WO2024088418A1 - 电极片、电场治疗***及控制方法 - Google Patents

电极片、电场治疗***及控制方法 Download PDF

Info

Publication number
WO2024088418A1
WO2024088418A1 PCT/CN2023/127360 CN2023127360W WO2024088418A1 WO 2024088418 A1 WO2024088418 A1 WO 2024088418A1 CN 2023127360 W CN2023127360 W CN 2023127360W WO 2024088418 A1 WO2024088418 A1 WO 2024088418A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode sheet
signal
temperature
electric field
Prior art date
Application number
PCT/CN2023/127360
Other languages
English (en)
French (fr)
Inventor
应建俊
沈琪超
于晶
张军
惠嘉杰
陈凯健
陈晟
孙虎
邱帅
毛敏
Original Assignee
江苏海莱新创医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211324418.9A external-priority patent/CN115671556A/zh
Priority claimed from CN202222848795.4U external-priority patent/CN218833404U/zh
Priority claimed from CN202211678884.7A external-priority patent/CN115814263B/zh
Priority claimed from CN202223483427.0U external-priority patent/CN218833406U/zh
Priority claimed from CN202211678713.4A external-priority patent/CN115845249B/zh
Priority claimed from CN202211678871.XA external-priority patent/CN115837120B/zh
Priority claimed from CN202223483419.6U external-priority patent/CN218833405U/zh
Priority claimed from CN202223483410.5U external-priority patent/CN219128024U/zh
Priority claimed from CN202223561065.2U external-priority patent/CN219128011U/zh
Priority claimed from CN202211721864.3A external-priority patent/CN115970166B/zh
Priority claimed from CN202211721902.5A external-priority patent/CN116046198B/zh
Priority claimed from CN202223590656.2U external-priority patent/CN219071822U/zh
Priority claimed from CN202211739919.3A external-priority patent/CN115869533A/zh
Priority claimed from CN202223562251.8U external-priority patent/CN219128025U/zh
Priority claimed from CN202211723961.6A external-priority patent/CN115920230A/zh
Priority claimed from CN202211721874.7A external-priority patent/CN115980490B/zh
Priority claimed from CN202211722151.9A external-priority patent/CN116008702B/zh
Priority claimed from CN202211722169.9A external-priority patent/CN116271523B/zh
Priority claimed from CN202211722158.0A external-priority patent/CN115845260B/zh
Application filed by 江苏海莱新创医疗科技有限公司 filed Critical 江苏海莱新创医疗科技有限公司
Publication of WO2024088418A1 publication Critical patent/WO2024088418A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals

Definitions

  • the present disclosure relates to the field of medical devices, and in particular to an electrode sheet, an electric field therapy system and a control method.
  • Tumor electric field therapy is a tumor treatment method that uses an electric field generator to generate a low-intensity, medium-high frequency, alternating electric field to interfere with the mitotic process of tumor cells. Studies have shown that electric field therapy is effective in treating glioblastoma, non-small cell lung cancer, malignant pleural mesothelioma and other diseases. The electric field applied by this treatment method can affect the aggregation of microtubule proteins, prevent spindle formation, inhibit the mitotic process, and induce apoptosis of cancer cells.
  • the existing tumor electric field therapy system mainly includes an electric field generator that generates an alternating electric signal for tumor electric field therapy, an adapter electrically connected to the electric field generator, and multiple pairs of electrodes electrically connected to the electric field generator through the adapter.
  • the alternating electric signal for tumor electric field therapy is transmitted to each electrode sheet through the adapter, and then the alternating electric field is applied to the patient's tumor site through the electrode sheet for tumor electric field therapy.
  • the tumor treatment electric field is applied to the patient's body, heat will be accumulated at the corresponding position where the electrode is applied to the skin. Therefore, the temperature of the body surface corresponding to the patient's tumor site where the electrode is applied should be monitored in real time. When the body surface temperature is too high, the electric field strength should be adjusted in time to avoid low-temperature burns on the patient's skin caused by excessive temperature.
  • Each electrode sheet is provided with a plurality of electrode units.
  • the existing electrode sheet is provided with a thermistor element on each electrode unit of some corresponding electrode units, and each thermistor element is connected in parallel with each other.
  • the resistance of the thermistor element changes with the temperature, and the change of the resistance of the thermistor element corresponds to the temperature change of the body surface to which the electrode unit is applied.
  • Each electrode sheet is provided with 8 thermistor elements, and a cable with 10 core wires is connected between each electrode sheet and the adapter. Each electrode sheet transmits the resistance of 8 thermistor elements through the cable with 10 core wires.
  • the present invention discloses an electrode sheet with simplified circuit structure and comprehensive and accurate temperature monitoring, an electric field therapy system and a control method thereof.
  • the electrode sheet disclosed in the present invention is realized by the following technical scheme: an electrode sheet, comprising: a plurality of electrode elements, configured to apply an alternating electric field; a plurality of temperature detectors, which are respectively arranged in one-to-one correspondence with the plurality of electrode elements and configured to monitor the temperature at the corresponding electrode elements and output detection signals, each temperature detector having a ground terminal and a signal terminal; and a plurality of second ground wires and a plurality of second signal wires, the plurality of second ground wires jointly short-circuit the ground terminals of all temperature detectors to ground, and the plurality of second signal wires jointly connect the signal terminals of all temperature detectors and are used to transmit the detection signals of the temperature detectors; wherein each temperature detector and an electrode element corresponding thereto constitute an electrode unit, a plurality of temperature detectors and a plurality of electrode elements constitute a plurality of electrode units, the plurality of electrode units are divided into different groups, each group includes at least one electrode unit, and the total number of second ground wires and second
  • an electric field therapy system comprising: at least one pair of the above-mentioned electrode sheets; an electric field generator, configured to apply alternating electric signals to multiple electrode elements of the electrode sheets; and an adapter unit, connected between the electrode sheets and the electric field generator, configured to transmit the alternating electric signals generated by the electric field generator to the electrode sheets, and also configured to receive detection signals output by multiple second signal lines of the electrode sheets.
  • the control method of the electric field therapy system disclosed in the present invention is implemented by the following scheme: a control method of the electric field therapy system as described above
  • the method comprises: sequentially and individually turning on each of the multiple second grounding wires of the electrode sheet, and obtaining a detection signal of a temperature detector of each electrode unit in a group of electrode units grounded by the second grounding wire, which is received by the adapter unit when each second grounding wire is in the turned-on state.
  • FIG1 is a schematic block diagram of an electric field therapy system according to a first embodiment of the present disclosure
  • FIG2 is a schematic block diagram of an electrode sheet and a first adapter shown in FIG1 ;
  • FIG3 is a schematic block diagram of the internal structure of the first adapter shown in FIG1;
  • FIGS. 4-8 are schematic block diagrams of an electrode sheet and a first adapter in an electric field treatment system according to other embodiments of the present disclosure
  • FIG9 is a flow chart of a control method of an electric field therapy system according to an embodiment of the present disclosure.
  • FIG10 is a schematic block diagram of an electric field treatment system according to a second embodiment of the present disclosure.
  • FIG11 is a schematic block diagram of an electrode sheet and a first adapter shown in FIG10 ;
  • FIG12 is a schematic block diagram of the internal structure of the first adapter shown in FIG10;
  • FIG13 is a schematic diagram of temperature detection according to an embodiment of the present disclosure.
  • FIGS. 14-16 are schematic block diagrams of an electrode sheet and a first adapter in an electric field treatment system according to other embodiments of the present disclosure.
  • FIG17 is a flow chart of an electrode sheet fault detection method according to an embodiment of the present disclosure.
  • FIG18 is a flow chart of a method for detecting electrode sheet quality according to an embodiment of the present disclosure.
  • FIG19 is a schematic block diagram of an electric field therapy system according to a third embodiment of the present disclosure.
  • FIG20 is a schematic block diagram of a circuit connection between an electrode sheet and a second adapter shown in FIG19;
  • FIG21 is a schematic block diagram of the internal structure of the third adapter shown in FIG19;
  • FIG22 is a flow chart of a temperature detection method of an electric field treatment system according to an embodiment of the present disclosure.
  • FIG23 is a flowchart of the electric field treatment system according to one embodiment of the present disclosure.
  • FIG24 is a flow chart of temperature detection of an electric field treatment system according to an embodiment of the present disclosure.
  • 25-26 are schematic block diagrams of an electrode sheet and a second adapter in an electric field treatment system according to other embodiments of the present disclosure.
  • FIG27 is a schematic block diagram of an electric field treatment system according to a fourth embodiment of the present disclosure.
  • FIG28 is a schematic block diagram of a circuit connection between an electrode sheet and a fourth adapter shown in FIG27;
  • FIG29 is a schematic block diagram of the internal structure of the fourth adapter shown in FIG27;
  • 30-37 are schematic block diagrams of an electrode sheet and a fourth adapter in an electric field treatment system according to other embodiments of the present disclosure.
  • FIG38 is a flow chart of a method for detecting electrode temperature of an electric field therapy system according to an embodiment of the present disclosure
  • FIG39 is a flow chart of a method for detecting electrode temperature of an electric field therapy system according to another embodiment of the present disclosure.
  • FIG40 is a schematic block diagram of an electric field treatment system according to a fifth embodiment of the present disclosure.
  • FIG41 is a schematic block diagram of a circuit connection between an electrode sheet and a fifth adapter shown in FIG40;
  • FIG42 is a schematic block diagram of the internal structure of the analog multiplexing switch shown in FIG41;
  • FIG43 is a schematic block diagram of the internal structure of the fifth adapter shown in FIG40;
  • FIG44 is a schematic block diagram of an electrode sheet and a fifth adapter in an electric field treatment system according to other embodiments of the present disclosure.
  • FIG45A is a schematic diagram of an assembly of an electrode sheet of an electric field therapy system according to an embodiment of the present disclosure
  • FIG45B is an overall schematic diagram of the electrode sheet in FIG45A from another viewing angle
  • FIG46 is a partial schematic diagram of the electrode sheet in FIG45B , wherein the release paper is not shown;
  • FIG47A is an exploded schematic diagram of the electrode unit in FIG46;
  • FIG47B is a schematic diagram of the assembly of the electrode units in FIG46;
  • FIG48 is a wiring diagram of the flexible board substrate of the electrode unit in FIG47A;
  • FIG49 is a schematic diagram of the structure of the adapter plate in FIG46;
  • Fig. 50A is a front wiring diagram of the adapter board in Fig. 49;
  • Fig. 50B is a wiring diagram of the reverse side of the adapter plate in Fig. 49;
  • FIG51A is a schematic diagram of a combination of the electrode unit, adapter plate, wire and backing in FIG46;
  • FIG51B is a schematic diagram of another combination of the electrode unit, adapter plate, wire and backing in FIG46;
  • FIG52 is a schematic diagram of the assembly of the electrode unit, adapter plate, wire, backing and support member in FIG45;
  • FIG53A is an exploded schematic diagram of an electrode sheet of an electric field therapy system according to another embodiment of the present disclosure, wherein the release paper is not shown;
  • FIG53B is a schematic diagram of the assembly of the electrode sheets shown in FIG53A , wherein the release paper is not shown;
  • FIG54A is an exploded schematic diagram of the adapter plate and the wires in FIG53A;
  • FIG54B is a schematic diagram of the combination of the adapter plate and the wire in FIG54A;
  • Fig. 55A is a front wiring diagram of the adapter board in Fig. 54A;
  • FIG55B is a wiring diagram of the reverse side of the adapter board in FIG54A;
  • FIG56 is a schematic diagram of a method for manufacturing an electrode sheet of an electric field therapy system according to the present disclosure.
  • FIG57 is a schematic flow chart of a method for manufacturing an electrode unit of the electrode sheet described in FIG56;
  • FIG58 is a perspective view of an electrode sheet of an electric field therapy system according to another embodiment of the present disclosure.
  • FIG59 is a perspective exploded view of the electrode sheet in FIG58;
  • Figure 60 is a three-dimensional exploded view of the electrical functional components in the electrode sheet in Figure 59.
  • FIG1 shows an electric field therapy system of some embodiments of the present disclosure.
  • the electric field therapy system includes: at least one pair of electrode sheets 100, a first adapter 200 connected to the electrode sheets 100, and an electric field generator 300 connected to the first adapter 200.
  • the electric field generator 300 provides an alternating electric signal to the electrode sheets 100 so that the electrode sheets 100 generate a therapeutic electric field.
  • the first adapter 200 is electrically connected between the electrode sheets 100 and the electric field generator 300, and is used to transmit the alternating electric signal generated by the electric field generator 300 to the electrode sheets 100.
  • the electric field generator 300 is capable of generating an alternating electric signal, and the alternating electric signal generated by the electric field generator 300 is transmitted to each electrode sheet 100 through the first adapter 200, so that a therapeutic electric field for treating tumors is generated between the same pair of electrode sheets 100.
  • the number of electrode sheets 100 is 4.
  • Each electrode sheet 100 includes a plurality of electrode elements 112 of the same number, and each electrode element 112 is electrically connected to the first adapter 200.
  • the number of electrode elements 112 on each electrode sheet 100 is 20.
  • the electric field therapy system may also have more or fewer electrode sheets 100.
  • each pair of electrode sheets 100 has the same number of electrode elements 112, and different pairs of electrode sheets 100 may also have different numbers of electrode elements 112.
  • FIG. 2 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a first embodiment of the present disclosure. It is worth noting that the arrangement of the electrode elements 112 shown in FIG. 2 is to more clearly show the electrical connection between the electrode sheet and the first adapter, and the arrangement of the electrode elements 112 shown in FIG. 2 does not represent the arrangement of the electrode elements 112 in a spatial structure. In combination with FIG. 1 and FIG.
  • the electrode sheet 100 includes an adapter board 120 composed of a flexible circuit board, a plurality of electrode units 110 electrically connected to the adapter board 120 at intervals, an adhesive member (not shown) applied to the plurality of electrode units 110, and a first cable 130 electrically connected to the adapter board 120.
  • the adapter board 120 is embedded with a second AC line 126C, a plurality of second ground lines 126A, and a plurality of second signal lines 126B.
  • the first cable 130 has multiple conductors (not shown), each of which is electrically connected to one second AC line 126C, multiple second ground lines 126A, and multiple second signal lines 126B of the adapter board 120 in a one-to-one correspondence.
  • Each electrode unit 110 includes an electrode element 112 and a temperature detector 114 corresponding to the electrode element 112.
  • the electrode element 112 and the temperature detector 114 are both welded to the adapter plate 120.
  • the electrode element 112 is configured to apply an alternating electric field to the patient's tumor site.
  • the temperature detector 114 is used to detect the temperature of the patient's body surface attached to the electrode sheet 100 and output a detection signal to the first adapter 200. Specifically, the temperature detector 114 detects the temperature of the adhesive (not shown) of the electrode sheet 100 in contact with the patient's body surface, and then indirectly feeds back the temperature signal of the patient's body surface attached to the electrode sheet 100 through the temperature of the adhesive (not shown).
  • Each temperature detector 114 has a ground terminal 114A and a signal terminal 114B. Multiple electrode units 110 are divided into multiple groups. Each group of electrode units 110 includes at least one electrode unit 110.
  • the second AC line 126C of the adapter plate 120 is configured to transmit the alternating electric signal (AC signal) generated by the electric field generator 300 to each electrode element 112.
  • the second AC line 126C of the adapter plate 120 is electrically connected to the first cable 130, and then electrically connected to the electric field generator 300 via the first adapter 200, for receiving the alternating electric signal generated by the electric field generator 300 and transmitting the alternating electric signal to the electrode element 112.
  • the alternating electric signal generated by the electric field generator 300 is sequentially transmitted to the second AC line 126C of the adapter plate 120 through the first adapter 200 and the first cable 130.
  • the multiple second grounding wires 126A are used to short-circuit the temperature detectors 114 of a corresponding group of electrode units 110 in the multiple groups of electrode units 110 to the ground. That is, the multiple second grounding wires 126A short-circuit the multiple temperature detectors 114 in each group to the ground.
  • the grounding terminals 114A of the multiple temperature detectors 114 in the same group are connected to the same second grounding terminal of the adapter board 120.
  • the line 126A is short-circuited, and the grounding terminals 114A of the temperature detectors 114 in different groups and corresponding to each other are connected in parallel through different second grounding lines 126A of the adapter board 120 .
  • Each of the multiple second signal lines 126B is used to short-circuit the temperature detector 114 of at most one electrode unit 110 in each group of electrode units 110 to an external device for receiving a detection signal.
  • the temperature detectors 114 connected to each of the multiple second signal lines 126B are different from each other to avoid the second signal line 126B from subsequently outputting duplicate signals.
  • each of the second signal lines 126B is electrically connected to the temperature detectors 114 of each of the multiple electrode units 110 in the group in a one-to-one correspondence; when the number of electrode units 110 in a group of electrode units 110 is less than the number of second signal lines 126B, there is at least one second signal line 126B that is not electrically connected to the electrode unit 110, and each of the remaining second signal lines 126B is electrically connected to the temperature detector 114 of a different electrode unit 110 in the group of electrode units 110.
  • the external device for receiving the detection signal is the first adapter 200.
  • the signal terminals 114B of the plurality of temperature detectors 114 in the same group are connected in parallel through different second signal lines 126B of the adapter board 120, and the signal terminals 114B of the plurality of temperature detectors 114 in different groups and corresponding to each other are short-circuited through the same second signal line 126B of the adapter board 120.
  • the electrode sheet 100 of the present disclosure has a plurality of temperature detectors 114 in the same group whose grounding terminals 114A are short-circuited through the same second grounding wire 126A of the adapter board 120, and a plurality of temperature detectors 114 in different groups and corresponding to each other are connected in parallel through different second grounding wires 126A of the adapter board 120, and a plurality of signal terminals 114B in the same group of temperature detectors are connected in parallel through different second signal wires 126B of the adapter board 120, and a plurality of signal terminals 114B in different groups and corresponding to each other are connected in parallel through different second signal wires 126B of the adapter board 120.
  • the same second signal line 126B is short-circuited, and only one second grounding line 126A among the multiple second grounding lines 126A is turned on at the same time.
  • one second signal line 126B obtains the detection signal of the temperature detector 114 of each corresponding electrode unit 110 located in different groups in a time-sharing manner; through the multiple second signal lines 126B, the detection signal of the temperature detector 114 of all the electrode units 110 of the electrode sheet 100 located in different groups can be obtained in a time-sharing manner, thereby making the patient's body surface temperature detection more comprehensive and accurate.
  • the second AC line 126C, the second ground line 126A, and the second signal line 126B embedded in the adapter plate 120 are 10 lines in total, so that the first cable 130 can be configured with a cable with 10 cores to avoid an increase in the cores of the first cable 130, thereby achieving the purpose of controlling the overall weight of the electrode sheet 100.
  • the second ground line 126A and the second signal line 126B embedded in the adapter plate 120 are 9 lines in total. In this embodiment, the second ground line 126A embedded in the adapter plate 120 is 4 lines, and the second signal line 126B is 5 lines.
  • the electrode elements 112 in each electrode unit 110 are connected to the second AC line 126C in parallel. In other embodiments, the electrode elements 112 in each electrode unit 110 are connected to the second AC line 126C in series. In another embodiment, the electrode elements 112 in each electrode unit 110 are connected to the second AC line 126C partially in series and partially in parallel.
  • the electrode units 110 are arranged on the adapter plate 120 at intervals in the form of a two-dimensional array.
  • the electrode sheet 100 in this embodiment has 4 groups of electrode units 110, and each group of electrode units 110 has 5 electrode units 110.
  • the electrode sheet 100 in this embodiment has 20 electrode units 110.
  • the 20 electrode units 110 can be arranged in the form of a two-dimensional array.
  • the 20 electrode units 110 of the electrode sheet 100 can be arranged in four rows and six columns, with the first row and the fourth row both having four electrode units 110, and the four electrode units 110 in each row of the first row and the fourth row are all located in each of the second to fifth columns, and the two middle rows each have six electrode units 110, and the six electrode units 110 in each row of the two middle rows are all located in each of the first to sixth columns.
  • the 20 electrode units arranged in four rows and six columns In the 20 electrode units arranged in four rows and six columns, 5 electrode units 110 close to each other form a group of electrode units 110, so that 20 electrode units 110 are grouped into four groups of electrode units 110, so as to facilitate the wiring design of the second AC line 126C, the second ground line 126A and the second signal line 126B in the adapter plate 120.
  • the 20 electrode units 110 of the electrode sheet 100 can also be arranged in four rows and five columns. Each row of the electrode sheet 100 includes 5 electrode units 110, forming a group.
  • the 20 electrode units 110 can also be arranged in other ways.
  • the electrode sheet 100 can also have other numbers of electrode units 110. In short, the implementation of the present disclosure is not limited by the number and arrangement of the electrode units 110 of the electrode sheet 100.
  • Each electrode unit 110 includes an electrode element 112 and a temperature detector 114.
  • the electrode element 112 may be a dielectric element, such as a dielectric ceramic sheet; or it may be a polymer dielectric layer provided on the adapter plate 120.
  • the temperature detector 114 may be a thermistor. Of course, in some other embodiments of the present disclosure, the temperature detector 114 may also be other temperature sensors other than thermistors or other components capable of temperature detection.
  • Each electrode element 112 has an opening 1120 extending therethrough in the middle thereof, and a corresponding temperature detector 114 is accommodated in the opening 1120 of each electrode element 112.
  • Each electrode unit 110 may also include a first diode 117. The first diode 117 is connected in series with the temperature detector 114 of the same electrode unit 110, and it may prevent the reverse inflow of current to prevent the detection signal from other electrode units 110 from affecting the temperature detector 114.
  • the electrode sheet 100 shown in FIG2 includes four second grounding wires 126A, each of which is used to ground each electrode unit 110 in the same group.
  • the four second grounding wires 126A of the electrode sheet 100 are second grounding wires 126A-1, 126A-2, 126A-3 and 126A-4.
  • the first group of electrode units 110 is electrode unit 110-1 to electrode unit 110-5
  • the second group of electrode units 110 is electrode unit 110-6 to electrode unit 110-10
  • the third group of electrode units 110 is electrode unit 110-11 to electrode unit 110-15
  • the fourth group of electrode units 110 is electrode unit 110-16 to electrode unit 110-20.
  • the second grounding wire 126A-1 is used to ground the first group of electrode units 110 (i.e., electrode units 110-1 to 110-5); the second grounding wire 126A-2 is used to ground the second group of electrode units 110 (i.e., electrode units 110-6 to 110-10); the second grounding wire 126A-3 is used to ground the third group of electrode units 110 (i.e., electrode units 110-11 to 110-15); the second grounding wire 126A-4 is used to ground the fourth group of electrode units 110 (i.e., electrode units 110-16 to 110-20).
  • each second grounding wires 126A can be selectively closed or opened, which can be achieved by connecting each second grounding wire 126A in series with a first switch 240, which will be described in detail below.
  • the above-mentioned “grounding the electrode unit 110” may refer to grounding the temperature detector 114 in the electrode unit 110; or it may refer to connecting the first diode 117 in series with the temperature detector 114 of the same electrode unit 110 and grounding them together.
  • each second grounding line 126A short-circuits the grounding terminals 114A of the temperature detectors 114 of all electrode units 110 in each group of electrode units 110 and grounds them.
  • the electrode sheet 100 shown in FIG2 further includes 5 second signal lines 126B, one end of each second signal line 126B is respectively connected to at most one electrode unit 110 in each group of electrode units 110, and the other end thereof is used to connect to the first adapter 200 for receiving the detection signal. That is to say, for each group of electrode units 110, each second signal line 126B can choose to connect to one of the electrode units 110 or not to connect to any electrode unit 110 in the group of electrode units 110, and the electrode units 110 connected to each second signal line 126B are different from each other to avoid the second signal line 126B from subsequently outputting duplicate signals. Specifically, the signal end 114B of each temperature detector 114 of each electrode unit 110 in each group of electrode units 110 is respectively connected to different second signal lines 126B in a one-to-one correspondence.
  • the five second signal lines 126B of the electrode sheet 100 include second signal lines 126B-1, 126B-2, 126B-3, 126B-4 and 126B-5.
  • One end of the second signal line 126B-1 is connected to the electrode unit 110-1, the electrode unit 110-6, the electrode The signal end 114B of each temperature detector 114 of the electrode unit 110-11 and the electrode unit 110-16;
  • one end of the second signal line 126B-2 is respectively connected to the signal end 114B of each temperature detector 114 of the electrode unit 110-2, the electrode unit 110-7, the electrode unit 110-12, and the electrode unit 110-17;
  • one end of the second signal line 126B-3 is respectively connected to the electrode unit 110-3, the electrode unit 110-8, the electrode unit 110-13, and the electrode unit 110-18
  • One end of the second signal line 126B-4 is respectively connected to the signal end 114B of each temperature detector 114 of the electrode unit 110-4, the electrode unit 110-9, the electrode unit 110-14, and the electrode unit 110-19; one end of the second signal
  • each signal end 114B of each temperature detector 114 of the electrode unit 110-1 to the electrode unit 110-5 in the first group of electrode units 110 is electrically connected to each corresponding second signal line 126B in the five second signal lines 126B (the second signal line 126B-1 to the second signal line 126B-5).
  • Each signal end 114B of each temperature detector 114 of the electrode unit 110-6 to the electrode unit 110-10 in the second group of electrode units 110 is also electrically connected to each corresponding second signal line 126B in the five second signal lines 126B (the second signal line 126B-1 to the second signal line 126B-5).
  • Each signal end 114B of each temperature detector 114 of the electrode unit 110-11 to the electrode unit 110-15 in the third group of electrode units 110 is also electrically connected to a corresponding second signal line 126B in the five second signal lines 126B (second signal line 126B-1 to second signal line 126B-5).
  • Each signal end 114B of each temperature detector 114 of the electrode unit 110-16 to the electrode unit 110-20 in the fourth group of electrode units 110 is also electrically connected to a corresponding second signal line 126B in the five second signal lines 126B (second signal line 126B-1 to second signal line 126B-5).
  • the signal terminal 114B of the temperature detector 114 of the electrode unit 110-1 is connected to the second signal line 126B-1; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-2 is connected to the second signal line 126B-2; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-3 is connected to the second signal line 126B-3; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-4 is connected to the second signal line 126B-4; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-5 is connected to the second signal line 126B-5.
  • the signal terminal 114B of the temperature detector 114 of the electrode unit 110-6 is connected to the second signal line 126B-1; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-7 is connected to the second signal line 126B-2; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-8 is connected to the second signal line 126B-3; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-9 is connected to the second signal line 126B-4; the signal terminal 114B of the temperature detector 114 of the electrode unit 110-10 is connected to the second signal line 126B-5.
  • the signal end 114B of the temperature detector 114 of the electrode unit 110-11 is connected to the second signal line 126B-1; the signal end 114B of the temperature detector 114 of the electrode unit 110-12 is connected to the second signal line 126B-2; the signal end 114B of the temperature detector 114 of the electrode unit 110-13 is connected to the second signal line 126B-3; the signal end 114B of the temperature detector 114 of the electrode unit 110-14 is connected to the second signal line 126B-4; the signal end 114B of the temperature detector 114 of the electrode unit 110-15 is connected to the second signal line 126B-5.
  • the signal end 114B of the temperature detector 114 of the electrode unit 110-16 is connected to the second signal line 126B-1; the signal end 114B of the temperature detector 114 of the electrode unit 110-17 is connected to the second signal line 126B-2; the signal end 114B of the temperature detector 114 of the electrode unit 110-18 is connected to the second signal line 126B-3; the signal end 114B of the temperature detector 114 of the electrode unit 110-19 is connected to the second signal line 126B-4; the signal end 114B of the temperature detector 114 of the electrode unit 110-20 is connected to the second signal line 126B-5.
  • each second signal line 126B short-circuits the signal terminals 114B of the temperature detectors 114 of the electrode units 110 of different groups and corresponding to each other and is used to connect to an external device. They are respectively connected to different second signal lines 126B and connected to external devices through different second signal lines 126B. That is, the signal ends 114B of each temperature detector 114 of each electrode unit 110 in each group of electrode units 110 are respectively connected to the corresponding second signal lines 126B and connected to external devices through the corresponding second signal lines 126B.
  • the grounding ends 114A of each temperature detector 114 of each electrode unit 110 in the same group are short-circuited to ground through the same second grounding line 126A.
  • the signal ends 114B of each temperature detector 114 of each electrode unit 110 in different groups and corresponding to each other are connected to external devices through the same second signal line 126B. That is, the signal ends 114B of each temperature detector 114 of each electrode unit 110 in different groups and corresponding to each other are connected in parallel to the same second signal line 126B and connected to external devices through the second signal line 126B.
  • the grounding terminals 114A of the temperature detectors 114 of the electrode units 110 that are different and corresponding are respectively grounded by short-circuiting with the corresponding second grounding wires 126A.
  • the grounding terminals 114A of the temperature detectors 114 of the electrode units 110 that are different and corresponding are respectively grounded by short-circuiting with the corresponding second grounding wires 126A.
  • the signal terminals 114B of the temperature detectors 114 of the electrode units 110 that are different and non-corresponding are respectively connected to the external device through different second signal wires 126B, and the grounding terminals 114A of the temperature detectors 114 of the electrode units 110 that are different and non-corresponding are also respectively grounded by short-circuiting with the different second grounding wires 126A.
