーゼン、45ハーゼン、40ハーゼン、35ハーゼン、30ハーゼン、25ハーゼン、20ハーゼン、15ハーゼン、10ハーゼン、5ハーゼン等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の色調は、着色が抑制される点から、好ましくは10~400ハーゼン程度が挙げられ、より好ましくは10~200ハーゼン程度が挙げられる。なお、本開示において、色調は、ハーゼン単位はJIS K 0071-1に準拠して、ガードナー単位はJIS K 0071-2に準拠して測定されたものである。 The hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP. Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen. In one embodiment, the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration. In this disclosure, color tone is measured in Hazen units according to JIS K 0071-1, and in Gardner units according to JIS K 0071-2.
上記水素化芳香族系炭化水素樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは900以上が挙げられ、より好ましくは1,000以上が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、熱可塑性樹脂の溶融時における発煙をより抑制し、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは900~4,000程度が挙げられ、より好ましくは1,000~3,000程度が挙げられ、さらに好ましくは1,000~2,100程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,100, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when melted. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
上記水素化芳香族系炭化水素樹脂の重量平均分子量が高い程、上記質量残留率は高い傾向にある。 The higher the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin, the higher the mass retention rate tends to be.
 上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率は、例えば、39%、38%、37%、36%、35%、34%、33%、32%、31%、30%、29%、28%、27%、26%、25%、24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%等が挙げられる。1つの実施形態において、上記芳香族水素の含有率は、熱可塑性樹脂の溶融時における発煙をより抑制する点から、好ましくは40%未満が挙げられ、より好ましくは37%以下が挙げられる。1つの実施形態において、上記芳香族水素の含有率は、熱可塑性樹脂の溶融時における発煙をより抑制し、熱可塑性樹脂の溶融時における流動性をより向上させる点から、好ましくは10%以上40%未満が挙げられ、より好ましくは10~37%程度が挙げられ、さらに好ましくは16~37%が挙げられる。なお、上記芳香族水素とは、上記水素化芳香族系炭化水素樹脂における芳香環に共有結合している水素原子のことを意味する。 The aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, etc. In one embodiment, the aromatic hydrogen content is preferably less than 40%, more preferably 37% or less, in order to further suppress smoke generation during melting of the thermoplastic resin. In one embodiment, the content of the aromatic hydrogen is preferably 10% or more and less than 40%, more preferably about 10 to 37%, and even more preferably 16 to 37%, from the viewpoint of further suppressing smoke generation when the thermoplastic resin is melted and further improving the fluidity of the thermoplastic resin when it is melted. The aromatic hydrogen refers to a hydrogen atom covalently bonded to an aromatic ring in the hydrogenated aromatic hydrocarbon resin.
なお、本開示において、上記芳香族水素の含有率は、NMR測定法により求められ、水素化芳香族系炭化水素樹脂におけるH-NMRの全H-スペクトル面積と、そのH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積から、以下の(1)式に基づいて計算する。
芳香族水素の含有率=(H-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%)・・・(1)
In the present disclosure, the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
Aromatic hydrogen content=(H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%) (1)
上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、上記質量残留率は高い傾向にある。また、上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、MMAPは高い傾向にあり、上当該芳香族水素の含有率が高い程、MMAPは低い傾向にある。 The lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the mass residual ratio tends to be. In addition, the lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the MMAP tends to be, and the higher the aromatic hydrogen content, the lower the MMAP tends to be.
 上記水素化芳香族系炭化水素樹脂のオレフィン含有率は、例えば、1.0%、0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.3%、0.2%、0.1%、0%等が挙げられる。1つの実施形態において、上記オレフィン含有率は、熱可塑性樹脂の溶融時における着色をより抑制する点から、好ましくは0~1.0%程度が挙げられ、より好ましくは0~0.5%程度が挙げられ、さらに好ましくは0%が挙げられる。なお、オレフィンとは、上記水素化芳香族系炭化水素樹脂に含まれるオレフィン性二重結合のことを意味しており、芳香環における炭素-炭素二重結合は含まれない。 The olefin content of the hydrogenated aromatic hydrocarbon resin may be, for example, 1.0%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0%. In one embodiment, the olefin content is preferably about 0 to 1.0%, more preferably about 0 to 0.5%, and even more preferably 0%, in order to further suppress coloration of the thermoplastic resin when melted. Note that olefin refers to the olefinic double bonds contained in the hydrogenated aromatic hydrocarbon resin, and does not include carbon-carbon double bonds in the aromatic ring.
なお、本開示において、上記オレフィン含有率は、NMR測定法により求められ、水素化芳香族系炭化水素樹脂におけるH-NMRの全H-スペクトル面積と、そのH-NMRの5~6ppmに現れるオレフィン性二重結合由来のH-スペクトル面積から、以下の(2)式に基づいて計算する。
オレフィン含有率=(H-NMRの4~6ppmに現れるオレフィン性二重結合由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%)・・・(2)
In the present disclosure, the olefin content is determined by an NMR measurement method, and is calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from an olefinic double bond appearing at 5 to 6 ppm in the 1H -NMR, according to the following formula (2).
Olefin content=(H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%) (2)
(水素化芳香族系炭化水素樹脂の製造方法)
 上記水素化芳香族系炭化水素樹脂は、各種公知の手段を用いて得ることができる。具体的には、例えば、公知の水素化条件を用いて、各種公知の芳香族系炭化水素樹脂を水素化することにより得ることができる。
(Method for producing hydrogenated aromatic hydrocarbon resin)
The hydrogenated aromatic hydrocarbon resin can be obtained by any of various known means. Specifically, for example, the hydrogenated aromatic hydrocarbon resin can be obtained by hydrogenating any of various known aromatic hydrocarbon resins under known hydrogenation conditions.
上記芳香族系炭化水素樹脂は、例えば、上記芳香族系石油樹脂、上記ピュアモノマー樹脂等が挙げられる。 Examples of the aromatic hydrocarbon resin include the aromatic petroleum resin and the pure monomer resin.
 水素化条件は、例えば、水素化触媒の存在下、水素分圧が0.2~30MPa程度で、200~350℃程度に、上記芳香族系炭化水素樹脂を加熱する方法等が挙げられる。水素化触媒としては、例えば、ニッケル、パラジウム、コバルト、ルテニウム、白金及びロジウム等の金属や、該金属の酸化物が挙げられる。1つの実施形態において、水素化触媒の使用量は、原料樹脂100質量部に対して、好ましくは0.01~10質量部程度が挙げられる。 The hydrogenation conditions include, for example, a method in which the aromatic hydrocarbon resin is heated to about 200 to 350°C in the presence of a hydrogenation catalyst at a hydrogen partial pressure of about 0.2 to 30 MPa. Examples of the hydrogenation catalyst include metals such as nickel, palladium, cobalt, ruthenium, platinum, and rhodium, and oxides of these metals. In one embodiment, the amount of the hydrogenation catalyst used is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the raw material resin.
 上記水素化は、上記芳香族系炭化水素樹脂を溶融して、又は溶剤に溶解した状態で行う。該石油樹脂を溶解する溶剤は特に限定されないが、反応に不活性で原料や生成物が溶解し易い溶剤であればよい。例えば、シクロヘキサン、n-ヘキサン、n-ヘプタン、デカリン、テトラヒドロフラン、ジオキサン等を1種または2種以上を組み合わせて使用できる。1つの実施形態において、溶剤の使用量は、通常、該石油樹脂に対して固形分10質量%以上が挙げられ、好ましくは10~70質量%が挙げられる。なお、上記水素化条件は反応形式として回分式を採用した場合について説明しているが、反応形式としては流通式(固定床式、流動床式等)を採用することもできる。 The above hydrogenation is carried out with the aromatic hydrocarbon resin melted or dissolved in a solvent. The solvent for dissolving the petroleum resin is not particularly limited, but any solvent that is inert to the reaction and easily dissolves the raw materials and products may be used. For example, cyclohexane, n-hexane, n-heptane, decalin, tetrahydrofuran, dioxane, etc. can be used alone or in combination of two or more. In one embodiment, the amount of solvent used is usually 10% by mass or more of solids relative to the petroleum resin, and preferably 10 to 70% by mass. Note that the above hydrogenation conditions are described for a batch-type reaction format, but a flow-type reaction format (fixed bed type, fluidized bed type, etc.) can also be used.
 上記水素化においては、上記芳香族系炭化水素樹脂の芳香環に対する水素化率を調整することにより、上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率を適宜設定できる。具体的には、当該芳香環に対する水素化率が高い程、上記芳香族水素の含有率は低くなり、当該芳香環に対する水素化率が低い程、上記芳香族水素の含有率は高くなる。 In the hydrogenation, the content of aromatic hydrogen in the hydrogenated aromatic hydrocarbon resin can be appropriately set by adjusting the hydrogenation rate of the aromatic rings of the aromatic hydrocarbon resin. Specifically, the higher the hydrogenation rate of the aromatic rings, the lower the content of aromatic hydrogen, and the lower the hydrogenation rate of the aromatic rings, the higher the content of aromatic hydrogen.
なお、上記芳香族系炭化水素樹脂の芳香環に対する水素化率は、NMR測定法により求められ、上記芳香族系炭化水素樹脂及びそれから得られる水素化芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積から以下の式に基づき算出する。
 
水素化率={1-(水素化芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/芳香族系炭化水素樹脂のH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積)}×100(%)。
The hydrogenation rate of the aromatic rings in the aromatic hydrocarbon resin is determined by NMR measurement and calculated based on the following formula from the H-spectrum area derived from the aromatic rings appearing at about 7 ppm in 1H -NMR of the aromatic hydrocarbon resin and the hydrogenated aromatic hydrocarbon resin obtained therefrom.

Hydrogenation rate={1-(H-spectrum area derived from aromatic rings appearing near 7 ppm in 1 H-NMR of hydrogenated aromatic hydrocarbon resin/H-spectrum area derived from aromatic rings appearing near 7 ppm in 1 H-NMR of aromatic hydrocarbon resin)}×100 (%).
 また、上記水素化においては、上記芳香族系炭化水素樹脂に含まれるオレフィン性二重結合のほぼ全てが水素化される。なお、当該オレフィン性二重結合には、芳香環における炭素-炭素二重結合は含まれない。 In addition, in the hydrogenation, almost all of the olefinic double bonds contained in the aromatic hydrocarbon resin are hydrogenated. Note that the olefinic double bonds do not include carbon-carbon double bonds in aromatic rings.
また、上記芳香族系炭化水素樹脂の重量平均分子量が高い程、上記水素化芳香族系炭化水素樹脂の質量残留率は高い傾向にある。 Furthermore, the higher the weight average molecular weight of the aromatic hydrocarbon resin, the higher the mass retention rate of the hydrogenated aromatic hydrocarbon resin tends to be.
上記芳香族系炭化水素樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900等が挙げられる。1つの実施形態において、上記芳香族系炭化水素樹脂の重量平均分子量は、上記水素化芳香族系炭化水素樹脂の質量残留率が高い点から、好ましくは900以上が挙げられ、より好ましくは1,000以上が挙げられる。1つの実施形態において、上記芳香族系炭化水素樹脂の重量平均分子量は、上記水素化芳香族系炭化水素樹脂の質量残留率が高い点から、好ましくは900~4,000程度が挙げられ、より好ましくは1,000~3,000程度が挙げられ、さらに好ましくは1,000~2,500程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the above aromatic hydrocarbon resins may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc. In one embodiment, the weight average molecular weight of the aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high. In one embodiment, the weight average molecular weight of the aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,500, because the mass residual rate of the hydrogenated aromatic hydrocarbon resin is high. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。 In one embodiment, the hydrogenated aromatic hydrocarbon resin may contain any of various known additives, provided that the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, ultraviolet absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more.
(添加剤)
1つの実施形態において、上記改質剤は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、脱水剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。1つの実施形態において、上記添加剤の含有量は、上記水素化芳香族系炭化水素樹脂100質量部に対して、好ましくは0.5~10質量部が挙げられる。
(Additive)
In one embodiment, the modifier may contain any of various known additives as long as the effects of the present invention are not impaired. Examples of additives include dehydrating agents, weathering agents, antioxidants, UV absorbers, heat stabilizers, and light stabilizers. The additives may be used alone or in combination of two or more. In one embodiment, the content of the additive is preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
(熱可塑性樹脂用の改質剤の使用)
上記改質剤は、各種公知の熱可塑性樹脂に対して用いることができる。熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。熱可塑性樹脂は、例えば、後述のものが挙げられる。
(Use of modifiers for thermoplastic resins)
The above-mentioned modifier can be used for various known thermoplastic resins. The thermoplastic resin may be used alone or in combination of two or more. Examples of the thermoplastic resin include those described below.
 1つの実施形態において、上記改質剤は、溶融時における流動性をより向上させる点から、好ましくはポリエステル、ポリカーボネート及びポリフェニレンエーテルからなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用され、より好ましくはポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含む熱可塑性樹脂に使用される。 In one embodiment, the above modifier is preferably used for a thermoplastic resin containing at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, and more preferably used for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin, in order to further improve the fluidity during melting.
1つの実施形態において、上記改質剤は、上記水素化芳香族系炭化水素樹脂を含むため、好ましくは成形加工温度の高い熱可塑性樹脂、特に好ましくは、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いられる。 In one embodiment, the modifier contains the hydrogenated aromatic hydrocarbon resin, and is therefore preferably used for thermoplastic resins with high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
上記改質剤の使用量は、特に限定されない。上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~8質量部程度が挙げられる。 The amount of the modifier used is not particularly limited. For example, the amount of the modifier used may be 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress the generation of smoke when the thermoplastic resin is melted. In one embodiment, the amount of the modifier used is preferably about 0.1 to 20 parts by mass, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress the generation of smoke when the thermoplastic resin is melted.
また、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、熱可塑性樹脂に後述するフィラーが併用される場合、上記改質剤の使用量は、熱可塑性樹脂の溶融時における流動性を向上させ、熱可塑性樹脂の溶融時における発煙を抑制する点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは5~10質量部程度が挙げられる。 In addition, when a filler described below is used in combination with the thermoplastic resin, the amount of the modifier used may be, for example, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by weight, 14 parts by weight, 13 parts by weight, 12 parts by weight, 11 parts by weight, 10 parts by weight, 9 parts by weight, 8 parts by weight, 7 parts by weight, 6 parts by weight, 5 parts by weight, 4 parts by weight, 3 parts by weight, 2 parts by weight, 1 part by weight, 0.9 parts by weight, 0.8 parts by weight, 0.7 parts by weight, 0.6 parts by weight, 0.5 parts by weight, 0.4 parts by weight, 0.3 parts by weight, 0.2 parts by weight, 0.1 parts by weight, etc., per 100 parts by weight of the thermoplastic resin. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted. In one embodiment, when a filler described later is used in combination with the thermoplastic resin, the amount of the modifier used is preferably about 0.1 to 20 parts by mass in order to improve the fluidity of the thermoplastic resin when melted and to suppress smoke generation when the thermoplastic resin is melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
 上記改質剤の使用方法は、特に限定されない。上記改質剤の使用方法は、例えば、混合機に、熱可塑性樹脂と共に改質剤を添加し、当該混合機で溶融混練する方法等が挙げられる。上記混合機は、例えば、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。 The method of using the modifier is not particularly limited. For example, the modifier is added to a mixer together with a thermoplastic resin, and melt-kneaded in the mixer. Examples of the mixer include a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30°C to the melting point +30°C.
[樹脂組成物]
本開示は、上記改質剤(又は上記水素化芳香族系炭化水素樹脂)及び熱可塑性樹脂を含む樹脂組成物に関する。
[Resin composition]
The present disclosure relates to a resin composition comprising the above-mentioned modifier (or the above-mentioned hydrogenated aromatic hydrocarbon resin) and a thermoplastic resin.
<熱可塑性樹脂>
上記熱可塑性樹脂は、特に限定されず、各種公知のものを使用できる。上記熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせても良い。
<Thermoplastic resin>
The thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used. The thermoplastic resins may be used alone or in combination of two or more.
 上記熱可塑性樹脂は、例えば、ポリオレフィン系樹脂、スチレン系樹脂、ABS樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、液晶ポリマー、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリアリレート、フッ素樹脂等が挙げられる。 Examples of the thermoplastic resin include polyolefin resins, styrene resins, ABS resins, polyamides, polyesters, polycarbonates, polyacetals, phenoxy resins, polymethyl methacrylate resins, polyphenylene ethers, polyphenylene sulfides, polyamide-imides, polyimides, polyether-imides, liquid crystal polymers, polyether-ether ketones, polyether-sulfones, polysulfones, polyarylates, and fluororesins.
(ポリオレフィン系樹脂)
上記ポリオレフィン系樹脂は、特に限定されず、各種公知のものを使用できる。上記ポリオレフィン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(Polyolefin resin)
The polyolefin resin is not particularly limited, and various known polyolefin resins can be used. The polyolefin resins may be used alone or in combination of two or more.
上記ポリオレフィン系樹脂は、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~8程度のα-オレフィンの単独重合体;前記α-オレフィンの二元又は三元の(共)重合体;前記α-オレフィンと、炭素数9~18程度のα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステル及び酢酸ビニル等との二元又は三元の(共)重合体等が挙げられる。 The polyolefin resins include, for example, homopolymers of α-olefins having about 2 to 8 carbon atoms, such as ethylene, propylene, and 1-butene; binary or ternary (co)polymers of the above-mentioned α-olefins; binary or ternary (co)polymers of the above-mentioned α-olefins with α-olefins having about 9 to 18 carbon atoms, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, (meth)acrylic acid esters, vinyl acetate, and the like.
上記炭素数2~18程度のα-オレフィンは、例えば、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-オクタデセン等が挙げられる。上記共役ジエン、非共役ジエンは、例えば、ブタジエン、イソプレン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエン等が挙げられる。上記不飽和カルボン酸は、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。また、上記不飽和カルボン酸は、塩基等により中和されていてもよい。上記(メタ)アクリル酸エステルは、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソオクチル等が挙げられる。これらα-オレフィン、共役ジエン、非共役ジエン、不飽和カルボン酸、(メタ)アクリル酸エステルは、2種以上を用いてもよい。 Examples of the α-olefins having about 2 to 18 carbon atoms include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, and 1-octadecene. Examples of the conjugated dienes and non-conjugated dienes include butadiene, isoprene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene. Examples of the unsaturated carboxylic acids include acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride. The unsaturated carboxylic acids may be neutralized with a base or the like. Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, isooctyl (meth)acrylate, etc. Two or more of these α-olefins, conjugated dienes, non-conjugated dienes, unsaturated carboxylic acids, and (meth)acrylic acid esters may be used.
 上記ポリオレフィン系樹脂は、例えば、ポリエチレン、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ヘプテン共重合体、エチレン-1-オクテン共重合体等のエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-4-メチル-1-ペンテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体等のプロピレン系樹脂;1-ブテン単独重合体、1-ブテン-エチレン共重合体、1-ブテン-プロピレン共重合体等の1-ブテン系樹脂;4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン-エチレン共重合体等の4-メチル-1-ペンテン系樹脂等が挙げられる。 The polyolefin resins include, for example, ethylene resins such as polyethylene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-heptene copolymer, and ethylene-1-octene copolymer; propylene resins such as polypropylene, propylene-ethylene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene-4-methyl-1-pentene copolymer, and propylene-ethylene-1-hexene copolymer; 1-butene resins such as 1-butene homopolymer, 1-butene-ethylene copolymer, and 1-butene-propylene copolymer; and 4-methyl-1-pentene resins such as 4-methyl-1-pentene homopolymer and 4-methyl-1-pentene-ethylene copolymer.
(スチレン系樹脂)
上記スチレン系樹脂は、特に限定されず、各種公知のものを使用できる。上記スチレン系樹脂は、1種を単独で又は2種以上を組み合わせても良い。
(styrene resin)
The styrene-based resin is not particularly limited, and various known styrene-based resins can be used. The styrene-based resins may be used alone or in combination of two or more.
  上記スチレン系樹脂は、例えば、ゴム質重合体存在下又は非存在下で、スチレン系化合物と必要に応じてこれらと共重合可能な他の化合物とを重合して得られる樹脂等が挙げられる。上記スチレン系化合物は、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等が挙げられる。上記スチレン系化合物と共重合可能な他の化合物は、例えば、シアン化ビニル化合物、アクリル酸エステル、メタクリル酸エステル、エポキシ基含有メタクリル酸エステル、マレイミド系化合物、α、β-不飽和カルボン酸及びその無水物等が挙げられる。上記ゴム質重合体は、例えば、ポリブタジエン、ポリイソプレン、ジエン系共重合体、エチレンとα-オレフィンとの共重合体、エチレンと不飽和カルボン酸エステルとの共重合体、エチレンとプロピレンと非共役ジエンターポリマー、アクリル系ゴム等が挙げられる。上記スチレン系化合物、上記スチレン系化合物と共重合可能な他の化合物及び上記ゴム質重合体は、1種を単独で、又は2種以上を併用してもよい。1つの実施形態において、上記スチレン系樹脂は、好ましくはポリスチレンが挙げられる。 Examples of the styrene resin include resins obtained by polymerizing a styrene compound and, if necessary, other compounds copolymerizable therewith in the presence or absence of a rubber polymer. Examples of the styrene compound include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like. Examples of other compounds copolymerizable with the styrene compound include vinyl cyanide compounds, acrylic acid esters, methacrylic acid esters, epoxy group-containing methacrylic acid esters, maleimide compounds, α,β-unsaturated carboxylic acids and their anhydrides, and the like. Examples of the rubber polymer include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and α-olefins, copolymers of ethylene and unsaturated carboxylic acid esters, ethylene, propylene, and non-conjugated diene terpolymers, and acrylic rubbers. The styrene-based compound, the other compound copolymerizable with the styrene-based compound, and the rubber polymer may be used alone or in combination of two or more. In one embodiment, the styrene-based resin is preferably polystyrene.
(ポリアミド)
上記ポリアミドは、特に限定されず、各種公知のものを使用できる。上記ポリアミドは、1種を単独で又は2種以上を組み合わせても良い。
(polyamide)
The polyamide is not particularly limited, and various known polyamides can be used. The polyamides may be used alone or in combination of two or more.
  上記ポリアミドは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる原料とするものである。上記ポリアミドは、これら原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。また、これら原料は2種以上を併用してもよい。 The polyamide is a resin made of a polymer having an amide bond, and is made from amino acids, lactams, or diamines and dicarboxylic acids as the main raw materials. The polyamide may be a polyamide homopolymer or copolymer derived from these raw materials, either alone or in the form of a mixture. Two or more of these raw materials may also be used in combination.
 上記アミノ酸は、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。 Examples of the above amino acids include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and para-aminomethylbenzoic acid.
 上記ラクタムは、例えば、ε-カプロラクタム、ω-ラウロラクタム等が挙げられる。 Examples of the lactams include ε-caprolactam and ω-laurolactam.
 上記ジアミンは、例えば、脂肪族ジアミン、芳香族ジアミン、脂環族ジアミン等が挙げられる。脂肪族ジアミンは、例えば、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン等が挙げられる。芳香族ジアミンは、例えば、メタキシレンジアミン、パラキシリレンジアミン等が挙げられる。脂環族ジアミンは、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジン等挙げられる。 Examples of the diamines include aliphatic diamines, aromatic diamines, alicyclic diamines, etc. Examples of the aliphatic diamines include tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-/2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, etc. Examples of the aromatic diamines include metaxylylene diamine, paraxylylene diamine, etc. Examples of alicyclic diamines include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, and aminoethylpiperazine.
 上記ジカルボン酸は、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂環族ジカルボン酸は、例えば、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等が挙げられる。 Examples of the dicarboxylic acid include aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids. Examples of the aliphatic dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. Examples of the alicyclic dicarboxylic acids include hexahydroterephthalic acid and hexahydroisophthalic acid.
  上記ポリアミド樹脂は、例えば、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリノナンテレフタルアミド(ポリアミド9T)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ポリアミド6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリキシリレンアジパミド(ポリアミドXD6)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ポリアミド6T/5T)およびこれらの混合物ないし共重合体などが挙げられる。 The above polyamide resins include, for example, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polypentamethylene adipamide (polyamide 56), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebacamide (polyamide 610), polypentamethylene sebacamide (polyamide 510), polyhexamethylene dodecamide (polyamide 612), and polyundecane amide (polyamide 11). , polydodecanamide (polyamide 12), polynonane terephthalamide (polyamide 9T), polycaproamide/polyhexamethylene terephthalamide copolymer (polyamide 6/6T), polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer (polyamide 66/6T), polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6I), polyhexamethylene adipamide/ Polyhexamethylene isophthalamide/polycaproamide copolymer (polyamide 66/6I/6), polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 6T/6I), polyhexamethylene terephthalamide/polydodecanamide copolymer (polyamide 6T/12), polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide Polyamide 66/6T/6I), polyxylylene adipamide (polyamide XD6), polymetaxylylene adipamide (polyamide MXD6), polyhexamethylene terephthalamide/poly-2-methylpentamethylene terephthalamide copolymer (polyamide 6T/M5T), polyhexamethylene terephthalamide/polypentamethylene terephthalamide copolymer (polyamide 6T/5T), and mixtures or copolymers thereof.
  1つの実施形態において、上記ポリアミドは、好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9T、ポリアミド6/66コポリマー、ポリアミド6/12コポリマーが挙げられ、同様の点から、より好ましくはポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、ポリアミド9Tが挙げられる。 In one embodiment, the polyamide is preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamide 9T, polyamide 6/66 copolymer, or polyamide 6/12 copolymer, and from the same viewpoint, more preferably polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, or polyamide 9T.
(ポリエステル)
上記ポリエステルは、特に限定されず、各種公知のものを使用できる。上記ポリエステルは、1種を単独で又は2種以上を組み合わせても良い。
(polyester)
The polyester is not particularly limited, and various known polyesters can be used. The polyesters may be used alone or in combination of two or more.
上記ポリエステルは、多価カルボン酸(あるいは、そのエステル形成性誘導体)と多価アルコール(あるいはそのエステル形成性誘導体)とを主成分とする縮合反応により得られる重合体ないしは共重合体、あるいはこれらの混合物が挙げられる。また、多価カルボン酸及び多価アルコールは、それぞれ2種以上を併用してもよい。 The polyester may be a polymer or copolymer obtained by a condensation reaction of a polycarboxylic acid (or an ester-forming derivative thereof) and a polyhydric alcohol (or an ester-forming derivative thereof) as the main components, or a mixture thereof. In addition, two or more types of polycarboxylic acids and polyhydric alcohols may be used in combination.
上記多価カルボン酸は、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環式ジカルボン酸、トリカルボン酸およびこれらのエステル形成性誘導体等が挙げられる。芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸等が挙げられる。脂肪族ジカルボン酸は、例えば、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸等が挙げられる。脂環式ジカルボン酸は、例えば、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。トリカルボン酸は、例えば、トリメリット酸等が挙げられる。 The polycarboxylic acids include, for example, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, tricarboxylic acids, and ester-forming derivatives thereof. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Examples of aliphatic dicarboxylic acids include adipic acid, sebacic acid, azelaic acid, and dodecanedioic acid. Examples of alicyclic dicarboxylic acids include 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of tricarboxylic acids include trimellitic acid.
上記多価アルコールは、例えば、脂肪族グリコール、脂環式ジオール、芳香族ジオール、トリメチロールプロパン、ペンタエリスリトール、グリセロールおよびこれらのエステル形成性誘導体等が挙げられる。上記脂肪族グリコールは、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記脂環式ジオールは、例えば、シクロペンタンジオール、シクロヘキサンジオール、水素化ビスフェノールA等が挙げられる。上記芳香族ジオールは、例えば、ビスフェノールAエチレンオキシド(1モル~100モル)付加物、ビスフェノールAプロピレンオキシド(1モル~100モル)付加物、キシレングリコール等が挙げられる。 The polyhydric alcohols include, for example, aliphatic glycols, alicyclic diols, aromatic diols, trimethylolpropane, pentaerythritol, glycerol, and ester-forming derivatives thereof. The aliphatic glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol. The alicyclic diols include, for example, cyclopentanediol, cyclohexanediol, and hydrogenated bisphenol A. The aromatic diols include, for example, bisphenol A ethylene oxide (1 mol to 100 mol) adducts, bisphenol A propylene oxide (1 mol to 100 mol) adducts, and xylene glycol.
上記ポリエステルは、例えば、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリブチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリエチレンナフタレ-ト、ポリシクロヘキサンジメチレンテレフタレート等が挙げられる。 Examples of the polyester include polybutylene terephthalate, polybutylene (terephthalate/isophthalate), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/5-sodium sulfoisophthalate), polybutylene (terephthalate/5-sodium sulfoisophthalate), polyethylene naphthalate, and polycyclohexanedimethylene terephthalate.
1つの実施形態において、上記ポリエステルは、好ましくはポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレ-ト、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/アジペート)、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートが挙げられ、より好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが挙げられる。 In one embodiment, the polyester is preferably polybutylene terephthalate, polybutylene (terephthalate/adipate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate/adipate), polyethylene naphthalate, or polycyclohexanedimethylene terephthalate, more preferably polyethylene terephthalate or polybutylene terephthalate.
(ポリカーボネート)
上記ポリカーボネートは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polycarbonate)
The polycarbonate is not particularly limited, and various known polycarbonates can be used. The polycarbonates may be used alone or in combination of two or more.
 上記ポリカーボネートは、例えば、芳香族ジヒドロキシ化合物とカーボネート前駆体とを反応させることにより得られるものが挙げられる。また、上記ポリカーボネートは、直鎖状でもよく、分岐構造を有していても良い。 The polycarbonate may be, for example, one obtained by reacting an aromatic dihydroxy compound with a carbonate precursor. The polycarbonate may be linear or may have a branched structure.
  上記芳香族ジヒドロキシ化合物は、例えば、ビス(ヒドロキシアリール)アルカン、ビス(ヒドロキシアリール)シクロアルカン、ジヒドロキシジアリールエーテル、ジヒドロキシジアリールスルフィド、ジヒドロキシジアリールスルホキシド、ジヒドロキシジアリールスルホン、ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシベンゾフェノン等が挙げられる。該芳香族ジヒドロキシ化合物は、1種を単独で、又は2種以上を併用してもよい。 The aromatic dihydroxy compounds include, for example, bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxydiaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, hydroquinones, resorcinol, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxybenzophenone, etc. The aromatic dihydroxy compounds may be used alone or in combination of two or more.
  上記ビス(ヒドロキシアリール)アルカンは、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(所謂ビスフェノールA)、テトラブロモビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン,2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン等が挙げられる。 Examples of the bis(hydroxyaryl)alkanes include 2,2-bis(4-hydroxyphenyl)propane (also known as bisphenol A), tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)decane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)dec ... , 1-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3-phenyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, etc.
  上記ビス(ヒドロキシアリール)シクロアルカンは、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(所謂ビスフェノールZ)、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1,-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等が挙げられる。 Examples of the bis(hydroxyaryl)cycloalkane include 1,1-bis(4-hydroxyphenyl)cyclohexane (also known as bisphenol Z), 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclooctane, and 9,9-bis(4-hydroxyphenyl)fluorene.
  上記ジヒドロキシジアリールエーテルは、例えば、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等が挙げられる。上記ジヒドロキシジアリールスルフィドは、例えば、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。上記ジヒドロキシジアリールスルホキシドは、例えば、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。上記ジヒドロキシジアリールスルホンは、例えば、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。 The dihydroxydiaryl ethers include, for example, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc. The dihydroxydiaryl sulfides include, for example, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, etc. The dihydroxydiaryl sulfoxides include, for example, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc. The dihydroxydiaryl sulfones include, for example, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, etc.
  上記カーボネート前駆体は、例えば、カルボニルハライド、炭酸ジエステル等が挙げられる。該カーボネート前駆体は、1種を単独で、又は2種以上を併用してもよい。 The carbonate precursor may be, for example, a carbonyl halide, a carbonic acid diester, etc. One type of carbonate precursor may be used alone, or two or more types may be used in combination.
  上記カルボニルハライドは、例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。該カルボニルハライドは、1種を単独で、又は2種以上を併用してもよい。 The carbonyl halides include, for example, phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds. The carbonyl halides may be used alone or in combination of two or more.
  上記炭酸ジエステルは、例えば、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジ-tert-ブチルカーボネート、ジシクロヘキシルカーボネート等のジアルキルカーボネート;ジヒドロキシ化合物のビスカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。該炭酸エステルは、1種を単独で、又は2種以上を併用してもよい。 The above carbonic acid diesters include, for example, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, and dinaphthyl carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, di-tert-butyl carbonate, and dicyclohexyl carbonate; biscarbonates of dihydroxy compounds, and carbonates of dihydroxy compounds such as cyclic carbonates. One type of carbonic acid ester may be used alone, or two or more types may be used in combination.
上記ポリカーボネートの製造方法は、例えば、界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法等が挙げられる。 The above-mentioned polycarbonates can be produced, for example, by interfacial polymerization, melt transesterification, solid-phase transesterification of carbonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds.
  また、上記ポリカーボネートは、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂であってもよいし、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂であってもよいし、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂であってもよいし、かかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂であってもよい。これらポリカーボネートは、2種以上を用いてもよい。   The polycarbonate may be a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid, a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), or a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Two or more of these polycarbonates may be used.
(ポリフェニレンエーテル)
上記ポリフェニレンエーテルは、特に限定されず、各種公知のものを使用できる。ポリフェニレンエーテルは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene ether)
The polyphenylene ether is not particularly limited, and various known polyphenylene ethers can be used. The polyphenylene ethers may be used alone or in combination of two or more.
 上記ポリフェニレンエーテルは、例えば、下記一般式(1)で表される繰り返し単位からなる単独重合体、或いは共重合体等が挙げられる。 The polyphenylene ether may be, for example, a homopolymer or copolymer consisting of a repeating unit represented by the following general formula (1):
(式(1)中、R1、R2、R3、R4はそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していても良いアルキル基、アルコキシ基又は置換基を有していても良いアリール基であり、nは繰り返し数である。) (In formula (1), R1, R2, R3, and R4 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group, or an aryl group which may have a substituent, and n represents the number of repetitions.)
  上記一般式(1)で表される単独重合体としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル等が挙げられる。   Examples of the homopolymer represented by the above general formula (1) include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, etc.
  又、共重合体としては、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体等が挙げられる。 Examples of copolymers include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol.
上記ポリフェニレンエーテルの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、米国特許第3306874号明細書、同第3306875号明細書、同第3257357号明細書、同第3257358号明細書、特開昭50-51197号公報、特公昭52-17880号公報、及び同63-152628号公報等に記載された製造方法等が挙げられる。 The method for producing the polyphenylene ether is not particularly limited, and can be obtained by using various known means. Specific examples include the production methods described in U.S. Pat. Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and JP-B-63-152628, etc.
上記ポリフェニレンエーテルは、本発明の効果を損なわない範囲において、他の種々のフェニレンエーテルユニットを部分構造として含んでいてもよい。前記フェニレンエーテルユニットとしては、例えば、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニットや、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等が挙げられる。また、上記ポリフェニレンエーテル樹脂の主鎖中にジフェノキノン等が少量結合したものであっても良い。更には、マレイン酸、フマル酸、クロロマレイン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸及びこれらの酸無水物等やこれら不飽和ジカルボン酸の2個のカルボキシル基のうちの1個または2個がエステルになっているもの、アリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタアクリレート、ステアリルアクリレート、スチレン、エポキシ化天然油脂等、アリルアルコール、4-ペンテン-1-オール、1,4-ペンタジエン-3-オールなどの一般式CnH2n-3OH(nは正の整数)の不飽和アルコール、一般式CnH2n-5OH、CnH2n-7OH(nは正の整数)等の不飽和アルコール等によって変性されているポリフェニレンエーテル樹脂であっても良い。これら変性されたポリフェニレンエーテル樹脂は、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。また、上記の変性されたポリフェニレンエーテル樹脂の融点は、示差熱走査型熱量計(DSC)の測定において、20℃/分で昇温するときに得られる温度-熱流量グラフで観測されるピークのピークトップ温度で定義され、ピークトップ温度が複数ある場合にはその内の最高の温度で定義される。 The polyphenylene ether may contain various other phenylene ether units as partial structures within the scope of the present invention. Examples of the phenylene ether units include 2-(dialkylaminomethyl)-6-methylphenylene ether units and 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units. In addition, a small amount of diphenoquinone or the like may be bonded to the main chain of the polyphenylene ether resin. Furthermore, it may be a polyphenylene ether resin modified with maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, anhydrides thereof, or unsaturated dicarboxylic acids in which one or two of the two carboxyl groups are esterified, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, styrene, epoxidized natural fats and oils, unsaturated alcohols of the general formula CnH2n-3OH (n is a positive integer) such as allyl alcohol, 4-penten-1-ol, and 1,4-pentadiene-3-ol, or unsaturated alcohols of the general formula CnH2n-5OH, CnH2n-7OH (n is a positive integer). These modified polyphenylene ether resins may be used alone or in combination of two or more. In addition, the melting point of the modified polyphenylene ether resin is defined as the peak top temperature of the peak observed in a temperature-heat flow graph obtained when the temperature is raised at 20°C/min in measurement with a differential scanning calorimeter (DSC), and if there are multiple peak top temperatures, it is defined as the highest temperature among them.
  上記ポリフェニレンエーテルは、芳香族ビニル系重合体、ポリアミド等のポリフェニレンエーテル以外の樹脂成分を含有しても良い。芳香族ビニル系重合体としては、例えば、アタクティックポリスチレン、ハイインパクトポリスチレン、シンジオタクティックポリスチレン、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びアクリロニトリル-スチレン共重合体等が挙げられる。 The polyphenylene ether may contain resin components other than polyphenylene ether, such as aromatic vinyl polymers and polyamides. Examples of aromatic vinyl polymers include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, and acrylonitrile-styrene copolymers.
1つの実施形態において、上記ポリフェニレンエーテルが、ポリフェニレンエーテル及びポリスチレンを含む混合物(いわゆる変性ポリフェニレンエーテル樹脂)である場合、ポリフェニレンエーテルの含有量は、ポリフェニレンエーテルとポリスチレンとの合計量に対して、通常70質量%以上が挙げられ、好ましくは80質量%以上が挙げられる。 In one embodiment, when the polyphenylene ether is a mixture containing polyphenylene ether and polystyrene (so-called modified polyphenylene ether resin), the content of polyphenylene ether is typically 70% by mass or more, preferably 80% by mass or more, based on the total amount of polyphenylene ether and polystyrene.