  • the signal terminals 114B of the temperature detectors 114 of the electrode units 110 that are different and non-corresponding are respectively connected to the external device through different second signal wires 126B, and the grounding terminals 114A of the temperature detectors 114 of the electrode units 110 that are different and non-corresponding are respectively grounded by short-circuiting with the different second grounding wires 126A.
  • the second AC line 126C, the multiple second ground lines 126A, and the multiple second signal lines 126B are all lines embedded in the adapter board 120.
  • the adapter board 120 is electrically connected to the first cable 130.
  • the second AC line 126C, the multiple second ground lines 126A, and the multiple second signal lines 126B embedded in the adapter board 120 are electrically connected to a corresponding wire core in the first cable 130, respectively.
  • the detection signal of each temperature detector 114 in the 20 electrode units 110 can be obtained by time-sharing using only the 5 second signal lines 126B. Specifically, each second grounding line 126A of the multiple second grounding lines 126A of the electrode sheet 100 can be turned on separately in sequence, and the detection signal of the temperature detector 114 of each electrode unit 110 in a group of electrode units 110 grounded by the second grounding line 126A can be obtained when each second grounding line 126A is turned on. Therefore, after the operation of turning on the corresponding second grounding line 126A multiple times in sequence, the detection signals of the temperature detectors 114 of all the electrode units 110 of the electrode sheet 100 can be obtained.
  • each temperature detector 114 outputs a detection signal at the same time, 20 independent second signal lines 126B are required to realize temperature detection of all electrode elements 112, which will make the wiring of the adapter board 120 more difficult, the processing more difficult, and the cost increased; and it will also require the corresponding first cable 130 to include 22 wire cores (including an additional second ground wire 126A and a second AC wire 126C), which will greatly increase the overall weight of the electrode sheet 100 and increase the manufacturing cost of the first cable 130.
  • 22 wire cores including an additional second ground wire 126A and a second AC wire 126C
  • the first cable 130 of the electrode sheet 100 of the present disclosure includes only 10 wire cores (not shown), namely, 4 wire cores (not shown) electrically connected to the second ground wire 126A, 5 wire cores (not shown) electrically connected to the second signal wire 126B, and 1 wire core (not shown) electrically connected to the second AC wire 126C, thereby effectively controlling the overall weight of the electrode sheet 100, avoiding the electrode sheet 100 from being affected by the increase in the number of wire cores (not shown) of the first cable 130 and affecting the adhesion effect between the electrode sheet 100 and the body surface corresponding to the tumor site of the patient, and reducing the processing cost; in addition, Only one second AC line 126C, five second signal lines 126B and four second ground lines 126A are arranged on the adapter board 120 to obtain the signals detected by the temperature detectors 114 of the 20 electrode units 110, and can comprehensively monitor the temperatures of all the electrode units 110 of the electrode sheet 100, and then control the alternating electric signal applied to the electrode sheet 100 through the temperature
  • each electrode sheet 100 may further include a first connector 180.
  • the first connectors 180 are configured to connect a corresponding electrode sheet 100 to the first adapter 200.
  • the first connector 180 is a first plug and is disposed at one end of the first cable 130 of the corresponding electrode sheet 100 away from the adapter board 120.
  • the first adapter 200 is provided with first sockets 260 corresponding to the plurality of first connectors 180.
  • the first connector 180 has 10 interfaces (1-10) corresponding to the wire cores (not shown) of the first cable 130, and the first connector 180 is plugged into the corresponding first socket 260 of the first adapter 200 to electrically connect the four second ground wires 126A, the five second signal wires 126B and the one second AC wire 126C on the adapter board 120 to the first adapter 200.
  • the first connector 180 is configured in the form of a plug, which facilitates quick installation and removal of the electrode sheet 100 and the first adapter 200 , and when one of the electrode sheets 100 fails, another electrode sheet 100 can be used to replace the failed electrode sheet 100 .
  • the number of the second grounding wires 126A embedded in the adapter board 120 of the present disclosure is related to the number of groups into which the multiple electrode units 110 arranged on the adapter board 120 are divided, that is, the number of the second grounding wires 126A is the same as the number of groups of the electrode units 110 of the electrode sheet 100.
  • the number of the second signal wires 126B embedded in the adapter board 120 is related to the number of electrode units 110 in each group of the electrode sheet 100. Specifically, the number of the second signal wires 126B embedded in the adapter board 120 is related to the group of electrode units 110 with the most electrode units 110 in each group of electrode units 110.
  • the number of the second signal wires 126B embedded in the adapter board 120 is the same as the total number of electrode units 110 in the group with the most electrode units 110.
  • the total number of the second grounding wires 126A and the second signal wires 126B is less than the number of the temperature detectors 114.
  • the present disclosure also provides an electric field therapy system.
  • the electric field therapy system of the present disclosure will be described in detail below with reference to FIGS. 1 to 3.
  • the electric field therapy system of the present disclosure includes at least one pair of the above-mentioned electrode sheets 100, a first adapter 200 electrically connected to the electrode sheets 100, and an electric field generator 300 electrically connected to the first adapter 200.
  • the first adapter 200 is connected between the electrode sheet 100 and the electric field generator 300.
  • the electric field generator 300 provides an alternating electric signal to each electrode element 112 in the multiple groups of electrode units 110 of the electrode sheet 100 via the first adapter 200 and the second AC line 126C of the electrode sheet 100.
  • the first adapter 200 transmits the alternating electric signal generated by the electric field generator 300 to the second AC line 126C of the electrode sheet 100, and is also configured to receive the detection signal output by the multiple second signal lines 126B of the electrode sheet 100.
  • the first adapter 200 includes: a plurality of first switches 240, a first controller 210, a plurality of first analog-to-digital converters 220, and a first communication transceiver 250.
  • the first adapter 200 includes a plurality of circuit lines (not numbered).
  • the plurality of circuit lines are electrically connected to the plurality of second ground lines 126A, the plurality of second signal lines 126B, and the one second AC line 126C in the corresponding adapter board 120 through the first cable 130 of the corresponding electrode sheet 100, respectively.
  • Each group of first switches 240 is provided with a plurality of first switches 240, and the plurality of first switches 240 are respectively connected to the first adapter 200 and are respectively electrically connected to the circuit lines (not numbered) corresponding to the multi-channel second grounding lines 126A of the corresponding electrode sheet 100, and are configured to control the conduction or disconnection of the multi-channel second grounding lines 126A.
  • the multi-channel circuit lines (not numbered) electrically connected to the multi-channel second grounding lines 126A of the electrode sheet 100 are grounded at one end close to the first switch 240.
  • the plurality of first switches 240 are respectively first switches 240-1, 240-2, 240-3 and 240-4.
  • the plurality of first switches 240 in the same group all control the closing and disconnection of the multi-channel second grounding lines 126A of the adapter plate 120 of the same electrode sheet 100. Specifically, the plurality of first switches 240 in the same group respectively control the closing or disconnection of the second grounding lines 126A electrically connected thereto in the same electrode sheet 100.
  • the first switch 240-1 is used to control the closing or opening of the second ground line 126A-1 of the corresponding electrode sheet 100, thereby controlling the power on and off of each temperature detector 114 of the first group of electrode units 110 (i.e., electrode units 110-1 to 110-5) of the electrode sheet 100;
  • a switch 240-2 is used to control the closing or disconnection of the second grounding line 126A-2 of the electrode sheet 100, thereby controlling the power on and off of each temperature detector 114 of the second group of electrode units 110 (i.e., electrode unit 110-6 to electrode unit 110-10) of the electrode sheet 100;
  • a first switch 240-3 is used to control the closing or disconnection of the second grounding line 126A-3 of the electrode sheet 100, thereby controlling the power on and off of each temperature detector 114 of the third group of electrode units 110 (i.e., electrode unit 110-11 to electrode unit 110-15) of the electrode sheet 100;
  • a first switch 240-4 is used to control the closing or disconnection of the second grounding line 126A
  • the first switches 240 are all electronic switches.
  • the first controller 210 is connected to multiple groups of first switches 240, and is used to sequentially and cyclically control the on and off states of multiple first switches 240 in each group of first switches 240, and sequentially and individually conduct each second grounding wire 126A in multiple second grounding wires 126A of the corresponding electrode sheet 100, so as to continuously monitor the temperature signals detected by all temperature detectors 114 on the electrode sheet 100, and further indirectly obtain the temperature of the patient's body surface attached to each electrode unit 110 of the electrode sheet 100.
  • Each group of first analog-to-digital converters 220 is electrically connected to the multiple second signal lines 126B of the electrode sheet 100 through the multiple circuit lines (unnumbered) in the first adapter 200 and the first cables 130 of the corresponding electrode sheet 100, and is configured to receive the detection signal transmitted by the multiple second signal lines 126B of the corresponding electrode sheet 100, and convert the detection signal from an analog signal to a digital signal.
  • Each group of first analog-to-digital converters 220 includes a plurality of detection channels A, B, C, D, and E, and each detection channel is used to connect a corresponding second signal line 126B in the multiple second signal lines 126B.
  • each group of first analog-to-digital converters 220 includes a total of 5 detection channels, namely, the first detection channel A, the second detection channel B, the third detection channel C, the fourth detection channel D, and the fifth detection channel E.
  • the first detection channel A is connected to the second signal line 126B-1
  • the second detection channel B is connected to the second signal line 126B-2
  • the third detection channel C is connected to the second signal line 126B-3
  • the fourth detection channel D is connected to the second signal line 126B-4
  • the fifth detection channel E is connected to the second signal line 126B-5.
  • Each detection channel is used to receive the detection signal of the temperature detector 114 of the electrode unit 110 to which the corresponding second signal line 126B is connected.
  • each detection channel is connected to the power supply voltage source (VCC) via the first voltage divider resistor 230 (high-precision resistor) in the first adapter 200 to provide a detection voltage to the detection channel.
  • the power supply voltage source (VCC) is a DC power supply.
  • the first communication transceiver 250 is configured to obtain multiple groups of digital signals output by the first analog-to-digital converter 220, and send the digital signals to the electric field generator 300.
  • the electric field generator 300 is also configured to adjust the voltage of the alternating electric signal applied to the electrode elements 112 in the multiple groups of electrode units 110 of the electrode sheet 100 according to the received digital signal.
  • the preset threshold it means that the temperature of at least one electrode element 112 in the electrode sheet 100 exceeds the preset threshold temperature (for example, 41°C, 42°C, etc.), and at this time, the voltage of the alternating electric signal output by the electric field generator 300 can be appropriately reduced to avoid the electrode sheet 100 causing low-temperature burns to the patient's skin.
  • the above-mentioned preset threshold temperature and preset threshold can be determined according to relevant experimental data, and the range can be 37-42°C.
  • the first communication transceiver 250 is controlled by the first controller 210 and transmits the digital signals converted by the multiple groups of first analog-to-digital converters 220 in series.
  • Each detection channel of each group of first analog-to-digital converters 220 only collects the detection signal of a corresponding temperature detector 114 in the same group of electrode units 110 at the same time, and the above detection signal can be a voltage value. Only one of the four first switches 240 can be turned on at the same time, and the other three can be turned off. In this way, each group of first analog-to-digital converters 220 can only collect the voltage values of all temperature detectors 114 of a group of electrode units 110 that are short-circuited with the second grounding line 126A corresponding to the turned-on first switch 240.
  • the other three first switches 240-2, 24-3, and 24-4 are all opened, and the temperature detectors 114 of the electrode units 110-1 to 110-5 are powered on, and the temperature detectors 114 of the electrode units 110-6 to 110-20 are powered off.
  • the temperature detectors 114 of the electrode units 110-1, 110-6, 110-11, and 110-16 are short-circuited on the first detection channel A in the first analog-to-digital converter 220.
  • the grounding terminals 114A of the temperature detectors 114 of the electrode units 110-11 and 110-16 are disconnected, and each electrode unit 110 is provided with a first diode 117 connected in series with its temperature detector 114, which will not affect the resistance value of the temperature detector 114 of the electrode unit 110-1.
  • the temperature detector 114 of the electrode unit 110-1 works effectively on the first detection channel A of the first analog-to-digital converter 220, and the collected detection signal (voltage value) is the voltage value of the temperature detector 114 of the electrode unit 110-1.
  • the voltage value collected on the second detection channel B of the first analog-to-digital converter 220 is the voltage value of the temperature detector 114 of the electrode unit 110-2.
  • the voltage value collected on the third detection channel C of the first analog-to-digital converter 220 is the voltage value of the temperature detector 114 of the electrode unit 110-3.
  • the voltage value collected on the fourth detection channel D of the first analog-to-digital converter 220 is the voltage value of the temperature detector 114 of the electrode unit 110-4.
  • the voltage value collected on the fifth detection channel E in the first analog-to-digital converter 220 is the voltage value of the temperature detector 114 of the electrode unit 110 - 5 .
  • the first controller 210 and the plurality of first analog-to-digital converters 220 can automatically perform operations through pre-programmed program codes. For example, the first controller 210 first closes the first switch 240-1 in the plurality of first switches 240, and disconnects the remaining first switches 240-2 to 240-4. During this period, the plurality of first analog-to-digital converters 220 obtain the detection values of each detection channel and store them in a separately set memory. Then, after a preset time interval, the first controller 210 closes the first switch 240-2 in the plurality of first switches 240, and disconnects the first switch 240-1, the first switch 240-3 and the first switch 240-4.
  • the plurality of first analog-to-digital converters 220 obtain the detection values of each detection channel. In this way, by sequentially turning on each of the plurality of first switches 240, the detection values of all the temperature detectors 114 on the electrode sheet 100 can be obtained, and further, the detection values of all the temperature detectors 114 on at least one pair of electrode sheets 100 can be obtained through this operation.
  • the first adapter 200 of the electric field treatment system may further include a second connector 280.
  • the second connector 280 is configured to connect the first adapter 200 to the electric field generator 300.
  • FIG. 3 is a schematic block diagram of the first adapter 200 and the second connector 280 in the electric field treatment system of the present disclosure embodiment. As shown in FIG.
  • the second connector 280 may include 8 input ports (1-8), wherein the first to fourth input ports are respectively used to connect the corresponding first connectors 180, and are used to further transmit the alternating electric signal generated by the electric field generator 300 to the second AC line 126C of the corresponding electrode sheet 100 through the corresponding first connectors 180, so that the electrode element 112 of each electrode unit 110 on the electrode sheet 100 is connected to the alternating electric signal and applied to the patient's tumor site and forms an alternating electric field for treating the tumor with the relative electrode sheet 100.
  • the fifth input port is used to ground the first adapter 200, and the sixth input port is connected to the first controller 210, and is used to provide a power supply voltage (VCC) to the first controller 210.
  • VCC power supply voltage
  • the 7th and 8th input ports are connected to the transmitter and receiver of the first communication transceiver 250 via lines TX and RX, respectively.
  • the first adapter 200 of the electric field treatment system may further include: a second cable 290.
  • the second cable 290 is configured to connect the first adapter 200 and the second connector 280.
  • the second cable 290 may include a plurality of wires, which correspond one to one with the plurality of input ports of the second connector 280.
  • the second connector 280 may be similar to the first connector 180 and may be made in the form of a plug to facilitate connection or disconnection with the electric field generator 300.
  • FIG4 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a second embodiment of the present disclosure.
  • the electrode sheet 100 of this embodiment only includes 13 electrode units 110.
  • the 13 electrode units 110 are divided into 3 groups, wherein the first two groups each include 5 electrode units 110, and the third group includes only 3 electrode units 110. Therefore, only 3 of the 4 second grounding wires 126A of the electrode sheet 100 shown in FIG4 can be effectively energized.
  • the electrode sheet 100 includes 5 second signal wires 126B, wherein each second signal wire 126B is respectively connected to the temperature detector 114 of at most one electrode unit 110 in each group of electrode units 110.
  • the second signal lines 126B-1, 126B-2, and 126B-3 are respectively connected to the temperature detector 114 of one electrode unit 110 in each of the three groups of electrode units 110, while the second signal lines 126B-4 and 126B-5 are only connected to the temperature detector 114 of one electrode unit 110 in each of the first two groups of electrode units 110, and the second signal lines 126B-4 and 126B-5 are not connected to the electrode unit 110 in the third group.
  • the second signal lines 126B-1, 126B-2, and 126B-3 are each connected in parallel to the signal end 114B of the temperature detector 114 of each of the three electrode units 110, and the second signal lines 126B-4 and 126B-5 are only connected in parallel to the signal end 114B of the temperature detector 114 of each of the two electrode units 110.
  • the control method of the electric field therapy system shown in FIG4 is similar to the control method of the electric field therapy system shown in FIG2 and will not be described in detail here.
  • the only difference is that the electric field therapy system shown in FIG4 only needs to close three first switches 240 (first switches 240-1, 240-2 and 240-3) in sequence, and during the period when the first switch 240-3 is closed, only the first three detection channels (A, B, C) of the first analog-to-digital converter 220 can obtain detection signals.
  • FIG5 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a third embodiment of the present disclosure.
  • the electrode sheet 100 of this embodiment has an electrode unit 110 of the same structure as the electrode sheet 100 of the first embodiment, and each electrode unit 110 includes an electrode element 112, a temperature detector 114, and a first diode 117 arranged in series with the temperature detector 114.
  • Each electrode element 112 has an opening 1120 arranged through the middle part, and the corresponding temperature detector 114 and the first diode 117 are accommodated in the opening 1120 of each electrode element 112.
  • the first adapter 200 of this embodiment has the same first analog-to-digital converter 220, first controller 210, and first communication transceiver 250 as the first adapter 200 of the first embodiment.
  • This embodiment also has the same electric field generator (not shown) as the first embodiment.
  • the electrode sheet 100 of this embodiment only includes 13 electrode units 110.
  • the 13 electrode units 110 constitute 3 groups of electrode units 110, wherein the first two groups each include 5 electrode units 110, and the third group includes only 3 electrode units 110.
  • the adapter plate 120 of the electrode sheet 100 is embedded with 3 second grounding wires 126A, 5 second signal wires 126B, and 1 second AC wire 126C.
  • Each second signal line 126B is respectively connected to the temperature detector 114 of at most one electrode unit 110 in each group of electrode units 110.
  • the second signal lines 126B-1, 126B-2 and 126B-3 are all connected to the temperature detector 114 of a corresponding electrode unit 110 in each of the three groups of electrode units 110, while the second signal lines 126B-4 and 126B-5 are only connected to the temperature detector 114 of a corresponding electrode unit 110 in each of the first two groups of electrode units 110, and the second signal lines 126B-4 and 126B-5 are not connected to the electrode unit 110 of the third group.
  • the three second ground lines 126A are respectively connected to each electrode unit 110 in a corresponding group of electrode units 110.
  • the grounding terminals 114A of the plurality of temperature detectors 114 in the same group of electrode units 110 are short-circuited through the same second grounding line 126A of the adapter board 120, and the grounding terminals 114A of the plurality of temperature detectors 114 in different groups and corresponding to each other are connected in parallel through different second grounding lines 126A of the adapter board 120.
  • the signal terminals 114B of the plurality of temperature detectors 114 in the same group of electrode units 110 are connected in parallel through different second signal lines 126B of the adapter board 120, and the signal terminals 114B of the plurality of temperature detectors 114 in different groups and corresponding to each other are short-circuited through the same second signal line 126B of the adapter board 120.
  • the number of conductors of the first cable is 9.
  • the 9 conductors of the first cable are respectively connected to the three second ground wires 126A, the five second signal wires 126B and the one second AC wire 126C embedded in the adapter board 120 in a one-to-one correspondence.
  • each group of first switches 240 in the first adapter 200 includes three first switches 240-1, 240-2, and 240-3.
  • first switch 240-1 or the first switch 240-2 When the first switch 240-1 or the first switch 240-2 is closed, all detection channels (A, B, C, D, and E) of the first analog-to-digital converter 220 can obtain detection signals; when the first switch 240-3 is closed, only the first three detection channels (A, B, and C) of the first analog-to-digital converter 220 can obtain detection signals.
  • FIG6 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a fourth embodiment of the present disclosure.
  • the electric field therapy system of the fourth embodiment is substantially the same as the electric field therapy system of the third embodiment, except that the 13 electrode units 110 of the electrode sheet 100 of this embodiment are grouped differently, wherein the first two groups each contain 4 electrode units 110, and the third group contains 5 electrode units 110.
  • the adapter board 120 of the electrode sheet 100 which is composed of a flexible circuit board, is also embedded with 3 second grounding wires 126A, 5 second signal wires 126B, and 1 second AC wire 126C.
  • the second signal lines 126B-1, 126B-2, 126B-3 and 126B-4 are all connected to the temperature detector 114 of a corresponding electrode unit 110 in each of the three groups of electrode units 110, while the second signal line 126B-5 is only connected to the temperature detector 114 of a corresponding electrode unit 110 in the third group of electrode units 110, and the second signal line 126B-5 is not connected to the electrode units 110 of the first two groups.
  • the grounding terminals 114A of the plurality of temperature detectors 114 in the same group of electrode units 110 are short-circuited through the same second grounding line 126A of the adapter board 120, and the grounding terminals 114A of the plurality of temperature detectors 114 in different groups and corresponding to each other are connected in parallel through different second grounding lines 126A of the adapter board 120.
  • the signal terminals 114B of the plurality of temperature detectors 114 in the same group of electrode units 110 are connected in parallel through different second signal lines 126B of the adapter board 120, and the signal terminals 114B of the plurality of temperature detectors 114 in different groups and corresponding to each other are short-circuited through the same second signal line 126B of the adapter board 120.
  • FIG7 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a fifth embodiment of the present disclosure.
  • the electrode sheet 100 of the electric field therapy system of the fifth embodiment has the same number of electrode units 110 as the electrode sheets 100 corresponding to the electric field therapy systems of the third and fourth embodiments, except that the 13 electrode units 110 of the electrode sheet 100 of this embodiment are grouped differently.
  • the electrode units 110 are divided into 4 groups, wherein the first three groups each contain 3 electrode units 110, and the fourth group contains 4 electrode units 110.
  • the adapter board 120 composed of a flexible circuit board of the electrode sheet 100 is embedded with 4 second grounding wires 126A, 4 second signal wires 126B and 1 second AC wire 126C.
  • the second signal lines 126B-1, 126B-2 and 126B-3 are all connected to the temperature detector 114 of a corresponding electrode unit 110 in each of the four groups of electrode units 110, and the second signal line 126B-4 is only connected to the temperature detector 114 of a corresponding electrode unit 110 in the fourth group of electrode units 110.
  • the grounding terminals 114A of the plurality of temperature detectors 114 in the same group of electrode units 110 are short-circuited through the same second grounding wire 126A of the adapter board 120, and the grounding terminals 114A of the plurality of temperature detectors 114 in different groups and corresponding to each other are respectively connected in parallel through different second grounding wires 126A of the adapter board 120.
  • the signal ends 114B of the multiple temperature detectors 114 located in the same group of electrode units 110 are connected in parallel through different second signal lines 126B of the adapter board 120, and the signal ends 114B of the multiple temperature detectors 114 located in different groups and corresponding to each other are short-circuited through the same second signal line 126B of the adapter board 120.
  • This embodiment has a first cable (not shown) with the same number of wires as the third and fourth embodiments.
  • the 9 wires of the first cable (not shown) are respectively connected to the 4 second ground wires 126A, 4 second signal wires 126B and 1 second AC wire 126C embedded in the adapter board 120 in a one-to-one correspondence.
  • the first adapter 200 of this embodiment has the same first controller 210 as the first adapter 200 of the third and fourth embodiments. and a first communication transceiver 250.
  • the first switch 240 of the first adapter 200 of this embodiment is different from the first switch 240 of the first adapter 200 of the third and fourth embodiments.
  • the first adapter 200 has four first switches 240-1, 240-2, 240-3 and 240-4 corresponding to the four second ground lines 126A.
  • the first analog-to-digital converter 220 has four detection channels (A, B, C, D) corresponding to the four second signal lines 126B.
  • FIG8 shows a schematic block diagram of an electrode sheet 100 and a first adapter 200 in an electric field therapy system according to a sixth embodiment of the present disclosure.
  • the number of electrode units 110 of the electrode sheet 100 of the electric field therapy system of this embodiment is 9. Compared with the electrode sheet 100 corresponding to the electric field therapy system of the fifth embodiment, in this embodiment, only the first three groups of electrode units 110 are provided, and the fourth group of electrode units 110 is not provided. In this embodiment, each of the three groups of electrode units 110 has three electrode units 110.
  • the adapter board 120 composed of a flexible circuit board of the electrode sheet 100 is embedded with three second grounding wires 126A, three second signal wires 126B and one second AC wire 126C.
  • the second signal wires 126B-1, 126B-2 and 126B-3 are all connected to the signal end 114B of the temperature detector 114 of a corresponding electrode unit 110 in each of the three groups of electrode units 110.
  • the three second grounding wires 126A are respectively connected to the grounding terminals 114A of all the temperature detectors 114 of a corresponding group of electrode units 110.
  • the grounding terminals 114A of the multiple temperature detectors 114 in the same group of electrode units 110 are short-circuited through the same second grounding wire 126A of the adapter board 120, and the grounding terminals 114A of the multiple temperature detectors 114 in different groups and corresponding to each other are respectively connected in parallel through different second grounding wires 126A of the adapter board 120.
  • the signal terminals 114B of the multiple temperature detectors 114 in the same group of electrode units 110 are respectively connected in parallel through different second signal wires 126B of the adapter board 120, and the signal terminals 114B of the multiple temperature detectors 114 in different groups and corresponding to each other are respectively short-circuited through the same second signal wire 126B of the adapter board 120.
  • the number of conductors of the first cable (not shown) of this embodiment is 7.
  • the 7 conductors of the first cable (not shown) are respectively connected to the three second grounding wires 126A, the three second signal wires 126B and the one second AC wire 126C embedded in the adapter board 120 in a one-to-one correspondence.
  • the first adapter 200 of this embodiment has the same first controller 210 and first communication transceiver 250 as the first adapter 200 of the previous embodiment.
  • Each group of first switches 240 of the first adapter 200 of this embodiment has the same structure as each group of first switches 240 of the first adapter 200 of the third and fourth embodiments, but three first switches 240 are provided.
  • each group of first switches 240-1, 240-2 and 240-3 of the first adapter 200 respectively corresponds to the three second grounding wires 126A of the corresponding electrode sheet 100.
  • the first analog-to-digital converter 220 has three detection channels (A, B, C) corresponding to the three second signal lines 126B of the corresponding electrode sheet 100. During the period when the first switch 240 is closed, all detection channels (A, B, C) of the first analog-to-digital converter 220 can obtain detection signals.
  • This embodiment also has the same electric field generator (not shown) as the third and fourth embodiments.
  • Each electrode unit 110 of the electrode sheet 100 disclosed in the present invention includes a temperature detector 114, and the temperature detector 114 of a corresponding group of electrode units 110 in the multiple groups of electrode units 110 can be grounded in turn through each second grounding line 126A, and the temperature detector 114 of at most one electrode unit 110 in each group of electrode units 110 can be electrically connected through each second signal line 126B, so that the multiple second signal lines 126B can obtain the detection signals of multiple temperature detectors 114 in a time-sharing manner, thereby making the patient's body surface temperature detection more comprehensive and accurate.
  • the number of wires of the first cable connected to the electrode sheet 100 is reduced through the above-mentioned line connection, and the number of wires of the first cable is not more than 10, which effectively reduces the overall weight of the electrode sheet 100, and avoids the electrode sheet 100 from affecting the adhesion effect between the electrode sheet 100 and the body surface corresponding to the patient's tumor site due to the increase in the number of wires of the first cable.
  • the present disclosure also provides a control method for an electric field therapy system, the method comprising: sequentially and individually turning on each of the multiple second grounding wires 126A of the electrode sheet 100, and when each of the second grounding wires 126A is turned on: obtaining a detection signal of a temperature detector 114 of each electrode unit 110 in a group of electrode units 110 that have been grounded by the second grounding wire 126A and received by the first adapter 200; and adjusting an alternating electric signal applied to each electrode unit 110 according to the obtained detection signal.
  • FIG9 is a flow chart of a control method of an electric field therapy system according to an embodiment of the present disclosure. Taking the electric field therapy system shown in FIG2 as an example, as shown in FIG9, the method includes the following steps:
  • the first controller 210 of the first adapter 200 simultaneously controls four first switches 240 of a group of first switches 240 among the multiple groups of first switches 240, so that one first switch 240 among the four first switches 240 (first switches 240-1, 240-2, 240-3 and 240-4) is turned on and the remaining three first switches 240 are turned off.
  • one group of first analog-to-digital converters 220 in the multiple groups of first analog-to-digital converters 220 of the first adapter 200 collects detection signals of multiple temperature detectors 114 short-circuited with the turned-on first switches 240 through its corresponding detection channel, and the detection signals are voltage analog signals.
  • one group of first analog-to-digital converters 220 among the multiple groups of first analog-to-digital converters 220 of the first adapter 200 converts the collected voltage analog signal into a digital temperature signal.
  • the first communication transceiver 250 of the first adapter 200 transmits the digital temperature signal in series to the electric field generator 300 .
  • the electric field generator 300 After the electric field generator 300 obtains the digital temperature signals of all the temperature detectors 114 of the corresponding electrode sheet 100, the following steps are also included: the electric field generator 300 compares the preset temperature threshold set therein and all the acquired digital temperature signals and adjusts the alternating electric signal applied to each electrode unit of the corresponding electrode sheet 100 according to the comparison result.
  • the preset temperature threshold is 37-42° C.
  • the alternating electric signal applied to each electrode unit of the corresponding electrode sheet 100 is adjusted according to the comparison result as follows: when all digital temperature signals are lower than the preset temperature threshold, the voltage of the alternating electric signal applied to each electrode unit 110 of the corresponding electrode sheet 100 is maintained or increased; when a certain digital temperature signal is equal to or higher than the preset temperature threshold, the alternating voltage applied to each electrode unit 110 of the corresponding electrode sheet 100 is reduced to 0.
  • Each electrode unit 110 of the electrode sheet 100 of the present disclosure includes a temperature detector 114, and the temperature detector 114 of a corresponding group of electrode units 110 in the multiple groups of electrode units 110 is grounded in turn through each second grounding line 126A, and the temperature detector 114 of at most one electrode unit 110 in each group of electrode units 110 is electrically connected through each second signal line 126B, so that the temperature detectors of different groups of electrode units 110 of the electrode sheet can be obtained in a time-sharing manner through each second signal line 126B.
  • the detection signal of the detector 114 is used to make the patient's body surface temperature detection more comprehensive and accurate.
  • the electric field treatment system includes: at least one pair of electrode sheets 100, a first adapter 200 and an electric field generator 300. At least one pair of electrode sheets 100 can be arranged on the patient's body surface in pairs, such as the four electrode sheets 100 in FIG. 10, where every two electrode sheets 100 are arranged on the patient's body surface as a pair, the first adapter 200 is electrically connected to each electrode sheet 100, and the electric field generator 300 is electrically connected to the first adapter 200.
  • the electric field generator 300 generates an alternating electric signal for the tumor electric field, and transmits the alternating electric signal to each electrode sheet 100 through the first adapter 200, so as to apply an alternating electric field to the patient's tumor site for tumor treatment.
  • the electrode sheet 100 includes an adapter board 120 composed of a flexible circuit board, and a plurality of electrode elements 112 and a plurality of temperature detectors 114 arranged on the adapter board 120. Each electrode element 112 can apply an alternating electric field, and each temperature detector 114 is arranged corresponding to one electrode element 112 to detect the temperature at the corresponding electrode element 112.
  • the electrode sheet 100 also includes a first cable 130 connected to the adapter board 120.
  • a first connector 180 is connected and arranged between each electrode sheet 100 and the first adapter 200.
  • the first connector 180 is a plug, which is arranged at one end of the first cable 130 of the corresponding electrode sheet 100 away from the adapter board 120.
  • the first adapter 200 is provided with a plurality of first sockets 260 corresponding to the plurality of first connectors 180.
  • the first plug and the first socket 260 are press-type spring connectors, that is, the first connector 180 uses a connector to connect the first adapter 200 to the electrode sheet 100.
  • the adapter plate 120 of the electrode sheet 100 is arranged in a grid shape, and a plurality of electrode elements 112 and a plurality of temperature detectors 114 are arranged on the adapter plate 120 at intervals.
  • Each electrode element 112 has an opening 1120 arranged in a through shape, and the opening 1120 is suitable for installing the temperature detector 114.
  • the opening 1120 is located in the middle of each electrode element 112, and each temperature detector 114 is accommodated in the opening 1120 of the corresponding electrode element 112.
  • the electrode element 112 is a dielectric element, such as a ceramic sheet; it can also be a polymer dielectric layer arranged on the adapter plate 120.
  • the temperature sensor 114 can also be arranged at other parts of the electrode element 112.
  • a plurality of electrode elements 112 and a plurality of temperature detectors 114 constitute a plurality of electrode units 110.
  • the plurality of electrode elements 112 are arranged roughly in an array, as shown in FIG10 , 20 electrode elements 112 are arranged in four rows and six columns, the first row and the fourth row are both four electrode elements 112, and the four electrode elements 112 in each row of the first row and the fourth row are all located in each of the second to fifth columns, the two middle rows are both six electrode elements 112, and the six electrode elements 112 in each row of the two middle rows are all located in each of the first to sixth columns.
  • the 20 electrode elements 112 can also be arranged in four rows and five columns, with five electrode elements 112 in each row.
  • the spatial arrangement of the plurality of temperature detectors 114 arranged in one-to-one correspondence with the electrode elements 112 is roughly the same as the array arrangement of the plurality of electrode elements 112.
  • a plurality of electrode elements 112 are connected in parallel through the same second AC line 126C of the adapter board 120 , and the second AC line 126C transmits an alternating electric signal to the electrode elements 112 , and forms a therapeutic electric field for treating tumors with the relative electrode sheet 100 .
  • the plurality of electrode elements 112 and the plurality of temperature detectors 114 are configured as a plurality of row groups and a plurality of column groups in circuit connection, that is, the plurality of electrode units 110 are configured as a plurality of row groups and a plurality of column groups in circuit connection.
  • the 20 electrode elements 112 are arranged in four rows and five columns in the order of 1 to 20 detection bits in circuit connection.
  • the 20 electrode elements 112 are arranged in four rows and five columns in circuit connection. Since the plurality of temperature detectors 114 are arranged in one-to-one correspondence with the plurality of electrode elements 112 , the plurality of temperature detectors 114 are also arranged in four rows and five columns in circuit connection. It should be noted that the arrangement here is to more clearly show the electrical connection between the electrode sheet 100 and the first adapter 200, and does not represent the arrangement of the electrode elements 112 in the spatial structure, and its spatial structure may be a roughly array structure as shown in FIG. 10 .
  • Each temperature detector 114 has a signal terminal 114B and a ground terminal 114A.
  • the signal terminals 114B of the corresponding temperature detectors 114 in each column group are connected together as a temperature sampling point.
  • the ground terminals 114A of the corresponding temperature detectors 114 in each row group are grounded together through a first switch 240.
  • the ground terminals 114A of the corresponding temperature detectors 114 in different row groups are grounded through different first switches 240, so that the detection signals of the corresponding temperature detectors 114 in each row group can be sampled simultaneously by the corresponding temperature sampling points by configuring the opening and closing states of the first switch 240, wherein the sampled detection signals of each temperature detector 114 are used to characterize the type of the electrode sheet 100.
  • the ground terminals 114A of the five temperature detectors 114 located in each row group are short-circuited in parallel through the same second ground line 126A of the adapter board 120
  • the signal terminals 114B of the five temperature detectors 114 located in each row group are connected in parallel through the five second signal lines 126B of the adapter board 120, respectively
  • the signal terminals 114B of the temperature detectors 114 located in each column group are short-circuited in parallel through the same second signal line 126B of the adapter board 120
  • the ground terminals 114A of the temperature detectors 114 located in each column group are connected in parallel through the four second ground lines 126A of the adapter board 120.
  • each temperature detector 114 is also connected in series with a first diode 117, the temperature detector 114 has a signal terminal 114B and a ground terminal 114A, the first diode 117 has an anode 117B and a cathode 117A, the anode 117B of the first diode 117 is connected to the ground terminal 114A of the temperature detector 114, the cathode 117A of the first diode 117 is connected to the corresponding second ground line 126A, and the signal terminal 114B of the temperature detector 114 is connected to the corresponding second signal line 126B.
  • the first diode 117 can avoid the influence of the resistance value of other temperature detectors 114 on the detection signal.
  • the first adapter 200 includes a main control board electrically connected to the first connector 180, and the main control board includes a first controller 210, a first analog-to-digital converter 220, a plurality of first switches 240, and a first communication transceiver 250.
  • the first controller 210 is used to configure the on/off states of the plurality of first switches 240, and the first analog-to-digital converter 220 is connected to the first controller 210.
  • the first analog-to-digital converter 220 is used to simultaneously sample the detection signal of the corresponding temperature detector 114 in each row group through the corresponding temperature sampling point, obtain a plurality of AD sampling values, and send the plurality of AD sampling values to the first controller 210, so that the first controller 210 can identify the type of the corresponding electrode sheet 100 according to the plurality of AD sampling values.
  • the first controller 210 selectively controls the on and off of any one of the multiple first switches 240 to selectively enable any row group of temperature detectors 114 among the 20 temperature detectors 114 to detect the temperature of the electrode sheet 100.
  • the first analog-to-digital converter 220 simultaneously collects the detection signals of the group of temperature detectors 114 through corresponding temperature sampling points to obtain a number of AD sampling values, converts the AD sampling values to obtain digital signals, and transmits the AD sampling values to the first controller 210, so that the first controller 210 can identify the type of the corresponding electrode sheet 100 based on the number of AD sampling values.
  • the first analog-to-digital converter 220 has a plurality of detection channels, and the number of the detection channels is greater than or equal to the number of column groups.
  • the first analog-to-digital converter 220 has five detection channels A, B, C, D and E, and each detection channel only collects the detection signal of a corresponding temperature detector 114 at the same time to obtain an AD sampling value, and the AD sampling value is a voltage value, that is, the detection signal is a voltage value.
  • Only one of the four first switches 240 is turned on at the same time, and the other three first switches 240 are turned off, so that the first analog-to-digital converter 220 can collect the detection signals of a group of temperature detectors 114 that are short-circuited with the turned-on first switch 240.
  • the ground terminals 114A of the temperature detectors 114 numbered 1, 2, 3, 4, and 5 are short-circuited together and grounded through the first switch 240-1 in the first adapter 200, and the signal terminals 114B of the temperature detectors 114 numbered 1, 2, 3, 4, and 5 are respectively connected to the detection channel AE of the first analog-to-digital converter 220 through the corresponding temperature sampling points;
  • the ground terminals 114A of the temperature detectors 114 numbered 6, 7, 8, 9, and 10 are short-circuited together and grounded through the first switch 240-2 in the first adapter 200, and the signal terminals 114B of the temperature detectors 114 numbered 6, 7, 8, 9, and 10 are respectively connected to the detection channel AE of the first analog-to-digital converter 220 through the corresponding temperature sampling points.
  • each temperature sampling point is connected to the DC power supply VCC via the corresponding first voltage divider resistor 230 in the first adapter 200.
  • a second connector 280 is provided between the first adapter 200 and the electric field generator 300, and the second connector 280 is suitable for connecting the electric field generator 300 to the first adapter 200.
  • the first adapter 200 also includes a second cable 290 connected to the second connector 280.
  • the second connector 280 is a second plug, and a second socket 310 is provided on the electric field generator 300 corresponding to the second connector 280.
  • the second plug and the second socket 310 are press-type spring connectors, that is, the second connector 280 uses a connector to connect the first adapter 200 and the electric field generator 300.
  • each of the first connectors 180-X1, 180-Y1, 180-X2 and 180-Y2 is connected to the second connector 280 through an AC line, and the first connectors 180-X1, 180-Y1, 180-X2 and 180-Y2 are also connected to multiple groups of first switches 240 and first analog-to-digital converters 220, respectively.
  • the second connector 280 is connected to the first communication transceiver 250 via a receiving data line RX and a transmitting data line TX, a VCC pin of the second connector 280 is connected to a power supply end of the first controller 210, a GND pin of the second connector 280 is grounded, and the VCC pin of the second connector 280 is also connected to a temperature sampling point via a corresponding first voltage-dividing resistor 230.
  • the first controller 210 is connected to the plurality of first switches 240, and the first controller 210 is connected between the first analog-to-digital converter 220 and the first communication transceiver 250.
  • the first controller 210 may also send a plurality of AD sampling values to the electric field generator 300 through the first communication transceiver 250, so that the electric field generator 300 can identify the type of the corresponding electrode sheet 100 according to the plurality of AD sampling values when the electrode sheet is normal. That is, when the electrode sheet is normal, the type of the corresponding electrode sheet 100 may be determined by the first controller 210 or the electric field generator 300 based on the AD sampling values.
  • the temperature detector 114 is a thermistor.
  • the temperature detector 114 is a thermistor with a negative temperature coefficient, and its characteristics are that the higher the temperature, the smaller the resistance, and the lower the temperature, the larger the resistance. Since the electrode sheet 100 is applied to the human body surface when in use, and the human body surface temperature is generally 36°C to 37°C, a thermistor with a negative temperature coefficient in the temperature range of 0°C to 50°C can be selected. For example, a thermistor model NCP18XH103D03RB can be selected.
  • the temperature detector 114 is a thermistor with a positive temperature coefficient.
  • the DC power source VCC sequentially provides DC power to the first voltage-dividing resistor 230, the temperature detector 114 and the first diode 117.
  • VADC is the AD sampling value, that is, the voltage value
  • VCC is also used to indicate the voltage of the DC power supply
  • VD is the voltage drop of the first diode 117
  • R is the resistance of the thermistor
  • Rz is the resistance of the first voltage divider resistor 230 .
  • the corresponding AD sampling value can be 3.3 V.
  • the corresponding AD sampling value can be 0 V.
  • the voltage value collected by the first analog-to-digital converter 220 can be reasonably segmented for distinction, and the voltage value can be converted into a corresponding code, that is, the voltage value has different voltage intervals, corresponding to different codes, and the coding array of the electrode sheet 100 can be determined based on the code, and the coding array includes at least one of the first code, the second code and the third code, wherein the first code is used to indicate that the temperature detector 114 is in a normal state, the second code is used to indicate that the temperature detector 114 is in an open circuit state or an unset state, and the third code is used to indicate that the temperature detector 114 is in a short circuit state.
  • the type of the electrode sheet 100 that is, the number of electrode elements 112 on the electrode sheet 100, can be identified through the coding array.
  • the temperature detector 114 senses the temperature in the range of 0°C to 50°C, and the AD sampling value obtained by the first analog-to-digital converter 220, that is, the voltage value range is 0.88V to 2.20V, considering the detection error factors, etc., the voltage value range can be appropriately enlarged to 0.5V to 3V.
  • the corresponding code is the first code such as 1; when the AD sampling value obtained by the first analog-to-digital converter 220 is less than or equal to 0.3V, the corresponding code is the third code such as 0; when the AD sampling value obtained by the first analog-to-digital converter 220 is greater than or equal to 3.1V, the corresponding code is the second code such as 2.
  • the corresponding code is the third code such as 0; if the temperature detector 114 is normal, the corresponding code is the first code such as 1; if there is no temperature detector 114 or the temperature detector 114 is disconnected, the corresponding code is the second code such as 2.
  • the first analog-to-digital converter 220 When sampling, no matter which type of electrode sheet 100 (i.e., the number of electrode elements 112 or temperature detectors 114 of the electrode sheet 100 is any number less than or equal to 20), the first analog-to-digital converter 220 obtains 20 AD sampling values each time, and after each acquisition is completed, a 20-bit coding array is formed based on the 20 AD sampling values. Each type of electrode sheet 100 has a corresponding preset coding array. Therefore, the type of the electrode sheet 100 can be automatically identified by comparing the coding array obtained by acquisition with the preset coding array.
  • the first controller 210 can determine the coding array of the corresponding electrode sheet 100 according to a number of AD sampling values, and determine the type of the corresponding electrode sheet 100 according to the coding array. As shown in FIG10 , under normal circumstances, when the electrode sheet 100 has 20 electrode elements 112, that is, the corresponding detection positions of the electrode sheet 100 numbered 1 to 20 all have temperature detectors 114, and the codes are all 1, the 20 codes are combined to obtain a 20-bit coding array 11111 11111 11111 11111.
  • the electrode sheet 100 has 9 electrode elements 112 and 9 temperature detectors 114, that is, when it has 9 electrode units 110, the 9 electrode elements 112 and the 9 temperature detectors 114 are arranged in two rows and five columns in circuit connection, and the 9 electrode elements 112 and the 9 temperature detectors 114 are arranged in sequence, and a corresponding position of the 9 temperature detectors 114 is short-circuited with a conductor.
  • a wire (unnumbered) is provided at the intersection of two row groups and five column groups in the circuit connection to short-circuit the ground terminal 114A of the temperature detector 114 in the same row group, and at the same time to short-circuit the signal terminal 114B of the temperature detector 114 in the same column group.
  • the detection position corresponding to each electrode element 112 is numbered 1 to 9, that is, the corresponding detection positions of the electrode sheet 100 numbered 1 to 9 all have a temperature detector 114, and the codes are all 1.
  • the next detection position i.e. the corresponding detection position numbered 10
  • the next detection position has no electrode element 112 (no temperature detector 114) set, and is short-circuited by a wire (unnumbered), and the corresponding code is 0
  • the corresponding detection positions numbered 11 to 20 have no electrode element 112 (no temperature detector 114) set, and are not short-circuited by a wire (unnumbered), and are in a disconnected state, and the corresponding code is 2. Therefore, the 20-bit codes are combined to obtain a 20-bit code array 11111 11110 22222 22222.
  • the electrode sheet 100 has 13 electrode elements 112 and 13 temperature detectors 114
  • the 13 electrode elements 112 and the 13 temperature detectors 114 are arranged in three rows and five columns in circuit connection, and the 13 electrode elements 112 and the 13 temperature detectors 114 are arranged sequentially, and a wire (unnumbered) is short-circuited at a corresponding position of the 13 temperature detectors 114, that is, a wire (unnumbered) is arranged at the intersection of the three rows and four columns in circuit connection to short-circuit the ground terminal 114A of the temperature detector 114 in the same group, and at the same time short-circuit the signal terminal 114B of the temperature detector 114 in the same column group.
  • the detection position corresponding to each electrode element 112 is numbered 1 to 13, that is, the corresponding detection positions of the electrode sheet 100 numbered 1 to 13 all have a temperature detector 114, and the code is all 1.
  • the next detection position i.e. the corresponding detection position numbered 14
  • the corresponding detection positions numbered 15 to 20 have no electrode element 112 (no temperature detector 114) and are not short-circuited in parallel by wires (unnumbered), and are in a disconnected state
  • the corresponding code is 2. Therefore, the 20-bit code is combined to obtain a 20-bit code array of 11111 11111 11102 22222.
  • the 19 electrode elements 112 and the 19 temperature detectors 114 are arranged in four rows and five columns in circuit connection, and the 19 electrode elements 112 and the 19 temperature detectors 114 are arranged sequentially, and a wire (unnumbered) is short-circuited at a corresponding position of the 19 temperature detectors 114, that is, a wire (unnumbered) is arranged at the intersection of the four rows and five columns in circuit connection to short-circuit the ground terminal 114A of the temperature detector 114 in the same row group, and at the same time short-circuit the signal terminal 114B of the temperature detector 114 in the same column group.
  • the detection bit corresponding to each electrode element 112 is numbered 1 to 19, that is, the detection bits corresponding to numbered 1 to 19 of the electrode sheet 100 all have a temperature detector 114, and the codes are all 1. Different from the electrode sheet 100 having 20 electrode elements 112, the next detection bit (i.e. the corresponding detection bit numbered 20) has no electrode element 112 (no temperature detector 114) and is short-circuited in parallel by wires (unnumbered), and the corresponding code is 0. Therefore, the 20-bit codes are combined to obtain a 20-bit code array of 11111 11111 11111 11110.
  • the first analog-to-digital converter 220 collects the voltage of 3.3V of the DC power supply VCC, so the 20-bit coding array is 22222 22222 22222 22222.
  • the electrode sheet 100 with 1 electrode element 112 and 1 temperature detector 114 has a corresponding coding array of 10222 22222 22222 22222; the electrode sheet 100 with 2 electrode elements 112 and 2 temperature detectors 114 has a corresponding coding array of 11022 22222 22222 22222; the electrode sheet 100 with 3 electrode elements 112 and 3 temperature detectors 114 has a corresponding coding array of 11102 22222 22222 22222; the electrode sheet 100 with 4 electrode elements 112 and 4 temperature detectors 114 has a corresponding coding array of 11110 22222 22222 22222; the electrode sheet 100 with 5 electrode elements 112 and 5 temperature detectors 114 has a corresponding coding array of 11111 02222 22222 22222; with 6 electrode elements For an electrode sheet 100 having 6 electrode elements 112 and 12 temperature detectors 114, the corresponding coding array is 11111 10222 22222 22222; for an electrode sheet 100 having 7 electrode elements 112 and 7 temperature detectors 114, the corresponding coding array is 11111 11022 22;
  • the above 21 number arrays are all different, so the first controller 210 can determine the type of electrode sheet 100 connected to the first adapter 200 or whether the electrode sheet 100 is connected through the coding array when the electrode sheet 100 is normal. It should be noted that the electric field generator 300 uses the same method to determine the type of electrode sheet 100 connected to the first adapter 200 or whether the electrode sheet 100 is connected, and the details are not repeated here.
  • the first controller 210 determines whether the corresponding electrode sheet 100 has a temperature detection fault based on the coding array, wherein the detection signal of each temperature detector 114 sampled is also used to characterize whether the electrode sheet 100 has a temperature detection fault.
  • the AD sampling value sampled by the first analog-to-digital converter 220 is 3.3V
  • the corresponding sampling code is the second code 2
  • the corresponding abnormal code array is 11111 11111 11111 11112, which is inconsistent with the standard code array 11111 11111 11111, so the first controller 210 can distinguish the temperature detection failure.
  • the AD sampling value sampled by the first analog-to-digital converter 220 is 3.3V
  • the corresponding sampling code is the second code 2
  • the corresponding abnormal code array is 21111 11110 22222 22222, which is inconsistent with the standard code array 11111 11110 22222 22222, so the first controller 210 can distinguish the temperature detection failure.
  • the code "0" in the corresponding 20-bit code array is not the last bit, and the codes before the code “0” are all “1", and the codes after the code “0” are all “2"; or, the code “0” is the last bit and the codes before the code “0” are all “1”; or, all codes in the 20-bit code array are "1".
  • the code "0" in the corresponding 20-bit code array regardless of whether it is the last bit, the code before the code "0” appears to be a code different from “1” (code "2"), or all codes in the 20-bit code array are "1” or "2".
  • the present disclosure also provides a tumor treatment device (not shown), comprising: at least one pair of the aforementioned electrode sheets 100, or the aforementioned electric field treatment system.
  • the type of the electrode sheet 100 can be automatically identified under normal circumstances, thereby realizing temperature collection of different types of electrode sheets 100 without missing collection or generating interference signals.
  • the type of the electrode sheet 100 it can be determined whether the corresponding electrode sheet 100 has a temperature detection failure.
  • the present disclosure also provides a computer-readable storage medium (not shown) on which an electrode patch recognition program for an electric field therapy system is stored.
  • an electrode patch recognition program for an electric field therapy system is executed by a processor (not shown), the aforementioned electrode patch recognition of the electric field therapy system is implemented.
  • the type of the electrode sheet 100 can be automatically identified under normal circumstances, thereby realizing temperature collection of different types of electrode sheets 100 without missing collection or generating interference signals.
  • the type of the electrode sheet 100 is determined, it can be determined whether the corresponding electrode sheet 100 has a temperature detection failure.
  • the present disclosure also provides a first adapter 200 for an electric field therapy system, comprising a memory, a processor (not shown), and an electrode patch recognition program for the electric field therapy system stored in the memory and executable on the processor (not shown).
  • the processor executes the electrode patch recognition program for the electric field therapy system, the aforementioned electrode patch recognition of the electric field therapy system is implemented.
  • the type of the electrode sheet 100 when the electrode sheet 100 is normal, the type of the electrode sheet 100 can be automatically identified, thereby realizing temperature collection of different types of electrode sheets 100 without missing collection or generating interference signals.
  • the type of the electrode sheet 100 is determined, it can be determined whether the corresponding electrode sheet 100 has a temperature detection failure.
  • the present disclosure also provides an electric field generator 300 for an electric field therapy system, comprising a memory (not shown), a processor (not shown), and an electrode patch recognition program for the electric field therapy system stored in the memory (not shown) and executable on the processor.
  • the processor executes the electrode patch recognition program for the electric field therapy system, the aforementioned electrode patch recognition for the electric field therapy system is implemented.
  • the type of the electrode sheet when the electrode sheet 100 is normal, the type of the electrode sheet can be automatically identified, thereby realizing temperature collection of different types of electrode sheets 100 without missing collection or generating interference signals.
  • the type of the electrode sheet 100 is determined, it can be determined whether the corresponding electrode sheet 100 has a temperature detection failure.
  • the quality of the electrode sheet 100 can be monitored during use, so that the user can replace the electrode sheet 100 in time to avoid low-temperature burns.
  • the first controller 210 determines a test coding array based on the sampled detection signal of each temperature detector 114, and compares the test coding array with a preset standard coding array to identify the fault condition of each temperature detector 114 in the electrode sheet 100.
  • the standard coding array includes at least the first coding of the first coding and the second coding.
  • the first adapter 200 further includes a reminder unit (not shown), which is connected to the first controller 210.
  • the first controller 210 controls the reminder unit (not shown) to send a first reminder message and instruct the electric field generator 300 to continue working.
  • the first controller 210 controls the reminder unit such as an indicator light to light green, and when there is a faulty temperature detector 114 in the electrode sheet 100, the reminder unit such as an indicator light to light red.
  • the first controller 210 also determines the number of faulty temperature detectors 114 in the electrode sheet 100 when comparing the test coding array with the preset standard coding array, and determines whether the electrode sheet 100 needs to be replaced based on the number. For example, when the number exceeds the preset number (the minimum can be set to 1), it is determined that the electrode sheet 100 needs to be replaced, and when the number does not exceed the preset number, it is determined that the electrode sheet 100 does not need to be replaced.
  • the first controller 210 can also control the reminder unit (not shown) to send a second reminder message and instruct the electric field generator 300 to stop working when it is determined that the electrode sheet 100 needs to be replaced.
  • the reminder unit (not shown) is controlled to light up red and flash, and the reminder unit (not shown) can be controlled to alarm such as a buzzer, and a corresponding signal is sent to the electric field generator 300 through the first communication transceiver 250, so that the electric field generator 300 stops outputting the alternating electric signal.
  • the first adapter 200 periodically performs the aforementioned fault detection of the electrode sheet 100, and replaces the electrode sheet 100 in time. In addition to periodically performing the aforementioned fault detection of the electrode sheet 100, the first adapter 200 also obtains a number of AD sampling values based on the detection signal sampled from each temperature detector 114, and transmits the AD sampling values to the first controller 210. The first controller 210 converts the several AD sampling values to obtain a temperature signal to determine the temperature at the corresponding electrode element 112. The first controller 210 sends the temperature signal to the electric field generator 300 through the first communication transceiver 250.
  • the electric field generator 300 When the electric field generator 300 identifies that the electrode sheet 100 is overheated based on the temperature at the corresponding electrode element 112, the electric field generator 300 reduces the amplitude of the alternating electric signal or stops outputting the alternating electric signal.
  • the first controller 210 can calculate the temperature of each electrode element 112 in the electrode sheet 100 based on a number of AD sampling values, and then compare the temperature with the preset temperature. If the temperature exceeds the preset temperature, it is considered that the electrode sheet 100 is overheated.
  • the first communication transceiver 250 can send a corresponding signal to the electric field generator 300 so that the electric field generator 300 stops outputting the alternating electric signal or reduces the amplitude of the alternating electric signal.
  • the preset temperature range can be 39°C to 41°C, preferably 40.5°C.
  • the electric field generator 300 can also determine the test coding array based on the sampled detection signal of each temperature detector 114, and compare the test coding array with the preset standard coding array to identify the fault condition of each temperature detector 114 in the electrode sheet 100.
  • the electric field generator 300 also issues a first reminder message and continues to output an alternating electric signal when there is a faulty temperature detector 114 in the electrode sheet 100.
  • the electric field generator 300 may include a reminder unit (not shown), and when there is no faulty temperature detector 114 in the electrode sheet 100, the electric field generator 300 controls the reminder unit (not shown) such as an indicator light to light green, and when there is a faulty temperature detector 1144 in the electrode sheet 100, the reminder unit (not shown) such as an indicator light to light red.
  • the electric field generator 300 also determines the number of faulty temperature detectors 114 in the electrode sheet 100 when comparing the test coding array with the preset standard coding array, and judges whether the electrode sheet 100 needs to be replaced based on the number. For example, when the number exceeds the preset number, it is judged that the electrode sheet 100 needs to be replaced, and when the number does not exceed the preset number, it is judged that the electrode sheet 100 does not need to be replaced.
  • the electric field generator 300 also sends a second reminder message and stops outputting the alternating electric signal when it determines that the electrode sheet 100 needs to be replaced.
  • the electric field generator 300 determines that the electrode sheet 100 needs to be replaced, it controls the reminder unit (not shown) such as the indicator light to light up red and flash, and can control the reminder unit (not shown) such as the buzzer alarm, and stop outputting the alternating electric signal.
  • the reminder unit such as the indicator light to light up red and flash
  • the reminder unit such as the buzzer alarm
  • the electric field generator 300 also determines the temperature of the corresponding electrode element 112 according to the plurality of AD sampling values, and reduces the amplitude of the alternating electric signal or stops outputting the alternating electric signal when it identifies that the electrode sheet 100 is over-temperature according to the temperature of the corresponding electrode element 112. For example, the electric field generator 300 can calculate the temperature of each electrode element 112 in the electrode sheet 100 based on the plurality of AD sampling values, and then compare the temperature with the preset temperature. If the temperature exceeds the preset temperature, it is considered that the electrode sheet 100 is over-temperature. At this time, the output of the alternating electrical signal can be stopped or the amplitude of the alternating electrical signal can be reduced.