上記変性ポリフェニレンエーテル樹脂の市販品は、例えば、三菱エンジニアリングプラスチックス(株)製「ユピエース」(登録商標)、SABIC社製「NORYL」(登録商標)、旭化成(株)製「ザイロン」(登録商標)等が挙げられる。 Commercially available modified polyphenylene ether resins include, for example, "Iupiace" (registered trademark) manufactured by Mitsubishi Engineering Plastics Corporation, "NORYL" (registered trademark) manufactured by SABIC Corporation, and "Zylon" (registered trademark) manufactured by Asahi Kasei Corporation.
(ポリフェニレンサルファイド)
上記ポリフェニレンサルファイドは、特に限定されず、各種公知のものを使用できる。上記ポリカーボネートは、1種を単独で又は2種以上を組み合わせても良い。
(Polyphenylene sulfide)
The polyphenylene sulfide is not particularly limited, and various known polyphenylene sulfides can be used. The polycarbonate may be used alone or in combination of two or more kinds.
上記ポリフェニレンサルファイドは、例えば、ポリハロゲン芳香族化合物とスルフィド化剤とを極性有機溶媒中で反応させて得られるものが挙げられる。 The polyphenylene sulfide can be obtained, for example, by reacting a polyhalogenated aromatic compound with a sulfidizing agent in a polar organic solvent.
上記ポリハロゲン芳香族化合物は、例えば、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼン等が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。また、異なる2種以上のポリハロゲン芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジハロゲン芳香族化合物を主要成分とすることが好ましい。 Examples of the polyhalogenated aromatic compound include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene, with p-dichlorobenzene being preferred. It is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer, but it is preferred to use a p-dihalogenated aromatic compound as the main component.
 上記スルフィド化剤は、例えば、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素等が挙げられる。上記アルカリ金属硫化物は、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。上記アルカリ金属水硫化物は、例えば、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物及び水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。上記スルフィド化剤は、1種を単独で、又は2種以上を併用してもよい。 Examples of the sulfidizing agent include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide. Examples of the alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred. Examples of the alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these, with sodium hydrosulfide being preferred. These alkali metal sulfides and hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides. The sulfidizing agents may be used alone or in combination of two or more.
 また、上記スルフィド化剤は、アルカリ金属水硫化物とアルカリ金属水酸化物から調製されるアルカリ金属硫化物;水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から調製されるアルカリ金属硫化物等も用いることができる。 The sulfidizing agent may also be an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; or an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide.
 なお、上記スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。1つの実施形態において、アルカリ金属水酸化物は、好ましくは水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物が挙げられ、アルカリ土類金属水酸化物は、例えば、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、好ましくは水酸化ナトリウムが挙げられる。 It is also possible to use an alkali metal hydroxide and/or an alkaline earth metal hydroxide together with the sulfidizing agent. In one embodiment, the alkali metal hydroxide is preferably sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, or a mixture of two or more of these, and the alkaline earth metal hydroxide is, for example, calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and preferably sodium hydroxide.
上記ポリフェニレンサルファイドは、回収および後処理することで、高収率で製造することができる。具体的には、特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きな重合体を得る方法などによっても製造できる。前記の方法で得られたポリフェニレンスルフィド樹脂を空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水、酸水溶液などによる洗浄、酸無水物、アミン、イソシアネート、官能基含有ジスルフィド化合物などの官能基含有化合物による活性化など種々の処理を施した上で使用することもできる。 The polyphenylene sulfide can be produced in high yields by recovering and post-treating. Specifically, it can be produced by the method of obtaining a polymer with a relatively small molecular weight described in JP-B-45-3368, or the method of obtaining a polymer with a relatively large molecular weight described in JP-B-52-12240 and JP-A-61-7332. The polyphenylene sulfide resin obtained by the above method can be used after various treatments such as crosslinking/polymerization by heating in air, heat treatment in an inert gas atmosphere such as nitrogen or under reduced pressure, washing with an organic solvent, hot water, an acid aqueous solution, or activation with a functional group-containing compound such as an acid anhydride, an amine, an isocyanate, or a functional group-containing disulfide compound.
上記ポリフェニレンサルファイドの市販品は、例えば、東レ(株)製“トレリナ”(登録商標)、DIC(株)製“DIC.PPS”(登録商標)、ポリプラスチックス(株)製“ジュラファイド”(登録商標)等が挙げられる。 Commercially available polyphenylene sulfide products include, for example, "TORELINA" (registered trademark) manufactured by Toray Industries, Inc., "DIC.PPS" (registered trademark) manufactured by DIC Corporation, and "DURAFIDE" (registered trademark) manufactured by Polyplastics Co., Ltd.
(液晶ポリマー)
上記液晶ポリマーは、特に限定されず、各種公知のものを使用できる。液晶ポリマーは、1種を単独で又は2種以上を組み合わせても良い。
(Liquid Crystal Polymer)
The liquid crystal polymer is not particularly limited, and various known liquid crystal polymers can be used. The liquid crystal polymer may be used alone or in combination of two or more kinds.
上記液晶ポリマーは、例えば、液晶ポリエステル、液晶ポリエステルアミド等が挙げられる。液晶ポリエステルは、特に限定されないが、例えば、芳香族ポリエステル等が挙げられる。1つの実施形態において、液晶ポリエステルは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルが挙げられる。液晶ポリエステルアミドは、特に限定されないが、例えば、芳香族ポリエステルアミド等が挙げられる。1つの実施形態において、液晶ポリエステルアミドは、好ましくは原料モノマーとして芳香族化合物のみを用いて成る全芳香族ポリエステルアミドが挙げられる。また、上記液晶ポリマーとしては、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルを用いることもできる。 The liquid crystal polymer may be, for example, a liquid crystal polyester or a liquid crystal polyester amide. The liquid crystal polyester may be, but is not limited to, an aromatic polyester. In one embodiment, the liquid crystal polyester may be, for example, a fully aromatic polyester made using only aromatic compounds as raw material monomers. The liquid crystal polyester amide may be, but is not limited to, an aromatic polyester amide. In one embodiment, the liquid crystal polyester amide may be, for example, a fully aromatic polyester amide made using only aromatic compounds as raw material monomers. In addition, the liquid crystal polymer may be, for example, a polyester partially containing aromatic polyester or aromatic polyester amide in the same molecular chain.
上記芳香族ポリエステルは、特に限定されないが、例えば、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上とからなるポリエステル;
(3)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステル等、が挙げられる。
The aromatic polyester is not particularly limited, but may be, for example,
(1) Polyesters consisting essentially of one or more aromatic hydroxycarboxylic acids and their derivatives;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) a polyester composed of one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(3) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(c) Polyesters composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
上記芳香族ポリエステルアミドは、特に限定されないが、例えば、
(1)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、
(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド等、が挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
The aromatic polyester amide is not particularly limited, but may be, for example,
(1) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) a polyesteramide comprising one or more of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a derivative thereof;
(2) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives,
(b) one or more of aromatic hydroxyamines, aromatic diamines, and derivatives thereof;
(c) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(d) polyesteramides composed of one or more of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above-mentioned components, if necessary.
 上記芳香族ヒドロキシカルボン酸は、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸等の芳香族ヒドロキシカルボン酸、または3-メチル-4-ヒドロキシ安息香酸、3,5-ジメチル-4-ヒドロキシ安息香酸、2,6-ジメチル-4-ヒドロキシ安息香酸、3-メトキシ-4-ヒドロキシ安息香酸、3,5-ジメトキシ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-メチル-2-ナフトエ酸、6-ヒドロキシ-5-メトキシ-2-ナフトエ酸、2-クロロ-4-ヒドロキシ安息香酸、3-クロロ-4-ヒドロキシ安息香酸、2,3-ジクロロ-4-ヒドロキシ安息香酸、3,5-ジクロロ-4-ヒドロキシ安息香酸、2,5-ジクロロ-4-ヒドロキシ安息香酸、3-ブロモ-4-ヒドロキシ安息香酸、6-ヒドロキシ-5-クロロ-2-ナフトエ酸、6-ヒドロキシ-7-クロロ-2-ナフトエ酸、6-ヒドロキシ-5,7-ジクロロ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸のアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 The aromatic hydroxycarboxylic acid may be, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, or 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5-dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, or Examples of aromatic hydroxycarboxylic acids include alkyl, alkoxy, or halogen-substituted derivatives of aromatic hydroxycarboxylic acids such as 2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxybenzoic acid, 2,5-dichloro-4-hydroxybenzoic acid, 3-bromo-4-hydroxybenzoic acid, 6-hydroxy-5-chloro-2-naphthoic acid, 6-hydroxy-7-chloro-2-naphthoic acid, and 6-hydroxy-5,7-dichloro-2-naphthoic acid.
上記芳香族ジオールは、例えば、4,4'-ジヒドロキシビフェニル、3,3'-ジヒドロキシビフェニル、4,4'-ジヒドロキシテルフェニル、ハイドロキノン、レゾルシン、2,6-ナフタレンジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェノキシ)エタン、3,3'-ジヒドロキシジフェニルエーテル、1,6-ナフタレンジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン等の芳香族ジオール、またはクロロハイドロキノン、メチルハイドロキノン、tert-ブチルハイドロキノン、フェニルハイドロキノン、メトキシハイドロキノン、フェノキシハイドロキノン、4-クロロレゾルシン、4-メチルレゾルシン等の芳香族ジオールのアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic diols include, for example, aromatic diols such as 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 4,4'-dihydroxyterphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenoxy)ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis(4-hydroxyphenyl)propane, and bis(4-hydroxyphenyl)methane, as well as alkyl, alkoxy, or halogen-substituted aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcinol, and 4-methylresorcinol.
上記芳香族ジカルボン酸は、例えば、テレフタル酸、4,4'-ビフェニルジカルボン酸、4,4'-トリフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルエーテル-4,4'-ジカルボン酸、ジフェノキシエタン-4,4'-ジカルボン酸、ジフェノキシブタン-4,4'-ジカルボン酸、ジフェニルエタン-4,4'-ジカルボン酸、イソフタル酸、ジフェニルエーテル-3,3'-ジカルボン酸、ジフェノキシエタン-3,3'-ジカルボン酸、ジフェニルエタン-3,3'-ジカルボン酸、1,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、またはクロロテレフタル酸、ジクロロテレフタル酸、ブロモテレフタル酸、メチルテレフタル酸、ジメチルテレフタル酸、エチルテレフタル酸、メトキシテレフタル酸、エトキシテレフタル酸等で代表される上記芳香族ジカルボン酸のアルキル、アルコキシまたはハロゲン置換体が挙げられる。 The above aromatic dicarboxylic acids include, for example, aromatic dicarboxylic acids such as terephthalic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, isophthalic acid, diphenylether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, and 1,6-naphthalenedicarboxylic acid, and alkyl, alkoxy, or halogen-substituted derivatives of the above aromatic dicarboxylic acids, such as chloroterephthalic acid, dichloroterephthalic acid, bromoterephthalic acid, methylterephthalic acid, dimethylterephthalic acid, ethylterephthalic acid, methoxyterephthalic acid, and ethoxyterephthalic acid.
上記芳香族ヒドロキシアミンは、例えば、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、2-クロロ-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4'-ヒドロキシビフェニル、4-アミノ-4'-ヒドロキシジフェニルエーテル、4-アミノ-4'-ヒドロキシジフェニルメタン、4-アミノ-4'-ヒドロキシジフェニルスルフィド等が挙げられる。
上記芳香族ジアミンは、例えば、1,4-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N'-ジメチル-1,4-フェニレンジアミン、4,4'-ジアミノフェニルスルフィド(チオジアニリン)、4,4'-ジアミノジフェニルスルホン、2,5-ジアミノトルエン、4,4'-エチレンジアニリン、4,4'-ジアミノジフェノキシエタン、4,4'-ジアミノジフェニルメタン(メチレンジアニリン)、4,4'-ジアミノジフェニルエーテル(オキシジアニリン)等が挙げられる。
Examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, and 4-amino-4'-hydroxydiphenyl sulfide.
Examples of the aromatic diamine include 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N,N'-dimethyl-1,4-phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminodiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminodiphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), and 4,4'-diaminodiphenyl ether (oxydianiline).
1つの実施形態において、上記芳香族ポリエステルは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルが挙げられる。1つの実施形態において、上記芳香族ポリエステルアミドは、より好ましくは上記芳香族ヒドロキシカルボン酸を構成成分として有する芳香族ポリエステルアミドが挙げられる。 In one embodiment, the aromatic polyester is more preferably an aromatic polyester having the aromatic hydroxycarboxylic acid as a constituent component. In one embodiment, the aromatic polyester amide is more preferably an aromatic polyester amide having the aromatic hydroxycarboxylic acid as a constituent component.
上記液晶ポリマーの製造方法は、特に限定されず、各種公知の手段を用いて得ることができる。具体的には、例えば、上述した原料モノマー化合物(又は原料モノマーの混合物)を用いて、直接重合法やエステル交換法を用いて、公知の方法で製造することができるが、通常は、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する化合物である場合は、そのままの形で重合に用いてもよく、また、重合の前段階でアシル化剤等を用いて前駆体から該エステル形成能を有する誘導体に変性されたものを用いてもよい。アシル化剤としては、無水酢酸等の無水カルボン酸等を挙げることができる。 The method for producing the liquid crystal polymer is not particularly limited, and can be obtained by using various known means. Specifically, for example, the liquid crystal polymer can be produced by known methods such as direct polymerization or transesterification using the above-mentioned raw material monomer compound (or a mixture of raw material monomers). Usually, melt polymerization, solution polymerization, slurry polymerization, solid-phase polymerization, or a combination of two or more of these is used, and melt polymerization or a combination of melt polymerization and solid-phase polymerization is preferably used. In the case of a compound capable of forming an ester, it may be used in the polymerization in its original form, or it may be modified from a precursor to a derivative capable of forming an ester using an acylating agent or the like in a stage prior to polymerization. Examples of the acylating agent include carboxylic anhydrides such as acetic anhydride.
上記重合に際しては、種々の触媒を使用してもよい。当該触媒は、例えば、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。1つの実施形態において、触媒の使用量は、通常はモノマーの全質量に対して、約0.001~1質量%であり、好ましくは約0.01~0.2質量%である。 Various catalysts may be used in the polymerization. Examples of the catalyst include metal salt catalysts such as potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris(2,4-pentanedionato)cobalt(III), and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine. In one embodiment, the amount of catalyst used is usually about 0.001 to 1% by mass, and preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers.
 1つの実施形態において、上記液晶ポリマーは、樹脂組成物の耐熱性及び高強度に優れる点から、好ましくは液晶ポリエステルが挙げられ、同様の点から、より好ましくは全芳香族ポリエステルが挙げられる。 In one embodiment, the liquid crystal polymer is preferably a liquid crystal polyester, which provides a resin composition with excellent heat resistance and high strength, and more preferably a wholly aromatic polyester, which provides the same.
 1つの実施形態において、上記樹脂組成物における熱可塑性樹脂としては、樹脂組成物の溶融時における流動性に優れる点から、好ましくはポリエステル、ポリカーボネート及びポリフェニレンエーテルからなる群から選択される少なくとも1種を含むことが挙げられ、より好ましくはポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含むことが挙げられる。 In one embodiment, the thermoplastic resin in the resin composition preferably includes at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, and more preferably includes at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin, in view of excellent fluidity when the resin composition is melted.
 上記樹脂組成物は、その成形温度が高い場合、例えば、熱可塑性樹脂としてエンジニアリングプラスチックやスーパーエンジニアリングプラスチックを使用した場合であっても、上記改質剤を含むことにより、溶融時における発煙が抑制され、且つ溶融時における流動性に優れている。 The resin composition contains the above-mentioned modifier, which suppresses smoke generation during melting and provides excellent fluidity during melting, even when the molding temperature is high, for example, when engineering plastics or super engineering plastics are used as the thermoplastic resin.
(フィラー)
1つの実施形態において、上記樹脂組成物は、任意で、フィラーを含み得る。フィラーは、特に限定されず、各種公知のものを使用できる。フィラーは、1種を単独で又は2種以上を組み合わせても良い。
(Filler)
In one embodiment, the resin composition may optionally contain a filler. The filler is not particularly limited, and various known fillers can be used. The filler may be used alone or in combination of two or more.
 上記フィラーの形状は、例えば、球状、針状、繊維状、板状等が挙げられる。 The filler may be, for example, spherical, needle-like, fibrous, or plate-like.
上記フィラーは、例えば、繊維、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、ケイ砂、タルク、カオリン、マイカ、クレー、ベントナイト、セリサイト、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、二硫化モリブデン、ワラストナイト、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物(アルミナ、酸化亜鉛、酸化チタン等)、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、カーボンナノチューブ等が挙げられる。なお、金属粉、金属フレーク、金属リボンを構成する金属の具体例としては、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。 The above-mentioned fillers include, for example, fibers, crystalline silica, fused silica, calcium silicate, silica sand, talc, kaolin, mica, clay, bentonite, sericite, calcium carbonate, magnesium carbonate, glass beads, glass flakes, glass microballoons, molybdenum disulfide, wollastonite, calcium polyphosphate, graphite, metal powder, metal flakes, metal ribbons, metal oxides (alumina, zinc oxide, titanium oxide, etc.), carbon powder, graphite, carbon flakes, scaly carbon, carbon nanotubes, etc. Specific examples of metals constituting metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
上記繊維は、特に限定されず各種公知のものを使用できる。上記繊維は、例えば、ガラス繊維;アルミナ繊維;ポリエステル繊維、ポリアミド繊維、ポリイミド繊維、ポリビニルアルコール変性繊維、ポリ塩化ビニル繊維、ポリオレフィン(ポリエチレン、ポリプロピレン)繊維、フッ素樹脂系繊維、ポリベンゾイミダゾール繊維、アクリル繊維、フェノール繊維、ポリアミド繊維、アラミド繊維、セルロース(ナノ)繊維、液晶ポリマー(液晶ポリエステル、液晶ポリエステルアミド)繊維、ポリエーテルケトン繊維、ポリエーテルスルホン繊維、ポリフェニレンエーテル繊維、ポリフェニレンサルファイド繊維等の有機繊維;鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる金属繊維等が挙げられる。上記繊維は、1種を単独で使用してもよく、2種以上を併用してもよい。 The fibers are not particularly limited and various known fibers can be used. Examples of the fibers include glass fibers, alumina fibers, polyester fibers, polyamide fibers, polyimide fibers, polyvinyl alcohol modified fibers, polyvinyl chloride fibers, polyolefin (polyethylene, polypropylene) fibers, fluororesin fibers, polybenzimidazole fibers, acrylic fibers, phenolic fibers, polyamide fibers, aramid fibers, cellulose (nano) fibers, liquid crystal polymer (liquid crystal polyester, liquid crystal polyester amide) fibers, polyether ketone fibers, polyether sulfone fibers, polyphenylene ether fibers, polyphenylene sulfide fibers, and other organic fibers; and metal fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel. The fibers may be used alone or in combination of two or more.
1つの実施形態において、上記繊維は、好ましくはガラス繊維及び有機繊維からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the fibers preferably include at least one type selected from the group consisting of glass fibers and organic fibers.
 1つの実施形態において、上記フィラーは、樹脂組成物の耐衝撃性に優れる点から、好ましくはガラス繊維及びカーボン粉末からなる群より選ばれる少なくとも1種を含むことが挙げられる。 In one embodiment, the filler preferably contains at least one selected from the group consisting of glass fiber and carbon powder, in order to provide the resin composition with excellent impact resistance.
従来、フィラーを含む樹脂組成物においては、当該フィラーにより、樹脂組成物の溶融粘度が非常に高くなるため、成形加工性が極端に劣ってしまう場合があったが、本開示の樹脂組成物は、上記改質剤を用いることにより、上記フィラーを含む場合であっても、その溶融粘度が低くなるため、成形加工性に優れる。 In the past, in resin compositions containing fillers, the melt viscosity of the resin composition was very high due to the filler, which sometimes resulted in extremely poor moldability. However, the resin composition of the present disclosure uses the above-mentioned modifier, which reduces the melt viscosity even when the resin composition contains the above-mentioned filler, resulting in excellent moldability.
(添加剤)
1つの実施形態において、上記樹脂組成物は、本発明の効果を損なわない限りにおいて、任意で、添加剤を含み得る。添加剤は、例えば、難燃剤、導電付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、着色剤、染料、発泡剤、制泡剤、カップリング剤、無機顔料、有機顔料、上記水素化芳香族系炭化水素樹脂以外の流動性改良剤、光安定剤等が挙げられる。
(Additive)
In one embodiment, the resin composition may contain any additives as long as the effects of the present invention are not impaired. Examples of the additives include flame retardants, conductive agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, colorants, dyes, foaming agents, foam inhibitors, coupling agents, inorganic pigments, organic pigments, flow improvers other than the hydrogenated aromatic hydrocarbon resins, and light stabilizers.
(各成分の含有量)
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~8質量部程度が挙げられる。
(Content of each ingredient)
When the resin composition does not contain the filler, the content of the modifier in the resin composition is not particularly limited.The content of the modifier in the resin composition is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted, and is preferably 20 parts by mass or less relative to 100 parts by mass of the thermoplastic resin from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass from the viewpoint of excellent fluidity when the resin composition is melted and smoke generation when the resin composition is melted is more suppressed, more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、特に限定されない。上記樹脂組成物における上記改質剤の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記改質剤の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは5~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the modifier in the resin composition is not particularly limited. The content of the modifier in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the modifier in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the modifier in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass.
上記樹脂組成物に上記フィラーが含まれない場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.1~10質量部程度が挙げられ、さらに好ましくは0.5~8質量部程度が挙げられる。 When the resin composition does not contain the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted, and is more preferably about 0.1 to 10 parts by mass, and even more preferably about 0.5 to 8 parts by mass.
上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、熱可塑性樹脂100質量部に対して、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上が挙げられ、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、熱可塑性樹脂100質量部に対して、好ましくは20質量部以下が挙げられる。1つの実施形態において、上記樹脂組成物における上記水素化芳香族系炭化水素樹脂の含有量は、樹脂組成物の溶融時における流動性により優れ、樹脂組成物の溶融時における発煙がより抑制される点から、好ましくは0.1~20質量部程度が挙げられ、より好ましくは0.5~15質量部程度が挙げられ、さらに好ましくは5~10質量部程度が挙げられる。 When the resin composition contains the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the resin composition may be, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, when the resin composition contains the filler, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably 0.1 parts by mass or more per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted, and is preferably 20 parts by mass or less per 100 parts by mass of the thermoplastic resin in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the resin composition is preferably about 0.1 to 20 parts by mass, more preferably about 0.5 to 15 parts by mass, and even more preferably about 5 to 10 parts by mass in order to provide a resin composition with excellent fluidity when melted and to further suppress smoke generation when melted.
 上記樹脂組成物に上記フィラーが含まれる場合、上記樹脂組成物におけるフィラーの含有量は、特に限定されない。上記樹脂組成物におけるフィラーの含有量は、例えば、熱可塑性樹脂100質量部に対して、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0質量部等が挙げられる。1つの実施形態において、上記樹脂組成物におけるフィラーの含有量は、樹脂組成物の溶融時における流動性により優れる点から、熱可塑性樹脂100質量部に対して、好ましくは70質量部以下が挙げられ、より好ましくは50質量部以下が挙げられる。 When the resin composition contains the filler, the content of the filler in the resin composition is not particularly limited. The content of the filler in the resin composition may be, for example, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0 parts by mass, etc., relative to 100 parts by mass of thermoplastic resin. In one embodiment, the content of the filler in the resin composition is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, relative to 100 parts by mass of thermoplastic resin, in view of superior fluidity when the resin composition is melted.
上記樹脂組成物における上記添加剤の含有量は、特に限定されない。上記樹脂組成物における上記添加剤の含有量は、例えば、上記樹脂組成物100質量部に対して、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、5質量部、1質量部、0.5質量部、0.1質量部、0.05質量部、0.01質量部、0.005質量部、0.001質量部等が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは0.001質量部以上が挙げられ、より好ましくは0.005質量部以上が挙げられ、さらに好ましくは0.01質量部以上が挙げられる。1つの実施形態において、上記樹脂組成物における上記添加剤の含有量は、上記樹脂組成物100質量部に対して、好ましくは100質量部以下が挙げられ、より好ましくは50質量部以下が挙げられる。 The content of the additive in the resin composition is not particularly limited. The content of the additive in the resin composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 5 parts by mass, 1 part by mass, 0.5 parts by mass, 0.1 parts by mass, 0.05 parts by mass, 0.01 parts by mass, 0.005 parts by mass, 0.001 parts by mass, etc., relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and even more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the resin composition. In one embodiment, the content of the additive in the resin composition is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the resin composition.
(樹脂組成物の製造方法)
 上記樹脂組成物の製造方法は、特に限定されず、各種公知の方法を採用できる。上記樹脂組成物の製造方法は、例えば、上記改質剤(又は上記水素化芳香族系炭化水素樹脂)、上記熱可塑性樹脂、並びに必要に応じて上記フィラー及び上記添加剤を、タンブラーミキサーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。当該溶融混練の温度は、特に制限されないが、通常、上記熱可塑性樹脂の融点-30℃~融点+30℃の範囲である。
(Method for producing resin composition)
The method for producing the resin composition is not particularly limited, and various known methods can be adopted. The method for producing the resin composition includes, for example, a method in which the modifier (or the hydrogenated aromatic hydrocarbon resin), the thermoplastic resin, and, if necessary, the filler and the additives are mixed in advance using various mixers such as a tumbler mixer or a Henschel mixer, and then melt-kneaded using a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader. The temperature of the melt-kneading is not particularly limited, but is usually in the range of the melting point of the thermoplastic resin -30 ° C to the melting point +30 ° C.
 上記樹脂組成物の製造においては、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用することにより、樹脂組成物の溶融混練時における流動性が高くなるため、生産性に優れる。また、従来、フィラーを含む樹脂組成物においては、フィラーによって樹脂組成物の溶融粘度が非常に高くなるため、溶融混練時における流動性が極端に低下するが、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用すると、フィラーを含む樹脂組成物の製造においても、溶融混練時における流動性が高くなる。 In the production of the resin composition, the use of the modifier or the hydrogenated aromatic hydrocarbon resin increases the fluidity of the resin composition when melt-kneaded, resulting in excellent productivity. Furthermore, in conventional resin compositions containing fillers, the filler makes the resin composition have a very high melt viscosity, which significantly reduces the fluidity when melt-kneaded. However, when the modifier or the hydrogenated aromatic hydrocarbon resin is used, the fluidity when melt-kneaded is increased, even in the production of a resin composition containing a filler.
また、上記樹脂組成物の製造においては、上記改質剤又は上記水素化芳香族系炭化水素樹脂を使用しても、溶融混練時における発煙が抑制されている。 In addition, when the resin composition is produced using the modifier or the hydrogenated aromatic hydrocarbon resin, smoke emission during melt kneading is suppressed.
[成形体]
  本開示の成形体は、各種公知の成形法により、上記樹脂組成物を成形して得られる。成形体の形状としては、特に制限はなく、成形体の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。
[Molded body]
The molded article of the present disclosure can be obtained by molding the resin composition by various known molding methods. The shape of the molded article is not particularly limited and can be appropriately selected according to the use and purpose of the molded article, and examples thereof include plate-like, plate-like, rod-like, sheet-like, film-like, cylindrical, annular, circular, elliptical, polygonal, irregular, hollow, frame-like, box-like, and panel-like shapes.
  上記成形体を成形する方法としては、特に制限されず、従来公知の成形法を採用できる。具体的には、例えば、射出成形法、射出圧縮成形法、押出成形法、延伸フィルム成形、インフレーション成形、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、プレス成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。中でも、成形は射出成形法により行われることが好ましい。射出成形機としては、超高速射出成形機、射出圧縮成形機等の公知の射出成形機等が挙げられる。 The method for molding the molded body is not particularly limited, and any conventionally known molding method can be used. Specific examples include injection molding, injection compression molding, extrusion molding, stretch film molding, inflation molding, profile extrusion, transfer molding, hollow molding, gas-assisted hollow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), press molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, and pressure molding. Of these, it is preferable that molding is performed by injection molding. Examples of injection molding machines include well-known injection molding machines such as ultra-high speed injection molding machines and injection compression molding machines.
  上記成形体は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。 The above molded products can be used for a variety of purposes, including automobile parts, electrical and electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products.
[熱可塑性樹脂用の改質剤としての使用]
 上記水素化芳香族系炭化水素樹脂は、熱可塑性樹脂に用いる改質剤として使用することができる。上記水素化芳香族系炭化水素樹脂を熱可塑性樹脂に使用すると、熱可塑性樹脂の溶融時における流動性を向上させる。熱可塑性樹脂は、特に限定されず、例えば、前述のものが挙げられる。
[Use as a modifier for thermoplastic resins]
The hydrogenated aromatic hydrocarbon resin can be used as a modifier for a thermoplastic resin. When the hydrogenated aromatic hydrocarbon resin is used in a thermoplastic resin, the flowability of the thermoplastic resin is improved when the thermoplastic resin is melted. The thermoplastic resin is not particularly limited, and examples thereof include those mentioned above.
 1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、溶融時における流動性をより向上させる点から、好ましくはポリエステル、ポリカーボネート及びポリフェニレンエーテルからなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用され、より好ましくはポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含む熱可塑性樹脂に用いる改質剤として使用される。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polyester, polycarbonate, and polyphenylene ether, from the viewpoint of further improving the fluidity during melting, and more preferably used as a modifier for a thermoplastic resin containing at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin.
1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、好ましくは成形加工温度が高い熱可塑性樹脂、特に好ましくはエンジニアリングプラスチックやスーパーエンジニアリングプラスチックに用いる改質剤として使用される。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably used as a modifier for thermoplastic resins having high molding temperatures, particularly preferably for engineering plastics and super engineering plastics.
熱可塑性樹脂に用いる改質剤としての上記水素化芳香族系炭化水素樹脂の使用量は、特に限定されない。当該水素化芳香族系炭化水素樹脂の使用量は、例えば、上述した上記改質剤の使用量等が挙げられる。 The amount of the hydrogenated aromatic hydrocarbon resin used as a modifier for the thermoplastic resin is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the modifier used described above.
[粘着付与剤]
 本開示は、上記水素化芳香族系炭化水素樹脂を含む、粘着付与剤に関する。上記粘着付与剤は、粘・接着剤(後述の粘・接着剤組成物を含む)に用いられることにより、粘・接着剤の接着力を向上させる。
[Tackifier]
The present disclosure relates to a tackifier comprising the hydrogenated aromatic hydrocarbon resin. The tackifier is used in a pressure-sensitive adhesive (including a pressure-sensitive adhesive composition described below) to improve the adhesive strength of the pressure-sensitive adhesive.
 1つの実施形態において、上記粘着付与剤において、上記水素化芳香族系炭化水素樹脂は、好ましくは上記芳香族系石油樹脂の水素化物が挙げられる。 In one embodiment, the hydrogenated aromatic hydrocarbon resin in the tackifier is preferably a hydrogenated aromatic petroleum resin.
(水素化芳香族系炭化水素樹脂の物性)
上記水素化芳香族系炭化水素樹脂の上記質量残留率は、例えば、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%、83質量%、82質量%、81質量%、80質量%、79質量%、78質量%、77質量%、76質量%、75質量%、74質量%、73質量%、72質量%、71質量%、70質量%、69質量%、68質量%、67質量%、66質量%、65質量%、64質量%等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の上記質量残留率は、粘・接着剤における臭気を抑制し得る点から、好ましくは64質量%以上が挙げられ、より好ましくは70質量%以上が挙げられ、さらに好ましくは80質量%以上が挙げられ、さらに好ましくは90質量%以上が挙げられ、特に好ましくは100質量%が挙げられる。上記水素化芳香族系炭化水素樹脂の上記質量残留率が高い程、粘・接着剤における臭気をより抑制し得る。
(Physical Properties of Hydrogenated Aromatic Hydrocarbon Resins)
Examples of the mass residual rate of the hydrogenated aromatic hydrocarbon resin include 100 mass%, 99 mass%, 98 mass%, 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass%, 90 mass%, 89 mass%, 88 mass%, 87 mass%, 86 mass%, 85 mass%, 84 mass%, 83 mass%, 82 mass%, 81 mass%, 80 mass%, 79 mass%, 78 mass%, 77 mass%, 76 mass%, 75 mass%, 74 mass%, 73 mass%, 72 mass%, 71 mass%, 70 mass%, 69 mass%, 68 mass%, 67 mass%, 66 mass%, 65 mass%, and 64 mass%, etc. In one embodiment, the mass residual rate of the hydrogenated aromatic hydrocarbon resin is preferably 64 mass% or more, more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, and particularly preferably 100 mass% from the viewpoint of suppressing odor in the pressure-sensitive adhesive or adhesive. The higher the mass residual rate of the hydrogenated aromatic hydrocarbon resin, the more odor in the pressure-sensitive adhesive or adhesive can be suppressed.
なお、本開示において、上記質量残留率は、後述の実施例に記載の方法で測定されるものである。 In this disclosure, the mass retention rate is measured by the method described in the Examples below.
本発明者らは、粘・接着剤の製造及び/又は使用において臭気を発する場合、粘・接着剤に使用される粘着付与剤がそのような臭気を発していることを見出し、そして驚くべきことに、上記質量残留率が64質量%以上である水素化芳香族系炭化水素樹脂を粘・接着剤に使用すると、粘・接着剤の製造及び/又は使用において臭気を抑制し得ることを見出した。粘・接着剤において臭気が抑制される詳細は不明だが、上記質量残留率が64質量%以上である水素化芳香族系炭化水素樹脂は、臭気の原因となる揮発成分、及び/又は、粘・接着剤の製造・使用時の加熱における分解物が少ないためと推察される。 The inventors have found that when an odor is generated during the production and/or use of an adhesive, it is the tackifier used in the adhesive that emits such an odor, and have surprisingly found that the use of a hydrogenated aromatic hydrocarbon resin having a mass residual rate of 64% or more in the adhesive can suppress odor during the production and/or use of the adhesive. Although the details of how odor is suppressed in the adhesive are unclear, it is presumed that this is because hydrogenated aromatic hydrocarbon resins having a mass residual rate of 64% or more contain less volatile components that cause odor and/or decomposition products that are generated when heated during the production and use of the adhesive.
そして、水素化芳香族系炭化水素樹脂においては、臭気の原因となる揮発成分、及び/又は、粘・接着剤の製造・使用時の加熱における分解物について、その詳細は多岐にわたり特定するのは困難であるため、本発明者らは、上記質量残留率で水素化芳香族系炭化水素樹脂を規定することにより、粘・接着剤の製造及び/又は使用における臭気を抑制し得るものを特定している。 In addition, with hydrogenated aromatic hydrocarbon resins, the details of the volatile components that cause odors and/or decomposition products that occur when heated during the production and use of adhesives are diverse and difficult to identify, so the inventors have specified hydrogenated aromatic hydrocarbon resins based on the above mass residual rate, thereby identifying those that can suppress odors during the production and/or use of adhesives.
 なお、上記質量残留率において加熱温度が300℃より低い場合、及び/又は、加熱時間が2時間より短い場合、加熱条件が温和なために、水素化芳香族系炭化水素樹脂においては、粘・接着剤の製造及び/又は使用における臭気の傾向を適切に評価することが困難となる。 If the heating temperature is lower than 300°C and/or the heating time is shorter than 2 hours at the above mass retention rate, the heating conditions are mild, making it difficult to properly evaluate the odor tendency in the manufacture and/or use of the adhesive for hydrogenated aromatic hydrocarbon resins.
上記水素化芳香族系炭化水素樹脂の上記質量残留率が64質量%未満である場合は、粘・接着剤に使用すると、その製造及び/又は使用において臭気を発する傾向にある。 If the mass residual rate of the hydrogenated aromatic hydrocarbon resin is less than 64 mass%, when it is used in a pressure-sensitive adhesive, it tends to emit an odor during its production and/or use.
上記水素化芳香族系炭化水素樹脂のMMAPは、例えば、39℃、38℃、37℃、36℃、35℃、34℃、33℃、32℃、31℃、30℃、29℃、28℃、27℃、26℃、25℃、24℃、23℃、22℃、21℃、20℃、19℃、18℃、17℃、16℃、15℃、14℃、13℃、12℃、11℃、10℃、9℃、8℃、7℃、6℃、5℃等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂のMMAPは、粘・接着剤における接着力を向上させる点から、好ましくは5℃以上40℃未満が挙げられ、より好ましくは5℃~35℃が挙げられ、さらに好ましくは5~20℃が挙げられる。 The MMAP of the hydrogenated aromatic hydrocarbon resin may be, for example, 39°C, 38°C, 37°C, 36°C, 35°C, 34°C, 33°C, 32°C, 31°C, 30°C, 29°C, 28°C, 27°C, 26°C, 25°C, 24°C, 23°C, 22°C, 21°C, 20°C, 19°C, 18°C, 17°C, 16°C, 15°C, 14°C, 13°C, 12°C, 11°C, 10°C, 9°C, 8°C, 7°C, 6°C, or 5°C. In one embodiment, the MMAP of the hydrogenated aromatic hydrocarbon resin is preferably 5°C or more and less than 40°C, more preferably 5°C to 35°C, and even more preferably 5°C to 20°C, in order to improve the adhesive strength of the adhesive.
なお、本開示において、MMAPは、後述の実施例に記載の方法で測定されるものである。 Note that in this disclosure, MMAP is measured by the method described in the Examples below.
上記水素化芳香族系炭化水素樹脂のMMAPは、上記水素化芳香族系炭化水素樹脂における芳香族性の特質を示すものである。上記水素化芳香族系炭化水素樹脂における芳香族部分の割合が高いと、MMAPは低い傾向にあり、芳香族部分の割合が低いと、MMAPは高い傾向にある。 The MMAP of the hydrogenated aromatic hydrocarbon resin indicates the aromatic characteristics of the hydrogenated aromatic hydrocarbon resin. If the proportion of aromatic parts in the hydrogenated aromatic hydrocarbon resin is high, the MMAP tends to be low, and if the proportion of aromatic parts is low, the MMAP tends to be high.
上記水素化芳香族系炭化水素樹脂のMMAPが5℃未満である場合、又は、MMAPが40℃以上である場合、粘・接着剤における接着力が低下する傾向にある。 If the MMAP of the hydrogenated aromatic hydrocarbon resin is less than 5°C, or if the MMAP is 40°C or higher, the adhesive strength of the pressure-sensitive adhesive tends to decrease.
上記水素化芳香族系炭化水素樹脂は、上記質量残留率及びMMAP以外の物性は特に限定されない。上記水素化芳香族系炭化水素樹脂の色調は、例えば、400ハーゼン、350ハーゼン、300ハーゼン、250ハーゼン、200ハーゼン、150ハーゼン、100ハーゼン、95ハーゼン、90ハーゼン、85ハーゼン、80ハーゼン、75ハーゼン、70ハーゼン、65ハーゼン、60ハーゼン、55ハーゼン、50ハーゼン、45ハーゼン、40ハーゼン、35ハーゼン、30ハーゼン、25ハーゼン、20ハーゼン、15ハーゼン、10ハーゼン、5ハーゼン等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の色調は、着色が抑制される点から、好ましくは10~400ハーゼン程度が挙げられ、より好ましくは10~200ハーゼン程度が挙げられる。なお、本開示において、色調は、ハーゼン単位はJIS K 0071-1に準拠して、ガードナー単位はJIS K 0071-2に準拠して測定されたものである。 The hydrogenated aromatic hydrocarbon resin is not particularly limited in terms of physical properties other than the mass residual rate and MMAP. Examples of the color tone of the hydrogenated aromatic hydrocarbon resin include 400 Hazen, 350 Hazen, 300 Hazen, 250 Hazen, 200 Hazen, 150 Hazen, 100 Hazen, 95 Hazen, 90 Hazen, 85 Hazen, 80 Hazen, 75 Hazen, 70 Hazen, 65 Hazen, 60 Hazen, 55 Hazen, 50 Hazen, 45 Hazen, 40 Hazen, 35 Hazen, 30 Hazen, 25 Hazen, 20 Hazen, 15 Hazen, 10 Hazen, and 5 Hazen. In one embodiment, the color tone of the hydrogenated aromatic hydrocarbon resin is preferably about 10 to 400 Hazen, more preferably about 10 to 200 Hazen, in terms of suppressing coloration. In this disclosure, color tones are measured in Hazen units according to JIS K 0071-1 and in Gardner units according to JIS K 0071-2.
上記水素化芳香族系炭化水素樹脂の重量平均分子量は、例えば、4,000、3,900、3,800、3,700、3,600、3,500、3,400、3,300、3,200、3,100、3,000、2,900、2,800、2,700、2,600、2,500、2,400、2,300、2,200、2,100、2,000、1,900、1,800、1,700、1,600、1,500、1,400、1,300、1,200、1,100、1,000、900等が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、粘・接着剤における臭気をより抑制する点から、好ましくは900以上が挙げられ、より好ましくは1,000以上が挙げられる。1つの実施形態において、上記水素化芳香族系炭化水素樹脂の重量平均分子量は、粘・接着剤における臭気をより抑制し、粘・接着剤における接着力をより向上させる点から、好ましくは900~4,000程度が挙げられ、より好ましくは1,000~3,000程度が挙げられ、さらに好ましくは1,000~2,100程度が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the above hydrogenated aromatic hydrocarbon resin may be, for example, 4,000, 3,900, 3,800, 3,700, 3,600, 3,500, 3,400, 3,300, 3,200, 3,100, 3,000, 2,900, 2,800, 2,700, 2,600, 2,500, 2,400, 2,300, 2,200, 2,100, 2,000, 1,900, 1,800, 1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, etc. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably 900 or more, more preferably 1,000 or more, from the viewpoint of further suppressing odor in the adhesive/tackifier. In one embodiment, the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is preferably about 900 to 4,000, more preferably about 1,000 to 3,000, and even more preferably about 1,000 to 2,100, from the viewpoint of further suppressing odor in the adhesive/tackifier and further improving adhesive strength in the adhesive/tackifier. In this disclosure, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
上記水素化芳香族系炭化水素樹脂の重量平均分子量が高い程、上記質量残留率は高い傾向にある。 The higher the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin, the higher the mass retention rate tends to be.
 上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率は、例えば、39%、38%、37%、36%、35%、34%、33%、32%、31%、30%、29%、28%、27%、26%、25%、24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%等が挙げられる。1つの実施形態において、上記芳香族水素の含有率は、粘・接着剤における臭気をより抑制する点から、好ましくは40%未満が挙げられ、より好ましくは37%以下が挙げられる。1つの実施形態において、上記芳香族水素の含有率は、粘・接着剤における臭気をより抑制し、粘・接着剤における接着力をより向上させる点から、好ましくは10%以上40%未満が挙げられ、より好ましくは10~37%程度が挙げられ、さらに好ましくは16~37%が挙げられる。なお、上記芳香族水素とは、上記水素化芳香族系炭化水素樹脂における芳香環に共有結合している水素原子のことを意味する。 The aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin may be, for example, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, etc. In one embodiment, the aromatic hydrogen content is preferably less than 40%, more preferably 37% or less, from the viewpoint of further suppressing the odor of the adhesive/adhesive and further improving the adhesive strength of the adhesive/adhesive. In one embodiment, the aromatic hydrogen content is preferably 10% or more and less than 40%, more preferably about 10 to 37%, and even more preferably 16 to 37%. The aromatic hydrogen refers to a hydrogen atom that is covalently bonded to an aromatic ring in the hydrogenated aromatic hydrocarbon resin.
なお、本開示において、上記芳香族水素の含有率は、NMR測定法により求められ、水素化芳香族系炭化水素樹脂におけるH-NMRの全H-スペクトル面積と、そのH-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積から、以下の(1)式に基づいて計算する。
芳香族水素の含有率=(H-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%)・・・(1)
In the present disclosure, the aromatic hydrogen content is determined by NMR measurement and calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from the aromatic ring appearing at about 7 ppm in the 1H -NMR, according to the following formula (1):
Aromatic hydrogen content=(H-spectrum area originating from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%) (1)
上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、上記質量残留率は高い傾向にある。また、上記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が低い程、MMAPは高い傾向にあり、上当該芳香族水素の含有率が高い程、MMAPは低い傾向にある。 The lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the mass residual ratio tends to be. In addition, the lower the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin, the higher the MMAP tends to be, and the higher the aromatic hydrogen content, the lower the MMAP tends to be.
 上記水素化芳香族系炭化水素樹脂のオレフィン含有率は、例えば、1.0%、0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.3%、0.2%、0.1%、0%等が挙げられる。1つの実施形態において、上記オレフィン含有率は、粘・接着剤における着色をより抑制する点から、好ましくは0~1.0%程度が挙げられ、より好ましくは0~0.5%程度が挙げられ、さらに好ましくは0%が挙げられる。なお、オレフィンとは、上記水素化芳香族系炭化水素樹脂に含まれるオレフィン性二重結合のことを意味しており、芳香環における炭素-炭素二重結合は含まれない。 The olefin content of the hydrogenated aromatic hydrocarbon resin may be, for example, 1.0%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0%. In one embodiment, the olefin content is preferably about 0 to 1.0%, more preferably about 0 to 0.5%, and even more preferably 0%, in order to further suppress coloration in the adhesive. Note that olefin refers to the olefinic double bond contained in the hydrogenated aromatic hydrocarbon resin, and does not include the carbon-carbon double bond in the aromatic ring.
なお、本開示において、上記オレフィン含有率は、NMR測定法により求められ、水素化芳香族系炭化水素樹脂におけるH-NMRの全H-スペクトル面積と、そのH-NMRの5~6ppmに現れるオレフィン性二重結合由来のH-スペクトル面積から、以下の(2)式に基づいて計算する。
オレフィン含有率=(H-NMRの4~6ppmに現れるオレフィン性二重結合由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%)・・・(2)
In the present disclosure, the olefin content is determined by an NMR measurement method, and is calculated based on the total H-spectrum area of 1H -NMR in the hydrogenated aromatic hydrocarbon resin and the H-spectrum area derived from an olefinic double bond appearing at 5 to 6 ppm in the 1H -NMR, according to the following formula (2).
Olefin content=(H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%) (2)
(添加剤)
1つの実施形態において、上記粘着付与剤は、本発明の効果を損なわない限りにおいて、任意で、各種公知の添加剤を含み得る。添加剤は、例えば、架橋剤、脱水剤、結晶核剤、可塑剤、流動性改良剤、耐候剤、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤、上記水素化芳香族系炭化水素樹脂以外の粘着付与剤等が挙げられる。上記添加剤は、1種を単独で、又は2種以上を併用して用いる事が出来る。1つの実施形態において、上記添加剤の含有量は、上記水素化芳香族系炭化水素樹脂100質量部に対して、好ましくは0.1~10質量部が挙げられる。
(Additive)
In one embodiment, the tackifier may contain any of various known additives as long as the effects of the present invention are not impaired. Examples of additives include crosslinkers, dehydrating agents, crystal nucleating agents, plasticizers, flow improvers, weathering agents, antioxidants, UV absorbers, heat stabilizers, light stabilizers, and tackifiers other than the hydrogenated aromatic hydrocarbon resin. The additives may be used alone or in combination of two or more. In one embodiment, the content of the additive is preferably 0.1 to 10 parts by mass relative to 100 parts by mass of the hydrogenated aromatic hydrocarbon resin.
(粘着付与剤の使用)
上記粘着付与剤は、各種公知の粘・接着剤に対して用いることができる。粘・接着剤は、1種を単独で又は2種以上を組み合わせても良い。粘・接着剤は、例えば、後述のものが挙げられる。
(Use of tackifier)
The tackifier can be used for various known adhesives and pressure-sensitive adhesives. The adhesives and pressure-sensitive adhesives may be used alone or in combination of two or more. Examples of the adhesives and pressure-sensitive adhesives include those described below.
 1つの実施形態において、上記粘着付与剤は、粘・接着剤における接着力をより向上させる点から、好ましくはベースポリマーとしてアクリル系重合体を含む粘・接着剤(アクリル系粘・接着剤)に用いられる。 In one embodiment, the tackifier is preferably used in a pressure-sensitive adhesive that contains an acrylic polymer as the base polymer (acrylic pressure-sensitive adhesive) in order to further improve the adhesive strength of the pressure-sensitive adhesive.
上記アクリル系粘・接着剤における上記粘着付与剤の使用量は、特に限定されない。上記アクリル系粘・接着剤における上記粘着付与剤の使用量は、例えば、固形分換算で、アクリル系重合体100質量部に対して、70質量部、69質量部、68質量部、67質量部、66質量部、65質量部、64質量部、63質量部、62質量部、61質量部、60質量部、59質量部、58質量部、57質量部、56質量部、55質量部、54質量部、53質量部、52質量部、51質量部、50質量部、49質量部、48質量部、47質量部、46質量部、45質量部、44質量部、43質量部、42質量部、41質量部、40質量部、39質量部、38質量部、37質量部、36質量部、35質量部、34質量部、33質量部、32質量部、31質量部、30質量部、29質量部、28質量部、27質量部、26質量部、25質量部、24質量部、23質量部、22質量部、21質量部、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部等が挙げられる。1つの実施形態において、上記アクリル系粘・接着剤における上記粘着付与剤の使用量は、粘着付与剤による改質の効果が十分に発現でき、かつ、耐熱保持力、タック等の低下をより抑制し得る点から、固形分換算で、アクリル系重合体100質量部に対して、好ましくは2~70質量部程度が挙げられ、より好ましくは5~70質量部程度が挙げられ、さらに好ましくは20~70質量部程度が挙げられる。 The amount of the tackifier used in the acrylic pressure-sensitive adhesive is not particularly limited. The amount of the tackifier used in the acrylic pressure-sensitive adhesive is, for example, 70 parts by weight, 69 parts by weight, 68 parts by weight, 67 parts by weight, 66 parts by weight, 65 parts by weight, 64 parts by weight, 63 parts by weight, 62 parts by weight, 61 parts by weight, 60 parts by weight, 59 parts by weight, 58 parts by weight, 57 parts by weight, 56 parts by weight, 55 parts by weight, 54 parts by weight, 53 parts by weight, 52 parts by weight, 51 parts by weight, 50 parts by weight, 49 parts by weight, 48 parts by weight, 47 parts by weight, 46 parts by weight, 45 parts by weight, 44 parts by weight, 43 parts by weight, 42 parts by weight, 41 parts by weight, 42 parts by weight, 43 parts by weight, 4 ... parts by mass, 40 parts by mass, 39 parts by mass, 38 parts by mass, 37 parts by mass, 36 parts by mass, 35 parts by mass, 34 parts by mass, 33 parts by mass, 32 parts by mass, 31 parts by mass, 30 parts by mass, 29 parts by mass, 28 parts by mass, 27 parts by mass, 26 parts by mass, 25 parts by mass, 24 parts by mass, 23 parts by mass, 22 parts by mass, 21 parts by mass, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, etc. In one embodiment, the amount of the tackifier used in the acrylic pressure-sensitive adhesive is preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in terms of solid content, from the viewpoints that the effect of modification by the tackifier can be fully exerted and the decrease in heat resistance retention, tackiness, etc. can be further suppressed.
上記粘着付与剤の使用方法は、特に限定されない。上記粘着付与剤の使用方法は、例えば、上記粘着付与剤と各種公知の粘・接着剤に使用されるベースポリマーと、必要に応じて各種公知の有機溶剤と添加剤とを混合させる方法等が挙げられる。混合方法としては、特に限定されず各種公知の方法を用いることができる。粘・接着剤に使用されるベースポリマーとしては、例えば、後述のものが挙げられる。 The method of using the tackifier is not particularly limited. Examples of the method of using the tackifier include a method of mixing the tackifier with various known base polymers used in pressure-sensitive adhesives and adhesives, and, if necessary, various known organic solvents and additives. There are no particular limitations on the mixing method, and various known methods can be used. Examples of base polymers used in pressure-sensitive adhesives and adhesives include those described below.
[粘・接着剤組成物]
 本開示は、上記粘着付与剤(又は上記水素化芳香族系炭化水素樹脂)及びベースポリマーを含む粘・接着剤組成物に関する。また、上記粘・接着剤組成物は、粘・接着剤として使用することができる。なお、本開示において、「粘・接着剤」とは、粘着剤及び接着剤のいずれか一方又は両方を含むことを明らかにしたものである。
[Adhesive/adhesive composition]
The present disclosure relates to a pressure-sensitive adhesive composition comprising the above tackifier (or the above hydrogenated aromatic hydrocarbon resin) and a base polymer. The pressure-sensitive adhesive composition can be used as a pressure-sensitive adhesive. In the present disclosure, the term "pressure-sensitive adhesive" clearly includes either or both of a pressure-sensitive adhesive and an adhesive.
上記ベースポリマーは、例えば、アクリル系重合体、合成ゴム系エラストマー、オレフィン系重合体等が挙げられる。該ベースポリマーは、1種を単独で、又は2種以上を併用しても良い。該ベースポリマーは、さらに必要に応じて架橋剤、充填剤、剥離調整剤、可塑剤、軟化剤、着色剤(顔料、染料等)、界面活性剤、帯電防止剤、老化防止剤、紫外線吸収剤、酸化防止剤、光安定剤等を使用することもできる。 Examples of the base polymer include acrylic polymers, synthetic rubber elastomers, and olefin polymers. The base polymer may be used alone or in combination of two or more. If necessary, the base polymer may further contain a crosslinking agent, a filler, a release adjuster, a plasticizer, a softener, a colorant (pigment, dye, etc.), a surfactant, an antistatic agent, an antiaging agent, an ultraviolet absorber, an antioxidant, a light stabilizer, etc.
(アクリル系重合体)
上記アクリル系重合体としては、一般に各種のアクリル系粘・接着剤に用いられているものを使用でき、例えば、アルキル(メタ)アクリレートを含むモノマー成分の重合物等が挙げられる。上記アクリル系重合体の製造方法は、各種公知の重合方法が用いられ、例えば、重合開始剤の存在下に、上記モノマー成分をラジカル重合させる方法が挙げられる。重合方法としては、例えば、溶液重合、懸濁重合、塊状重合等が挙げられる。上記アクリル系重合体は、1種を単独で、又は2種以上を併用しても良い。
(Acrylic polymer)
The acrylic polymer may be one generally used in various acrylic adhesives, such as a polymer of a monomer component containing alkyl (meth)acrylate. The acrylic polymer may be produced by any of various known polymerization methods, such as a method of radically polymerizing the monomer component in the presence of a polymerization initiator. The polymerization method may be, for example, solution polymerization, suspension polymerization, bulk polymerization, etc. The acrylic polymer may be used alone or in combination of two or more.
なお、本開示において、「(メタ)アクリル」は「アクリル及びメタクリルからなる群より選択される少なくとも1つ」を意味する。同様に、「(メタ)アクリレート」は「アクリレート及びメタクリレートからなる群より選択される少なくとも1つ」を意味し、「(メタ)アクリロイル基」は「アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも1つ」を意味する。 In this disclosure, "(meth)acrylic" means "at least one selected from the group consisting of acrylic and methacrylic." Similarly, "(meth)acrylate" means "at least one selected from the group consisting of acrylate and methacrylate," and "(meth)acryloyl group" means "at least one selected from the group consisting of acryloyl group and methacryloyl group."
上記アルキル(メタ)アクリレートは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等が挙げられる。これらアルキル(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて用いることができる。 The above alkyl (meth)acrylates include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, Examples of alkyl (meth)acrylate include acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, nonadecyl (meth)acrylate, and eicosyl (meth)acrylate. These alkyl (meth)acrylates can be used alone or in combination of two or more.
 上記アクリル系重合体における上記モノマー成分は、更に、上記アルキル(メタ)アクリレートと共重合可能な他のモノマーを含み得る。そのようなモノマーとしては、例えば、カルボキシル基含有モノマー、水酸基含有モノマー、アミド基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー、シアノ基含有モノマー、ケト基含有モノマー、窒素原子含有環を有するモノマー、アルコキシシリル基含有モノマー、脂環構造を有する(メタ)アクリレート、芳香族構造を有する(メタ)アクリレート、多官能モノマー等が挙げられる。 The monomer components in the acrylic polymer may further include other monomers that are copolymerizable with the alkyl (meth)acrylate. Examples of such monomers include carboxyl group-containing monomers, hydroxyl group-containing monomers, amide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, keto group-containing monomers, monomers having a nitrogen atom-containing ring, alkoxysilyl group-containing monomers, (meth)acrylates having an alicyclic structure, (meth)acrylates having an aromatic structure, polyfunctional monomers, etc.
上記カルボキシル基含有モノマーは、例えば、アクリル酸(AA)、メタクリル酸(MAA)、クロトン酸等のエチレン性不飽和モノカルボン酸;マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸およびその無水物(無水マレイン酸、無水イタコン酸等)が挙げられる。 The above-mentioned carboxyl group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as acrylic acid (AA), methacrylic acid (MAA), and crotonic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, itaconic acid, and citraconic acid, and their anhydrides (maleic anhydride, itaconic anhydride, etc.).
上記水酸基含有モノマーは、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
上記アミド基含有モノマーは、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等が挙げられる。 Examples of the amide group-containing monomer include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N-butyl(meth)acrylamide, N-methylol(meth)acrylamide, N-methylolpropane(meth)acrylamide, N-methoxymethyl(meth)acrylamide, and N-butoxymethyl(meth)acrylamide.
上記アミノ基含有モノマーは、例えば、アミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート等が挙げられる。 Examples of the amino group-containing monomer include aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate.
上記エポキシ基含有モノマーは、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテル等が挙げられる。上記シアノ基含有モノマーは、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。上記ケト基含有モノマーは、例えば、ジアセトン(メタ)アクリルアミド、ジアセトン(メタ)アクリレート、ビニルメチルケトン、ビニルエチルケトン、アリルアセトアセテート、ビニルアセトアセテート等が挙げられる。 Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate, methyl glycidyl (meth)acrylate, and allyl glycidyl ether. Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile. Examples of the keto group-containing monomer include diacetone (meth)acrylamide, diacetone (meth)acrylate, vinyl methyl ketone, vinyl ethyl ketone, allyl acetoacetate, and vinyl acetoacetate.
上記窒素原子含有環を有するモノマーは、例えば、N-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタム、N-(メタ)アクリロイルモルホリン等が挙げられる。 Examples of the monomer having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N-vinylcaprolactam, and N-(meth)acryloylmorpholine.
上記アルコキシシリル基含有モノマーは、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等が挙げられる。 Examples of the alkoxysilyl group-containing monomer include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, and 3-(meth)acryloxypropylmethyldiethoxysilane.
上記脂環構造を有する(メタ)アクリレートは、例えば、シクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート等が挙げられる。 Examples of the (meth)acrylate having an alicyclic structure include cyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
上記芳香族構造を有する(メタ)アクリレートは、例えば、アリール(メタ)アクリレート(例えばフェニル(メタ)アクリレート)、アリールオキシアルキル(メタ)アクリレート(例えばフェノキシエチル(メタ)アクリレート)、アリールアルキル(メタ)アクリレート(例えばベンジル(メタ)アクリレート)等が挙げられる。 Examples of the (meth)acrylate having the aromatic structure include aryl (meth)acrylate (e.g., phenyl (meth)acrylate), aryloxyalkyl (meth)acrylate (e.g., phenoxyethyl (meth)acrylate), and arylalkyl (meth)acrylate (e.g., benzyl (meth)acrylate).
上記多官能モノマーは、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エポキシアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional monomer include 1,6-hexanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, glycerin di(meth)acrylate, epoxy acrylate, divinylbenzene, butyl di(meth)acrylate, and hexyl di(meth)acrylate.
 1つの実施形態において、上記モノマー成分におけるアルキル(メタ)アクリレートと共重合可能な他のモノマーの含有量は、好ましくは上記モノマー成分100質量%に対して40質量%以下程度が挙げられる。 In one embodiment, the content of other monomers copolymerizable with the alkyl (meth)acrylate in the monomer component is preferably about 40% by mass or less relative to 100% by mass of the monomer component.
上記モノマー成分は、更に、酢酸ビニル、プロピオン酸ビニル等のビニルエステル系モノマー;スチレン、置換スチレン(α-メチルスチレン等)、ビニルトルエン等の芳香族ビニル化合物;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;塩化ビニル、塩化ビニリデン等の塩素含有モノマー;2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基含有モノマー;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシ基含有モノマー;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマー、等のモノマーを含み得る。1つの実施形態において、これらモノマーの含有量は、上記モノマー成分100質量%に対して10質量%以下程度が挙げられる。 The monomer components may further include vinyl ester monomers such as vinyl acetate and vinyl propionate; aromatic vinyl compounds such as styrene, substituted styrenes (such as α-methylstyrene) and vinyl toluene; olefin monomers such as ethylene, propylene, isoprene, butadiene and isobutylene; chlorine-containing monomers such as vinyl chloride and vinylidene chloride; isocyanate group-containing monomers such as 2-(meth)acryloyloxyethyl isocyanate; alkoxy group-containing monomers such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate; vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether. In one embodiment, the content of these monomers is about 10% by mass or less relative to 100% by mass of the monomer components.
  上記重合開始剤は、特に限定されず、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2'-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]水和物、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩等のアゾ系開始剤;1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素等の過酸化物系開始剤;過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩系開始剤等が挙げられる。重合開始剤は単独で用いられても、二種以上が併用されてもよい。 The polymerization initiator is not particularly limited, and examples thereof include azo-based initiators such as 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylpropionamidine) disulfate, 2,2'-azobis(2-methylpropionamidine) dihydrochloride, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] hydrate, 2,2'-azobis(N,N'-dimethyleneisobutylamidine), and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride; 1,1-bis(t-hexylperoxy)-3,3,5-tetrahydrofuran; Examples of the polymerization initiator include peroxide initiators such as trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5-dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, benzoyl peroxide, t-butyl hydroperoxide, and hydrogen peroxide; and persulfate initiators such as potassium persulfate and ammonium persulfate. The polymerization initiators may be used alone or in combination of two or more.
  上記アクリル系重合体の重量平均分子量(Mw)は、特に限定されないが、通常、100,000~5,000,000程度の範囲である。1つの実施形態において、アクリル系重合体の重量平均分子量(Mw)は、粘着特性を向上させる観点から、好ましくは1,500,000以下が挙げられ、より好ましくは1,000,000以下が挙げられ、凝集性等の観点から、好ましくは200,000以上が挙げられ、より好ましくは300,000以上が挙げられる。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法におけるポリスチレン換算値をいう。 The weight average molecular weight (Mw) of the acrylic polymer is not particularly limited, but is usually in the range of about 100,000 to 5,000,000. In one embodiment, the weight average molecular weight (Mw) of the acrylic polymer is preferably 1,500,000 or less, more preferably 1,000,000 or less, from the viewpoint of improving adhesive properties, and is preferably 200,000 or more, more preferably 300,000 or more, from the viewpoint of cohesiveness, etc. In this disclosure, the weight average molecular weight refers to a polystyrene equivalent value in the gel permeation chromatography (GPC) method.
 上記ベースポリマーが上記アクリル系重合体を含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、特に限定されない。上記粘・接着剤組成物における上記粘着付与剤の含有量は、例えば、固形分換算で、アクリル系重合体100質量部に対して、70質量部、69質量部、68質量部、67質量部、66質量部、65質量部、64質量部、63質量部、62質量部、61質量部、60質量部、59質量部、58質量部、57質量部、56質量部、55質量部、54質量部、53質量部、52質量部、51質量部、50質量部、49質量部、48質量部、47質量部、46質量部、45質量部、44質量部、43質量部、42質量部、41質量部、40質量部、39質量部、38質量部、37質量部、36質量部、35質量部、34質量部、33質量部、32質量部、31質量部、30質量部、29質量部、28質量部、27質量部、26質量部、25質量部、24質量部、23質量部、22質量部、21質量部、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記アクリル系重合体を含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、アクリル系重合体100質量部に対して、好ましくは2~70質量部程度が挙げられ、より好ましくは5~70質量部程度が挙げられ、さらに好ましくは20~70質量部程度が挙げられる。 When the base polymer contains the acrylic polymer, the content of the tackifier in the adhesive composition is not particularly limited. The content of the tackifier in the adhesive composition is, for example, 70 parts by mass, 69 parts by mass, 68 parts by mass, 67 parts by mass, 66 parts by mass, 65 parts by mass, 64 parts by mass, 63 parts by mass, 62 parts by mass, 61 parts by mass, 60 parts by mass, 59 parts by mass, 58 parts by mass, 57 parts by mass, 56 parts by mass, 55 parts by mass, 54 parts by mass, 53 parts by mass, 52 parts by mass, 51 parts by mass, 50 parts by mass, 49 parts by mass, 48 parts by mass, 47 parts by mass, 46 parts by mass, 45 parts by mass, 44 parts by mass, 43 parts by mass, 42 parts by mass, 41 parts by mass, or the like, based on 100 parts by mass of the acrylic polymer, in terms of solid content. parts by mass, 40 parts by mass, 39 parts by mass, 38 parts by mass, 37 parts by mass, 36 parts by mass, 35 parts by mass, 34 parts by mass, 33 parts by mass, 32 parts by mass, 31 parts by mass, 30 parts by mass, 29 parts by mass, 28 parts by mass, 27 parts by mass, 26 parts by mass, 25 parts by mass, 24 parts by mass, 23 parts by mass, 22 parts by mass, 21 parts by mass, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, etc. In one embodiment, when the base polymer contains the acrylic polymer, the content of the tackifier in the pressure-sensitive adhesive composition is, in terms of solid content, preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