  • the preset temperature range can be 39°C to 41°C, preferably 40.5°C.
  • the first adapter 200 or the electric field generator 300 can determine the test code array of the electrode sheet 100 based on the AD sampling value, and identify whether multiple temperature detectors 114 in the electrode sheet 100 are in a fault condition according to the test code array, and execute corresponding reminder and protection strategies when a fault condition exists; it is also possible to obtain the number of faulty temperature detectors 114 based on the test code array when a fault condition exists, and determine whether the electrode sheet 100 needs to be replaced based on the number, and execute corresponding reminder and protection strategies when the electrode sheet 100 needs to be replaced; it is also possible to obtain the temperature of each electrode element 112 in the electrode sheet 100 based on the AD sampling value, and determine whether the electrode sheet 100 is over-temperature based on the temperature, and execute corresponding reminder and protection strategies when an over-temperature condition exists.
  • Step 1 Provide at least one pair of qualified electrode sheets 100 (since the electrode sheets 100 are medical devices, each electrode sheet 100 will undergo multiple tests before leaving the factory to ensure that the electrode sheets 100 are qualified, so the electrode sheets 100 provided to the user are all qualified electrode sheets 100). Connect at least one pair of qualified electrode sheets 100 to the aforementioned first adapter 200, and connect the aforementioned first adapter 200 to the aforementioned electric field generator 300.
  • Step 2 Power on the electric field generator 300 to provide a DC power source VCC to the temperature detector 114 in at least one pair of qualified electrode sheets 100 for temperature detection.
  • the first analog-to-digital converter 220 in the first adapter 200 collects the detection signal of the temperature detector 114 of at least one pair of qualified electrode sheets 100 to obtain a number of AD sampling values.
  • the first controller 210 in the first adapter 200 obtains at least two sets of standard coding arrays A1 and A2 according to the above coding rules.
  • the at least two sets of standard coding arrays A1 and A2 can be stored in the first adapter 200 and used as comparison codes.
  • Step 3 Turn off the power of the electric field generator 300, and place the at least one pair of qualified electrode sheets 100 on the body surface corresponding to the tumor part of the patient.
  • Step 4 Power on the electric field generator 300 to provide a DC power source VCC to the temperature detector 114 in at least one pair of qualified electrode sheets 100 for temperature detection, and provide an alternating electric signal to the electrode element 112 in the electrode sheet 100 to form an alternating electric field between the paired electrode sheets 100 for tumor electric field therapy.
  • the first analog-to-digital converter 220 in the first adapter 200 collects the detection signal of the temperature detector 114 of at least one pair of qualified electrode sheets 100 to obtain a number of AD sampling values, and the first controller 210 in the first adapter 200 obtains at least two groups of test code arrays B1', B2' according to the above-mentioned coding rules.
  • Step 5 The first controller 210 in the first adapter 200 compares the test coding arrays B1’ and B2’ with the corresponding standard coding arrays A1 and A2 one by one. If the test coding arrays B1’ and B2’ are consistent with the standard coding arrays A1 and A2, steps 4 and 5 are looped; if at least one test coding array B1’ or B2’ is inconsistent with the standard coding arrays A1 and A2, step 6 is performed.
  • Step six The first adapter 200 confirms the number of abnormal temperature detectors 114 in the electrode sheet 100 corresponding to the inconsistent test coding array B1’ and/or B2’, and determines whether the number of abnormal temperature detectors 114 in the corresponding electrode sheet 100 exceeds an upper limit. If it does not exceed the upper limit, proceed to step seven; if it exceeds the upper limit, proceed to step eight.
  • Step 7 Continue to cycle through steps 4 and 5.
  • Step 8 The first adapter 200 sends out an alarm by controlling the reminder unit (not shown) inside it, and sends a corresponding signal to the electric field generator 300 through the first communication transceiver 250, so that the electric field generator 300 stops the electrode elements in the electrode sheet 100.
  • 112 provides an alternating electrical signal to remind the user to replace the corresponding electrode sheet 100 .
  • Step nine turn off the power of the electric field generator 300 , remove the electrode sheet 100 to be replaced from the first adapter 200 , and connect a new electrode sheet 100 to the first adapter 200 .
  • Step 10 Power on the electric field generator 300, and continue to provide a DC power supply VCC to the temperature detector 114 in the electrode sheet 100 connected to the first adapter 200 for temperature detection.
  • the first analog-to-digital converter 220 in the first adapter 200 collects the temperature signal detected by the temperature detector 114 of the replaced qualified electrode sheet 100, and obtains a number of AD sampling values.
  • the first controller 210 in the first adapter 200 obtains a new standard coding array A1' or/and A2' according to the aforementioned coding rules, and compares at least one set of new standard coding arrays A1' or/and A2' with the corresponding standard coding arrays A1 or/and A2 stored above.
  • the electric field generator 30 is turned off. 0 power supply, configure the replaced new electrode sheet 100 on the body surface corresponding to the tumor part of the patient, and then repeat steps 4 and 5; if after comparing the new standard coding array A1' and/or A2' with the aforementioned stored standard coding array A1 and/or A2 one by one, there is at least one set of new standard coding array A1' and/or A2' that is inconsistent with the aforementioned stored and corresponding standard coding array A1 and/or A2, then repeat steps 9 and 10 until the new standard coding array A1' and/or A2' of the replaced qualified electrode sheet 100 is consistent with the aforementioned stored and corresponding standard coding array A1 and/or A2.
  • the paired electrode sheets 100 may be electrode sheets 100 of the same design, that is, the paired electrode sheets 100 have the same standard coding arrays, that is, the standard coding arrays A1 and A2 are the same.
  • the above steps 1 and 2 can be replaced by the user inputting at least two sets of standard code arrays A1 and A2.
  • the at least two sets of standard code arrays A1 and A2 can be stored in the first adapter 200 and used as comparison codes.
  • the number of abnormal temperature detectors 114 in the corresponding electrode sheet 100 is determined by the number of codes that are different when the inconsistent coding array A1’ and/or A2’ is compared with the corresponding standard coding arrays A1 and A2. For example, when A1’ is compared with A1, only the first code is different, then the number of abnormal temperature detectors 114 in the corresponding electrode sheet 100 is 1; for another example, when A1’ is compared with A1, only the last two codes are different, then the number of abnormal temperature detectors 114 in the corresponding electrode sheet 100 is 2; and so on.
  • the upper limit can be set to 1, that is, there is an abnormal temperature detector 114 on the electrode sheet 100, that is, step 8 is performed to alarm and replace the electrode sheet 100.
  • the upper limit is not limited to 1, and can also be a positive integer close to the ratio of the number of temperature detectors 114 of the electrode sheet 100.
  • the reminder unit may include at least two indicator lights (not shown) corresponding to the electrode sheet 100 one by one, indicating the state of the corresponding electrode sheet 100.
  • the indicator lights are all green; when the electrode sheet 100 needs to be replaced, the indicator lights (not shown) corresponding to the electrode sheet 100 to be replaced are red.
  • the indicator lights (not shown) can also be long or flashing to indicate that the electrode sheet 100 does not need to be replaced or needs to be replaced.
  • the reminder unit may further include a buzzer (not shown) to indicate the state of the electrode sheet 100 and remind the user simultaneously with the alarm of the indicator light (not shown).
  • the buzzer does not sound an alarm; when the electrode sheet 100 needs to be replaced, the buzzer (not shown) sounds an alarm.
  • Step 11 The first controller 210 in the first adapter 200 calculates the temperature of the temperature detector 114 according to the plurality of AD sampling values. Detect the temperature signal and determine whether the temperature signal exceeds the preset temperature. If the temperature signal detected by the temperature detector 114 of the electrode sheet 100 exceeds the preset temperature, proceed to step 12; if the temperature signals detected by the temperature detector 114 of the electrode sheet 100 are all below the preset temperature, continue to step 11.
  • Step 12 When the first controller 210 in the first adapter 200 detects that the temperature detected by the temperature detector 114 of the electrode sheet 100 exceeds the preset temperature, the first controller 210 sends a corresponding signal through the first communication transceiver 250 so that the electric field generator 300 reduces or turns off the alternating electric signal of the corresponding pair of electrode sheets 100 until the temperature detected by the temperature detector 114 of the corresponding electrode sheet 100 is below the preset temperature.
  • the preset temperature range may be 39°C to 41°C, preferably 40.5°C.
  • the above process is described by taking the first adapter 200 performing quality monitoring of the electrode sheet 100 as an example.
  • the quality monitoring of the electrode sheet 100 may also be performed by the electric field generator 300, or the first adapter 200 and the electric field generator 300 may perform partial quality monitoring respectively. The details are not repeated here.
  • the number of the above-mentioned electrode sheets 100, the number of electrode elements 112 of each electrode sheet 100, and the setting of the sampling code are all exemplary descriptions and are not intended to limit the present disclosure.
  • multiple electrode elements 112 are configured into at least one row group and at least one column group, and the signal end 114B of the corresponding temperature detector 114 in each column group is connected together as a temperature sampling point, and the ground end 114A of the corresponding temperature detector 114 in each row group is grounded together through a first switch 240, and the opening and closing states of the first switch 240 are configured so that the analog detection signal detected by the corresponding temperature detector 114 in each row group is sampled simultaneously by the corresponding temperature sampling point, wherein the detection signal of each temperature detector 114 sampled under normal circumstances of the electrode sheet 100 is used to characterize the type of the electrode sheet 100, so that the type of the electrode sheet 100 can be automatically identified, and then the temperature collection of different types of electrode sheets 100 is realized without missing the collection or generating interference signals; the detection signal of each temperature detector 114 sampled when the type of the electrode sheet is determined is also used to characterize whether there is a temperature detection failure in the electrode sheet 100, so that an abnormal temperature detector 114 can be identified.
  • the present disclosure also provides an electrode sheet fault detection method, which is applied to the aforementioned electric field therapy system.
  • the method includes:
  • the analog temperature signal is characterized by a voltage value
  • the test code array of the electrode sheet 100 is determined according to the analog temperature signal detected by each temperature detector 114, including: determining the voltage interval in which the voltage value is located; determining the code corresponding to the corresponding temperature detector 114 according to the voltage interval in which the voltage value is located, wherein different voltage intervals in which the voltage value is located correspond to different codes; and generating the test code array of the corresponding electrode sheet 100 according to the code corresponding to each temperature detector 114.
  • the test code array includes at least one of a first code, a second code, and a third code, wherein the first code is used to indicate that the temperature detector 114 is in a normal state, the second code is used to indicate that the temperature detector 114 is in an open circuit state or an unset state, and the third code is used to indicate that the temperature detector 114 is in a short circuit state.
  • the method further includes: controlling the electric field therapy system to issue a first reminder message, and controlling the electric field generator 300 to continue to work.
  • the method further includes: determining the number of faulty temperature detectors 114 in the electrode sheet 100; and determining whether the electrode sheet 100 needs to be replaced according to the number.
  • the method further includes: controlling the electric field treatment system to issue a second reminder message, and controlling the electric field generator 300 to stop working.
  • the method before comparing the test coding array with the preset standard coding array, the method also includes: when the qualified electrode sheet 100 is connected to the electric field generator 300 through the first adapter 200, controlling the electric field generator 300 to work, and determining the preset standard coding array according to the analog temperature signal currently detected by each temperature detector 114.
  • the method further includes: determining the temperature at the corresponding electrode element 112 according to the analog temperature signal detected by each temperature detector 114; when it is identified that the electrode sheet 100 is overheated according to the temperature at the corresponding electrode element 112, controlling the electric field generator 300 to reduce the amplitude of the alternating electric signal or stop outputting the alternating electric signal.
  • the fault condition of each temperature detector 114 in the electrode sheet 100 and the number of faulty temperature detectors 114 are identified, and then determining whether the electrode sheet 100 needs to be replaced based on the number, thereby being able to monitor whether the electrode sheet 100 is damaged during use, so that the user can replace the electrode sheet 100 in time to avoid or reduce the risk of low-temperature burns for the patient; it is also possible to determine whether the electrode sheet 100 is overheated according to the sampled temperature signal detected by each temperature detector 114 to avoid low-temperature burns for the patient.
  • a tumor treatment device comprising: the aforementioned electric field treatment system.
  • the tumor treatment device of the embodiment of the present disclosure through the aforementioned electric field treatment system, it is possible to monitor whether the electrode sheet 100 is damaged during use, so that the user can replace the electrode sheet 100 in time to avoid or reduce the risk of low-temperature burns to the patient; it can also determine whether the electrode sheet 100 is overheated to avoid low-temperature burns to the patient.
  • the present disclosure also provides a computer-readable storage medium (not shown) on which an electrode sheet fault detection program is stored.
  • an electrode sheet fault detection program is executed by a processor, the aforementioned electrode sheet fault detection method is implemented.
  • the computer-readable storage medium (not shown) of the embodiment of the present disclosure through the aforementioned electrode sheet fault detection method, it is possible to monitor whether the electrode sheet is damaged during use, so that the user can replace the electrode sheet 100 in time to avoid or reduce the risk of low-temperature burns to the patient; it is also possible to determine whether the electrode sheet 100 is overheated to avoid low-temperature burns to the patient.
  • the present disclosure also provides a first adapter 200 of an electric field therapy system, comprising a memory (not shown), a processor (not shown), and an electrode sheet fault detection program stored in the memory (not shown) and executable on the processor (not shown).
  • a processor not shown
  • an electrode sheet fault detection program stored in the memory (not shown) and executable on the processor (not shown).
  • the first adapter 200 of the electric field therapy system of the embodiment of the present disclosure through the aforementioned electrode sheet fault detection method, it is possible to monitor whether the electrode sheet 100 is damaged during use, so that the user can replace the electrode sheet 100 in time to avoid or reduce the risk of low-temperature burns to the patient; it can also determine whether the electrode sheet 100 is overheated to avoid low-temperature burns to the patient.
  • the present disclosure also provides an electric field generator 300 of an electric field therapy system, comprising a memory (not shown), a processor (not shown), and an electrode sheet fault detection program stored in the memory (not shown) and executable on the processor (not shown).
  • the processor executes the electrode sheet fault detection program, the aforementioned electrode sheet fault detection method is implemented.
  • the electric field generator 300 of the electric field therapy system of the embodiment of the present disclosure through the aforementioned electrode sheet fault detection method, it is possible to monitor whether the electrode sheet 100 is damaged during use, so that the user can replace the electrode sheet 100 in time to avoid or reduce the risk of low-temperature burns to the patient; it can also determine whether the electrode sheet 100 is overheated to avoid low-temperature burns to the patient.
  • the quality inspection of the electrode sheet 100 can be performed during the production process.
  • the first controller 210 or the electric field generator 300 determines the test coding array according to the detection signal of each temperature detector 114 sampled, and sends the test coding array to the host computer (not shown), and the host computer compares the test coding array with the standard coding array when the electrode sheet 100 of the same type being inspected is qualified, and determines whether the electrode sheet 100 is qualified.
  • the host computer is also connected to a display (not shown) and an alarm (not shown).
  • the host computer also controls the display to display the test code array, standard code array and whether the electrode sheet 100 is qualified, and controls the alarm to send a reminder message when the electrode sheet 100 is unqualified.
  • the first adapter 200 and/or the electric field generator 300, the host computer, the display and the alarm constitute a quality inspection system for the electrode sheet.
  • Step 1 Provide a qualified electrode sheet 100, connect the electrode sheet 100 to the aforementioned first adapter 200, the aforementioned first adapter 200 is connected to the aforementioned electric field generator 300, the aforementioned electric field generator 300 is also connected to a host computer (such as a computer), and the host computer is also connected to a display, so that the host computer controls the display to display the coding array of the qualified electrode sheet 100 (i.e., the standard coding array) and the coding array of the tested electrode sheet 100' of the same batch and type as the qualified electrode sheet 100 (i.e., the test coding array).
  • a host computer such as a computer
  • Step 2 Power on the electric field generator 300 to provide a DC power supply VCC for the temperature detector 114 of the qualified electrode sheet 100 for temperature detection.
  • the first adapter 200 obtains a set of standard coding arrays A according to the above-mentioned coding rules.
  • the standard coding array A is routed from the first adapter 200 to the electric field generator 300 to the host computer, and finally stored in the host computer and used as a standard coding array for comparison.
  • Step three Provide a tested electrode sheet 100' which is of the same batch and type as the qualified electrode sheet 100, connect the tested electrode sheet 100' to the aforementioned first adapter 200, and the aforementioned first adapter 200 obtains a set of test coding arrays B according to the aforementioned coding rules.
  • the test coding array B is routed by the aforementioned first adapter 200 through the aforementioned electric field generator 300 to the host computer and displayed on the display.
  • Step 4 The host computer compares the test code array B with the standard code array A. If the test code array B is consistent with the standard code array A, proceed to step 5; if the test code array B is inconsistent with the standard code array A, proceed to step 6.
  • Step 5 The display shows that the electrode sheet 100' under test is "qualified", and the electrode sheet 100' under test is placed in the good product area, and then steps 3 to 4 are cycled to test the next electrode sheet 100' under test.
  • Step 6 The display shows that the electrode sheet 100' under test is "unqualified", and the electrode sheet 100' under test is placed in the defective product area, and then steps 3 to 4 are cycled to test the next electrode sheet 100' under test.
  • the host computer can also control the alarm to warn the operator that the electrode sheet 100' under test is "unqualified” and needs to be placed in the defective product area.
  • the alarm can be a sound alarm, a light alarm, etc.
  • the standard coding arrays of various qualified electrode sheets 100 can be stored in the host computer to form a standard coding array library of qualified electrode sheets 100.
  • the corresponding standard coding array A in the standard coding array library can be called as the comparison code for the inspection of the batch of electrode sheets 100' to be compared with the test coding array B corresponding to the electrode sheets 100' to be inspected, and the batch of electrode sheets to be inspected can be judged and identified. 100' is qualified.
  • the coding combination of the standard coding array A in the above steps and the corresponding test coding array B of the electrode sheet 100' under test is composed of a multi-bit coding arrangement, which is not limited to the 20-bit coding combination corresponding to the electrode sheet 100 in the embodiment of Figure 11 above, and can be a 13-bit, 24-bit, etc. coding arrangement combination.
  • the above steps are described by taking the first adapter 200 to perform quality inspection of the electrode sheet 100 as an example, and the electric field generator 300 can also perform quality inspection of the electrode sheet 100.
  • the number of electrode sheets 100 that can be connected to the first adapter 200, the number of electrode sheet units 33 in each electrode sheet 100, and the setting of sampling codes are all exemplary descriptions and are not intended to limit the present disclosure.
  • each temperature detector 114 in the electrode sheet 100 by sampling the temperature signal detected by each temperature detector 114 in the electrode sheet 100, and determining the test code number B of the electrode sheet according to the sampled analog temperature signal of each temperature detector 114, and comparing the test code array B with the standard code array A, it is determined whether the electrode sheet is qualified.
  • a quality detection method for an electrode sheet is provided, which is applied to the quality detection system for the electrode sheet described above. Referring to FIG. 18 , the method includes:
  • the analog temperature signal is represented by a voltage value
  • a test code array B of the electrode sheet 100 is determined according to the analog temperature signal detected by each temperature detector 114, including: determining the voltage range in which the voltage value is located; determining the code corresponding to the corresponding temperature detector 114 according to the voltage range in which the voltage value is located, wherein different voltage ranges in which the voltage value is located correspond to different codes (0, 1 or 2); generating the test code array B of the corresponding electrode sheet 100 according to the code (0, 1 or 2) corresponding to each temperature detector 114.
  • the standard coding array A includes at least the first coding
  • the standard coding array A may also include the second coding.
  • the test coding array B includes at least one of the first coding, the second coding, and the third coding.
  • the first coding is used to indicate that the temperature detector 114 is in a normal state
  • the second coding is used to indicate that the temperature detector 114 is in an open circuit state or an unset state
  • the third coding is used to indicate that the temperature detector 114 is in a short circuit state.
  • the first coding is "1”
  • the second coding is "2”
  • the third coding is "0".
  • the method further includes: displaying the test code array B of the electrode sheet 100, the standard code array A, and whether the electrode sheet 100 is qualified. Further, when the electrode sheet 100 is unqualified, the method further includes: controlling the quality detection system of the electrode sheet to issue a reminder message.
  • the method before comparing the test coding array B with the standard coding array A, the method also includes: when a qualified electrode sheet 100 is connected to the first adapter 200, controlling the first adapter 200 to operate, and determining the standard coding array A based on the analog temperature signal currently detected by each temperature detector 114.
  • the analog temperature signal detected by each temperature detector 114 in the electrode sheet 100 is obtained; the test code array B of the electrode sheet 100 is determined according to the analog temperature signal detected by each temperature detector 114; the test code array B is compared with the standard code array A to determine whether the electrode sheet 100 is qualified. In this way, during the production process of the electrode sheet 100, the electrode sheet 100 can be monitored. Whether each temperature detector 114 of 100 is connected normally can further determine whether the electrode sheet 100 is qualified, so as to screen out unqualified electrode sheets 100, thereby ensuring that each temperature detector 114 of the electrode sheet 100 shipped out of the factory can perform detection normally.
  • a computer-readable storage medium (not shown) is provided, on which a quality inspection program for the electrode sheet 100 is stored.
  • the quality inspection program for the electrode sheet 100 is executed by a processor (not shown), the aforementioned quality inspection method for the electrode sheet is implemented.
  • the computer-readable storage medium (not shown) of the embodiment of the present disclosure through the aforementioned electrode sheet quality inspection method, during the production process of the electrode sheet 100, it is possible to monitor whether each temperature detector 114 of the electrode sheet 100 is connected normally, and then determine whether the electrode sheet 100 is qualified, so as to screen out unqualified electrode sheets 100, thereby ensuring that each temperature detector 114 of the electrode sheet 100 leaving the factory can be inspected normally.
  • a first adapter 200 of an electrode sheet quality inspection system comprising a memory (not shown), a processor (not shown), and an electrode sheet quality inspection program stored in the memory (not shown) and executable on the processor (not shown).
  • the processor (not shown) executes the electrode sheet quality inspection program, the aforementioned electrode sheet quality inspection method is implemented.
  • the first adapter 200 of the electrode sheet quality inspection system of the embodiment of the present disclosure through the aforementioned electrode sheet quality inspection method, during the production process of the electrode sheet 100, it is possible to monitor whether each temperature detector 114 of the electrode sheet 100 is normally connected, and then determine whether the electrode sheet 100 is qualified, so as to screen out unqualified electrode sheets 100, thereby ensuring that each temperature detector 114 of the electrode sheet 100 leaving the factory can be inspected normally.
  • an electric field generator 300 of an electrode sheet quality detection system comprising a memory (not shown), a processor (not shown), and an electrode sheet quality detection program stored in the memory (not shown) and executable on the processor (not shown).
  • the processor (not shown) executes the electrode sheet quality detection program, the aforementioned electrode sheet quality detection method is implemented.
  • the electric field generator 300 of the electrode sheet quality inspection system of the embodiment of the present disclosure through the aforementioned electrode sheet quality inspection method, during the production process of the electrode sheet 100, it is possible to monitor whether each temperature detector 114 of the electrode sheet 100 is normally connected, and then determine whether the electrode sheet 100 is qualified, so as to screen out unqualified electrode sheets 100, thereby ensuring that each temperature detector 114 of the electrode sheet 100 leaving the factory can be inspected normally.
  • the electric field therapy system includes: at least one pair of electrode sheets 100, an adapter unit (not numbered), and an electric field generator 300.
  • the at least one pair of electrode sheets 100 are arranged on the patient's body surface in pairs.
  • the adapter unit (not numbered) includes a third adapter 500 and at least one pair of second adapters 400.
  • the second adapter 400 is suitable for connecting the corresponding electrode sheets 100
  • the third adapter 500 is suitable for connecting each second adapter 400 to the electric field generator 300.
  • the electric field therapy system includes the electrode sheets 100 arranged on the patient's body surface in pairs, the second adapter 400 electrically connected to the electrode sheets 100, the third adapter 500 electrically connected to the second adapter 400, and the electric field generator 300 electrically connected to the third adapter 500.
  • the electric field generator 300 generates an alternating electric signal for electric field therapy of tumors, and transmits the alternating electric signal to each pair of electrode sheets 100 through the third adapter 500 and the second adapter 400, so as to form an alternating electric field between the paired electrode sheets 100 to act on the tumor site of the patient for tumor treatment.
  • the electric field therapy system includes two pairs of electrode sheets 100, as shown in FIG19, including electrode sheet 100-X1, electrode sheet 100-Y1, electrode sheet 100-X2 and electrode sheet 100-Y2.
  • the electric field generator 300 generates two groups of switching alternating electric signals X1 and X2, Y1 and Y2, wherein the alternating electric signals X1 and X2 are a group, which are simultaneously applied through the third adapter 500 and the second adapter 400.
  • alternating electrical signals Y1 and Y2 are a group, and are simultaneously applied to another pair of electrode sheets 100 through the third adapter 500 and the second adapter 400.
  • the electrode sheet 100-X1 and the electrode sheet 100-X2 are a pair, and the alternating electrical signals X1 and X2 applied to the electrode sheet 100-X1 and the electrode sheet 100-X2 are simultaneously turned off and on;
  • the electrode sheet 100-Y1 and the electrode sheet 100-Y2 are a pair, and the alternating electrical signals Y1 and Y2 applied to the electrode sheet 100-Y1 and the electrode sheet 100-Y2 are simultaneously turned off and on.
  • each electrode sheet 100 includes a backing (not shown), an electrical functional component 190 supported by the backing (not shown), and a first cable 130 electrically connected to the electrical functional component 190.
  • a first connector 180 is connected between each electrode sheet 100 and the second adapter 400, and the first connector 180 is suitable for connecting the corresponding electrode sheet 100 to the corresponding second adapter 400.
  • the first connector 180 is a first plug
  • the second adapter 400 is correspondingly provided with a third socket 460.
  • the first plug and the third socket 460 are connectors, that is, the first connector 180 connects the second adapter 400 with the electrode sheet 100 in the form of a connector.
  • the electrical functional component 190 includes an adapter board 120 formed of a flexible circuit board, a plurality of electrode elements 112 disposed on the adapter board 120, a plurality of temperature detectors 114, and a handshake chip 118. Each electrode element 112 can apply an alternating electric field. Each temperature detector 114 is disposed in a one-to-one correspondence with an electrode element 112 to detect the temperature at the corresponding electrode element 112. In FIG20 , the electrical functional component 190 includes 20 electrode elements 112 that are spaced apart on the adapter board 120 and apply an alternating electric field to a patient, and 20 temperature detectors 114 that are grouped on the adapter board 120. Each temperature detector 114 includes a ground terminal 114A and a signal terminal 114B.
  • Each temperature detector 114 is also connected in series with a unidirectional conductive electronic element such as a first diode 117.
  • the first diode 117 has an anode 117B and a cathode 117A.
  • the anode 117B of the first diode 117 is connected to the ground terminal 114A of the temperature detector 114, and the cathode 117A of the first diode 117 serves as the ground terminal 114A of the temperature detector 114.
  • the temperature detector 114 detects the temperature at the corresponding electrode element 112, and the first diode 117 is used to avoid the resistance of other temperature detectors 114 from affecting the resistance of the detected temperature detector 114.
  • each electrode element 112 has an opening 1120 arranged in a through shape, and the opening 1120 accommodates a temperature detector 114 and a first diode 117 connected in series.
  • the electrode element 112 is a dielectric element, such as a high dielectric ceramic sheet or a polymer dielectric layer disposed on the adapter board 120; the temperature detector 114 is a thermistor; the first diode 117 is a low leakage current, low conduction voltage diode, and the handshake chip 118 is an EEPROM with encryption function.
  • the temperature detector 114 can also be disposed at other parts of the electrode element 112.
  • the electrode sheet 100 has various types, for example, an electrode sheet 100 with 20 electrode elements 112 is marked as a C-type electrode sheet 100, an electrode sheet 100 with 13 electrode elements 112 is marked as a B-type electrode sheet 100, and an electrode sheet 100 with 9 electrode elements 112 is marked as an A-type electrode sheet 100.
  • the electrode sheet 100 may also have other numbers of electrode elements 112.
  • FIG19 shows a C-shaped electrode sheet 100, each of which is provided with 20 electrode elements 112.
  • the 20 electrode elements 112 are roughly arranged in an array, for example, the 20 electrode elements 112 may be arranged in four rows and five columns, with five electrode elements 112 in each row; for another example, the 20 electrode elements 112 may also be arranged in four rows and six columns (as shown in FIG19 ), with the first row and the fourth row both having four electrode elements 112, and the four electrode elements 112 in each row of the first row and the fourth row are all located in each of the second to fifth columns, and the two middle rows each have six electrode elements 112, and the six electrode elements 112 in each row of the two middle rows are all located in each of the first to sixth columns.