 上記ベースポリマーが上記アクリル系重合体を含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、固形分換算で、アクリル系重合体100質量部に対して、70質量部、69質量部、68質量部、67質量部、66質量部、65質量部、64質量部、63質量部、62質量部、61質量部、60質量部、59質量部、58質量部、57質量部、56質量部、55質量部、54質量部、53質量部、52質量部、51質量部、50質量部、49質量部、48質量部、47質量部、46質量部、45質量部、44質量部、43質量部、42質量部、41質量部、40質量部、39質量部、38質量部、37質量部、36質量部、35質量部、34質量部、33質量部、32質量部、31質量部、30質量部、29質量部、28質量部、27質量部、26質量部、25質量部、24質量部、23質量部、22質量部、21質量部、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記アクリル系重合体を含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、アクリル系重合体100質量部に対して、好ましくは2~70質量部程度が挙げられ、より好ましくは5~70質量部程度が挙げられ、さらに好ましくは20~70質量部程度が挙げられる。 When the base polymer contains the acrylic polymer, the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 70 parts by mass, 69 parts by mass, 68 parts by mass, 67 parts by mass, 66 parts by mass, 65 parts by mass, 64 parts by mass, 63 parts by mass, 62 parts by mass, 61 parts by mass, 60 parts by mass, 59 parts by mass, 58 parts by mass, 57 parts by mass, 56 parts by mass, 55 parts by mass, 54 parts by mass, 53 parts by mass, 52 parts by mass, 51 parts by mass, 50 parts by mass, 49 parts by mass, 48 parts by mass, 47 parts by mass, 46 parts by mass, 45 parts by mass, 44 parts by mass, 43 parts by mass, 42 parts by mass, Examples of the compound include 41 parts by mass, 40 parts by mass, 39 parts by mass, 38 parts by mass, 37 parts by mass, 36 parts by mass, 35 parts by mass, 34 parts by mass, 33 parts by mass, 32 parts by mass, 31 parts by mass, 30 parts by mass, 29 parts by mass, 28 parts by mass, 27 parts by mass, 26 parts by mass, 25 parts by mass, 24 parts by mass, 23 parts by mass, 22 parts by mass, 21 parts by mass, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, 16 parts by mass, 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, and 2 parts by mass. In one embodiment, when the base polymer contains the acrylic polymer, the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is, in terms of solid content, preferably about 2 to 70 parts by mass, more preferably about 5 to 70 parts by mass, and even more preferably about 20 to 70 parts by mass, per 100 parts by mass of the acrylic polymer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
(合成ゴム系エラストマー)
 上記合成ゴム系エラストマーとしては、粘・接着剤組成物に用いられる各種公知のものを使用できる。上記合成ゴム系エラストマーは、1種を単独で、又は2種以上を併用しても良い。
(Synthetic rubber elastomer)
As the synthetic rubber elastomer, various known synthetic rubber elastomers used in pressure-sensitive adhesive compositions can be used. The synthetic rubber elastomers may be used alone or in combination of two or more.
  上記合成ゴム系エラストマーは、例えば、ポリイソプレン、スチレン・ブタジエンゴム(SBR)、スチレン・イソプレン(SI)ゴム、スチレン・イソプレン・スチレンブロック共重合体(SIS)ゴム、スチレン・ブタジエン・スチレンブロック共重合体(SBS)ゴム、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)ゴム、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)ゴム、スチレン・エチレン・プロピレンブロック共重合体(SEP)ゴム、再生ゴム、ブチルゴム、ポリイソブチレン、スチレン・ブタジエン・ビニルピリジンゴム、ポリブタジエン、メチルメタクリレート・ブタジエンゴム、アクリロニトリル・ブタジエンゴム(NBR)、ポリクロロプレン(CR)等が挙げられる。 Examples of the synthetic rubber elastomers include polyisoprene, styrene-butadiene rubber (SBR), styrene-isoprene (SI) rubber, styrene-isoprene-styrene block copolymer (SIS) rubber, styrene-butadiene-styrene block copolymer (SBS) rubber, styrene-ethylene-butylene-styrene block copolymer (SEBS) rubber, styrene-ethylene-propylene-styrene block copolymer (SEPS) rubber, styrene-ethylene-propylene block copolymer (SEP) rubber, reclaimed rubber, butyl rubber, polyisobutylene, styrene-butadiene-vinylpyridine rubber, polybutadiene, methyl methacrylate-butadiene rubber, acrylonitrile-butadiene rubber (NBR), polychloroprene (CR), and the like.
 上記ベースポリマーが上記合成ゴム系エラストマーを含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、特に限定されない。上記粘・接着剤組成物における上記粘着付与剤の含有量は、例えば、固形分換算で、合成ゴム系エラストマー100質量部に対して、210質量部、205質量部、200質量部、195質量部、190質量部、185質量部、180質量部、175質量部、170質量部、165質量部、160質量部、155質量部、150質量部、145質量部、140質量部、135質量部、130質量部、125質量部、120質量部、115質量部、110質量部、105質量部、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記合成ゴム系エラストマーを含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、合成ゴム系エラストマー100質量部に対して、好ましくは15~210質量部程度が挙げられる。 When the base polymer contains the synthetic rubber-based elastomer, the content of the tackifier in the adhesive composition is not particularly limited. The content of the tackifier in the adhesive composition is, for example, 210 parts by mass, 205 parts by mass, 200 parts by mass, 195 parts by mass, 190 parts by mass, 185 parts by mass, 180 parts by mass, 175 parts by mass, 170 parts by mass, 165 parts by mass, 160 parts by mass, 155 parts by mass, 150 parts by mass, 145 parts by mass, 140 parts by mass, Examples of the tackifier include 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, and 15 parts by mass. In one embodiment, when the base polymer contains the synthetic rubber-based elastomer, the content of the tackifier in the pressure-sensitive adhesive composition is preferably about 15 to 210 parts by mass, in terms of solid content, per 100 parts by mass of the synthetic rubber-based elastomer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
 上記ベースポリマーが上記合成ゴム系エラストマーを含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、固形分換算で、合成ゴム系エラストマー100質量部に対して、210質量部、205質量部、200質量部、195質量部、190質量部、185質量部、180質量部、175質量部、170質量部、165質量部、160質量部、155質量部、150質量部、145質量部、140質量部、135質量部、130質量部、125質量部、120質量部、115質量部、110質量部、105質量部、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記合成ゴム系エラストマーを含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、合成ゴム系エラストマー100質量部に対して、好ましくは15~210質量部程度が挙げられる。 When the base polymer contains the synthetic rubber elastomer, the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 210 parts by mass, 205 parts by mass, 200 parts by mass, 195 parts by mass, 190 parts by mass, 185 parts by mass, 180 parts by mass, 175 parts by mass, 170 parts by mass, 165 parts by mass, 160 parts by mass, 155 parts by mass, 150 parts by mass, 145 parts by mass, 140 parts by mass, 15 ... parts by mass, 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, etc. In one embodiment, when the base polymer contains the synthetic rubber-based elastomer, the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is preferably about 15 to 210 parts by mass, in terms of solid content, relative to 100 parts by mass of the synthetic rubber-based elastomer, in order to increase the adhesive strength of the pressure-sensitive adhesive.
(オレフィン系重合体)
上記オレフィン系重合体は、各種オレフィン類を含むモノマー成分の重合体であれば、特に限定されず、各種公知のものを使用できる。上記オレフィン系重合体は、例えば、各種オレフィン類の単独重合物であるオレフィン系単独重合体、各種オレフィン類と共重合可能な単量体との共重合物であるオレフィン系共重合体等が挙げられる。上記オレフィン系重合体は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Olefin Polymer)
The olefin-based polymer is not particularly limited as long as it is a polymer of a monomer component containing various olefins, and various known polymers can be used. Examples of the olefin-based polymer include an olefin-based homopolymer, which is a homopolymer of various olefins, and an olefin-based copolymer, which is a copolymer of various olefins and a copolymerizable monomer. The olefin-based polymer may be used alone or in combination of two or more kinds.
上記オレフィン類は、例えば、エチレン、プロピレン、ブテン、ブチレン、イソプレン、ペンテン、ペンタジエン、オクテン、イソオクテン、ヘキセンやヘキサジエンの各種異性体、ヘプテンやヘプタジエンの各種異性体;各種αオレフィン;シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエニル等の環状オレフィンが挙げられる。上記オレフィン類は、1種を単独で用いてもよいし、2種以上を併用してもよい。 The above olefins include, for example, ethylene, propylene, butene, butylene, isoprene, pentene, pentadiene, octene, isooctene, various isomers of hexene and hexadiene, various isomers of heptene and heptadiene; various alpha-olefins; and cyclic olefins such as cyclopentene, cyclohexene, norbornene, and dicyclopentadienyl. The above olefins may be used alone or in combination of two or more.
上記オレフィン類と共重合可能な単量体は、例えば、酢酸ビニル、上記(メタ)アクリル酸エステル類等が挙げられる。1つの実施形態において、上記共重合可能な単量体は、好ましくは酢酸ビニルが挙げられる。上記共重合可能な単量体は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the monomers copolymerizable with the olefins include vinyl acetate and the (meth)acrylic acid esters. In one embodiment, the copolymerizable monomer is preferably vinyl acetate. The copolymerizable monomers may be used alone or in combination of two or more.
1つの実施形態において、上記オレフィン系共重合体における上記共重合可能な単量体の使用量は、上記オレフィン系共重合体100質量%に対して、好ましくは20~45質量%程度が挙げられる。 In one embodiment, the amount of the copolymerizable monomer used in the olefin-based copolymer is preferably about 20 to 45% by mass relative to 100% by mass of the olefin-based copolymer.
 上記オレフィン系単独重合体は、例えば、ポリエチレン、ポリプロピレン、エチレン-αオレフィン共重合体、非晶性アタクチックポリプロピレン等が挙げられる。上記オレフィン系共重合体は、例えば、エチレンアクリル酸共重合体(EAA)、エチレンメタクリル酸共重合体(EMAA)、エチレン酢酸ビニル共重合体(EVA)、エチレンエチルアクリレート共重合体(EEA)、エチレンメチルアクリレート共重合体(EMA)、エチレンメチルメタクリレート共重合体(EMMA)等が挙げられる。1つの実施形態において、上記オレフィン系共重合体は、好ましくはエチレン酢酸ビニル共重合体(EVA)が挙げられる。 The above-mentioned olefin-based homopolymers include, for example, polyethylene, polypropylene, ethylene-α-olefin copolymer, amorphous atactic polypropylene, etc. The above-mentioned olefin-based copolymers include, for example, ethylene acrylic acid copolymer (EAA), ethylene methacrylic acid copolymer (EMAA), ethylene vinyl acetate copolymer (EVA), ethylene ethyl acrylate copolymer (EEA), ethylene methyl acrylate copolymer (EMA), ethylene methyl methacrylate copolymer (EMMA), etc. In one embodiment, the above-mentioned olefin-based copolymer is preferably ethylene vinyl acetate copolymer (EVA).
 上記ベースポリマーが上記オレフィン系重合体を含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、特に限定されない。上記粘・接着剤組成物における上記粘着付与剤の含有量は、例えば、固形分換算で、オレフィン系重合体100質量部に対して、150質量部、145質量部、140質量部、135質量部、130質量部、125質量部、120質量部、115質量部、110質量部、105質量部、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記オレフィン系重合体を含む場合、上記粘・接着剤組成物における上記粘着付与剤の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、オレフィン系重合体100質量部に対して、好ましくは50~150質量部程度が挙げられる。 When the base polymer includes the olefin-based polymer, the content of the tackifier in the adhesive composition is not particularly limited. The content of the tackifier in the adhesive composition is, for example, 150 parts by mass, 145 parts by mass, 140 parts by mass, 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, etc., based on the solid content. In one embodiment, when the base polymer includes the olefin-based polymer, the content of the tackifier in the adhesive composition is preferably about 50 to 150 parts by mass based on the solid content, based on 100 parts by mass of the olefin-based polymer, in order to increase the adhesive strength of the adhesive.
 上記ベースポリマーが上記オレフィン系重合体を含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、特に限定されない。上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、固形分換算で、オレフィン系重合体100質量部に対して、150質量部、145質量部、140質量部、135質量部、130質量部、125質量部、120質量部、115質量部、110質量部、105質量部、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部等が挙げられる。1つの実施形態において、上記ベースポリマーが上記オレフィン系重合体を含む場合、上記粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、オレフィン系重合体100質量部に対して、好ましくは50~150質量部程度が挙げられる。 When the base polymer contains the olefin polymer, the content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is not particularly limited. The content of the hydrogenated aromatic hydrocarbon resin in the adhesive composition is, for example, 150 parts by mass, 145 parts by mass, 140 parts by mass, 135 parts by mass, 130 parts by mass, 125 parts by mass, 120 parts by mass, 115 parts by mass, 110 parts by mass, 105 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, etc., based on 100 parts by mass of the olefin polymer, in terms of solid content. In one embodiment, when the base polymer contains the olefin polymer, the content of the hydrogenated aromatic hydrocarbon resin in the pressure-sensitive adhesive composition is preferably about 50 to 150 parts by mass, in terms of solid content, per 100 parts by mass of the olefin polymer, since this increases the adhesive strength of the pressure-sensitive adhesive.
  1つの実施形態において、上記粘・接着剤組成物としては、上記粘着付与剤(又は上記水素化芳香族系炭化水素樹脂)による改質の効果が高い点から、好ましくは上記ベースポリマーとして上記アクリル系重合体を含むアクリル系粘・接着剤組成物が挙げられる。 In one embodiment, the pressure-sensitive adhesive composition is preferably an acrylic pressure-sensitive adhesive composition containing the acrylic polymer as the base polymer, because of the high effect of modification by the tackifier (or the hydrogenated aromatic hydrocarbon resin).
  上記粘・接着剤組成物においては、ワニスタイプ及びホットメルトタイプのいずれの状態でも使用できる。 The above pressure-sensitive adhesive composition can be used in either a varnish type or hot melt type.
上記ワニスタイプとして粘・接着剤組成物を使用する場合には、各種有機溶剤を使用できる。有機溶剤としては、特に限定されないが、具体的には、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトン、酢酸エチル、シクロヘキサン、メチルシクロヘキサン、メタノール、エタノール、プロパノール、イソプロパノール、ヘキシレングリコール等が挙げられる。有機溶剤の使用量は特に限定されないが、通常、上記ベースポリマー100質量部に対して通常、100~500質量部程度である。 When the pressure-sensitive adhesive composition is used as the varnish type, various organic solvents can be used. The organic solvent is not particularly limited, but specific examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, ethyl acetate, cyclohexane, methylcyclohexane, methanol, ethanol, propanol, isopropanol, and hexylene glycol. The amount of the organic solvent used is not particularly limited, but is usually about 100 to 500 parts by mass per 100 parts by mass of the base polymer.
上記ホットメルトタイプとして粘・接着剤組成物を使用する場合には、上記したワニスタイプに使用され得る有機溶剤は特に必要とされない。 When using the pressure-sensitive adhesive composition as the hot melt type, the organic solvent that can be used in the varnish type is not particularly required.
1つの実施形態において、上記粘・接着剤組成物は、所望の特性を損なわない限り、任意で、架橋剤、オイル、ワックス、上記水素化芳香族系炭化水素樹脂以外の粘着付与剤、消泡剤、粘度調整剤、充填剤、酸化防止剤、耐水化剤、造膜助剤、防腐剤、アンモニア水や重曹等のpH調整剤、レベリング剤、剥離調整剤、可塑剤、軟化剤、着色剤(顔料、染料等)、界面活性剤、帯電防止剤、老化防止剤、紫外線吸収剤、酸化防止剤、光安定剤等の各種添加剤を含み得る。 In one embodiment, the pressure-sensitive adhesive composition may optionally contain various additives such as a crosslinking agent, oil, wax, a tackifier other than the hydrogenated aromatic hydrocarbon resin, an antifoaming agent, a viscosity modifier, a filler, an antioxidant, a water-resistant agent, a film-forming assistant, a preservative, a pH adjuster such as ammonia water or sodium bicarbonate, a leveling agent, a release adjuster, a plasticizer, a softener, a colorant (pigment, dye, etc.), a surfactant, an antistatic agent, an antiaging agent, an ultraviolet absorber, an antioxidant, and a light stabilizer, so long as the desired properties are not impaired.
 上記架橋剤は、例えば、イソシアネート系架橋剤、エポキシ系架橋剤等が挙げられる。1つの実施形態において、上記架橋剤の含有量は、通常、ベースポリマー100質量部に10質量部以下が挙げられ、好ましくは0.01~1.0質量部程度が挙げられる。。 Examples of the crosslinking agent include isocyanate-based crosslinking agents and epoxy-based crosslinking agents. In one embodiment, the content of the crosslinking agent is typically 10 parts by mass or less per 100 parts by mass of the base polymer, and preferably about 0.01 to 1.0 part by mass.
  上記イソシアネート系架橋剤は、例えば、1,2-エチレンジイソシアネート、1,4-ブチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネートなどの脂環族ポリイソシアネート類;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート類;及びそれらのビウレット体、イソシアヌレート体、アロファネート体、アダクト体、並びに、ビウレット体、イソシアヌレート体、アロファネート体及びアダクト体からなる群より選択される2種以上が反応して得られる複合体等が挙げられる。 The above-mentioned isocyanate-based crosslinking agents include, for example, lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; alicyclic polyisocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, and hydrogenated xylene diisocyanate; aromatic polyisocyanates such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate; and biuret, isocyanurate, allophanate, and adduct forms thereof, as well as complexes obtained by reacting two or more selected from the group consisting of biuret, isocyanurate, allophanate, and adduct forms thereof.
  上記エポキシ系架橋剤は、例えば、ビスフェノールAエピクロルヒドリン型のエポキシ系樹脂、エチレンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジアミングリシジルアミン、N,N,N',N'-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N'-ジアミングリシジルアミノメチル)シクロヘキサン等の分子中に2個以上のエポキシ基を有する化合物が挙げられる。 The above-mentioned epoxy crosslinking agents include, for example, compounds having two or more epoxy groups in the molecule, such as bisphenol A epichlorohydrin type epoxy resins, ethylene diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N'-diamine glycidylaminomethyl)cyclohexane.
  上記オイルは、例えば、ナフテン系オイル、パラフィン系オイルや、芳香族系オイル等の可塑化オイルが挙げられる。1つの実施形態において、オイルは、好ましくはナフテン系プロセス油、パラフィン系プロセス油、液状ポリブテン等が挙げられる。 The oil may be, for example, a naphthenic oil, a paraffinic oil, or a plasticizing oil such as an aromatic oil. In one embodiment, the oil may preferably be a naphthenic process oil, a paraffinic process oil, or a liquid polybutene.
  1つの実施形態において、上記オイルの含有量は、上記ベースポリマー100質量部に対し、好ましくは4~200質量部程度が挙げられる。 In one embodiment, the content of the oil is preferably about 4 to 200 parts by mass per 100 parts by mass of the base polymer.
  上記ワックスは、例えば、蜜蝋、鯨蝋及びセラック蝋等の動物由来、カルナバ蝋、木蝋、米糠蝋及びキャンデリラワックス等の植物系ワックス;パラフィンワックス、マイクロクリスタリンワックスなどの石油系ワックス;フィシャー・トロプシュワックス、低分子量ポリエチレンワックスなどの合成ワックス;及びモンタンワックス及びオゾケライト等の鉱物由来ワックスが挙げられる。上記ワックスは、1種を単独で用いてもよいし、2種以上を併用してもよい。 The above waxes include, for example, animal-derived waxes such as beeswax, spermaceti, and shellac wax, vegetable-derived waxes such as carnauba wax, Japan wax, rice bran wax, and candelilla wax, petroleum-derived waxes such as paraffin wax and microcrystalline wax, synthetic waxes such as Fischer-Tropsch wax and low molecular weight polyethylene wax, and mineral-derived waxes such as montan wax and ozokerite. The above waxes may be used alone or in combination of two or more types.
  1つの実施形態において、上記ワックスの含有量は、上記ベースポリマー100質量部に対し、好ましくは10~100質量部程度が挙げられる。 In one embodiment, the wax content is preferably about 10 to 100 parts by mass per 100 parts by mass of the base polymer.
上記粘・接着剤組成物は、上記粘着付与剤(又は上記水素化芳香族系炭化水素樹脂)と上記ベースポリマーと、必要に応じて上記有機溶剤と上記添加剤とを混合させることで得られる。混合方法としては、特に限定されず各種公知の方法を用いることができる。 The pressure-sensitive adhesive composition is obtained by mixing the tackifier (or the hydrogenated aromatic hydrocarbon resin) and the base polymer, and, if necessary, the organic solvent and the additives. There are no particular limitations on the mixing method, and various known methods can be used.
[活性エネルギー線硬化型アクリル系粘・接着剤組成物]
 本開示は、上記粘着付与剤(又は上記水素化芳香族系炭化水素樹脂)、アクリル系モノマー、アクリル系オリゴマー及び光重合開始剤を含む活性エネルギー線硬化型アクリル系粘・接着剤組成物に関する。
[Actinotropic acrylic adhesive composition curable with active energy rays]
The present disclosure relates to an active energy ray-curable acrylic pressure-sensitive adhesive composition comprising the tackifier (or the hydrogenated aromatic hydrocarbon resin), an acrylic monomer, an acrylic oligomer, and a photopolymerization initiator.
 上記アクリル系モノマーは、例えば、上記アクリル系重合体の原料となる上記モノマー成分が挙げられる。 The acrylic monomer may be, for example, the monomer component that is the raw material for the acrylic polymer.
 上記アクリル系オリゴマーは、(メタ)アクリロイル基を含有する重合性ポリマー(マクロモノマー)であり、重合度が2~20程度の比較的重合度の低い状態で、硬化反応によって重合体を合成する原料であれば、各種公知のものを特に限定なく使用できる。具体的には、例えば、ポリアクリル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等が挙げられる。 The acrylic oligomer is a polymerizable polymer (macromonomer) containing a (meth)acryloyl group, and any known raw material can be used without particular limitation as long as it is a raw material that synthesizes a polymer by a curing reaction in a relatively low polymerization degree of about 2 to 20. Specific examples include polyacryl (meth)acrylate, polyurethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, etc.
  上記光重合開始剤としては、活性エネルギー線により分解してラジカルを発生して重合を開始させることができるものであれば、各種公知のものを特に限定なく使用できる。具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノン等が挙げられる。これらは1種を単独で、あるいは2種以上を組合せて用いることができる。 As the photopolymerization initiator, various known ones can be used without any particular limitation as long as they can be decomposed by active energy rays to generate radicals and initiate polymerization. Specific examples include 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and 4-methylbenzophenone. These can be used alone or in combination of two or more.
上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における各成分の含有量は、特に限定されない。 The content of each component in the active energy ray-curable acrylic pressure-sensitive adhesive composition is not particularly limited.
 上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記粘着付与剤の含有量は、例えば、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部等が挙げられる。1つの実施形態において、上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記粘着付与剤の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、好ましくは1~100質量部程度が挙げられる。 The content of the tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, etc., relative to 100 parts by mass of the total of the acrylic monomer and acrylic oligomer, calculated as solid content. In one embodiment, the content of the tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition is preferably about 1 to 100 parts by mass, calculated as solid content, per 100 parts by mass of the acrylic monomer and acrylic oligomer combined, in order to increase the adhesive strength of the pressure-sensitive adhesive.
 上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、例えば、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、100質量部、95質量部、90質量部、85質量部、80質量部、75質量部、70質量部、65質量部、60質量部、55質量部、50質量部、45質量部、40質量部、35質量部、30質量部、25質量部、20質量部、15質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部等が挙げられる。1つの実施形態において、上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記水素化芳香族系炭化水素樹脂の含有量は、粘・接着剤における接着力がより高くなる点から、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、好ましくは1~100質量部程度が挙げられる。 The content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic adhesive/tackifier composition may be, for example, 100 parts by mass, 95 parts by mass, 90 parts by mass, 85 parts by mass, 80 parts by mass, 75 parts by mass, 70 parts by mass, 65 parts by mass, 60 parts by mass, 55 parts by mass, 50 parts by mass, 45 parts by mass, 40 parts by mass, 35 parts by mass, 30 parts by mass, 25 parts by mass, 20 parts by mass, 15 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, etc., relative to 100 parts by mass of the total of the acrylic monomer and acrylic oligomer, calculated on a solid content basis. In one embodiment, the content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic pressure-sensitive adhesive composition is preferably about 1 to 100 parts by mass per 100 parts by mass of the acrylic monomer and acrylic oligomer in total, in terms of solid content, in order to increase the adhesive strength of the pressure-sensitive adhesive.
 上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記光重合開始剤の含有量は、例えば、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部、0.6質量部、0.5質量部、0.4質量部、0.3質量部、0.2質量部、0.1質量部等が挙げられる。1つの実施形態において、上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における上記光重合開始剤の含有量は、固形分換算で、上記アクリル系モノマー及びアクリル系オリゴマーの合計100質量部に対して、好ましくは0.1~100質量部程度が挙げられる。 The content of the photopolymerization initiator in the active energy ray curable acrylic adhesive composition is, for example, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts by mass, 2 parts by mass, 1 part by mass, 0.9 parts by mass, 0.8 parts by mass, 0.7 parts by mass, 0.6 parts by mass, 0.5 parts by mass, 0.4 parts by mass, 0.3 parts by mass, 0.2 parts by mass, 0.1 parts by mass, etc., based on 100 parts by mass of the acrylic monomer and acrylic oligomer in total, calculated as solid content. In one embodiment, the content of the photopolymerization initiator in the active energy ray curable acrylic adhesive composition is, for example, about 0.1 to 100 parts by mass based on 100 parts by mass of the acrylic monomer and acrylic oligomer in total, calculated as solid content.
1つの実施形態において、上記活性エネルギー線硬化型アクリル系粘・接着剤組成物には、所望の特性を損なわない限り、任意で、種々の添加剤を含み得る。例えば、上述の架橋剤、表面調整剤、界面活性剤、紫外線吸収剤、酸化防止剤、光安定剤、上記粘着付与樹脂以外の粘着付与剤、可塑剤、無機フィラー、シランカップリング剤、コロイダルシリカ、消泡剤、湿潤剤、防錆剤等の添加剤を含み得る。 In one embodiment, the active energy ray-curable acrylic pressure-sensitive adhesive composition may contain various additives as long as the desired properties are not impaired. For example, the active energy ray-curable acrylic pressure-sensitive adhesive composition may contain additives such as the above-mentioned crosslinking agent, surface conditioner, surfactant, ultraviolet absorber, antioxidant, light stabilizer, tackifier other than the above-mentioned tackifier resin, plasticizer, inorganic filler, silane coupling agent, colloidal silica, defoamer, wetting agent, and rust inhibitor.
上記活性エネルギー線硬化型アクリル系粘・接着剤組成物は、上記粘着付与剤(又は上記水素化芳香族系炭化水素樹脂)、上記アクリル系モノマー、上記アクリル系オリゴマー及び上記光重合開始剤、並びに、必要に応じて上記添加剤を混合させることで得られる。混合方法としては、特に限定されず各種公知の方法を用いることができる。 The active energy ray-curable acrylic pressure-sensitive adhesive composition is obtained by mixing the tackifier (or the hydrogenated aromatic hydrocarbon resin), the acrylic monomer, the acrylic oligomer, and the photopolymerization initiator, and, if necessary, the additives. There are no particular limitations on the mixing method, and various known methods can be used.
[粘着付与剤としての使用]
 上記水素化芳香族系炭化水素樹脂は、粘・接着剤に用いる粘着付与剤として使用することができる。上記水素化芳香族系炭化水素樹脂を粘・接着剤に使用すると、粘・接着剤における接着力を向上させる。粘・接着剤は、特に限定されず、例えば、前述のものが挙げられる。
[Use as a tackifier]
The hydrogenated aromatic hydrocarbon resin can be used as a tackifier for adhesives. When the hydrogenated aromatic hydrocarbon resin is used in an adhesive, the adhesive strength of the adhesive is improved. The adhesive is not particularly limited, and examples thereof include those mentioned above.
1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、粘・接着剤における接着力をより向上させる点から、好ましくはアクリル系粘・接着剤組成物に用いる粘着付与剤として使用される。 In one embodiment, the hydrogenated aromatic hydrocarbon resin is preferably used as a tackifier in an acrylic pressure-sensitive adhesive composition in order to further improve the adhesive strength of the pressure-sensitive adhesive.
 アクリル系粘・接着剤組成物に用いる粘着付与剤としての上記水素化芳香族系炭化水素樹脂の使用量は、特に限定されない。当該水素化芳香族系炭化水素樹脂の使用量は、例えば、上述した上記粘着付与剤の使用量等が挙げられる。 The amount of the hydrogenated aromatic hydrocarbon resin used as a tackifier in the acrylic adhesive composition is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the amount of the tackifier used described above.
また、従来の粘着付与剤においては、活性エネルギー線硬化型アクリル系粘・接着剤組成物に使用した場合に、紫外線等の活性エネルギー線を吸収して、アクリル系モノマー及びアクリル系オリゴマーの重合反応を阻害(以下、重合阻害とも記す)するものがあり、それによって当該粘・接着剤組成物の接着力が低下する問題があった。1つの実施形態において、上記水素化芳香族系炭化水素樹脂は、上記オレフィン含有率が低い又は0であるため、アクリル系モノマー及びアクリル系オリゴマーの重合阻害を抑制し得ることから、好ましくは活性エネルギー線硬化型アクリル系粘・接着剤組成物に用いる粘着付与剤として使用される。 Furthermore, some conventional tackifiers, when used in active energy ray-curable acrylic pressure-sensitive adhesive compositions, absorb active energy rays such as ultraviolet rays and inhibit the polymerization reaction of acrylic monomers and acrylic oligomers (hereinafter also referred to as polymerization inhibition), which causes a problem of a decrease in the adhesive strength of the pressure-sensitive adhesive composition. In one embodiment, the hydrogenated aromatic hydrocarbon resin has a low or zero olefin content and can suppress the polymerization inhibition of acrylic monomers and acrylic oligomers, and is therefore preferably used as a tackifier for use in active energy ray-curable acrylic pressure-sensitive adhesive compositions.
上記活性エネルギー線硬化型アクリル系粘・接着剤組成物に用いる粘着付与剤としての上記水素化芳香族系炭化水素樹脂の使用量は、特に限定されない。当該水素化芳香族系炭化水素樹脂の使用量は、例えば、上述した上記活性エネルギー線硬化型アクリル系粘・接着剤組成物における水素化芳香族系炭化水素樹脂の含有量等が挙げられる。 The amount of the hydrogenated aromatic hydrocarbon resin used as a tackifier in the active energy ray-curable acrylic pressure-sensitive adhesive composition is not particularly limited. Examples of the amount of the hydrogenated aromatic hydrocarbon resin used include the content of the hydrogenated aromatic hydrocarbon resin in the active energy ray-curable acrylic pressure-sensitive adhesive composition.
 本開示により以下の項目が提供される。
(項目A1)
300℃で2時間加熱後の質量残留率が64質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
水素化芳香族系炭化水素樹脂を含む、
熱可塑性樹脂用の改質剤。
(項目A2)
前記水素化芳香族系炭化水素樹脂が、芳香族系石油樹脂の水素化物である、上記項目の熱可塑性樹脂用の改質剤。
(項目A3)
前記水素化芳香族系炭化水素樹脂の混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃~35℃である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A4)
前記水素化芳香族系炭化水素樹脂の色調が、10~200ハーゼンである、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A5)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、900~4,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A6)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~3,000である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A7)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~2,100である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A8)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、10~37%である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A9)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、16~37%である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A10)
前記水素化芳香族系炭化水素樹脂のオレフィン含有率が、0~0.5%である、上記項目のいずれかの熱可塑性樹脂用の改質剤。
(項目A11)
上記項目のいずれかの改質剤及び熱可塑性樹脂を含む、樹脂組成物。
(項目A12)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含む、上記項目の樹脂組成物。
(項目A13)
さらに、フィラーを含む、上記項目のいずれかの樹脂組成物。
(項目A14)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目のいずれかの樹脂組成物。
(項目A15)
前記改質剤の含有量が、熱可塑性樹脂100質量部に対して、0.5~15質量部であり、前記フィラーの含有量が、熱可塑性樹脂100質量部に対して、70質量部以下である、上記項目のいずれかの樹脂組成物。
(項目A16)
上記項目のいずれかの樹脂組成物を成形して得られる、成形体。
(項目A17)
熱可塑性樹脂に用いる改質剤としての、上記項目のいずれかの水素化芳香族系炭化水素樹脂の使用。
(項目A18)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含む、項目A17の水素化芳香族系炭化水素樹脂の使用。
(項目A19)
前記水素化芳香族系炭化水素樹脂の使用量が、前記熱可塑性樹脂100質量部に対して、0.1~10質量部である、上記項目A17又は項目A18の水素化芳香族系炭化水素樹脂の使用。
(項目A20)
熱可塑性樹脂を含む樹脂組成物を製造するための、上記項目のいずれかの水素化芳香族系炭化水素樹脂の使用。
(項目A21)
前記熱可塑性樹脂が、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート及び変性ポリフェニレンエーテル樹脂からなる群から選択される少なくとも1種を含む、項目A20の水素化芳香族系炭化水素樹脂の使用。
(項目A22)
300℃で2時間加熱後の質量残留率が64質量%以上であり、
混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
水素化芳香族系炭化水素樹脂を含む、
粘着付与剤。
(項目A23)
前記水素化芳香族系炭化水素樹脂が、芳香族系石油樹脂の水素化物である、上記項目の粘着付与剤。
(項目A24)
前記水素化芳香族系炭化水素樹脂の混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃~35℃である、上記項目のいずれかの粘着付与剤。
(項目A25)
前記水素化芳香族系炭化水素樹脂の色調が、10~200ハーゼンである、上記項目のいずれかの粘着付与剤。
(項目A26)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、900~4,000である、上記項目のいずれかの粘着付与剤。
(項目A27)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~3,000である、上記項目のいずれかの粘着付与剤。
(項目A28)
前記水素化芳香族系炭化水素樹脂の重量平均分子量が、1,000~2,100である、上記項目のいずれかの粘着付与剤。
(項目A29)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、10~37%である、上記項目のいずれかの粘着付与剤。
(項目A30)
前記水素化芳香族系炭化水素樹脂の芳香族水素の含有率が、16~37%である、上記項目のいずれかの粘着付与剤。
(項目A31)
前記水素化芳香族系炭化水素樹脂のオレフィン含有率が、0~0.5%である、上記項目のいずれかの粘着付与剤。
(項目A32)
上記項目のいずれかの粘着付与剤及びベースポリマーを含む、粘・接着剤組成物。
(項目A33)
前記ベースポリマーがアクリル系重合体を含む、上記項目の粘・接着剤組成物。
(項目A34)
前記粘着付与剤の含有量が、前記アクリル系重合体100質量部に対して、2~70質量部である、上記項目のいずれかの粘・接着剤組成物。
(項目A35)
上記項目のいずれかの粘着付与剤、アクリル系モノマー、アクリル系オリゴマー及び光重合開始剤を含む、活性エネルギー線硬化型アクリル系粘・接着剤組成物。
(項目A36)
粘・接着剤組成物に用いる粘着付与剤としての、上記項目のいずれかの水素化芳香族系炭化水素樹脂の使用。
(項目A37)
前駆水素化芳香族系炭化水素樹脂の使用量が、アクリル系重合体100質量部に対して、2~70質量部である、項目A36の水素化芳香族系炭化水素樹脂の使用。
The present disclosure provides the following:
(Item A1)
The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more,
The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
Hydrogenated aromatic hydrocarbon resins,
Modifier for thermoplastic resins.
(Item A2)
The thermoplastic resin modifier according to the above item, wherein the hydrogenated aromatic hydrocarbon resin is a hydrogenated aromatic petroleum resin.
(Item A3)
The modifier for thermoplastic resin according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of 5°C to 35°C.
(Item A4)
The modifier for thermoplastic resins according to any of the preceding items, wherein the color tone of the hydrogenated aromatic hydrocarbon resin is 10 to 200 Hazen.
(Item A5)
The modifier for thermoplastic resins according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a weight average molecular weight of 900 to 4,000.
(Item A6)
The modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 3,000.
(Item A7)
The modifier for thermoplastic resins according to any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 2,100.
(Item A8)
The modifier for thermoplastic resin according to any of the preceding items, wherein the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin is 10 to 37%.
(Item A9)
The modifier for thermoplastic resins according to any of the preceding items, wherein the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin is 16 to 37%.
(Item A10)
The modifier for thermoplastic resins according to any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an olefin content of 0 to 0.5%.
(Item A11)
A resin composition comprising the modifier of any of the preceding items and a thermoplastic resin.
(Item A12)
The resin composition according to the above item, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
(Item A13)
The resin composition of any of the preceding items, further comprising a filler.
(Item A14)
The resin composition according to any one of the preceding items, wherein the content of the modifier is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A15)
The content of the modifier is 0.5 to 15 parts by mass per 100 parts by mass of the thermoplastic resin, and the content of the filler is 70 parts by mass or less per 100 parts by mass of the thermoplastic resin.
(Item A16)
A molded article obtained by molding any one of the resin compositions described above.
(Item A17)
2. Use of the hydrogenated aromatic hydrocarbon resin according to any of the preceding items as a modifier for thermoplastic resins.
(Item A18)
The use of the hydrogenated aromatic hydrocarbon resin according to item A17, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate and modified polyphenylene ether resin.
(Item A19)
The use of the hydrogenated aromatic hydrocarbon resin according to the above item A17 or A18, wherein the amount of the hydrogenated aromatic hydrocarbon resin used is 0.1 to 10 parts by mass per 100 parts by mass of the thermoplastic resin.
(Item A20)
Use of the hydrogenated aromatic hydrocarbon resin according to any of the preceding items for producing a resin composition comprising a thermoplastic resin.
(Item A21)
The use of the hydrogenated aromatic hydrocarbon resin according to item A20, wherein the thermoplastic resin comprises at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polycarbonate, and modified polyphenylene ether resin.
(Item A22)
The mass residual rate after heating at 300° C. for 2 hours is 64% by mass or more,
The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
Hydrogenated aromatic hydrocarbon resins,
Tackifier.
(Item A23)
The tackifier according to the above item, wherein the hydrogenated aromatic hydrocarbon resin is a hydrogenated aromatic petroleum resin.
(Item A24)
The tackifier of any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a mixed methylcyclohexaneaniline cloud point (MMAP) of 5°C to 35°C.
(Item A25)
4. The tackifier of any of the preceding items, wherein the color tone of the hydrogenated aromatic hydrocarbon resin is 10 to 200 Hazen.
(Item A26)
The tackifier of any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has a weight average molecular weight of 900 to 4,000.
(Item A27)
The tackifier of any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 3,000.
(Item A28)
The tackifier of any of the preceding items, wherein the weight average molecular weight of the hydrogenated aromatic hydrocarbon resin is 1,000 to 2,100.
(Item A29)
4. The tackifier of any of the preceding items, wherein the aromatic hydrogen content of the hydrogenated aromatic hydrocarbon resin is 10 to 37%.
(Item A30)
The tackifier of any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an aromatic hydrogen content of 16 to 37%.
(Item A31)
The tackifier of any of the preceding items, wherein the hydrogenated aromatic hydrocarbon resin has an olefin content of 0 to 0.5%.
(Item A32)
A pressure-sensitive adhesive composition comprising any one of the tackifiers described above and a base polymer.
(Item A33)
The pressure-sensitive adhesive composition according to the above item, wherein the base polymer comprises an acrylic polymer.
(Item A34)
The pressure-sensitive adhesive composition according to any of the above items, wherein the content of the tackifier is 2 to 70 parts by mass based on 100 parts by mass of the acrylic polymer.
(Item A35)
An active energy ray-curable acrylic pressure-sensitive adhesive composition comprising the tackifier according to any one of the above items, an acrylic monomer, an acrylic oligomer, and a photopolymerization initiator.
(Item A36)
Use of any of the hydrogenated aromatic hydrocarbon resins described above as a tackifier for use in a pressure-sensitive adhesive composition.
(Item A37)
Use of the hydrogenated aromatic hydrocarbon resin according to item A36, in which the amount of the precursor hydrogenated aromatic hydrocarbon resin used is 2 to 70 parts by mass per 100 parts by mass of the acrylic polymer.
本開示で提供する熱可塑性樹脂用の改質剤は、熱可塑性樹脂に用いることにより、その溶融時の流動性を向上させて、成形加工性を向上し得る。また、上記改質剤は、熱可塑性樹脂に用いても、その溶融時における発煙を抑制し得る。 The modifier for thermoplastic resins provided in this disclosure can be used in thermoplastic resins to improve their fluidity when melted, thereby improving their moldability. In addition, when used in thermoplastic resins, the modifier can also suppress smoke generation when melted.
本開示で提供する粘着付与剤は、粘・接着剤に用いることにより、その接着力を向上し得る。また、上記粘着付与剤は、粘・接着剤に用いても、その製造及び/又は使用における臭気を抑制し得る。 The tackifier provided in this disclosure can improve the adhesive strength of adhesives and pressure-sensitive adhesives by using it in those adhesives and pressure-sensitive adhesives. In addition, the tackifier can suppress odors during the production and/or use of adhesives and pressure-sensitive adhesives when used in those adhesives and pressure-sensitive adhesives.
以下、本発明の実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらの実
施例に限定されるものではない。なお、例中の「部」および「%」とあるのは、それぞれ
「質量部」および「質量%」を表す。
The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples. In the examples, "parts" and "%" represent "parts by mass" and "% by mass", respectively.
<水素化芳香族系炭化水素樹脂の製造>
製造例1
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)2部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度285℃、反応時間1時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,210、芳香族水素の含有率36%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
<Production of Hydrogenated Aromatic Hydrocarbon Resin>
Production Example 1
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 2 parts of a palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 285°C, and a reaction time of 1 hour. After completion of the reaction, the resulting resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,210, an aromatic hydrogen content of 36%, and an olefin content of 0%.
製造例2
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)3部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度275℃、反応時間1時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,290、芳香族水素の含有率26%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Production Example 2
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 3 parts of a palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 275°C, and reaction time 1 hour. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,290, an aromatic hydrogen content of 26%, and an olefin content of 0%.
製造例3
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)4部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度265℃、反応時間3時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,300、芳香族水素の含有率19%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Production Example 3
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 4 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under the conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 265°C, and a reaction time of 3 hours. After the reaction was completed, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,300, an aromatic hydrogen content of 19%, and an olefin content of 0%.
製造例4
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)2部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度255℃、反応時間1時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,340、芳香族水素の含有率35%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Production Example 4
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 2 parts of a palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 255°C, and a reaction time of 1 hour. After completion of the reaction, the resulting resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,340, an aromatic hydrogen content of 35%, and an olefin content of 0%.
製造例5
C9系石油樹脂(色調9ガードナー、重量平均分子量2,377)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)2部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度255℃、反応時間1時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量2,060、芳香族水素の含有率37%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Production Example 5
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 2,377) and 2 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under the conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 255°C, and a reaction time of 1 hour. After the reaction was completed, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 2,060, an aromatic hydrogen content of 37%, and an olefin content of 0%.
製造例6
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)3.0部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,230、芳香族水素の含有率21%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Production Example 6
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.0 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230, an aromatic hydrogen content of 21%, and an olefin content of 0% was obtained.
比較製造例1
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)3.5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,230、芳香族水素の含有率15%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Comparative Production Example 1
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 3.5 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature was gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,230, an aromatic hydrogen content of 15%, and an olefin content of 0% was obtained.
比較製造例2
C9系石油樹脂(色調10ガードナー、重量平均分子量1,381)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)7.7部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度275℃、反応時間5時間の条件下で水素化反応を行った。反応終了後、*得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、200℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,060、芳香族水素の含有率2%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Comparative Production Example 2
100 parts of C9 petroleum resin (Gardner color tone 10, weight average molecular weight 1,381) and 7.7 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m2/g) were subjected to a hydrogenation reaction in a shaking autoclave under the conditions of a hydrogen partial pressure of 19.6 MPa, a reaction temperature of 275°C, and a reaction time of 5 hours. After the reaction was completed, the resulting resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. The filtrate was then placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 200°C and 2.7 kPa to remove the solvent, resulting in a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,060, an aromatic hydrogen content of 2%, and an olefin content of 0%.
比較製造例3
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)1.5部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度250℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,130、芳香族水素の含有率59%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Comparative Production Example 3
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 1.5 parts of palladium-alumina catalyst (palladium content 3% by mass) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 250°C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220°C and 2.7 kPa to remove the solvent, thereby obtaining a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,130, an aromatic hydrogen content of 59%, and an olefin content of 0%.
比較製造例4
C9系石油樹脂(色調9ガードナー、重量平均分子量1,303)100部およびアルミナ担体(直径1.2mm、比表面積200m2/g)に担持したパラジウム-アルミナ触媒(パラジウム含有量3質量%)2.0部を振とう式オートクレーブにて、水素分圧19.6MPa、反応温度280℃、反応時間4.5時間の条件下で水素化反応を行った。反応終了後、得られた樹脂をシクロヘキサン400部に溶解し、ろ過により触媒を除去した。その後、攪拌羽根、コンデンサー、温度計、温度調節器および圧力表示計の取り付けられた1リットル容のセパラブルフラスコにろ液を入れ、220℃、2.7kPaまで徐々に昇温・減圧して溶媒を除去し、重量平均分子量1,240、芳香族水素の含有率35%、オレフィン含有率0%の水素化C9系石油樹脂を得た。
Comparative Example 4
100 parts of C9 petroleum resin (color tone 9 Gardner, weight average molecular weight 1,303) and 2.0 parts of palladium-alumina catalyst (palladium content 3 mass%) supported on an alumina carrier (diameter 1.2 mm, specific surface area 200 m 2 /g) were subjected to a hydrogenation reaction in a shaking autoclave under conditions of hydrogen partial pressure 19.6 MPa, reaction temperature 280 ° C, and reaction time 4.5 hours. After completion of the reaction, the obtained resin was dissolved in 400 parts of cyclohexane, and the catalyst was removed by filtration. Thereafter, the filtrate was placed in a 1-liter separable flask equipped with a stirring blade, a condenser, a thermometer, a temperature regulator, and a pressure indicator, and the temperature and pressure were gradually increased and reduced to 220 ° C and 2.7 kPa to remove the solvent, and a hydrogenated C9 petroleum resin with a weight average molecular weight of 1,240, an aromatic hydrogen content of 35%, and an olefin content of 0% was obtained.
(重量平均分子量(Mw)の測定)
 製造例1~6及び比較製造例1~4の水素化芳香族系石油樹脂、後述のC9系石油樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレンの検量線から求めた、ポリスチレン換算値として算出した。なお、GPC法は以下の条件で測定した。結果を表1に示す。
 分析装置:HLC-8320(東ソー(株)製)
 カラム:TSKgelSuperHM-L×3本
 溶離液:テトラヒドロフラン
 注入試料濃度:5mg/mL
 流量:0.6mL/min
 注入量:40μL
 カラム温度:40℃
 検出器:RI
(Measurement of weight average molecular weight (Mw))
The weight average molecular weight (Mw) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 6 and Comparative Production Examples 1 to 4 and the C9 petroleum resin described below was calculated as a polystyrene equivalent value obtained from a calibration curve of standard polystyrene by gel permeation chromatography (GPC). The GPC method was measured under the following conditions. The results are shown in Table 1.
Analytical device: HLC-8320 (manufactured by Tosoh Corporation)
Column: TSKgel Super HM-L x 3 Eluent: Tetrahydrofuran Injected sample concentration: 5 mg/mL
Flow rate: 0.6 mL/min
Injection volume: 40 μL
Column temperature: 40°C
Detector: RI
(300℃で2時間加熱後の質量残留率(%))
製造例1~6及び比較製造例1~4の水素化芳香族系石油樹脂、後述のC9系石油樹脂の300℃で2時間加熱後の質量残留率(%)は、示差熱・重量同時測定装置((株)日立ハイテクサイエンス製、装置名「STA7200」)を使用して、窒素雰囲気下、サンプル質量10mg、窒素流量250ml/分の条件にて、30℃から300℃まで10℃/分で昇温し、300℃で2時間加熱した後のサンプル質量を測定して、(加熱後サンプル質量)/(加熱前サンプル質量)×100(%)から算出した。結果を表1に示す。
(Mass retention rate (%) after heating at 300°C for 2 hours)
The mass residual rate (%) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 6 and Comparative Production Examples 1 to 4 and the C9 petroleum resin described below after heating at 300 ° C. for 2 hours was measured using a differential thermal / gravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., device name "STA7200") under a nitrogen atmosphere, sample mass 10 mg, nitrogen flow rate 250 ml / min, and the sample mass after heating at 300 ° C. for 2 hours was measured and calculated from (sample mass after heating) / (sample mass before heating) × 100 (%). The results are shown in Table 1.
(混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)の測定)
製造例1~6及び比較製造例1~4の水素化芳香族系石油樹脂、後述のC9系石油樹脂の混合メチルシクロヘキサンアニリン曇点(℃)(MMAP)は、それぞれの成分1g、メチルシクロヘキサン1mL及びアニリン2mLの加熱された均一な溶液を冷却し、溶液に濁りが生じたときの温度を測定した。結果を表1に示す。
(Measurement of Mixed Methylcyclohexaneaniline Cloud Point (° C.) (MMAP))
The mixed methylcyclohexaneaniline cloud points (°C) (MMAP) of the hydrogenated aromatic petroleum resins of Production Examples 1 to 6 and Comparative Production Examples 1 to 4 and the C9 petroleum resin described below were measured by cooling a heated homogeneous solution of 1 g of each component, 1 mL of methylcyclohexane, and 2 mL of aniline, and measuring the temperature at which the solution became cloudy. The results are shown in Table 1.
(芳香族水素の含有率)
 製造例1~6及び比較製造例1~4の水素化芳香族系石油樹脂、後述のC9系石油樹脂について、それぞれ重クロロホルム溶媒に溶解させて5%(w/v)の溶液を調製し、この溶液について、市販の1H-NMR装置(製品名「Varian Unityy INOVA-400」、400MHzタイプ、Varian社製)を用いて1H-NMRスペクトルを得た。そして、以下の数式より、各成分における芳香族水素の含有率(%)を算出した。結果を表1に示す。
(Aromatic Hydrogen Content)
The hydrogenated aromatic petroleum resins of Production Examples 1 to 6 and Comparative Production Examples 1 to 4, and the C9 petroleum resin described below were each dissolved in deuterated chloroform solvent to prepare a 5% (w/v) solution, and a 1H-NMR spectrum was obtained for this solution using a commercially available 1H-NMR device (product name "Varian Unityy INOVA-400", 400 MHz type, manufactured by Varian). The content (%) of aromatic hydrogen in each component was then calculated from the following formula. The results are shown in Table 1.
芳香族水素の含有率=(H-NMRの7ppm付近に現れる芳香環由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%) Aromatic hydrogen content=(H-spectrum area derived from aromatic ring appearing at about 7 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100(%)
(オレフィン含有率)
製造例1~6及び比較製造例1~4の水素化芳香族系石油樹脂、後述のC9系石油樹脂について、それぞれ重クロロホルム溶媒に溶解させて5%(w/v)の溶液を調製し、この溶液について、市販の1H-NMR装置(製品名「Varian Unityy INOVA-400」、400MHzタイプ、Varian社製)を用いて1H-NMRスペクトルを得た。そして、以下の数式より、各成分におけるオレフィン含有率(%)を算出した。結果を表1に示す。
(Olefin content)
The hydrogenated aromatic petroleum resins of Production Examples 1 to 6 and Comparative Production Examples 1 to 4, and the C9 petroleum resin described below were each dissolved in deuterated chloroform solvent to prepare a 5% (w/v) solution, and a 1H-NMR spectrum was obtained for this solution using a commercially available 1H-NMR device (product name "Varian Unityy INOVA-400", 400 MHz type, manufactured by Varian). The olefin content (%) in each component was then calculated from the following formula. The results are shown in Table 1.
オレフィン含有率=(H-NMRの4~6ppmに現れるオレフィン性二重結合由来のH-スペクトル面積/H-NMRの全H-スペクトル面積)×100(%) Olefin content=(H-spectrum area derived from olefinic double bonds appearing at 4 to 6 ppm in 1 H-NMR/total H-spectrum area in 1 H-NMR)×100 (%)
表1中の注釈は、以下の通りである。
(1)300℃で2時間加熱後の質量残留率
(2)比較例6で使用したC9系石油樹脂
The notes in Table 1 are as follows:
(1) Mass retention rate after heating at 300° C. for 2 hours (2) C9 petroleum resin used in Comparative Example 6
[樹脂組成物及び成形体の調製]
実施例1
  ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、変性ポリフェニレンエーテル樹脂(グローバルポリアセタール(株)製、商品名「ユピエースAH40」)を100部及び改質剤として製造例1の水素化芳香族系石油樹脂を5部投入し、ローラ回転数40rpm、温度250℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、250℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
[Preparation of resin composition and molded article]
Example 1
100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Co., Ltd., product name "Iupiace AH40") and 5 parts of hydrogenated aromatic petroleum resin of Production Example 1 as a modifier were added to a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250 ° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250 ° C., molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm with a cutter to obtain pellets.
実施例2~3及び5~7
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂を製造例2~6の水素化芳香族系石油樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Examples 2 to 3 and 5 to 7
The same preparation as in Example 1 was carried out, except that in Example 1, the hydrogenated aromatic petroleum resin of Production Example 1 was used as the modifier, and the hydrogenated aromatic petroleum resin of Production Examples 2 to 6 was used, to obtain pellets.
実施例4
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、製造例3の水素化芳香族系石油樹脂を8部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Example 4
In Example 1, except that 8 parts of the hydrogenated aromatic petroleum resin of Production Example 3 was used as the modifier instead of the hydrogenated aromatic petroleum resin of Production Example 1, the same preparation as in Example 1 was performed to obtain pellets.
比較例1
ローラミキサ型混練装置((株)東洋精機製作所製、装置名「ラボプラストミル  モデル  10C100」)に、変性ポリフェニレンエーテル樹脂(グローバルポリアセタール(株)製、商品名「ユピエースAH40」)を100部投入し、ローラ回転数40rpm、温度250℃で10分間混練した。その後、得られた混練物(樹脂組成物)を当該混練装置から取り出し、250℃で熱プレスして、厚さ1.0mmのシート状に成形し、裁断機で5mm×5mmに裁断することでペレットを得た。
Comparative Example 1
100 parts of modified polyphenylene ether resin (manufactured by Global Polyacetal Corporation, product name "Iupiace AH40") was put into a roller mixer type kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name "Labo Plastomill Model 10C100") and kneaded for 10 minutes at a roller rotation speed of 40 rpm and a temperature of 250° C. Thereafter, the kneaded product (resin composition) obtained was removed from the kneading device, hot pressed at 250° C., and molded into a sheet with a thickness of 1.0 mm, and cut into 5 mm x 5 mm pieces with a cutter to obtain pellets.
比較例2~5
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂を比較製造例1~4の水素化芳香族系石油樹脂に変えた以外は、実施例1と同様に調製を行い、ペレットを得た。
Comparative Examples 2 to 5
In Example 1, except that the hydrogenated aromatic petroleum resin of Production Example 1 was replaced with the hydrogenated aromatic petroleum resins of Comparative Production Examples 1 to 4 as the modifier, the same preparation as in Example 1 was carried out to obtain pellets.
比較例6
 実施例1において、改質剤として、製造例1の水素化芳香族系石油樹脂の代わりに、重量平均分子量2,380、芳香族水素の含有率40%、オレフィン含有率1.3%、300℃で2時間加熱後の質量残留率61%、及びMMAP12℃のC9系石油樹脂を5部使用した以外は、実施例1と同様に調製を行い、ペレットを得た。
Comparative Example 6
In Example 1, instead of the hydrogenated aromatic petroleum resin of Production Example 1, 5 parts of a C9 petroleum resin having a weight average molecular weight of 2,380, an aromatic hydrogen content of 40%, an olefin content of 1.3%, a mass residual rate after heating at 300°C for 2 hours of 61%, and an MMAP of 12°C were used as a modifier. Preparation was performed in the same manner as in Example 1 to obtain pellets.
(発煙の評価)
実施例1~7及び比較例1~6のペレットをハンドトゥルーダM-1((株)東洋精機製作所製、卓上手動式射出成形機・ペレタイザー)を用いて290℃で射出成形した際、成形時における発煙を目視にて評価し、以下の基準にて発煙を評価した。結果を表2に示す。
〇:ほとんど発煙が無い。
△:発煙が少し生じる。
×:発煙が多い。
(Smoke Generation Evaluation)
When the pellets of Examples 1 to 7 and Comparative Examples 1 to 6 were injection molded at 290°C using a Handtruder M-1 (a tabletop manual injection molding machine/pelletizer manufactured by Toyo Seiki Seisakusho Co., Ltd.), smoke generation during molding was visually evaluated and evaluated according to the following criteria. The results are shown in Table 2.
◯: Almost no smoke.
△: A small amount of smoke is generated.
×: A lot of smoke is emitted.
(MFRの評価)
JIS K 7210に準拠して、実施例1~7及び比較例1~6のペレットを温度300℃、荷重21.2N(2.16kg)の条件下にて、各ペレットのMFRを測定した。
(Evaluation of MFR)
In accordance with JIS K 7210, the MFR of each of the pellets of Examples 1 to 7 and Comparative Examples 1 to 6 was measured under conditions of a temperature of 300° C. and a load of 21.2 N (2.16 kg).
そして、比較例1(ブランク)のMFRに対する、実施例1~7及び比較例2~6のペレットのMFRの上昇率を、以下の基準にて評価した。結果を表2に示す。MFRの上昇率が大きいほど、成形加工性に優れている。
〇:ブランク対比でMFRの上昇率が30%以上
△:ブランク対比でMFRの上昇率が10%以上30%未満
×:ブランク対比でMFRの上昇率が10%未満
The rate of increase in MFR of the pellets of Examples 1 to 7 and Comparative Examples 2 to 6 relative to the MFR of Comparative Example 1 (blank) was evaluated according to the following criteria. The results are shown in Table 2. The greater the rate of increase in MFR, the better the moldability.
◯: The increase in MFR compared to blank is 30% or more. △: The increase in MFR compared to blank is 10% or more but less than 30%. ×: The increase in MFR compared to blank is less than 10%.
表2の配合量は、質量部の値である。表2中の略語及び注釈は、以下の通りである。
※発煙が多く、ペレットの調製が出来なかったので、MFRは測定しなかった。
mPPE:変性ポリフェニレンエーテル樹脂、商品名「ユピエースAH40」、グローバルポリアセタール(株)製
The blending amounts in Table 2 are values in parts by mass. The abbreviations and notes in Table 2 are as follows.
*Since there was a lot of smoke and it was not possible to prepare pellets, the MFR was not measured.
mPPE: modified polyphenylene ether resin, product name "Iupiace AH40", manufactured by Global Polyacetal Co., Ltd.
[アクリル系粘・接着剤組成物の製造]
実施例8
 アクリル系重合体(綜研化学(株)製、商品名「SKダイン1451」、固形分30%)80部(固形分換算)と、粘着付与剤として製造例1の水素化芳香族系石油樹脂20部を十分混練したのち、イソシアネート系架橋剤(日本ポリウレタン(株)製、商品名「コロネートL」)0.3部を添加し、アクリル系粘・接着剤組成物を得た。
[Production of acrylic pressure-sensitive adhesive composition]
Example 8
80 parts (solid content equivalent) of an acrylic polymer (manufactured by Soken Chemical & Engineering Co., Ltd., product name "SK Dyne 1451", solid content 30%) and 20 parts of the hydrogenated aromatic petroleum resin of Production Example 1 as a tackifier were thoroughly kneaded, and then 0.3 parts of an isocyanate crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., product name "Coronate L") was added to obtain an acrylic pressure-sensitive adhesive composition.
実施例9~13
実施例8において、粘着付与剤として製造例1の水素化芳香族系石油樹脂を製造例2~6の水素化芳香族系石油樹脂に変えた以外は、実施例8と同様に調製を行い、アクリル系粘・接着剤組成物を得た。
Examples 9 to 13
In Example 8, except that the hydrogenated aromatic petroleum resin of Production Example 1 was changed to the hydrogenated aromatic petroleum resin of Production Examples 2 to 6 as a tackifier, the same preparation as in Example 8 was performed to obtain an acrylic pressure-sensitive adhesive composition.
実施例14
 実施例8において、粘着付与剤として製造例1の水素化芳香族系石油樹脂を5部使用した以外は、実施例8と同様に調製を行い、アクリル系粘・接着剤組成物を得た。
Example 14
An acrylic pressure-sensitive adhesive composition was obtained in the same manner as in Example 8, except that 5 parts of the hydrogenated aromatic petroleum resin of Production Example 1 was used as a tackifier.
実施例15
 実施例8において、粘着付与剤として製造例1の水素化芳香族系石油樹脂を40部使用した以外は、実施例8と同様に調製を行い、アクリル系粘・接着剤組成物を得た。
Example 15
An acrylic pressure-sensitive adhesive composition was obtained in the same manner as in Example 8, except that 40 parts of the hydrogenated aromatic petroleum resin of Production Example 1 was used as a tackifier.
比較例7
アクリル系重合体(綜研化学(株)製、商品名「SKダイン1451」、固形分30%)100部(固形分換算)にイソシアネート系架橋剤(日本ポリウレタン(株)製、商品名「コロネートL」)0.3部を添加し、アクリル系粘・接着剤組成物を得た。
Comparative Example 7
An acrylic pressure-sensitive adhesive composition was obtained by adding 0.3 parts of an isocyanate crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., product name "Coronate L") to 100 parts (solid content equivalent) of an acrylic polymer (manufactured by Soken Chemical & Engineering Co., Ltd., product name "SK Dyne 1451", solid content 30%).
比較例8~9
実施例8において、粘着付与剤として製造例1の水素化芳香族系石油樹脂を比較製造例1、4の水素化芳香族系石油樹脂に変えた以外は、実施例8と同様に調製を行い、アクリル系粘・接着剤組成物を得た。
Comparative Examples 8 to 9
In Example 8, except that the hydrogenated aromatic petroleum resin of Production Example 1 was used as the tackifier in place of the hydrogenated aromatic petroleum resins of Comparative Production Examples 1 and 4, preparation was performed in the same manner as in Example 8 to obtain an acrylic pressure-sensitive adhesive composition.
(臭気)
実施例8~15及び比較例7~9のアクリル系粘・接着剤組成物を一般的な試験管の半分まで入れ、アルミ箔でふたをし、180℃定温乾燥機に保管し、24時間加熱した。その後、下記の基準にて臭気官能評価を行った。結果を表3に示す。なお、臭気評価結果はすべて相対比較によるものである。
○:ほとんど臭気なし
△:やや臭気あり
×:臭気あり
(Odor)
The acrylic pressure-sensitive adhesive compositions of Examples 8 to 15 and Comparative Examples 7 to 9 were filled halfway into ordinary test tubes, covered with aluminum foil, stored in a constant temperature dryer at 180°C, and heated for 24 hours. Thereafter, a sensory odor evaluation was performed according to the following criteria. The results are shown in Table 3. Note that all odor evaluation results are based on relative comparison.
○: Almost no odor △: Slight odor ×: Odor
[試料テープの作成]
  サイコロ型アプリケーター(大佑機材(株)製)を用いて、実施例8~15及び比較例7~9のアクリル系粘・接着剤組成物をポリエステルフィルム(商品名「S-100」、三菱ケミカル(株)製  厚み:38μm)に厚みが35μm程度となるように塗布し、次いで105℃の循風乾燥機で5分間乾燥させて試料テープを作成した。そして、試料テープを23℃、50%RHの恒温室にて1週間放置して熟成した後、以下の試験方法により評価した。
[Preparation of sample tape]
Using a dice-shaped applicator (manufactured by Daisuke Kizai Co., Ltd.), the acrylic pressure-sensitive adhesive compositions of Examples 8 to 15 and Comparative Examples 7 to 9 were applied to a polyester film (product name "S-100", manufactured by Mitsubishi Chemical Corporation, thickness: 38 μm) to a thickness of about 35 μm, and then dried for 5 minutes in a circulating dryer at 105° C. to prepare a sample tape. The sample tape was then left to mature for 1 week in a thermostatic chamber at 23° C. and 50% RH, and then evaluated by the following test method.
(接着力)
上記試料テープを幅25mmに切り、ポリエチレン板(PE板)に2kgのローラーを1往復させて貼り合わせ、1日静置した。次いで、180度剥離テストを、引張速度300mm/分、測定温度40℃の条件で行い、接着力(N/25mm)を測定した。結果を表3に示す。
(Adhesive strength)
The above sample tape was cut to a width of 25 mm, and was laminated to a polyethylene plate (PE plate) by rolling it back and forth once with a 2 kg roller, and was left to stand for one day. Then, a 180-degree peel test was performed under conditions of a pulling speed of 300 mm/min and a measurement temperature of 40° C., and the adhesive strength (N/25 mm) was measured. The results are shown in Table 3.