  • the plurality of electrode elements 112 are configured as a plurality of row groups and a plurality of column groups in terms of circuit connection.
  • the signal terminals 114B of the corresponding temperature detectors 114 in each column group are connected together as a temperature sampling point.
  • the ground terminals 114A of the corresponding temperature detectors 114 in each row group are connected to the ground pin GND through the switch unit 440 in the second adapter 400 (i.e., the first switches 240, 240-1, 240-2, 240-3, 240-4 in FIGS. 2 to 16).
  • 20 electrode elements 112 are connected in parallel to the same conductive path of the adapter board 120.
  • the trace i.e., the second AC line
  • the 20 temperature detectors 114 are divided into four row groups and five column groups.
  • the ground terminals 114A of the five temperature detectors 114 in each row group are short-circuited through the same conductive trace (i.e., the second ground line) of the adapter board 120, and are connected to the ground pin GND through the switch unit 440.
  • the signal terminals 114B of the five temperature detectors 114 in each row group are respectively connected in parallel through the five conductive traces (i.e., the second signal lines) of the adapter board 120; the signal terminals 114B of the four temperature detectors 114 in each column group are short-circuited through the same conductive trace (i.e., the second signal line) of the adapter board 120, and the short-circuit point serves as a temperature sampling point.
  • the ground terminals 114A of the four temperature detectors 114 in each column group are respectively connected in parallel through the four conductive traces (i.e., the second ground lines) of the adapter board 120.
  • the adapter board 120 and the first connector 180 formed by the flexible circuit board each include 4 second grounding wires (wire 1, wire 2, wire 3, wire 4) connected to the ground pin GND, 5 second signal wires (wire 6, wire 7, wire 8, wire 9, wire 10) for transmitting the analog temperature signal detected by the corresponding temperature detector 114, and a second AC line (wire 11) for transmitting the alternating electric signal.
  • the adapter board 120 and the first connector 180 each also include a communication line (wire 5) for transmitting the communication signal (RSD) from the handshake chip 118 provided on the adapter board 120 to the second adapter 400.
  • the first cable 130 is electrically connected to the adapter board 120, which has 11 wires, which correspond one by one to 4 second ground wires (wire 1, wire 2, wire 3, wire 4) connected to the ground pin GND, 5 second signal lines (wire 6, wire 7, wire 8, wire 9, wire 10) transmitting analog temperature signals detected by the corresponding temperature detector 114, one second AC line (wire 11) transmitting alternating electrical signals, and a communication line (wire 5) transmitting communication signals from the handshake chip 118 to the second adapter 400.
  • 11 wires correspond one by one to 4 second ground wires (wire 1, wire 2, wire 3, wire 4) connected to the ground pin GND
  • 5 second signal lines (wire 6, wire 7, wire 8, wire 9, wire 10) transmitting analog temperature signals detected by the corresponding temperature detector 114
  • one second AC line (wire 11) transmitting alternating electrical signals
  • a communication line (wire 5) transmitting communication signals from the handshake chip 118 to the second adapter 400.
  • the ground pin of the handshake chip 118 is connected to a second ground wire (one of the wires No. 1, No. 2, No. 3 and No. 4), and is connected to the ground pin GND through the switch unit 440.
  • the communication pin of the handshake chip 118 is connected to the second adapter 400 through the communication line (wire No. 5).
  • the handshake chip 118 is connected to the No. 5 wire on the first connector 180 to obtain power and start the data communication function.
  • the handshake chip 118 is connected to a second ground wire on the first connector 180 to obtain a controllable GND electrical connection.
  • the handshake chip 118 is connected to the No. 4 second ground wire on the first connector 180.
  • the handshake chip 118 can be an energy storage element (not shown) or an external energy storage element (not shown) to store energy when the communication line (wire No. 5) transmits a high level, and release energy when the communication line (wire No. 5) transmits a low level, so that the handshake chip 118 has sufficient power and works normally.
  • the energy storage element is a capacitor. In this way, the handshake chip 118 only needs to use an additional wire to work normally.
  • the handshake chip 118 is suitable for handshake communication with an external device such as an electric field generator 300 to determine the connection status of each pair of electrode sheets 100, wherein, after the handshake chip 118 completes the handshake communication with the electric field generator 300, the switch state of the switch unit 440 is configured so that the analog temperature signal detected by the corresponding temperature detector 114 in each row group is sampled simultaneously by the corresponding temperature sampling point. After conversion, the analog temperature signal detected by each temperature detector 114 can be used to characterize the type of the electrode sheet 100 if the electrode sheet 100 is qualified, and can also be used to characterize whether the electrode sheet 100 has temperature abnormality.
  • the second adapter 400 includes a second controller 410, a second analog-to-digital converter 420, a filter module 490, a second communication transceiver 450, a switch unit 440, a resistor group 430, and a third cable 470.
  • the second controller 410, the second analog-to-digital converter 420, the filter module 490, the second communication transceiver 450, the switch unit 440, and the resistor group 430 are all disposed inside the second adapter 400.
  • the third cable 470 and the third socket 460 are respectively disposed on opposite sides of the second adapter 400.
  • the second controller 410 is electrically connected to the communication line (No. 5 wire) of the first connector 180 and the adapter board 120 to perform data communication with the handshake chip 118.
  • the switch unit 440 is configured.
  • the switch state of the handshake chip 118 is configured so that the handshake chip 118 is powered on and the handshake signal is sent to the handshake chip 118, and the handshake communication with the handshake chip 118 is determined according to the feedback signal of the handshake chip 118.
  • the switch state of the switch unit 440 is configured so that the second analog-to-digital converter 420 samples the temperature signal detected by the corresponding temperature detector 114 in each row group through the corresponding temperature sampling point at the same time to obtain a number of AD sampling values, and then the type of the corresponding electrode sheet 100 can be identified according to the number of AD sampling values when the electrode sheet 100 is qualified, and the corresponding electrode sheet 100 can be determined according to the number of AD sampling values during the process of the electric field generator 300 transmitting the alternating electric signal to the corresponding electrode sheet 100.
  • the second controller 410 when configuring the switch state of the switch unit 440, can control the switch unit 440 to make the four second grounding wires 1, 2, 3, and 4 in the first connector 180 electrically connected to the ground pin GND in sequence, so that a group of temperature detectors 114 connected to the corresponding second grounding wire are powered on for temperature detection.
  • the second controller 410 controls the switch unit 440 to electrically connect one of the four second grounding wires in the first connector 180 to the ground pin GND
  • the second controller 410 also controls the switch unit 440 to electrically disconnect the other three second grounding wires in the first connector 180 from the ground pin GND.
  • the resistor group 430 is 5 high-precision voltage-dividing resistors, which are respectively connected in series to the DC power supply VCC and the 5 second signal lines (wire 6, wire 7, wire 8, wire 9 and wire 10) of the first connector 180 for transmitting the analog temperature signal (voltage value of the temperature detector 114) detected by the corresponding temperature detector 114, that is, each temperature sampling point is connected to the DC power supply VCC through the corresponding voltage-dividing resistor.
  • the 5 voltage-dividing resistors are respectively connected in series with the corresponding temperature detector 114 to divide the voltage, so as to calculate the voltage value of the temperature detector 114 and convert it into a digital temperature signal through the second analog-to-digital converter 420 to obtain an AD sampling value, and the AD sampling value corresponds to the digital temperature.
  • the AD sampling value can be divided into zones according to the temperature range, so as to identify the type of the corresponding electrode sheet 100 and determine whether the corresponding electrode sheet 100 has a temperature abnormality. If the AD sampling value obviously deviates from the detected temperature range, for example, below 0°C or above 50°C, it is determined that the sampling point corresponding to the AD sampling value is not provided with a temperature detector 114 and an electrode element 112, so as to determine the number of electrode elements 112 to identify the type of the electrode sheet 100.
  • the filter module 490 is arranged between the second analog-to-digital converter 420 and the corresponding temperature sampling point, and the filter module 490 is used to filter the temperature signal detected by each temperature detector 114.
  • the filter module 490 includes 5 groups of filters corresponding to the resistor group 430, which are used to attenuate the intensity of the signal above the set cutoff frequency.
  • the first group of filters is connected in series with ports 1 and 6 in the filter module 490; the second group of filters is connected in series with ports 2 and 7 in the filter module 490; the third group of filters is connected in series with ports 3 and 8 in the filter module 490; the fourth group of filters is connected in series with ports 4 and 9 in the filter module 490; and the fifth group of filters is connected in series with ports 5 and 10 in the filter module 490.
  • the filter uses a first-order RC low-pass filter with a cutoff frequency less than 1/10 of the AC frequency of the alternating electrical signal.
  • a voltage follower can be added to the filter module 490 to optimize the sampling of the second analog-to-digital converter 420.
  • the second analog-to-digital converter 420 has five detection channels A, B, C, D, and E.
  • the five detection channels of the second analog-to-digital converter 420 are electrically connected to a corresponding group of filters of the filter module 490.
  • the five detection channels of the second analog-to-digital converter 420 are connected to ports 6, 7, 8, 9, and 10 of the filter module 490 in a one-to-one correspondence to electrically connect a corresponding group of filters.
  • the second analog-to-digital converter 420 can convert multiple analog temperature signals filtered by the filter module 490 into multiple digital temperature signals to obtain multiple AD sampling values.
  • the multiple AD sampling values converted by the second analog-to-digital converter 420 are serially transmitted to the third adapter 500 by the second controller 410 controlling the second communication transceiver 450.
  • the second adapter 400 exchanges data with the third adapter 500 through the second communication transceiver 450.
  • the second communication transceiver 450 enables the second controller 410 to exchange data with the third adapter 500.
  • the second communication transceiver 450 uses a UART unit.
  • the third cable 470 of the second adapter 400 includes 5 conductors.
  • the 5 conductors of the third cable 470 transmit alternating electric signals AC, GND, VCC, and bidirectional serial transmission data respectively.
  • the GND and VCC in the second adapter 400 are connected to the same end.
  • the third adapter 500 includes a third communication transceiver 520, a third controller 510, a fourth communication transceiver 530 and a fourth cable 560.
  • the third communication transceiver 520, the third controller 510 and the fourth communication transceiver 530 are all located inside the third adapter 500.
  • the third adapter 500 is electrically connected to the four second adapters 400 through a corresponding third connector 480, and each third connector 480 is suitable for connecting the corresponding second adapter 400 to the third adapter 500.
  • the third connector 480 transmits the signal transmitted by the third cable 470, that is, the alternating electrical signal AC, GND, VCC, and bidirectional serial transmission data.
  • the third connector 480 is a third plug, and the third adapter 500 is provided with a corresponding plurality of fourth sockets 550.
  • the third plug and the fourth socket 550 are plug-in components, that is, the third connector 480 is constructed to connect the second adapter 400 with the third adapter 500 in a plug-in manner.
  • the fourth cable 560 and the plurality of fourth sockets 550 are respectively located on opposite sides of the third adapter 500.
  • the third adapter 500 is provided with four fourth sockets 550, and the four fourth sockets 550 are respectively connected to the four second adapters 400 connected to the four electrode sheets 100 in a one-to-one correspondence.
  • Each fourth socket 550 is respectively provided with five connection terminals for transmitting the signals transmitted by the third cable 470: alternating electrical signal AC, GND, VCC, and bidirectional serial transmission data.
  • Each of the four fourth sockets 550 has a connection end for an alternating electrical signal AC, and is respectively connected to one of the four alternating electrical signals (X1, X2, Y1, Y2).
  • the four fourth sockets 550 respectively transmit one of the four alternating electrical signals (X1, X2, Y1, Y2), and are respectively electrically connected to the electrode sheets 100-X1, 100-X2, 100-Y1, 100-Y2 through a corresponding second adapter 400.
  • the fourth socket 550 for transmitting the alternating electrical signal X1 is electrically connected to the third connector 480 of a corresponding second adapter 400 connected to the electrode sheet 100-X1; the fourth socket 550 for transmitting the alternating electrical signal X2 is electrically connected to the third connector 480 of a corresponding second adapter 400 connected to the electrode sheet 100-X2; the fourth socket 550 for transmitting the alternating electrical signal Y1 is electrically connected to the third connector 480 of a corresponding second adapter 400 connected to the electrode sheet 100-Y1; the fourth socket 550 for transmitting the alternating electrical signal Y2 is electrically connected to the third connector 480 of a corresponding second adapter 400 connected to the electrode sheet 100-Y2.
  • the third adapter 500 is electrically connected to the electric field generator 300 via the fourth connector 540.
  • the fourth connector 540 is suitable for connecting the electric field generator 300 to the third adapter 500, so that the GND and VCC of the electric field generator 300 and the alternating electric signals X1, X2, Y1 and Y2 generated by the electric field generator 300 are transmitted to the third adapter 500 via the fourth connector 540.
  • the fourth connector 540 is a fourth plug.
  • the electric field generator 300 is provided with a second socket 310. Both the fourth plug and the second socket 310 are connectors, that is, the fourth connector 540 is configured to connect the third adapter 500 to the electric field generator 300 in a connector manner.
  • the third communication transceiver 520 is connected between the four third connectors 480 and the third controller 510.
  • the third controller 510 exchanges data with the second communication transceivers 450 of the four second adapters 400 through the third communication transceiver 520.
  • the third communication transceiver 520 uses a UART unit.
  • the second controller 410 can send the feedback signal of the corresponding handshake chip 118 to the third controller 510, so that the third controller 510 can judge whether the corresponding second controller 410 and the handshake chip 118 have completed the handshake communication according to the feedback signal of the handshake chip 118.
  • the second controller 410 can also send a number of AD sampling values to the third controller 510, so that when the electrode sheet 100 is qualified, the third controller 510 identifies the type of the corresponding electrode sheet 100 according to the number of AD sampling values, and/or, in the process of the electric field generator 300 transmitting the alternating electric signal to the corresponding electrode sheet 100, it is judged whether the temperature of the corresponding electrode sheet 100 is abnormal according to the number of AD sampling values.
  • the third controller 510 is generally connected between the third communication transceiver 520 and the fourth communication transceiver 530.
  • the fourth communication transceiver 530 is generally electrically connected to the electric field generator 300 through the fourth connector 540.
  • the third controller 510 exchanges data with the electric field generator 300 through the fourth communication transceiver 530.
  • the fourth communication transceiver 530 is an RS485-UART transceiver.
  • the alternating electrical signal inside the third adapter 500 corresponds to a connection terminal (X1 or X2 or Y1 or Y2) of the fourth socket 550 for transmitting the alternating electrical signal.
  • the second controller 410 can send the feedback signal of the handshake chip 118 to the electric field generator 300 through the third adapter 500, so that the electric field generator 300 determines whether the second controller 410 and the handshake chip 118 have completed the handshake communication according to the feedback signal of the handshake chip 118.
  • the second controller 410 can also send a number of AD sampling values to the electric field generator 300 through the third adapter 500, so that when the electrode sheet 100 is qualified, the electric field generator 300 can identify the type of the corresponding electrode sheet 100 according to the number of AD sampling values, and/or, in the process of transmitting the alternating electric signal to the corresponding electrode sheet 100, determine whether the temperature of the corresponding electrode sheet 100 is abnormal according to the number of AD sampling values.
  • the determination of handshake communication, the identification of the type of the electrode sheet 100, and the identification of whether the temperature of the electrode sheet 100 is abnormal can be implemented by the second controller 410 in the second adapter 400, the third controller 510 in the third adapter 500, or the electric field generator 300, and no specific limitation is made here. It should be noted that the number of the above-mentioned electrode sheets 100, the number of electrode elements 112 of each electrode sheet 100, the number of temperature detectors 114, etc., are all exemplary descriptions and are not intended to limit the present disclosure.
  • multiple electrode elements 112 are configured as multiple row groups and multiple column groups in circuit connection, and the signal end 114B of the corresponding temperature detector 114 in each column group is connected together as a temperature sampling point, and the ground end 114A of the corresponding temperature detector 114 in each row group is connected to the ground pin GND through the switch unit 440, and handshake communication is performed with the electric field generator 300 through the handshake chip 118 to determine the connection status of the electrode sheet 100.
  • the switch state of the switch unit 440 is configured so that the analog temperature signal detected by the corresponding temperature detector 114 in each row group is sampled simultaneously by the corresponding temperature sampling point.
  • the coverage rate of the temperature sensor can be effectively increased while controlling the number of cable cores, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the type of the electrode sheet 100 and whether the electrode sheet 100 has temperature abnormalities can be identified.
  • the present disclosure also provides a temperature detection method for an electric field therapy system, as shown in FIG22 , the method includes:
  • step S401 a handshake communication is performed with the handshake chip 118 via an adapter unit (not numbered) to determine the connection status of the corresponding electrode sheet 100 .
  • step S402 when each electrode sheet 100 is successfully connected to the adapter unit, the switch state of the switch unit 440 is configured through the adapter unit so as to simultaneously sample the temperature signal detected by the corresponding temperature detector 114 in each row group through the corresponding temperature sampling point.
  • the method further includes: judging whether the temperature of the corresponding electrode sheet 100 is abnormal according to a plurality of AD sampling values.
  • the method further includes: adjusting parameters of the alternating electric signal according to a number of AD sampling values.
  • the process of handshake, temperature detection and electric field control of the electric field therapy system is shown in Figure 23.
  • the process can be applied to the electric field therapy system shown in Figure 19 to perform tumor electric field therapy.
  • the process is not limited to the example shown in Figure 19, and the examples shown in Figures 25 and 26 are also applicable to the process.
  • the following steps are introduced for the example shown in Figure 19.
  • the electric field therapy system is connected. Specifically, four C-shaped electrode sheets 100 are connected to corresponding second adapters 400, four second adapters 400 are connected to a third adapter 500, the third adapter 500 is connected to the electric field generator 300, and the electric field generator 300 is connected to an adapted power source.
  • S502 it is detected whether the user issues a command to turn on the electric field. If no command to turn on the electric field is detected, S502 is repeated; if an electric field turn-on command is detected, the process proceeds to S503.
  • the second controller 410 of the second adapter 400 connected to the third connector 480-X1 receives the data transmitted by the No. 5 wire on the corresponding first connector 180 to determine whether the handshake is passed. If not, enter S504; if passed, enter S505.
  • This judgment step can occur in the second adapter 400, the third adapter 500 or the electric field generator 300. In this embodiment, the judgment step occurs in the second adapter 400.
  • the handshake chip 118 can receive the handshake request signal of the electric field generator 300, and feedback the handshake status to the second controller 410 of the second adapter 400, and the second controller 410 of the second adapter 400 determines that the handshake is successful.
  • the second controller 410 of the second adapter 400 cannot obtain the feedback signal of the handshake chip 118 , and the second controller 410 of the second adapter 400 determines that the handshake fails.
  • step S504 the electric field therapy system issues an alarm due to handshake failure and then enters step S502.
  • the second controller 410 of the second adapter 400 connected to the third connector 480-X2 receives the data transmitted by the No. 5 wire on the corresponding first connector 180 to determine whether the handshake is passed. If not, enter S502; if passed, enter S506.
  • This judgment step can occur in the second adapter 400, the third adapter 500 or the electric field generator 300. In this embodiment, the judgment step occurs in the second adapter 400.
  • the handshake chip 118 can receive the handshake request signal of the electric field generator 300, and feedback the handshake status to the second controller 410 of the second adapter 400, and the second controller 410 of the second adapter 400 determines that the handshake is successful.
  • the second controller 410 of the second adapter 400 cannot obtain the feedback signal of the handshake chip 118 , and the second controller 410 of the second adapter 400 determines that the handshake fails.
  • the second controller 410 of the second adapter 400 connected to the third connector 480-Y1 receives the data transmitted by the corresponding No. 5 wire on the first connector 180 to determine whether the handshake is passed. If not, it enters S502; if passed, it enters S507.
  • This judgment step can occur in the second adapter 400, the third adapter 500 or the electric field generator 300. In this embodiment, the judgment step occurs in the second adapter 400.
  • the handshake chip 118 can receive the handshake request signal of the electric field generator 300, and feedback the handshake status to the second controller 410 of the second adapter 400, and the second controller 410 of the second adapter 400 determines that the handshake is successful.
  • the second controller 410 of the second adapter 400 cannot obtain the feedback signal of the handshake chip 118 , and the second controller 410 of the second adapter 400 determines that the handshake fails.
  • the second controller 410 of the second adapter 400 connected to the third connector 480-Y2 receives the data transmitted by the corresponding No. 5 wire on the first connector 180 to determine whether the handshake is passed. If not, enter S502; if passed, enter S508.
  • This judgment step can occur in the second adapter 400, the third adapter 500 or the electric field generator 300. In this embodiment, the judgment step occurs in the second adapter 400.
  • the handshake chip 118 can receive the handshake request signal of the electric field generator 300, and feedback the handshake status to the second controller 410 of the second adapter 400, and the second controller 410 of the second adapter 400 determines that the handshake is successful.
  • the second controller 410 of the second adapter 400 cannot obtain the feedback signal of the handshake chip 118 , and the second controller 410 of the second adapter 400 determines that the handshake fails.
  • the second adapter 400 in the above S503, S505, S506, and S507 needs to control the switch unit 440 through the second controller 410 to electrically connect the No. 4 wire on the first connector 180 to the ground pin GND so that the handshake chip 118 can work normally. If the electric field generator 300 and the third adapter 500, the third adapter 500 and the second adapter 400, and the second adapter 400 and the electrode sheet 100 are all connected normally, then the handshake signal sent by the electric field generator 300 can eventually reach the handshake chip 118 of the electrode sheet 100, and the handshake state of the handshake chip 118 can be fed back to the electric field generator 300.
  • the handshake chip 118 cannot connect VCC and GND to form a loop, resulting in the second adapter 400, the third adapter 500, and the electric field generator 300 receiving the handshake status empty signal, and the handshake fails.
  • the electric field generator 300 of the electric field therapy system sets the electric field parameters and then enters S509.
  • the electric field parameters include the frequency and amplitude of the alternating electric signal.
  • the third adapter 500 sends a temperature reading request to the two second adapters 400 corresponding to the third connectors 480-Y1 and 480-Y2, and then reads the temperature signal to collect the temperatures corresponding to the 40 temperature detectors 114 on the electrode sheets 100-Y1 and 100-Y2. Then, the process proceeds to S510.
  • the electric field therapy system determines the type of electrode sheets 100-Y1 and 100-Y2 through the temperature signal and then enters S511.
  • the types of 100-Y1 and 100-Y2 are determined by the number of electrode elements 112 and temperature detectors 114 of the electrode sheets 100-Y1 and 100-Y2. This determination process can occur in the second adapter 400, the third adapter 500 or the electric field generator 300.
  • 100-Y1 and 100-Y2 are both determined to be C-type electrode sheets 100.
  • the C-type electrode sheet 100 has 20 temperature detectors 114, so the C-type electrode sheet 100 contains 20 valid temperature signals, and 100-Y1 and 100-Y2 have a total of 40 valid temperature signals.
  • the electric field therapy system determines whether any one of the 40 valid temperature signals collected by the second adapter 400 is abnormal, and if so, proceeds to S513. If all of the 40 valid temperature signals are normal, proceeds to S512.
  • the electric field generator 300 turns on the alternating electric signals Y1 , Y2 , turns off the alternating electric signals X1 , X2 and enters S514 .
  • the electric field therapy system alarms due to abnormal effective temperature signals of the electrodes 100-Y1 and 100-Y2, and then immediately enters S519.
  • the third adapter 500 sends a temperature reading request to the two second adapters 400 corresponding to the third connectors 480-X1 and 480-X2, and then reads the temperature signal to collect the temperatures corresponding to all the temperature detectors 114 on the electrode sheets 100-X1 and 100-X2. Then, the process proceeds to S515.
  • steps S509 and S514 are consistent with those of the second adapter 400 .
  • the specific processes of S509 and S514 in the second adapter 400 may refer to the process shown in FIG. 24 .
  • the electric field therapy system determines the type of the electrode sheet 100-X1, 100-X2 through the temperature signal and then enters S516. This determination process can occur in the second adapter 400, the third adapter 500, or the electric field generator 300.
  • 100-X1 and 100-X2 are both determined to be C-type electrode sheets 100.
  • the C-type electrode sheet 100 has 20 temperature detectors 114, so the C-type electrode sheet 100 contains 20 valid temperature signals, and 100-X1 and 100-X2 have a total of 40 valid temperature signals.
  • the electric field therapy system determines whether any one of the 40 valid temperature signals collected by the second adapter 400 is abnormal, and if so, proceeds to S513. If all of the 40 valid temperature signals are normal, proceeds to S517.
  • the electric field generator 300 turns on the alternating electric signals X1 and X2, turns off the alternating electric signals Y1 and Y2 and enters S518.
  • the total time of S512, S514, S515, S516 to S517 is fixed, and the total time is 1 second.
  • the electric field therapy system detects whether it has received a command from the user to turn off the electric field. If it is detected that a command to turn off the electric field has been received, it enters S519; if it is not detected that a command to turn off the electric field has been received, it enters S520.
  • the electric field therapy system turns off the electric field and then enters S502. At this point, the electric field therapy ends and waits for the next electric field turn-on command.
  • the electric field therapy system determines whether the electric field parameters need to be adjusted according to the current electric field amplitude and the collected temperature signal. If the electric field parameters need to be adjusted, it enters S508; if the electric field parameters do not need to be adjusted, it enters S509 to S518 for a cycle.
  • the total time of S517, S518, S520, S509, S510, S511 to S512 is fixed, which is 1s in the embodiment. In this way, the electric field therapy system can realize the alternating electric signals in the directions of X1 and X2 and the alternating electric signals in the directions of Y1 and Y2, which continuously output alternating electric signals with a period of 2s.
  • the electric field therapy system can reduce the time interval between turning off the alternating electric signals X1 and X2 and turning on the alternating electric signals Y1 and Y2 to 0s; and reduce the time interval between turning off the alternating electric signals Y1 and Y2 and turning on the alternating electric signals X1 and X2 to 0s, thereby improving the efficiency of electric field therapy while ensuring the accuracy of temperature acquisition.
  • the temperature collection process is shown in Figure 24. This process can be applied to the temperature collection process of any second adapter 400 applicable to electrode sheets 100-X1, 100-X2, 100-Y1, 100-Y2.
  • the above flowchart takes the second adapter 400 connected to 100-X1 as an example.
  • the second adapter 400 is connected to the electrode sheet 100-X1 and the third adapter 500. Enter S602.
  • the second adapter 400 determines whether it has received a temperature reading request sent by the third adapter 500. If it has received a temperature reading request, it proceeds to S603; if it has not received a temperature reading request, it repeats S602.
  • the second controller 410 of the second adapter 400 controls the switch unit 440 to electrically connect the No. 1 wire of the first connector 180 to the GND in the second adapter 400, and disconnect the No. 2, 3, and 4 wires (the No. 2, 3, and 4 wires are disconnected from the GND).
  • the five temperature detectors 114 numbered 1-5 on the electrode sheet 100-X1 are electrically connected to the resistor group 430 and the GND, and the 15 temperature detectors 114 numbered 6-20 are not electrically connected.
  • the second analog-to-digital converter 420 collects the temperature signal corresponding to the temperature detector 114 coded as 1-5 on the filtered electrode sheet 100-X1.
  • the second analog-to-digital converter 420 collects the analog temperature signals detected by the five temperature detectors 114 numbered 1-5 on the filtered electrode sheet 100-X1 in the order of detection channels AE and converts them into digital temperature signals, and then enters S605.
  • the alternating electric signal emitted by the electric field generator 300 is electrically connected to Y1 and Y2.
  • the voltage amplitude between Y1 and Y2 is usually greater than 100Vpp.
  • the alternating electric signal emitted by the electric field generator 300 is electrically disconnected from X1 and X2.
  • the device that controls the alternating electric signal switch usually has certain parasitic parameters, when the alternating electric signal is applied and X1 and X2 are disconnected, X1 and X2 still have a certain voltage amplitude.
  • the voltage amplitude of X1 and Y1 is usually greater than 4Vpp.
  • the filtering module 490 is required to attenuate the medium and high frequency signals in the analog temperature signal detected by the corresponding temperature detector 114 and then provide the second analog-to-digital converter 420 with conversion into a more accurate digital temperature signal.
  • the second controller 410 of the second adapter 400 controls the switch unit 440 to electrically connect the No. 2 wire of the first connector 180 to the GND in the second adapter 400, and disconnect the No. 1, 3, and 4 wires (the No. 1, 3, and 4 wires are disconnected from the GND).
  • the five temperature detectors 114 numbered 6-10 on the electrode sheet 100-X1 are electrically connected to the resistor group 430 and the GND, and the 15 temperature detectors 114 numbered 1-5 and coded 11-20 are not electrically conductive. Enter S606.
  • the second analog-to-digital converter 420 collects the temperature signal corresponding to the temperature detector 114 numbered 6-10 on the electrode sheet 100-X1 after filtering.
  • the second analog-to-digital converter 420 collects the analog temperature signals detected by the five temperature detectors 114 numbered 6-10 on the electrode sheet 100-X1 after filtering in the order of detection channels A-E and converts them into digital temperature signals, and then enters S607.
  • the second controller 410 of the second adapter 400 controls the switch unit 440 to electrically connect the No. 3 wire of the first connector 180 to the GND in the second adapter 400, and disconnect the No. 1, 2, and 4 wires (the No. 1, 2, and 4 wires are disconnected from the GND).