 

 

Claims (7)

  1. 300℃で2時間加熱後の質量残留率が64質量%以上であり、
    混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
    水素化芳香族系炭化水素樹脂を含む、
    熱可塑性樹脂用の改質剤。
    The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more,
    The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
    Hydrogenated aromatic hydrocarbon resins,
    Modifier for thermoplastic resins.
  2. 請求項1に記載の改質剤及び熱可塑性樹脂を含む、樹脂組成物。 A resin composition comprising the modifier according to claim 1 and a thermoplastic resin.
  3. 熱可塑性樹脂に用いる改質剤としての、請求項1に記載の水素化芳香族系炭化水素樹脂の使用。 Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 as a modifier for use in thermoplastic resins.
  4. 熱可塑性樹脂を含む樹脂組成物を製造するための、請求項1に記載の水素化芳香族系炭化水素樹脂の使用。 Use of the hydrogenated aromatic hydrocarbon resin according to claim 1 for producing a resin composition containing a thermoplastic resin.
  5. 300℃で2時間加熱後の質量残留率が64質量%以上であり、
    混合メチルシクロヘキサンアニリン曇点(MMAP)が、5℃以上40℃未満である、
    水素化芳香族系炭化水素樹脂を含む、
    粘着付与剤。
    The mass retention rate after heating at 300° C. for 2 hours is 64% by mass or more,
    The mixed methylcyclohexaneaniline cloud point (MMAP) is 5° C. or more and less than 40° C.
    Hydrogenated aromatic hydrocarbon resins,
    Tackifier.
  6. 請求項5に記載の粘着付与剤及びベースポリマーを含む、粘・接着剤組成物。 A pressure-sensitive adhesive composition comprising the tackifier according to claim 5 and a base polymer.
  7. 粘・接着剤組成物に用いる粘着付与剤としての、請求項5に記載の水素化芳香族系炭化水素樹脂の使用。
     