  • the five temperature detectors 114 numbered 11-15 on the electrode sheet 100-X1 are electrically connected to the resistor group 430 and the GND, and the 15 temperature detectors 114 numbered 1-10 and 16-20 are not electrically conductive. Enter S608.
  • the second analog-to-digital converter 420 collects the temperature signals corresponding to the temperature detectors 114 coded as 11-15 on the filtered electrode sheet 100-X1.
  • the second analog-to-digital converter 420 collects the analog temperature signals detected by the five temperature detectors 114 numbered 11-15 on the filtered electrode sheet 100-X1 in the order of detection channels A-E and converts them into digital temperature signals, and then enters S609.
  • the second controller 410 of the second adapter 400 controls the switch unit 440 to electrically connect the No. 4 wire in the first connector 180 to the GND in the second adapter 400, and disconnect the No. 1, 2, and 3 wires (the No. 1, 2, and 3 wires are disconnected from the GND).
  • the five temperature detectors 114 numbered 16-20 on the electrode sheet 100-X1 are electrically connected to the resistor group 430 and the GND, and the 15 temperature detectors 114 numbered 1-15 are not electrically conductive. Enter S610.
  • the second analog-to-digital converter 420 collects the temperature signal corresponding to the temperature detector 114 coded as 16-20 on the filtered electrode sheet 100-X1.
  • the second analog-to-digital converter 420 collects the analog temperature signals detected by the five temperature detectors 114 coded as 16-20 on the filtered electrode sheet 100-X1 in the order of detection channels A-E and converts them into digital temperature signals, and then enters S611.
  • the second adapter 400 ends temperature acquisition, and the second controller 410 sends a temperature signal to the third adapter 500 through the second communication transceiver 450, and then enters S602.
  • the temperature signal in this step is a digital temperature signal converted by the second analog-to-digital converter 420.
  • the sent temperature signal may include information about the type of the electrode sheet 100-X1.
  • the electrode sheet 100 is a B-type electrode sheet 100 having 13 electrode elements 112 ; as shown in FIG. 26 , the electrode sheet 100 is an A-type electrode sheet 100 having 9 electrode elements 112 .
  • the electrode sheets 100-X1, 100-X2, 100-Y1, and 100-Y2 can be used in any combination of A-type, B-type, and C-type electrode sheets 100.
  • 50X1 and 100-X2 use B-type electrode sheets 100
  • 100-Y1 and 100-Y2 use C-type electrode sheets 100.
  • the temperature acquisition process for the B-type electrode sheet 100 in this embodiment is consistent with the process for the C-type electrode sheet 100 shown in FIG. 19 , but the analog temperature signals acquired by the detection channels D and E of the second analog-to-digital converter 420 in S608 of the temperature acquisition process are close to The analog signal of the VCC power supply voltage value is because the wires 4, 5, 9, and 10 on the electrode sheet 100 electrically connected to the detection channels D and E are not electrically connected to GND. Similarly, in S610 of the temperature acquisition process, the analog temperature signals collected by the detection channel AE of the second analog-to-digital converter 420 are all analog signals close to the VCC power supply voltage value.
  • the temperature signal sent by the second adapter 400 includes the digital temperature signals corresponding to 13 temperature detectors 114 on the electrode sheet 100, 1-13, a total of 13, and 14-20, a total of 7 digital temperature signals converted from analog signals close to the VCC power supply voltage value without temperature detectors 114. These 7 digital temperature signals converted from analog signals close to the VCC power supply voltage value are interference temperature data.
  • the process of the electric field therapy system for the B-type electrode sheet 100 in this embodiment is consistent with the process for the C-type electrode sheet 100 shown in Figure 19.
  • the analog temperature signals corresponding to the 7 temperature sensors 114 numbered 14-20 in the temperature signal in S515 are all analog signals close to the VCC power supply voltage value.
  • the third adapter 500 can determine that 100-X1 is a B-type electrode sheet based on the above basis.
  • the judgment process can occur in the second adapter 400.
  • the electric field therapy system can exclude the temperature signals corresponding to the 7 temperature sensors 114 numbered 14-20 without temperature detectors 114 and then perform data processing.
  • the electric field therapy system can determine in S510 that electrode sheets 100-Y1 and 100-Y2 are both C-type electrode sheets 100, and the 40 temperature signals are all valid temperature data, and determine whether there are abnormalities in the 40 valid temperature data in S511; determine in S515 that electrode sheets 100-X1 and 100-X2 are both B-type electrode sheets 100, and therefore the temperature signals of 13 temperature detectors 114 numbered 1-13 corresponding to each of electrode sheets 100-X1 and 100-X2 are valid temperature data, and electrode sheets 100-X1 and 100-X2 have a total of 26 valid temperature data, and then determine whether there are abnormalities in these 26 valid temperature data in S516.
  • the temperature acquisition process for the A-type electrode sheet 100 in this embodiment is consistent with the process for the C-type electrode sheet 100 shown in Figure 19, but the analog temperature signal collected by the detection channel E of the second analog-to-digital converter 420 in S606 is close to the analog signal of the VCC power supply voltage value, which is because the No. 10 wire on the electrode sheet 100 electrically connected to the sampling channel 5 is not electrically connected to GND. Similarly, the analog temperature signals collected by the detection channels A-E of the second analog-to-digital converter 420 in S608 are all close to the analog signal of the VCC power supply voltage value, which is because the No. 3, 6, 7, 8, 9, and 10 wires on the electrode sheet 100 electrically connected to the detection channels A-E are not electrically connected to GND.
  • the temperature signal sent by the second adapter 400 includes digital temperature signals corresponding to the 9 temperature detectors 114 numbered 1-9 on the electrode sheet 100 and digital temperature signals corresponding to the 11 temperature detectors 114 not provided numbered 10-20 converted from analog signals close to the VCC supply voltage value.
  • the process of the electric field therapy system for the A-type electrode sheet 100 in this embodiment is consistent with the process for the C-type electrode sheet 100 shown in Figure 19.
  • the analog temperature signals corresponding to the 11 temperature signals numbered 10-20 in S515 without the temperature detector 114 are all analog signals close to the VCC power supply voltage value.
  • the third adapter 500 can determine that 100-X1 is an A-type electrode sheet based on the above basis.
  • the judgment process can occur in the second adapter 400.
  • the electric field therapy system can exclude the temperature signals corresponding to the numbers 10-20 and then perform signal processing.
  • the electric field therapy system can determine in S510 that 100-Y1 and 100-Y2 are both C-type electrode sheets 100, and that the 40 temperature signals are all valid temperature data, and determine in S511 whether there is an abnormality in the 40 valid temperature data; and determine in S515 that 100-X1 and 100-X2 are both A-type electrode sheets 100, so
  • the temperature signals of channels numbered 1-9 corresponding to 100-X1 and 100-X2 are valid temperature data, and there are 18 valid temperature data in total. Then, in S516, it is determined whether there is any abnormality with these 18 valid temperature data.
  • type A, type B, and type C electrode sheets 100 can be used in combination without changing the electric field generator 300, the third adapter 500, the second adapter 400, and the electric field therapy system process, and the electric field therapy efficiency can be improved without affecting the flexibility of the electrode cable.
  • temperature detection and electric field control can not only effectively increase the coverage rate of the temperature detector 114 while controlling the number of cable cores, avoid excessive weight on the electrode sheet 100, and maintain the application effect of the electrode sheet 100, but also has the advantages of flexible combination of electrode sheets 100, accurate identification of electrode sheets 100, and small electric field shut-off interval, which can improve patient compliance and improve patient treatment effect; at the same time, whether to turn off the electric field or adjust the electric field parameters of the corresponding pair of electrode sheets 100 can be controlled based on the detected temperature.
  • the present disclosure also provides a tumor treatment device, including: at least one pair of the aforementioned electrode sheets 100, or the aforementioned electric field treatment system.
  • the temperature detector 114 can achieve 100% coverage while controlling the number of cable cores, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the present disclosure also provides a computer-readable storage medium (not shown) on which a temperature detection program of the electric field therapy system is stored.
  • a temperature detection program of the electric field therapy system is executed by a processor (not shown), the aforementioned electrode patch identification method of the electric field therapy system is implemented.
  • the coverage rate of the temperature detector 114 can be effectively increased while controlling the number of cable cores, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the present disclosure also provides a third adapter 500 for an electric field therapy system, comprising a memory (not shown), a processor (not shown), and a temperature detection program for the electric field therapy system stored in the memory (not shown) and executable on the processor (not shown).
  • a third adapter 500 for an electric field therapy system comprising a memory (not shown), a processor (not shown), and a temperature detection program for the electric field therapy system stored in the memory (not shown) and executable on the processor (not shown).
  • the processor executes the temperature detection program for the electric field therapy system, the aforementioned temperature detection method for the electric field therapy system is implemented.
  • the third adapter 500 of the electric field therapy system of the embodiment of the present disclosure through the aforementioned temperature detection method of the electric field therapy system, it is possible to effectively increase the coverage rate of the temperature detector 114 while controlling the number of cable cores, thereby avoiding excessive load on the electrode sheet and maintaining the application effect of the electrode sheet.
  • the present disclosure also provides a second adapter 400 for an electric field therapy system, comprising a memory (not shown), a processor (not shown), and a temperature detection program for the electric field therapy system stored in the memory (not shown) and executable on the processor (not shown).
  • a second adapter 400 for an electric field therapy system comprising a memory (not shown), a processor (not shown), and a temperature detection program for the electric field therapy system stored in the memory (not shown) and executable on the processor (not shown).
  • the processor executes the temperature detection program for the electric field therapy system, the aforementioned temperature detection method for the electric field therapy system is implemented.
  • the second adapter 400 of the electric field therapy system of the embodiment of the present disclosure through the aforementioned temperature detection method of the electric field therapy system, it is possible to effectively increase the coverage rate of the temperature detector 114 while controlling the number of cable cores, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the present disclosure also provides an electric field generator 300 for an electric field therapy system, comprising a memory (not shown), a processor (not shown), and a temperature detection program for the electric field therapy system stored in the memory (not shown) and executable on the processor (not shown).
  • the processor (not shown) executes the temperature detection program for the electric field therapy system, the aforementioned temperature detection method for the electric field therapy system is implemented.
  • the electric field treatment system includes: at least one pair of electrode sheets 100, a fourth adapter 600 electrically connected to each electrode sheet 100, and an electric field generator 300 electrically connected to the fourth adapter 600.
  • At least one pair of electrode sheets 100 can be arranged on the patient's body surface in pairs, such as the four electrode sheets 100-X1, 100-Y1, 100-X2 and 100-Y2 in FIG. 27 , and each two electrode sheets 100 are applied as a pair to the body surface corresponding to the patient's tumor site.
  • the electric field generator 300 is used to generate an alternating electric signal, and switch the alternating electric signal to at least one pair of electrode sheets 100 through the fourth adapter 600, and each pair of electrode sheets 100 applies the alternating electric signal to the patient's tumor site, so that a therapeutic alternating electric field (i.e., a tumor treatment electric field) is generated between the same pair of electrode sheets 100, and acts on the patient's tumor site to treat the patient's tumor.
  • a therapeutic alternating electric field i.e., a tumor treatment electric field
  • the alternating electric signals applied to the two electrode sheets 100 in the same pair of electrode sheets 100 are different.
  • the two electrode sheets 100 respectively apply a set of alternating electric signals with opposite polarities, and generate an alternating electric field in one direction between the two electrode sheets 100. Alternating electric fields in different directions are generated between different pairs of electrode sheets 100.
  • each electrode sheet 100 includes an adapter board 120 ′′ formed of a flexible circuit board, a plurality of electrode elements 112 and a plurality of temperature detectors 114 arranged on the adapter board 120 ′′.
  • the plurality of electrode elements 112 are arranged roughly in an array, and each electrode element 112 can apply an alternating electric field.
  • the plurality of electrode elements 112 of the same electrode sheet 100 all apply the same alternating electric signal.
  • Each temperature detector 114 is arranged corresponding to one electrode element 112, and the number of temperature detectors 114 is equal to the number of electrode elements 112, that is, the coverage rate of the temperature detectors 114 on the electrode sheet 100 reaches 100%.
  • each electrode sheet 100 includes 13 electrode elements 112, and each electrode element 112 is correspondingly provided with a temperature detector 114, and the temperature at the corresponding electrode element 112 is detected by the temperature detector 114.
  • Each electrode element 112 is provided with an opening (unnumbered) extending therethrough, and the opening is suitable for accommodating a corresponding temperature detector 114, so as to realize real-time monitoring of the temperature of each electrode element 112, and to avoid the temperature of some electrode elements 112 not being monitored, resulting in excessively high surface temperature of the patient and causing low-temperature burns to the patient.
  • the opening of each electrode element 112 is located in the middle thereof.
  • the electrode element 112 is a dielectric element or a polymer dielectric layer provided on the adapter plate 120", and optionally, the electrode element 112 is a ceramic sheet.
  • the temperature detector 114 may also be provided at other parts of the electrode element 112, as long as the temperature detection at the corresponding electrode element 112 can be realized.
  • the plurality of electrode elements 112 and the corresponding plurality of temperature detectors 114 are configured as at least three row groups and at least three column groups in terms of the circuit connection structure.
  • the number of electrode elements 112 and temperature detectors 114 in the same row group are not exactly the same, and the number of electrode elements 112 and temperature detectors 114 in the same column group are not exactly the same.
  • the plurality of electrode elements 112 in each row group are connected in parallel to the same line, and the parallel lines of the plurality of electrode elements 112 in each row group are cascaded into one line, which is an alternating current signal line (AC line) for transmitting alternating current signals to the plurality of electrode elements 112.
  • AC line alternating current signal line
  • the arrangement here is to more clearly show the internal circuit connection of the electrode sheet 100 and the electrical connection between the electrode sheet 100 and the fourth adapter 600, and does not represent the arrangement of the electrode elements 112 in the spatial structure, and its spatial structure may be a roughly array structure as shown in FIG. 27 .
  • each temperature detector 114 are respectively a signal end 114B and a ground end 114A.
  • the multiple temperature detectors 114 in the same row group are connected in series, and a signal end 114B at the end of each row group is connected to the DC power supply VCC through the second switch 640 and the second voltage divider resistor 630 connected in series.
  • the ground ends 114A of the corresponding temperature detectors 114 in each column group are connected together and then connected to the ground pin GND through the third switch 690.
  • the total number of the second switch 640 and the third switch 690 does not exceed 9.
  • the field therapy system configures the switching timing of the second switch 640 and the third switch 690 so that the analog temperature signals detected by corresponding one or more combinations of all the temperature detectors 114 of the electrode sheet 100 are sampled respectively.
  • the 13 electrode elements 112 are configured into three row groups and five column groups, wherein the first row group and the second row group each have five electrode elements 112, the third row group has three electrode elements 112, and the first column group to the third column group each have three electrode elements 112, and the fourth column group and the fifth column group each have two electrode elements 112, that is, the 13 electrode elements 112 are arranged in three rows and five columns. As shown in FIG.
  • all temperature detectors 114 located in the same row group are connected in series to form a line (such as one of lines 1, 2 or 3) connected to the DC power supply VCC, the ground terminals 114A of all temperature detectors 114 located in the same row group are connected to the ground pin GND by 5 ground wires (such as ground wires 4, 5, 6, 7 and 8), the ground terminals 114A of all temperature detectors 114 located in the same column group are connected to the same ground wire (such as one of ground wires 4, 5, 6, 7 and 8), and the temperature detectors 114 arranged in series in each row group are respectively connected in series with a second ground wire at the DC power supply VCC terminal.
  • a line such as one of lines 1, 2 or 3
  • the ground terminals 114A of all temperature detectors 114 located in the same row group are connected to the ground pin GND by 5 ground wires (such as ground wires 4, 5, 6, 7 and 8)
  • the ground terminals 114A of all temperature detectors 114 located in the same column group are connected to the same ground
  • the switch 640 (such as the second switch 640-1, 640-2 or 640-3) and the second voltage-dividing resistor 630 (such as the second voltage-dividing resistor 630-1, 630-2 or 630-3), and the second voltage-dividing resistor 630 (such as the second voltage-dividing resistor 630-1, 630-2 or 630-3) are closer to the DC power supply VCC terminal than the second switch 640 (such as the second switch 640-1, 640-2 or 640-3), and each ground line is connected in series with a third switch 690 (such as the third switch 690-1, 690-2, 690-3, 690-4 or 690-5). It should be noted that the types of the second switch 640 and the third switch 690 are not limited, such as they can be normally open switches or normally closed switches.
  • the five temperature detectors 114 located in the first row group are connected end to end in series to form a line 1 connected to the DC power supply VCC, and connected to the second switch 640-1 and the second voltage-dividing resistor 630-1.
  • the ground terminal 114A of the first temperature detector 114 (corresponding to serial number 1) of the first row group is connected to the ground line 4 and connected to the third switch 690-1.
  • the ground terminal 114A of the second temperature detector 114 (corresponding to serial number 2) is connected to the ground line 5 and connected to the third switch 690-2.
  • the ground terminal 114A of the third temperature detector 114 (corresponding to serial number 3) is connected to the ground line 6 and connected to the third switch 690-3.
  • the ground terminal 114A of the fourth temperature detector 114 (corresponding to serial number 4) is connected to the ground line 7 and connected to the third switch 690-4.
  • the ground terminal 114A of the fifth temperature detector 114 (corresponding to serial number 5) is connected to the ground line 8 and connected to the third switch 690-5.
  • the five temperature detectors 114 located in the second row group are connected end to end in series to form a line 2 connected to the DC power supply VCC, and connected to the second switch 640-2 and the second voltage-dividing resistor 630-2.
  • the ground terminal 114A of the first temperature detector 114 (corresponding to serial number 6) of the second row group is connected to the ground line 4 and connected to the third switch 690-1.
  • the ground terminal 114A of the second temperature detector 114 (corresponding to serial number 7) is connected to the ground line 5 and connected to the third switch 690-2.
  • the ground terminal 114A of the third temperature detector 114 (corresponding to serial number 8) is connected to the ground line 6 and connected to the third switch 690-3.
  • the ground terminal 114A of the fourth temperature detector 114 (corresponding to serial number 9) is connected to the ground line 7 and connected to the third switch 690-4.
  • the ground terminal 114A of the fifth temperature detector 114 (corresponding to serial number 10) is connected to the ground line 8 and connected to the third switch 690-5.
  • the three temperature detectors 114 located in the third row group are connected end to end in series to form a line 3 connected to the DC power supply VCC, and connected to the second switch 640-3 and the second voltage-dividing resistor 630-3.
  • the ground terminal 114A of the first temperature detector 114 (corresponding serial number 11) of the third row group is connected to the ground line 4 and connected to the third switch 690-1.
  • the ground terminal 114A of the second temperature detector 114 (corresponding serial number 12) is connected to the ground line 5 and connected to the third switch 690-2.
  • the ground terminal 114A of the third temperature detector 114 (corresponding serial number 13) is connected to the ground line 6 and connected to the third switch 690-3.
  • Each electrode sheet 100 further includes a plurality of second diodes 117', each second diode 117' being provided corresponding to a temperature detector 114.
  • the second diode 117' has an anode 117'B and a cathode 117'A. After the ground terminal 114A of the corresponding temperature detector 114 in each column group is connected to the anode 117'B of the corresponding second diode 117', the cathode 117'A of the corresponding second diode 117' is connected to the ground terminal 114A of the corresponding temperature detector 114 in each column group.
  • each temperature detector 114 (corresponding to serial numbers 1, 6 and 11) of the first column group is respectively connected to a second diode 117', and the anode 117'B of the second diode 117' in the first column group is connected to the grounding end 114A of the corresponding temperature detector 114, and the cathode 117'A of each second diode 117' in the first column group is connected to the ground line 4;
  • the grounding end 114A of each temperature detector 114 (corresponding to serial numbers 2, 7 and 12) of the second column group is respectively connected to a second diode 117', and the anode 117'B of the second diode 117' in the second column group is connected to the grounding end 114A of the corresponding temperature detector 114, and the cathode 117'A of each second diode 117' in the second column group is connected to the ground line 5;
  • the grounding end 114A of each temperature detector 114 (corresponding to serial numbers 1, 6 and 11) of the first
  • the anode 117'B of the diode 117' is connected to the ground terminal 114A of the corresponding temperature detector 114, and the cathode 117'A of each second diode 117' in the third column group is connected to the ground line 6;
  • the ground terminal 114A of each temperature detector 114 (corresponding to serial numbers 4 and 9) in the fourth column group is respectively connected to a second diode 117', and the anode 117'B of the second diode 117' in the fourth column group is connected to the ground terminal 114A of the corresponding temperature detector 114, and the cathode 117'A of each second diode 117' in the fourth column group is connected to the ground line 7;
  • the ground terminal 114A of each temperature detector 114 (corresponding to serial numbers 5 and 10) in the fifth column group is respectively connected to a second diode 117', and the anode 117'B of the second diode 117' in the fifth column group is connected to the ground terminal 114
  • a second diode 117' is connected between the ground terminal 114A and the ground pin GND of all temperature detectors 114 located in the same column group, and the second diode 117' can effectively prevent other temperature detectors 114 from affecting the resistance value of the corresponding temperature detector 114 detected by the switch timing control of the second switch 640 and the third switch 690.
  • a first connector 180 is connected between each electrode sheet 100 and the fourth adapter 600, and the first connector 180 is suitable for connecting the corresponding electrode sheet 100 to the fourth adapter 600.
  • Each electrode sheet 100 has a first cable 130 electrically connected to its adapter board 120" composed of a flexible circuit board.
  • the first connector 180 is a first plug, and a fifth socket 660 is correspondingly provided on the fourth adapter 600.
  • the first plug and the fifth socket 660 are push-type spring connectors, that is, the first connector 180 uses a connector to connect the fourth adapter 600 to the electrode sheet 100.
  • electrode sheets 100-X1, 100-Y1, 100-X2 and 100-Y2 are respectively connected to the fourth adapter 600 through a first connector 180, wherein the electrode sheets 100-X1 and 100-X2 are configured as a pair of electrode sheets 100, and the electrode sheets 100-Y1 and 100-Y2 are configured as another pair of electrode sheets 100.
  • each first connector 180 is respectively connected to a corresponding line among the lines a1, a2, a3 and a4 in FIG29 to transmit an alternating electric signal of a corresponding direction and corresponding polarity, so that a therapeutic electric field for treating tumors is generated between the corresponding pair of electrode sheets 100 (e.g., the electrode sheets 100-X1 and 100-X2 or the electrode sheets 100-Y1 and 100-Y2).
  • lines a1, a2, a3 and a4 are AC lines that transmit alternating electrical signals of corresponding directions and corresponding polarities, and extend to a corresponding electrode sheet 100 to provide corresponding alternating electrical signals for multiple electrode elements 112 of the electrode sheet 100.
  • Lines a1, a2, a3 and a4 are connected to a fifth connector 680 in a direction away from the first connector 180, and the fifth connector 680 is connected to the electric field generator 300.
  • the electric field generator 300 is powered by a DC power supply, which generates two groups of switched alternating electrical signals by inverting, filtering, etc., and each group of alternating electrical signals is two alternating electrical signals with opposite polarities.
  • the two groups of alternating electrical signals generated by the electric field generator 300 are respectively transmitted to multiple electrode units 112 of a corresponding electrode sheet 100 through the fifth connector 680, a corresponding line in lines a1, a2, a3, a4 and a corresponding first connector 180.
  • the electric field generator 300 also transmits the DC power to the multiple temperature detectors 114 of the corresponding electrode sheet 100 through the fifth connector 680, the power line and the ground line of the DC power supply VCC inside the fourth adapter 600, and the corresponding first connector 180, so that the corresponding temperature detector 114 works and generates a simulated temperature.
  • an inverter FX is further provided between lines a1, a2, a3 and a4, wherein lines a1 and a3 are connected to one end of the inverter FX, and lines a2 and a4 are connected to the other end of the inverter FX, so as to realize the alternating electrical signal being applied alternately to the two pairs of electrode sheets 100 through the inverter FX.
  • each first connector 180 is also connected to a group of multi-line temperature switching acquisition lines a5, a6, a7 or a8, wherein each temperature switching acquisition line includes: 4 signal lines connected to the second switches 640-1, 640-2, 640-3 and 640-4, and 5 ground lines connected to the third switches 690-1, 690-2, 690-3, 690-4 and 690-5, respectively.
  • each temperature switching acquisition line includes: 4 signal lines connected to the second switches 640-1, 640-2, 640-3 and 640-4, and 5 ground lines connected to the third switches 690-1, 690-2, 690-3, 690-4 and 690-5, respectively.
  • the second switch 640-4 is not connected to any temperature detector 114, and as a preset switch, it can be adapted to the connection of other types of electrode sheets 100, for example, it can be adapted to the electrode sheet 100 including 13 or other number of electrode elements 112 of other circuit connection designs, so that the fourth adapter 600 with substantially the same configuration can be used to connect with different types of electrode sheets 100, thereby improving the applicability of the fourth adapter 600.
  • the second switch 640-4 can be set in a disconnected state from the first connector 180.
  • the number of cores of the first cable 130 of the electrode sheet 100 connected to the first connector 180 can be reduced; the second switch 640-4 can also be connected to the fifth socket 660, and the first cable 130 on the corresponding electrode sheet 100 has one less core, and only the corresponding first plug is connected to the fifth socket 660, thereby reducing the number of cores of the first cable 130 of the electrode sheet 100.
  • the line connected between the first cable 130 of the electrode sheet 100-X1 and the first connector 180 is a 9-wire line.
  • the line connected between the first cable 130 of the electrode sheet 100-Y1 and the first connector 180 is a 9-wire line
  • the line connected between the first cable 130 of the electrode sheet 100-X2 and the first connector 180 is a 9-wire line
  • the line connected between the electrode sheet 100-Y2 and the first connector 180 is a 9-wire line.
  • the first cable 130 between each electrode sheet 100 and the corresponding first connector 180 is a 9-core cable.
  • multiple second switches 640 (640-1, 640-2, 640-3 and 640-4) and multiple third switches 690 (690-1, 690-2, 690-3, 690-4 and 690-5) constitute a temperature detection switch unit (unnumbered), and the temperature detection switch unit and the second voltage divider resistor 630 connected to the second switch 640 in each temperature detection switch unit (such as second voltage divider resistors 630-1 to 630-4, 630-5 to 630-8, 630-9 to 630-12 or 630-13 to 630-16) are all located in the fourth adapter 600.
  • the fourth adapter 600 includes the aforementioned multiple temperature detection switch units, a second voltage-dividing resistor 630 (such as second voltage-dividing resistors 630-1 to 630-4, 630-5 to 630-8, 630-9 to 630-12 or 630-13 to 630-16), and also includes a third analog-to-digital converter 620 for collecting the analog temperature signal of the corresponding temperature detector 114, and a fourth controller 610 for controlling the timing on and off of multiple second switches 640 and multiple third switches 690 in the corresponding temperature detection switch unit.
  • a second voltage-dividing resistor 630 such as second voltage-dividing resistors 630-1 to 630-4, 630-5 to 630-8, 630-9 to 630-12 or 630-13 to 630-16
  • a third analog-to-digital converter 620 for collecting the analog temperature signal of the corresponding temperature detector 114
  • a fourth controller 610 for controlling the timing on and off of multiple second switches 640 and multiple third switches 690 in the corresponding temperature detection switch unit.
  • the fourth controller 610 is used to control the second switch 640 and the third switch 690 in combination, so that the third analog-to-digital converter 620 obtains the analog signal corresponding to each combination in all the combinations; the fourth controller 610 is also used to determine the combination with the analog temperature signal according to the analog signal, and control the second switch 640 and the third switch 690 according to the combination with the analog temperature signal, so that the third analog-to-digital converter 620 samples the analog temperature signal detected by each temperature detector 114 in the electrode sheet, and then the fourth controller 610 converts the analog temperature signal collected by the third analog-to-digital converter 620 into a digital temperature signal. Wherein, when the analog signal is within the preset signal range, it is determined that the analog signal is an analog temperature signal, and the combination corresponding to the analog temperature signal is the combination during temperature detection.
  • the plurality of temperature detection switch units in the fourth adapter 600 transmit the analog temperature signal to the corresponding channel of the third analog-to-digital converter 620 through a group of line groups (a9, a10, a11 and a12).
  • the four temperature detection switch units transmit the analog temperature signal to the corresponding channel of the third analog-to-digital converter 620 through a group of line groups (a9, a10, a11 and a12).
  • the temperature detection switch unit corresponding to the electrode sheet 100-X1 is connected to the electrode sheet 100-X2.
  • the analog temperature signal generated by the temperature detector 114 of the electrode sheet 100-X1 is transmitted to the channels 1-4 of the third analog-to-digital converter 620 through the 4-line group a9; the temperature detection switch unit corresponding to the electrode sheet 100-Y1 transmits the analog temperature signal generated by the temperature detector 114 of the electrode sheet 100-Y1 to the channels 5-8 of the third analog-to-digital converter 620 through the 4-line group a10; the temperature detection switch unit corresponding to the electrode sheet 100-X2 transmits the analog temperature signal generated by the temperature detector 114 of the electrode sheet 100-X2 to the channels 9-12 of the third analog-to-digital converter 620 through the 4-line group a11; the temperature detection switch unit corresponding to the electrode sheet 100-Y2 transmits the analog temperature signal generated by the temperature detector 114 of the electrode sheet 100-Y2 to the channels 13-16 of the third analog-to-digital converter 620 through the 4-line group a12.