     
    Use of the hydrogenated aromatic hydrocarbon resin according to claim 5 as a tackifier for use in a pressure-sensitive adhesive composition.


PCT/JP2023/038644 2022-11-01 2023-10-26 Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition WO2024095878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-175828 2022-11-01
JP2022175828 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024095878A1 true WO2024095878A1 (en) 2024-05-10

Family

ID=90930406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038644 WO2024095878A1 (en) 2022-11-01 2023-10-26 Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition

Country Status (1)

Country Link
WO (1) WO2024095878A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328524A (en) * 1996-03-06 1997-12-22 Hercules Inc Aliphatic petroleum-based resin, method for controlling softening point and molecular weight of the resin, and hot melt pressure sensitive adhesive containing the same
JP2002503737A (en) * 1998-02-12 2002-02-05 ハーキュリーズ・インコーポレーテッド Aliphatic hydrocarbon resins modified with aromatic compounds
JP2003530471A (en) * 2000-04-07 2003-10-14 イーストマン・ケミカル・レジンズ・インコーポレーテッド Low color aromatic modified C5 hydrocarbon resin
WO2017171025A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Modified hydrocarbon resin and hot-melt adhesive composition
WO2020066791A1 (en) * 2018-09-27 2020-04-02 日本ゼオン株式会社 Hot melt adhesive composition
JP2022173091A (en) * 2021-05-06 2022-11-17 荒川化学工業株式会社 Resin composition, molding and fluidity improver for low dielectric resin

Similar Documents

Publication Publication Date Title
US6747094B2 (en) High impact thermoplastic resin composition
JP3949110B2 (en) Hydrogenated copolymer
JPWO2003074574A1 (en) Modified hydrogenated copolymer
JP5225704B2 (en) Vinyl aromatic hydrocarbon resin sheet
WO2024095878A1 (en) Modifier for thermoplastic resin, resin composition, use of hydrogenated aromatic hydrocarbon resin, tackifier, and pressure-sensitive adhesive or adhesive composition
JP5281297B2 (en) Polypropylene resin composition
WO2001072876A1 (en) Resin pellet with excellent nontackiness and process for producing the same
JP2008069338A (en) Antistatic resin composition and molded article
JP2004067798A (en) Aromatic vinyl-based hydrogenated rubber composition
JP2006206673A (en) Injection-molded product
JPH09157515A (en) Thermoplastic resin composition
JP2002285009A (en) Thermoplastic polymer composition containing minerals
JP5031174B2 (en) Rubber polymer composition
JP2008120966A (en) Sealing material
WO2024095880A1 (en) Modifying agent for thermoplastic resins, resin composition, and use of hydrogenated aromatic hydrocarbon resin
JP3832658B2 (en) Polypropylene resin composition
WO2024095883A1 (en) Modifier for thermoplastic resin, resin composition, and use of rosin resin
WO2023002932A1 (en) Thermoplastic elastomer composition and molded body comprising said composition
JP5105662B2 (en) Polystyrene thermoplastic elastomer composition
JP2001146538A (en) Impact-resistant thermoplastic polystyrene resin composition
JP2006328306A (en) Olefin polymer composition
JP4213995B2 (en) Good appearance thermoplastic polymer composition
US7247678B2 (en) Rubbery polymer composition
JPH09157488A (en) Thermoplastic resin composition for automotive part
JP2003201372A (en) Thermoplastic elastomer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885634

Country of ref document: EP

Kind code of ref document: A1