  • the fourth controller 610 controls the on and off of the plurality of second switches 640 and the plurality of third switches 690 in the corresponding temperature detection switch unit, and closes one second switch 640 (for example, one of 640-1, 640-2, 640-3 and 640-4) and one third switch 690 (for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5) so that the corresponding temperature detector 114 generates an analog temperature signal, and the third analog-to-digital converter 620 collects the analog temperature signal and transmits it to the corresponding channel of the third analog-to-digital converter 620 through a line connected to the closed second switch 640.
  • the third analog-to-digital converter 620 collects the analog temperature signal of the corresponding temperature detector 114 on each electrode sheet 100, it transmits it to its corresponding channel from a line connected to the closed second switch 640 in the corresponding line group (a9, a10, a11 and a12).
  • the fourth controller 610 controls the on and off of multiple second switches 640 and multiple third switches 690 in each temperature detection switch unit, and closes a second switch 640 (for example, one of 640-1, 640-2, 640-3 and 640-4) and a third switch 690 (for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5) to obtain the analog temperature signals generated by the corresponding temperature detectors 114 in the electrode sheet 100 in turn.
  • a second switch 640 for example, one of 640-1, 640-2, 640-3 and 640-4
  • a third switch 690 for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5
  • the third analog-to-digital converter 620 samples and obtains the analog temperature signal of the first temperature detector 114 (corresponding to the serial number 1) of the first row group; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-2 to be turned on and the other switches are turned off, the third analog-to-digital converter 620 samples and obtains the analog temperature signal after the first to second temperature detectors 114 (corresponding to the serial numbers 1 and 2) of the first row group are combined; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-3 to be turned on and the other switches are turned off, the third analog-to-digital converter 6 20 samples the combined analog temperature signals of the first to third temperature detectors 114 (corresponding to serial numbers 1, 2 and 3) of the first row group; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-4 to be turned on and the other switches
  • the fourth adapter 600 further includes a fifth communication transceiver 650, which transmits the digital temperature signal converted by the fourth controller 610 to the electric field generator 300.
  • the fifth communication transceiver 650 is controlled by the fourth controller 610, and the digital temperature signal converted by the fourth controller 610 is transmitted serially to the digital temperature signals of each temperature detector 114 through the fifth communication transceiver 650, such as being transmitted to the electric field generator 300.
  • FIG. 28 there are four second switches 640 (e.g., 640-1, 640-2, 640-3, and 640-4), and five third switches 690 (e.g., 690-1, 690-2, 690-3, 690-4, and 690-5).
  • One second switch 640 e.g., 640-1, 640-2, 640-3, and 640-4
  • one third switch 690 e.g., 690-1, 690-2, 690-3, 690-4, and 690-5 are turned on, and the remaining switches are turned off.
  • the fourth controller 610 can first predict the analog temperature signal based on these combinations. At this time, the fourth controller 610 turns on the second switch 640 (for example, one of 640-1, 640-2, 640-3 and 640-4) and the third switch 690 (for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5) in these combinations in turn, and collects the analog signals corresponding to each combination through the third analog-to-digital converter 620.
  • these analog signals some are analog temperature signals, and some are 0 values or full-scale values.
  • 640-1 and 690-1, 640-1 and 690-2, 640-1 and 690-3, 640-1 and 690-4, 640-1 and 690-5, 640-2 and 690-1, 640-2 and 690-2, 640-2 and 690-3, 640-2 and 690-4, 640-2 and 690-5, 640 -3 and 690-1, 640-3 and 690-2, 640-3 and 690-3 have analog temperature signals, while the analog signals of 640-3 and 690-4, 640-3 and 690-5, 640-4 and 690-1, 640-4 and 690-2, 640-4 and 690-3, 640-4 and 690-4, 640-4 and 690-5 are full-scale values.
  • the fourth controller 610 only controls the second switch 640 (for example, 640-1 and 690-1, 640-1 and 690-2, 640-1 and 690-3, 640-1 and 690-4, 640-1 and 690-5, 640-2 and 690-1, 640-2 and 690-2, 640-2 and 690-3, 640-2 and 690-4, 640-2 and 690-5, 640-3 and 690-1, 640-3 and 690-2, 640-3 and 690-3.
  • the second switch 640 for example, 640-1 and 690-1, 640-1 and 690-2, 640-1 and 690-3, 640-1 and 690-4, 640-1 and 690-5, 640-2 and 690-1, 640-2 and 690-2, 640-2 and 690-3, 640-2 and 690-4, 640-2 and 690-5, 640-3 and 690-1, 640-3 and 690-2, 640-3 and 690-3.
  • a third switch 690 (for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5) are turned on, and the analog temperature signal detected by the corresponding temperature detector 114 in the electrode sheet 100 is sampled through the third analog-to-digital converter 620, and the fourth controller 610 converts the analog temperature signal collected by the third analog-to-digital converter 620 into a digital temperature signal, and then transmits the digital temperature signal to the electric field generator 300 through the fifth communication transceiver 650.
  • the third analog-to-digital converter 620 samples and obtains the analog temperature signal of the first temperature detector 114 (corresponding to the serial number 1) of the first row group; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-2 to be turned on, and the other switches are turned off, the third analog-to-digital converter 620 samples and obtains the analog temperature signal after the first to second temperature detectors 114 (corresponding to the serial numbers 1 and 2) of the first row group are combined; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-3 to be turned on, and the other switches are turned off, the third analog-to-digital converter 620 samples and obtains the analog temperature signal after the first to second temperature detectors 114 (corresponding to the serial numbers 1 and 2) of the first row group are combined.
  • the third analog-to-digital converter 620 samples and obtains the combined analog temperature signals of the first to third temperature detectors 114 (corresponding to serial numbers 1, 2 and 3) of the first row group; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-4 to be turned on and the other switches are turned off, the third analog-to-digital converter 620 samples and obtains the analog temperature signals of the first to fourth temperature detectors 114 (corresponding to serial numbers 1, 2, 3 and 4) of the first row group; when the fourth controller 610 controls the second switch 640-1 and the third switch 690-5 to be turned on and the other switches are turned off, the third analog-to-digital converter 620 samples and obtains the analog temperature signals of the first to fifth temperature detectors 114 (corresponding to serial numbers 1, 2, 3, 4 and 5) of the first row group.
  • the fifth communication transceiver 650 is controlled by the fourth controller 610 , which converts the analog temperature signal collected by the third analog-to-digital converter 620 into a digital temperature signal.
  • the fourth controller 610 transmits the digital temperature signals of each temperature detector 114 in serial to the electric field generator 300 through the fifth communication transceiver 650 .
  • the temperature detector 114 is a thermistor; it can also be other components or materials that can detect temperature.
  • the resistance value of the thermistor corresponding to each detection point number can be represented by Rtn, for example,
  • the resistance value of the thermistor corresponding to the detection point number 1 is Rt1, specifically the resistance value of the first thermistor in the first row group at the corresponding temperature.
  • the resistance value of the thermistor corresponding to the detection point number 2 is Rt2, specifically the resistance value of the second thermistor in the first row group at the corresponding temperature, and so on.
  • the fourth controller 610 calculates the actual temperature of the thermistor corresponding to the detection point number by the following formula (2):
  • Tn is the actual temperature of the thermistor corresponding to the detection point labeled n
  • x is the analog temperature signal corresponding to the detection point labeled n obtained by sampling
  • span is the maximum range of the third analog-to-digital converter 620, for example, when the third analog-to-digital converter 620 uses a 16-bit sampling chip
  • span is 65535
  • R is the resistance value of the second voltage divider resistor, such as the resistance value of the second voltage divider resistor 630-1, 630-2, 630-3 or 630-4.
  • the resistance value of the thermistor corresponding to the detection point number can be calculated by the following formula (3):
  • y is the simulated temperature signal of the thermistor corresponding to the detection point number.
  • second voltage-dividing resistor 630 with a suitable resistance value, such as second voltage-dividing resistors 630-1, 630-2, 630-3 and 630-4, the current flowing through the thermistor can be limited to avoid excessive current causing excessive temperature rise of the thermistor, thereby affecting the test accuracy, and in severe cases may even cause damage to the thermistor.
  • the fourth controller 610 controls the temperature detection switch unit to turn on the second switch 640 (for example, one of 640-1, 640-2, 640-3 and 640-4) and the third switch 690 (for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5) in the switch combination with the analog temperature signal, so that the analog temperature signal detected by the corresponding thermistor is sampled by the third analog-to-digital converter 620, and the corresponding temperature is calculated by the above formulas (2)-(4).
  • the second switch 640 for example, one of 640-1, 640-2, 640-3 and 640-4
  • the third switch 690 for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5
  • the fourth controller 610 first controls the second switch 640-1 and the third switch 690-1 to be turned on, and the other switches to be turned off.
  • the analog temperature signal of the first thermistor of the first row group is sampled and obtained.
  • the actual temperature T1 of the thermistor can be calculated by the above formula (2), and the resistance value Rt1 of the thermistor can be calculated by the above formula (3).
  • the second switch 640-1 and the third switch 690-2 are controlled to be turned on, and the other switches are turned off.
  • the analog temperature signal after the first and second thermistors of the first row group are sampled and obtained.
  • the resistance value after the first and second thermistors are combined can be calculated by the above formula (3), that is, Rt1+Rt2. Since Rt1 has been obtained, Rt2 can be calculated. Then, according to Rt2
  • the analog temperature signal of the second thermistor can be calculated by using the above formula (4), and the analog temperature signal is substituted into the above formula (2) to calculate the actual temperature T2 of the second thermistor.
  • the second switch 640-1 and the third switch 690-3 are controlled to be turned on, and the other switches are turned off.
  • the analog temperature signal of the first to third thermistors of the first row group is sampled and obtained.
  • the resistance value of the first to third thermistors after the combination is calculated by the above formula (3), that is, Rt1+Rt2+Rt3. Since Rt1 and Rt2 have been obtained, Rt3 can be calculated.
  • the analog temperature signal of the third thermistor can be calculated according to Rt3 and the above formula (4).
  • the analog temperature signal is substituted into the above formula (2) to calculate the actual temperature T3 of the third thermistor.
  • the second switch 640-1 and the third switch 690-4 are controlled to be turned on, and the other switches are turned off.
  • the analog temperature signal of the first to fourth thermistors in the first row group is sampled and obtained.
  • the resistance value of the first to fourth thermistors combined can be calculated by the above formula (3), that is, Rt1+Rt2+Rt3+Rt4. Since Rt1, Rt2 and Rt3 have been obtained, Rt4 can be calculated.
  • the analog temperature signal of the fourth thermistor can be calculated according to Rt4 and the above formula (4).
  • the analog temperature signal is substituted into the above formula (2) to calculate the actual temperature T4 of the fourth thermistor.
  • the second switch 640-1 and the third switch 690-5 are controlled to be turned on, and the other switches are turned off.
  • the analog temperature signal of the first to fifth thermistors in the first row group is sampled and obtained.
  • the resistance value of the first to fifth thermistors after the combination is calculated by the above formula (3), that is, Rt1+Rt2+Rt3+Rt4+Rt5. Since Rt1, Rt2, Rt3 and Rt4 have been obtained, Rt5 can be calculated.
  • the analog temperature signal of the fifth thermistor can be calculated according to Rt5 and the above formula (4).
  • the analog temperature signal is substituted into the above formula (2) to calculate the actual temperature T5 of the fifth thermistor.
  • the temperature detection process for the second row group and the third row group shown in Figure 28 is the same as the temperature detection process for the first row group. Please refer to the above for details and will not be repeated here. As a result, the temperature of the thermistor corresponding to each electrode element 112 can be obtained, that is, the temperature at the electrode element 112 can be obtained.
  • the second switch 640 for example, one of 640-1, 640-2, 640-3 and 640-4
  • the third switch 690 for example, one of 690-1, 690-2, 690-3, 690-4 and 690-5
  • the speed of temperature detection can be improved and resource occupation can be reduced while ensuring that each temperature detector 114 is detected.
  • the fourth controller 610 may also determine the number of the plurality of electrode elements 112 , the number of row groups, and the number of column groups according to the combination with the simulated temperature signal.
  • 640-1 and 690-1, 640-1 and 690-2, 640-1 and 690-3, 640-1 and 690-4, 640-1 and 690-5, 640-2 and 690-1, 640-2 and 690-2, 640-2 and 690-3, 640-2 and 690-4, 640-2 and 690-5, 640-3 and 690-1, 640-3 and 690-2, 640-3 and 690-3 have analog temperature signals, and the combination with analog temperature signals is exactly the same as the number of electrode elements 112 of the electrode sheet.
  • the number of multiple electrode elements 112 in the electrode sheet 100 can be determined based on the combination with analog temperature signals.
  • the number of row groups is the same as the number of the second switches 640
  • the number of column groups is the same as the number of the third switches 690.
  • the plurality of electrode elements 112 are arranged in three rows and five columns.
  • the number of the second switches 640 is three (second switches 640-1, 640-2, and 640-3), and the number of the third switches 690 is five (third switches 690-1, 690-2, 690-3, 690-4 and 690-5), that is, the number of row groups is 3 and the number of column groups is 5, so the number of row groups and the number of column groups of the plurality of electrode elements 112 can be determined according to the combination with the simulated temperature signal.
  • the number of wire cores of the first cable 130 can be determined by the number of row groups and the number of column groups of the plurality of electrode elements 112 of the electrode sheet 100, and the number of wire cores of the first cable 130 is the number of row groups plus the number of column groups plus 1 of the plurality of electrode elements 112 of the electrode sheet 100.
  • the fourth controller 610 is also used to determine whether there is an abnormal temperature detector 114 in the corresponding electrode sheet according to the number of row groups and column groups of the multiple electrode elements 112 and the analog temperature signal. It is assumed that all temperature detectors 114 and temperature detection circuit connections of the electrode sheet 100 are normal, as shown in FIG28, and the electric field generator 300 can be turned off first. At this time, the analog temperature signals generated by each temperature detector 114 of the electrode sheet are approximately the same, and the corresponding actual temperatures and resistance values are also approximately the same. For example, the resistance values Rt1, Rt2, Rt3, Rt4 and Rt5 of thermistors corresponding to the detection points numbered 1, 2, 3, 4 and 5 are approximately the same.
  • the fourth controller 610 controls the second switch 640-1 and the third switch 690-5 to be turned on, and the other switches to be turned off, so as to obtain the first row group
  • the actual temperature Tz1 corresponding to Rt1 can be calculated by the above formula; similarly, the actual temperature Tz2 corresponding to the average resistance of the five thermistors in the second row group and the actual temperature Tz3 corresponding to the average resistance of the three thermistors in the third row group can be obtained, and Tz1, Tz2 and Tz3 are approximately the same. Therefore, when obtaining Tz1, Tz2 and Tz3, if Tz1, Tz2 and Tz3 are approximately the same, then there is no abnormal thermistor or abnormal circuit connection in the electrode sheet 100; if the difference between Tz1, Tz2 and Tz3 is large, then there is an abnormal thermistor or abnormal circuit connection in the electrode sheet 100. Therefore, whether or not the abnormal temperature detector 114 is present in the electrode sheet 100 can be determined based on the number of row groups and column groups of the plurality of electrode elements 112 and the analog temperature signal.
  • a fifth connector 680 is provided between the fourth adapter 600 and the electric field generator 300, and the fifth connector 680 is suitable for connecting the electric field generator 300 to the fourth adapter 600.
  • the fourth adapter 600 also has a fifth cable 670.
  • the fifth connector 680 can be a fifth plug, and the electric field generator 300 is provided with a second socket 310.
  • the fifth plug and the second socket 310 are press-type spring connectors, that is, the fifth connector 680 connects the fourth adapter 600 to the electric field generator 300 in the form of a connector.
  • the second cable is an 8-core cable, wherein four cores are alternating power lines (a1, a2, a3 and a4) respectively connected to four first connectors 180, for providing alternating electrical signals of corresponding directions and corresponding polarities, two cores are receiving data lines RX and transmitting data lines TX electrically connected to the fifth communication transceiver 650 in the fourth adapter 600, and the remaining two cores are power lines and ground lines for providing a DC power supply VCC to at least one temperature detector 114 of each electrode sheet 100.
  • four cores are alternating power lines (a1, a2, a3 and a4) respectively connected to four first connectors 180, for providing alternating electrical signals of corresponding directions and corresponding polarities
  • two cores are receiving data lines RX and transmitting data lines TX electrically connected to the fifth communication transceiver 650 in the fourth adapter 600
  • the remaining two cores are power lines and ground lines for providing a DC power supply VCC to at least one temperature detector 114 of each electrode sheet 100.
  • the fourth controller 610 converts the analog temperature signal of the corresponding temperature detector 114 sampled by the third analog-to-digital converter 620 into a digital temperature signal through operation, and the fourth controller 610 controls the fifth communication transceiver 650 to transmit the digital temperature signal to the electric field generator 300 via the fifth connector 680. That is, the analog temperature signal collected by the third analog-to-digital converter 620 of the fourth adapter 600 is converted into a digital temperature signal by the fourth controller 610, and then transmitted to the electric field generator 300 via the fifth communication transceiver 650, the transmission data line TX connected to the fifth communication transceiver 650, and the fifth connector 680.
  • the fourth controller 610 can also transmit other information such as the number of multiple electrode elements 112 in the electrode sheet, the number of row groups, the number of column groups, and the presence or absence of an abnormal temperature detector 114 through the fifth communication transceiver 650, which is not limited here.
  • the plurality of electrode elements 112 on the electrode sheet 100 are connected in groups in the circuit connection, and the temperature detectors 114 located in the same row group are connected in series, and then connected to the DC power supply VCC through the second switch 640 (one of 640-1, 640-2, 640-3 and 640-4) and the second voltage dividing resistor 630 (one of 630-1, 630-2, 630-3 and 630-4) connected in series.
  • the ground terminals 114A of the temperature detectors 114 of the same column group are connected together, they are connected to the ground pin GND through the third switch 690 (one of 690-1, 690-2, 690-3, 690-4 and 690-5), and by controlling the second switch 640 (one of 640-1, 640-2, 640-3 and 640-4) and the third switch 690 (one of 690-1, 690-2, 690-3, 690-4 and 690-5) in the combination with the analog temperature signal, the analog temperature signal detected by each temperature detector 114 is sampled separately, so that 100% temperature sensor coverage can be achieved without increasing the number of cable cores of the first cable 130, thereby avoiding excessive weight on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the first cable 130 in the related art requires 15 wire cores to achieve this, resulting in the first cable 130 being very thick, having poor flexibility, and having a poor application effect.
  • the coverage rate of the temperature detector 114 can be ensured to be 100% without increasing the number of wire cores of the first cable 130, thereby achieving comprehensive monitoring of the temperature of each electrode element 112 in the electrode sheet 100; at the same time, before performing temperature detection, by screening the switch combination of the second switch 640 (one of 640-1, 640-2, 640-3 and 640-4) and the third switch 690 (one of 690-1, 690-2, 690-3, 690-4 and 690-5), and when performing temperature detection, performing temperature detection based on the screened switch combination, the speed of temperature detection can be improved and resource occupation can be reduced while ensuring that each temperature detector 114 is detected. Furthermore, the number of the plurality of electrode elements 112 , the number of row groups and the number of column groups can be determined according to the combination of the analog temperature signals, and it can be judged whether an abnormal temperature detector 114 exists in the corresponding electrode sheet 100 .
  • FIG. 30 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 in another embodiment in FIG. 27, and the difference from the electrode sheet 100 of the embodiment shown in FIG. 27 is that: although the electrode sheet 100 of this embodiment also has 13 electrode elements 112 and 13 temperature detectors 114, they are arranged in four rows and four columns in terms of circuit connection, that is, the electrode sheet 100 of this embodiment has a different number of rows and columns from the electrode sheet 100 of the previous embodiment. In this embodiment, the electrode sheet 100 has four rows and four columns. Since the electrode elements 112, the temperature detector 114 and the second diode 117' are the same as those of the previous embodiment, the numbers of the previous embodiment are used.
  • the number of electrode elements 112 and temperature detectors 114 in the first three rows of the electrode sheet 100 of this embodiment is 4, the number of electrode elements 112 and temperature detectors 114 in the last row is 1, the number of electrode elements 112 and temperature detectors 114 in the first column is 4, and the number of electrode elements 112 and temperature detectors 114 in the last three columns is 3.
  • the number of wire cores of the first cable 130 of the electrode sheet 100 is 9.
  • One of the four second switches 640-1, 640-2, 640-3 and 640-4 of the fourth adapter 600 is respectively connected to a signal terminal 114B at the end of a corresponding row group, one of the four third switches 690-1, 690-2, 690-3 and 690-4 of the fourth adapter 600 is respectively connected to the ground terminal 114A of all temperature detectors 114 in the corresponding column group, and the remaining third switch 690-5 is not connected to any temperature detector 114.
  • FIG31 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment shown in FIG27.
  • the electrode sheet 100 of this embodiment has the same number of electrode elements 112 and the same number of temperature detectors 114 as the electrode sheet 100 shown in FIG30.
  • the electrode sheet 100 of this embodiment has the same number of row groups and column groups as the electrode sheet 100 shown in FIG30.
  • the difference from the electrode sheet 100 shown in FIG30 is that the number of electrode elements 112 and multiple temperature detectors 114 in each row group and each column group of the electrode sheet 100 of this embodiment is different from the number of electrode elements 112 and multiple temperature detectors 114 in each row group and each column group of the electrode sheet 100 shown in FIG30.
  • the electrode elements 112 and the temperature detectors 114 and the second diodes 117' are the same as those shown in FIG28 and FIG30, the corresponding reference numerals in FIG27 to FIG29 are used.
  • the number of electrode elements 112 and temperature detectors 114 in the first row of the electrode sheet 100 is 4, the number of electrode elements 112 and temperature detectors 114 in the last three rows is 3, and the number of electrode elements 112 and temperature detectors 114 in the first three columns is
  • the number of the electrode sheet units 112 and the temperature detector 114 in the last column group is 4, and the number of the electrode sheet units 112 and the temperature detector 114 in the last column group is 1.
  • the number of the wire cores of the first cable 130 of the electrode sheet 100 is 9.
  • One of the four second switches 640-1, 640-2, 640-3 and 640-4 of the fourth adapter 600 is respectively connected to a signal terminal 114B at the end of the corresponding row group, and one of the four third switches 690-1, 690-2, 690-3 and 690-4 of the fourth adapter 600 is respectively connected to the ground terminal 114A of all the temperature detectors 114 in the corresponding column group, and the remaining third switch 690-5 is not connected to any temperature detector 114.
  • FIG32 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment in FIG27, and the difference from the electrode sheet 100 shown in FIG28, FIG30, and FIG31 is that the electrode sheet 100 of this embodiment has a different number of electrode elements 112 from the electrode sheet 100 shown in FIG28, FIG30, and FIG31.
  • the number of electrode elements 112 and temperature detectors 114 of the electrode sheet 100 of this embodiment is 9, and they are arranged in three rows and four columns. Since the electrode elements 112, the temperature detector 114, and the second diode 117' are the same as those in FIG28 and FIG30, the same reference numerals are used.
  • the number of electrode elements 112 and temperature detectors 114 in the first two rows of the electrode sheet 100 of this embodiment are both 4, the number of electrode elements 112 and temperature detectors 114 in the last row is both 1, the number of electrode elements 112 and temperature detectors 114 in the first column is both 3, and the number of electrode elements 112 and temperature detectors 114 in the last three columns is both 2.
  • the number of wire cores of the first cable 130 of the electrode sheet 100 is 8.
  • One of the three second switches 640-1, 640-2 and 640-3 of the fourth adapter 600 is respectively connected to a signal terminal 114B at the end of the corresponding row group, one of the four third switches 690-1, 690-2, 690-3 and 690-4 of the fourth adapter 600 is respectively connected to the ground terminal 114A of all temperature detectors 114 in the corresponding column group, and the remaining one second switch 640-4 and one third switch 690-5 are not connected to any temperature detector 114.
  • the combinations with analog temperature signals are not exactly the same, but the processes of screening the combinations with analog temperature signals, performing temperature detection based on the screened combinations with analog temperature signals, determining the number of electrode elements 112, the number of row groups and the number of column groups, and determining whether there is an abnormal temperature detector 114 in the electrode sheet are the same, as described above.
  • the number of the second switches 640 is greater than or equal to the number of row groups, and the number of the third switches 690 is greater than or equal to the number of column groups.
  • the second switches 640-1, 640-2, 640-3 and 640-4 and the third switches 690-1, 690-2, 690-3, 690-4 and 690-5 respectively.
  • the second switch 640-4 is in an open circuit state, that is, it is not connected to any temperature detector 114.
  • FIG. 33 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment in FIG. 27. Compared with the fourth adapter 600 of the embodiment shown in FIG. 28, the fourth adapter 600 in this embodiment is not provided with the second switch 640-4 and the second voltage-dividing resistor 630-4. As shown in FIG. 34, FIG. 34 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment in FIG. 27.
  • FIG. 35 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 in another embodiment of FIG. 27 .
  • the fourth adapter 600 in this embodiment is not provided with a third switch compared to the fourth adapter 600 in the embodiment shown in FIG. 31 .
  • FIG36 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment in FIG27 .
  • the fourth adapter 600 in this embodiment is not provided with a second switch 640-4, a second voltage-dividing resistor 630-4 and a third switch 690-5.
  • FIG. 37 is a schematic diagram of the structure of an electrode sheet 100 and a fourth adapter 600 of another embodiment in FIG. 27 , and the difference from the electrode sheet 100 of the aforementioned multiple embodiments is that the electrode sheet 100 of this embodiment has a different number of electrode elements 112 from the electrode sheets 100 of the aforementioned multiple embodiments.
  • the number of electrode elements 112 and temperature detectors 114 of the electrode sheet 100 of this embodiment is 20, and they are arranged in four rows and five columns. Since the electrode elements 112, the temperature detector 114 and the second diode 117 'are the same as those of the aforementioned first and second embodiments, the corresponding numbers in FIG. 27 to FIG. 29 are used.
  • each row group has five temperature detectors 114, and each column group has four temperature detectors 114.
  • the 20 electrode elements 112 are connected in a topological structure and are connected in parallel to an alternating current signal line (AC line) so that the alternating current signal line (AC line) transmits alternating electric signals and forms a therapeutic electric field for treating tumors between the relative electrode sheets 100.
  • the five temperature detectors 114 corresponding to each row group are connected in series, they are connected to the DC power supply VCC through the second switches 640 (one of 640-1, 640-2, 640-3 and 640-4) and the second voltage-dividing resistors 630 (one of 630-1, 630-2, 630-3 and 630-4) connected in series.
  • the ground terminals 114A of the four temperature detectors 114 corresponding to each column group are connected together, they are connected to the ground pin GND through the second switch 690 (one of 690-1, 690-2, 690-3, 690-4 and 690-5), so that the analog temperature signals detected by the corresponding temperature detectors 114 are sampled respectively by configuring the switching timing of the second switches 640 (640-1, 640-2, 640-3 and 640-4) and the third switches 690 (690-1, 690-2, 690-3, 690-4 and 690-5). As shown in FIG.
  • all temperature detectors 114 located in the same row group are connected in series to form a line (such as a line among lines 1, 2, 3 and 4) and are connected to the DC power supply VCC through a line connected to a signal terminal 114B located at the end of each row group.
  • the ground terminals 114A of all temperature detectors 114 located in the same row group are connected to the ground pin GND by 5 ground lines (such as ground lines 5, 6, 7, 8 and 9) one by one.
  • the ground terminals 114A of all temperature detectors 114 located in the same column group are connected to the same ground line (such as a line among ground lines 5, 6, 7, 8 or 9).
  • the temperature detectors 114 arranged in series in each row group are connected in series with a second switch 640 (such as a second
  • the first embodiment of the present invention relates to a first circuit comprising a first grounding line (such as one of the first switches 640-1, 640-2, 640-3 and 640-4) and a second voltage-dividing resistor 630 (such as one of the second voltage-dividing resistors 630-1, 630-2, 630-3 and 630-4), and the second voltage-dividing resistor 630 (such as the second voltage-dividing resistors 630-1, 630-2, 630-3 and 630-4) is closer to the DC power supply VCC terminal than the second switch 640 (such as the second switch 640-1, 640-2, 640-3 and 640-4), and each grounding line (such as one of the first switches 5, 6, 7, 8 and 9) is connected in series with a third switch 690 (such as one of the second switches 690-1, 690-2, 690-3, 690-4 and 690-5).
  • the temperature detector 114 and the electrode element 112 are set in a one-to-one correspondence.
  • the fourth controller 610 can also configure the switch combination relationship of each second switch 640 and the third switch 690 in each temperature detection switch unit, so as to identify the type of the electrode sheet 100 (the electrode sheet 100 is an electrode sheet 100 with several electrode elements 112) according to the analog temperature signal of each temperature detector 114 sampled.
  • the electrode sheet 100 that has passed the test at least includes: all temperature detectors 114 and their electrical connections are normal, and all electrode elements 112 and their electrical connections are normal.
  • the type of the electrode sheet 100 here is determined based on the number of electrode elements 112 contained in the electrode sheet 100. For example, an electrode sheet 100 with 20 electrode elements 112 is one type, an electrode sheet 100 with 16 electrode elements 112 is another type, and an electrode sheet 100 with 9 electrode elements 112 is another type.
  • the electric field generator 300 is initialized.
  • the alternating electric signal is not transmitted to the fourth adapter 600 and the multiple electrode elements 112 of the electrode sheet 100. Only the DC power supply VCC is transmitted to the corresponding temperature detectors 114 of the fourth adapter 600 and the electrode sheet 100 for operation, so as to avoid the alternating electric field generated by the AC signal causing the temperature change to affect the analog temperature signal detected by the temperature detector 114.
  • the analog temperature signals generated by each temperature detector 114 of the electrode sheet 100 are approximately the same, and the corresponding actual temperatures and resistance values are also approximately the same.
  • the resistance values Rt1, Rt2, Rt3, Rt4 and Rt5 of the thermistors corresponding to the detection points numbered 1, 2, 3, 4 and 5 are approximately the same.
  • the combined resistance value of the five thermistors in the second row group, the third row group and the fourth row group can be obtained as 5 times the relationship between Rt and Rt1. Therefore, the number of electrode elements 112 in the electrode sheet 100 can be calculated, so that the type of the electrode sheet 100 can be determined as the electrode sheet 100 with 20 electrode elements 112.
  • the actual temperature Tz1 corresponding to each thermistor can be calculated by the above formula (2).
  • the actual temperatures Tz2, Tz3 and Tz4 of each thermistor in the second row group, the third row group and the fourth row group can be obtained respectively.
  • Tz1, Tz2, Tz3 and Tz4 are approximately the same, and are all approximately the actual temperature corresponding to Rt1.
  • the fourth controller 610 can also configure the switch combination relationship of each second switch 640 and the third switch 690 in each temperature detection switch unit to determine whether there is an abnormal temperature detector 114 in the electrode sheet 100 based on the analog temperature signal detected by one or more corresponding combinations of all the temperature detectors 114 of the sampled electrode sheet 100.
  • the electric field generator 300 transmits the alternating electric signal to the fourth adapter 600 and the plurality of electrode elements 112 of the electrode sheet 100, it first transmits the DC power supply VCC to the corresponding temperature detector 114 of the fourth adapter 600 and the electrode sheet 100 to operate, so as to avoid the alternating electric field generated by the AC signal causing the temperature change to affect the analog temperature signal detected by the temperature detector 114, and the analog temperature signal generated by each temperature detector 114 (thermistor) of the electrode sheet 100 is approximately the same, and the corresponding actual temperature and resistance value are also approximately the same. That is, the total resistance value corresponding to all thermistors in each row group of the same number of thermistors after being combined is approximately the same.
  • the total resistance corresponding to the combination of all thermistors in each row group is collected and compared.
  • the second switch 640-1 and the third switch 690-5 are controlled to be turned on, and the other switches are turned off to obtain the total resistance corresponding to the combination of the five thermistors in the first row group.
  • the second switch 640-2 and the third switch 690-5 are controlled to be turned on, and the other switches are turned off to obtain the total resistance corresponding to the combination of the five thermistors in the second row group.
  • the total resistance corresponding to the combination of the five thermistors in all row groups is completed.
  • each temperature detector 114 thermoistor of the electrode sheet 100 is normal. If the total resistance corresponding to the combination of the five thermistors in a row group is abnormal (different from the total resistance corresponding to the combination of the five thermistors in other row groups), the resistance and actual temperature of the thermistor corresponding to each detection point number are obtained in the above manner.
  • the above method can be used to obtain the actual temperatures T1, T2, T3, T4 and T5 of the five thermistors, and compare the actual temperatures T1, T2, T3, T4 and T5 of the five thermistors. If the actual temperature of a thermistor is significantly different from the actual temperatures of other thermistors, it means that the thermistor has a temperature abnormality, so that the abnormal thermistor can be quickly located. If the electrode sheet 100 performs abnormal detection of the temperature detector 114 (thermistor) at ambient temperature, the actual temperatures T1, T2, T3, T4 and T5 of the five thermistors can also be compared with the ambient temperature. If the actual temperature of a certain thermistor (some) is significantly different from the ambient temperature, then the thermistor (some) is an abnormal thermistor.
  • the above method can be used to obtain the temperature of each test row.
  • multiple electrode elements 112 on the electrode sheet 100 are connected in groups, and the temperature detectors 114 located in the same row group are connected in series, and then connected to a DC power supply through the second switch 640 and the second voltage-dividing resistor 630 connected in series. After the ground terminals 114A of the temperature detectors 114 located in the same column group are connected together, they are connected to the ground pin GND through the third switch 690.
  • the total number of the second switches 640 and the third switches 690 does not exceed 9, and the switching timing of the second switch 640 and the third switch 690 is configured so that the analog temperature signals detected by the corresponding one or more combinations of all the temperature detectors 114 of the electrode sheet 100 are sampled respectively, so that 100% coverage of the temperature detectors 114 can be achieved without increasing the number of cable cores, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100.
  • the coverage rate of the temperature detector 114 on the electrode sheet 100 shown in FIG. 37 reaches 100%, 22 wire cores are required in the related art to achieve this, resulting in the first cable 130 being very thick, having poor flexibility, and having a poor application effect.
  • the coverage rate of the temperature detector 114 can be ensured to reach 100% without increasing the number of wire cores of the first cable 130, thereby achieving comprehensive monitoring of the temperature of each electrode element 112 in the electrode sheet 100.
  • the analog temperature signals detected by the corresponding one or more combinations of all the temperature detectors 114 of the electrode sheet 100 are sampled respectively, so that not only the actual temperature of each temperature detector 114, that is, the actual temperature of the electrode element 112, can be obtained, but also the electrode element 112 with abnormal temperature can be quickly located, and different types of electrode sheets 100 can be distinguished.
  • the electrode sheet 100 outputs an analog temperature signal, it is not necessary to provide a third analog-to-digital converter 620 on the electrode sheet 100 , thereby further reducing the overall weight of the electrode sheet 100 and improving the application effect of the electrode sheet 100 .
  • the number of electrode elements 112 and the number of electrode sheets 100 mentioned in the above embodiments can be set according to actual conditions. This is only an exemplary description and is not intended to limit the present disclosure.
  • the present disclosure also provides a tumor treatment device, comprising the aforementioned electric field treatment system.
  • the tumor treatment device of the embodiment of the present disclosure through the aforementioned electric field treatment system, not only can 100% coverage of the temperature detector 114 be achieved without increasing the number of cores of the first cable 130, thereby avoiding excessive weight on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100, but also by screening the switch combination of the second switch 640-1, 640-2, 640-3 and 640-4 and the third switch 690-1, 690-2, 690-3, 690-4 and 690-5, and performing temperature detection based on the screened switch combination, it is possible to improve the speed of temperature detection and reduce resource occupation while ensuring the detection of each temperature detector 114.
  • the present disclosure also provides a method for detecting the temperature of an electrode sheet of an electric field therapy system.
  • the electric field therapy system includes the aforementioned electrode sheet 100. As shown in FIG. 38 , the method includes:
  • the method further includes: determining the switch combination relationship between the second switch and the third switch; and detecting the analog temperature signal according to the switch combination relationship between the second switch and the third switch and one or more corresponding combinations of all the temperature detectors 114 of the electrode sheet 100 sampled. The type of the corresponding electrode sheet 100 is identified.
  • the method also includes: determining the switch combination relationship between the second switch and the third switch; judging whether there is an abnormal temperature detector 114 in the corresponding electrode sheet 100 according to the switch combination relationship between the second switch and the third switch, and the analog temperature signal detected by one or more corresponding combinations of all the temperature detectors 114 of the sampled electrode sheet 100.
  • the electrode sheet temperature detection method of the electric field therapy system of the embodiment of the present disclosure by configuring the switching timing of the second switch and the third switch, the analog temperature signals detected by the corresponding one or more combinations of all the temperature detectors 114 of the electrode sheet 100 are sampled respectively to obtain digital temperature signals, and the digital temperature signals are transmitted to the electric field generator 300 of the electric field therapy system, so that the electric field generator 300 determines the temperature at each electrode element 112 according to the digital temperature signal, thereby achieving 100% coverage of the temperature detectors 114 without increasing the number of wire cores of the first cable 130, avoiding excessive load on the electrode sheet 100, and maintaining the application effect of the electrode sheet 100.
  • the present disclosure also provides an electrode sheet temperature detection method, which is applied to the aforementioned electric field therapy system, as shown in FIG39 , and the method includes:
  • determining a combination having an analog temperature signal according to the analog signal includes: when the analog signal is within a preset signal range, determining that the analog signal is an analog temperature signal.
  • the method further includes: determining the number of the plurality of electrode elements 112 , the number of row groups, and the number of column groups according to the combination with the analog temperature signal.
  • the method further includes: determining whether there is an abnormal temperature sensor in the corresponding electrode sheet 112 based on the number of row groups and column groups of the plurality of electrode elements 112 and the analog temperature signal.
  • the second switch and the third switch before temperature detection, the second switch and the third switch can be combined and controlled, and the analog signal corresponding to each combination in all combinations can be obtained, and the combination with the analog temperature signal can be determined according to the analog signal; when temperature detection is performed, the analog temperature signal detected by each temperature detector 114 in the electrode sheet 100 is sampled according to the combination with the analog temperature signal to obtain the analog temperature signal, and the analog temperature signal is transmitted to the electric field generator 300 of the electric field therapy system, so that the electric field generator 300 determines the temperature at each electrode element 112 according to the analog temperature signal.
  • the coverage rate of the temperature detector 114 is 100% without increasing the number of wire cores of the first cable 130 and 115, the electrode sheet 100 is prevented from being overloaded, and the application effect of the electrode sheet 100 is maintained, but also by screening the switch combination of the second switch and the third switch, and performing temperature detection based on the screened switch combination, the speed of temperature detection can be improved on the basis of ensuring that each temperature detector 114 is detected, and resource occupation can be reduced.
  • the electric field treatment system includes: at least one pair of electrode sheets 100, a fifth adapter 800 and an electric field generator 300, and at least one pair of electrode sheets 100 is arranged on the patient's body surface in pairs.
  • the four electrode sheets 100 in FIG40 every two electrode sheets 100 are arranged on the patient's body surface as a pair
  • the fifth adapter 800 is electrically connected to each electrode sheet 100
  • the electric field generator 300 is electrically connected to the fifth adapter 800.
  • the electric field generator 300 generates an alternating electric signal for tumor electric field treatment, and transmits the alternating electric signal to each electrode sheet 100 through the fifth adapter 800, so as to form an alternating electric field between the paired electrode sheets to act on the patient's tumor site for tumor treatment.
  • each electrode sheet 100 includes a backing (not shown), an electrical functional component (not numbered) supported by the backing, and a first cable 130 electrically connected to the electrical functional component.
  • a first connector 180 is connected between each electrode sheet 100 and the fifth adapter 800.
  • the first connector 180 is suitable for electrically connecting the corresponding electrode sheet 100 to the fifth adapter 800.
  • the first connector 180 is a first plug.
  • the fifth adapter 800 is provided with a sixth socket 860.
  • the first plug and the sixth socket 860 are press-type spring connectors, that is, the first connector 180 uses a connector to connect the fifth adapter 800 to the electrode sheet 100.
  • the electrical functional component includes an adapter board 120 formed of a flexible circuit board, a plurality of electrode elements 112 arranged on the adapter board 120, a plurality of temperature detectors 114, and a multiplexing unit 700.
  • the plurality of electrode elements 112 are arranged in an array, and each electrode element 112 can apply an alternating voltage.
  • Each temperature detector 114 is arranged corresponding to one electrode element 112. That is, the number of temperature detectors 114 is equal to the number of electrode elements 112. When the coverage rate of the temperature detectors 114 on the electrode sheet 100 is required to reach 100%, each electrode element 112 is provided with one temperature detector 114.
  • the electrical functional component includes 9 electrode elements 112 arranged at intervals on the adapter board and applying an alternating electric field to the patient, 9 temperature detectors 114 arranged in groups on the adapter board, and a multiplexing unit 700 arranged on the adapter board and outputting the analog temperature signals detected by the 9 temperature detectors 114 in a time-sharing manner.
  • the multiplexing unit 700 is connected to each temperature detector 114.
  • the electric field therapy system detects the temperature at the corresponding electrode element 112 through the temperature detector 114, and outputs the analog temperature signal detected by each temperature detector 114 to the fifth adapter 800 in a time-sharing manner through the multiplexing unit 700.
  • Each electrode element 112 is provided with a through opening 1120, and the opening 1120 is suitable for installing a temperature detector 114. As shown in FIG41, the middle part of each electrode element 112 has an opening 1120 arranged in a through shape, and each temperature detector 114 is accommodated in the opening 1120 of a corresponding electrode element 112.
  • the temperature detector 114 corresponds to the electrode element 112 one by one, that is, a temperature detector 114 is accommodated in the opening 1120 in the middle of each electrode element 112, thereby realizing real-time monitoring of the temperature of each electrode element 112, avoiding the temperature of some electrode elements 112 not being monitored, resulting in excessive temperature in some areas of the patient's body surface causing low-temperature burns to the patient.
  • the electrode element 112 is a high dielectric element, such as a ceramic sheet.
  • Each temperature detector 114 has a ground terminal 114A and a signal terminal 114B.
  • the ground terminals 114A of the multiple temperature detectors 114 are commonly connected to the ground pin GND0, and the signal terminal 114B of each temperature detector 114 is connected to a signal input terminal 712 of the multiplexing unit 700.
  • the ground terminals 114A of the nine temperature detectors 114 are commonly connected to the ground pin GND0, and the signal terminals 114B of the nine temperature detectors 114 are connected in parallel to the nine signal input terminals 712 of the multiplexing unit 700.
  • the analog temperature signals detected by the nine temperature detectors 114 are output to the fifth adapter 800 in a time-sharing manner via the multiplexing unit 700.
  • the temperature detector 114 is a thermistor.
  • the multiplexing unit 700 includes a first analog multiplexing switch 710, and the first analog multiplexing switch 710 includes a plurality of signal input terminals 712, a signal output terminal, an enable control terminal and a plurality of channel control terminals.
  • the signal input terminal 712 of the first analog multiplexing switch 710 is also the signal input terminal 712 of the multiplexing unit 700, and each signal input terminal 712 is connected to a temperature detector 114.
  • a selection channel is also provided between the signal output terminal of the first analog multiplexing switch 710 and each signal input terminal 712.
  • the first analog multiplexing switch 710 controls the selection channel according to the signals received by the enable control terminal and the plurality of channel control terminals. As shown in FIG.
  • the first analog multiplexing switch 710 includes 16 signal input terminals 712, 1 signal output terminal COMMON, 1 enable control terminal INHIBIT and 4 channel control terminals SA, SB, SC and SD. There is a selection channel between each signal input terminal 712 and the signal output terminal COMMON, for a total of 16 selection channels.
  • the enable control terminal INHIBIT is used to control whether the 16 selection channels are valid.
  • the 4 channel control terminals SA, SB, SC and SD are used to select a selection channel for output when the 16 selection channels are valid, so that the signal input terminals 712 at both ends of the selection channel are connected to the signal output terminal COMMON, so that the analog temperature signal detected by the temperature detector 114 connected to the signal input terminal 712 is successively output to the fifth adapter 800 via the selection channel and the signal output terminal COMMON.
  • the signals of the 4 channel control terminals SA, SB, SC and SD are combined into a 4-bit binary channel control signal, with 16 different channel control signals, and the 16 different channel control signals control the output of the 16 selection channels in a time-sharing manner.
  • the first analog multiplexing switch 710 further includes a decoder 711.
  • the decoder 711 controls a plurality of selection channels to be turned on in sequence according to the channel control signals received by the channel control terminals SA, SB, SC and SD, so as to output the analog temperature signal detected by each temperature detector 114 to the fifth adapter 800 in a time-sharing manner.
  • An analog switch element TG is provided on each selection channel, and the control end of the analog switch element TG is connected to the decoder 711. The analog switch element TG turns on or off the corresponding selection channel under the control of the decoder 711.
  • the first analog multiplexing switch 710 further includes a ground terminal GND1 and a power terminal VCC1 , and power is supplied to the first analog multiplexing switch 710 through the ground terminal GND1 and the power terminal VCC1 .
  • the first cable 130 includes at least one channel control line connected one-to-one with at least one channel control terminal, one enable control line connected to one enable control terminal, one channel output line connected to one signal output terminal, one DC power supply line connected to one power terminal VCC1, one ground line connected to one ground terminal GND1, one ground line connected to one ground pin GND0, and one alternating power line AC connected to each electrode element 112.
  • the first cable 130 may include four channel control lines, one enable control line, one channel output line, one DC power line, two ground lines and one AC power line, a total of 10 lines, through which the analog temperature signals of up to 16 temperature detectors 114 can be transmitted to the fifth adapter 800.
  • the channel output line is also connected to the DC power supply VCC (shown in FIG44) through the third voltage-dividing resistor 830, and the third voltage-dividing resistor 830 and the temperature detector 114, such as a thermistor element, form a voltage-dividing circuit to perform temperature detection.
  • the fifth controller 810 in the fifth adapter 800 controls the five I/O ports of the I/O control unit 840 (shown in FIG. 43 ) to output high and low levels.
  • the five I/O ports of the I/O control unit 840 include four I/O ports corresponding to four channel control lines respectively and one I/O port corresponding to the enable control line.
  • the fifth controller 810 outputs a channel selection enable signal and a channel control signal to the first analog multiplexing switch 710 through the enable control line and the channel control line to drive the first analog multiplexing switch 710 to output the analog temperature signal of the temperature detector 114 in a time-sharing manner.
  • the signal output terminal of the first analog multiplexing switch 710 is connected to the fourth analog multiplexing switch in the fifth adapter 800 through the channel output line.
  • the fourth analog-to-digital converter 820 converts the analog temperature signal of the temperature detector 114 into a digital temperature signal and sends it to the fifth controller 810.
  • the 4 channel control lines are 0000 (0 represents a low level, 1 represents a high level, and the high and low levels of the 4 channel control lines form a four-bit binary number).
  • the decoder 711 decodes the binary number 0000 to turn on the analog switch element TG on the selection channel 1 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 1 is turned on among the 16 selection channels.
  • the DC power supply VCC, the third voltage-dividing resistor 830, the signal output terminal COMMON of the first analog multiplexing switch 710, the analog switch element TG on the selection channel 1, the temperature detector 114-1 and the ground pin GND0 form a path, and the temperature detector 114-1 works to sense the temperature of the corresponding electrode element 112-1.
  • the analog temperature signal sensed by the temperature detector 114-1 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the 4 channel control lines are 0001, and the decoder 711 decodes the binary number 0001 to turn on the analog switch element TG on the selection channel 2 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 2 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-2 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 0010, and the decoder 711 decodes the binary number 0010 to turn on the analog switch element TG on the selection channel 3 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 3 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-3 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 0011, and the decoder 711 decodes the binary number 0011 to turn on the analog switch element TG on the selection channel 4 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 4 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-4 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 0100, and the decoder 711 decodes the binary number 0100 to turn on the analog switch element TG on the selection channel 5 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 5 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-5 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 0101, and the decoder 711 decodes the binary number 0101 to turn on the analog switch element TG on the selection channel 6 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 6 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-6 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 0110, and the decoder 711 decodes the binary number 0110 to turn on the analog switch element TG on the selection channel 7 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 7 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-7 is output through the signal input of the first analog multiplexing switch 710.
  • the output terminal COMMON and the channel output line are transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800.
  • the four channel control lines are 0111, and the decoder 711 decodes the binary number 0111 to turn on the analog switch element TG on the selection channel 8 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 8 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-8 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the 4 channel control lines are 1000, and the decoder 711 decodes the binary number 1000 to turn on the analog switch element TG on the selection channel 9 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 9 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-9 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1001, and the decoder 711 decodes the binary number 1001 to turn on the analog switch element TG on the selection channel 10 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 10 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-10 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1010, and the decoder 711 decodes the binary number 0010 to turn on the analog switch element TG on the selection channel 11 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 11 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-11 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1011, and the decoder 711 decodes the binary number 1011 to turn on the analog switch element TG on the selection channel 12 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 12 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-12 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1100, and the decoder 711 decodes the binary number 1100 to turn on the analog switch element TG on the selection channel 13 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 13 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-13 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1101, and the decoder 711 decodes the binary number 1101 to turn on the analog switch element TG on the selection channel 14 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 14 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-14 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1110, and the decoder 711 decodes the binary number 1110 to turn on the analog switch element TG on the selection channel 15 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 15 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-15 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the four channel control lines are 1111, and the decoder 711 decodes the binary number 1111 to turn on the analog switch element TG on the selection channel 16 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 16 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-16 is transmitted through the signal of the first analog multiplexing switch 710.
  • the output terminal COMMON and the channel output line are transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 .
  • the number of signal input terminals 712 of the first analog multiplexer switch 710 is greater than or equal to the number of temperature detectors 114. As shown in Figures 41 and 42, the number of signal input terminals 712 of the first analog multiplexer switch 710 is 16, and the electrode sheet 100 has 9 temperature detectors 114. The number of signal input terminals 712 of the first analog multiplexer switch 710 is greater than or equal to the number of temperature detectors 114, thereby ensuring that the analog temperature signals detected by all temperature detectors 114 can be output in a time-sharing manner.
  • the fifth controller 810 located in the fifth adapter 800 controls the I/O control unit 840 to only cyclically switch the selection channels 1 to 9 to be turned on, and there is no need to control the selection channels 10 to 16 to be turned on.
  • the time-sharing output of analog temperature signals of up to 16 temperature sensors can be achieved through the first cable 130 with 10 cores, so that a greater coverage rate of the temperature detector 114 can be achieved without increasing the number of cores of the first cable 130 between the electrode sheet 100 and the fifth adapter 800.
  • the weight of the core added to the first cable 130 of the traditional electrode sheet can be effectively reduced, so that the electrode sheet 100 maintains a good application effect; at the same time, the electrode sheet 100 outputs an analog temperature signal, avoiding the provision of an analog-to-digital converter on the electrode sheet 100, further avoiding the increase in the overall weight of the electrode sheet 100, and improving the application effect of the electrode sheet 100.
  • the first analog multiplexing switch 710 uses an analog multiplexing switch 710 with a small size package to reduce the weight of the analog multiplexing switch 710.
  • the grounding terminals 114A of the plurality of temperature detectors 114 are commonly connected to the grounding pin GND0, and can be cascaded with the grounding circuit GND1 connected to the grounding terminal of the multiplexing unit 700 on a grounding circuit, that is, the grounding pin GND0 is connected to the grounding terminal of the first analog multiplexing switch 710, thereby eliminating one grounding wire connecting the grounding terminal of the multiplexing unit 700 with the first cable 130, further reducing the number of wire cores of the first cable 130, making the first cable 130 more flexible, thereby further reducing the weight of the electrode sheet 100 and improving the application effect of the electrode sheet 100.
  • the grounding terminals 114A of the plurality of temperature detectors 114 can be commonly connected to the grounding circuit GND1 connected to the grounding terminal of the multiplexing unit 700, thereby eliminating one grounding wire of the first cable 130.
  • the fifth adapter 800 includes a main control board electrically connected to at least one pair of first connectors 180.
  • the main control board includes a fifth controller 810, a fourth analog-to-digital converter 820 connected between the fifth controller 810 and the first connector 180, a sixth communication transceiver 850 connected to the fifth controller 810, and an I/O control unit 840 respectively connected to a corresponding one of the first connectors 180 and controlled by the fifth controller 810.
  • the electrode sheets 100 include four
  • the first connector 180, the I/O control unit 840 and the sampling end of the fourth analog-to-digital converter 820 each include four
  • the four I/O control units 840 correspond one-to-one to the four first connectors 180-X1, 180-Y1, 180-X2 and 180-Y2
  • the four first connectors 180-X1, 180-Y1, 180-X2 and 180-Y2 correspond one-to-one to the four electrode sheets 100
  • the output end of each I/O control unit 840 is connected to the enable end and the channel control end of the multiplexing unit 700 through the corresponding first connector 180, such as being connected to the enable control terminal and the channel control terminal of the first analog multiplexing switch 710
  • each sampling end is connected to the output end of the multiplexing unit 700 through the corresponding first connector 180, such as being connected to the signal output terminal of the first analog multiplexing switch 710.
  • the fifth controller 810 outputs a channel control signal to the multiplexing unit 700 in the corresponding electrode sheet 100 through each I/O control unit 840, so that the multiplexing unit 700 in the corresponding electrode sheet 100 outputs the analog temperature signal detected by the corresponding temperature detector 114 in a time-sharing manner, performs AD sampling on the analog temperature signal through the fourth analog-to-digital converter 820 to obtain a temperature sampling signal, and transmits the temperature sampling signal to the electric field generator 300 through the sixth communication transceiver 850. As shown in FIGS.
  • the fifth controller 810 outputs a channel control signal to the multiplexing unit 700 in the corresponding electrode sheet 100, so that the multiplexing unit 700 in the corresponding electrode sheet 100 outputs the analog temperature signal detected by the corresponding temperature detector 114 in a time-sharing manner, and performs AD sampling on the analog temperature signal through the fourth analog-to-digital converter 820 to obtain a temperature sampling signal, and transmits the temperature sampling signal to the electric field generator 300 through the sixth communication transceiver 850.
  • the controller 810 controls the four I/O control units 840 to drive the first analog multiplexing switches 710 in the four electrode sheets 100 respectively.
  • the fourth analog-to-digital converter 820 collects the analog temperature signal detected by the temperature detector 114 of the corresponding one of the four electrode sheets 100 in a time-sharing manner, and converts the analog temperature signal into a digital temperature signal and transmits it to the fifth controller 810.
  • the fifth controller 810 converts the digital temperature signal into a temperature value and transmits it to the electric field generator 300 electrically connected to the fifth adapter 800 through the sixth communication transceiver 850.
  • a third voltage-dividing resistor 830 is also connected between each sampling end of the fourth analog-to-digital converter 820 and the corresponding first connector 180.
  • the voltage-dividing resistor is a high-precision resistor, which divides the voltage with the temperature detector 114 so as to convert the analog temperature signal into a digital temperature signal through the fourth analog-to-digital converter 820.
  • the temperature acquisition module of a single electrode sheet 100 is composed of 9 temperature detectors 114 arranged thereon through a first cable 130, a first connector 180 and a third voltage-dividing resistor 830, wherein the positive end of the third voltage-dividing resistor 830 is connected to a DC power supply VCC, and the other end is connected to a signal end 114B of the temperature detector 114 and a fourth analog-to-digital converter 820, and the ground end 114A of the temperature detector 114 is connected to a ground pin GND0.
  • the temperature detector 114 such as a thermistor element, has a linear relationship with temperature. Changes in temperature will cause changes in the resistance of the thermistor element. Since the DC power supply VCC is a fixed voltage, the resistance of the third voltage-dividing resistor 830 is not affected by temperature changes. Therefore, the linear change in the voltage value at the sampling end of the fourth analog-to-digital converter 820 is only related to the resistance of the thermistor element, and is equivalent to the thermistor element and the third voltage-dividing resistor 830 being connected in series to divide the voltage.
  • VRT VCC ⁇ (RT/(RT+RS)), where VRT is the voltage at the sampling end of the fourth analog-to-digital converter 820, RT is the resistance of the thermistor element at temperature T (K), and RS is the resistance of the third voltage-dividing resistor 830.
  • RT the resistance of the thermistor element at temperature T (K)
  • RS the resistance of the third voltage-dividing resistor 830.
  • RT RN ⁇ eB (1/T-1/TN)
  • RT is the resistance of the thermistor at temperature T (K)
  • RN is the resistance of the thermistor at rated temperature TN (K)
  • T is the current temperature (K)
  • B is the thermal coefficient of the thermistor
  • e is a constant (2.71828).
  • the thermal coefficient B of the thermistor is 3380
  • the resistance RN at 25°C is 10K
  • the calculated resistance RT of the thermistor is about 8355.88 ⁇
  • the current temperature T is 29.8°C.
  • the system uses a 12-bit analog-to-digital conversion chip. Under a 3.3V power supply voltage, the minimum measurable voltage is about 0.8056mV, and the corresponding minimum temperature resolution is about 0.03°C. The temperature value that can be tested has high accuracy.
  • the nine thermistor elements of each electrode sheet 100 send the analog temperature signals sensed by the thermistor elements in parallel to the corresponding sampling channels of the fourth analog-to-digital converter 820 through the first analog multiplexing switch 710 located thereon in a time-sharing manner, and then the fifth controller 810 controls the sixth communication transceiver 850 to transmit them in serial manner to the electric field generator 300 electrically connected to the fifth adapter 800.
  • the fifth adapter 800 further includes a sixth cable 870 electrically connected to the electric field generator 300.
  • the sixth cable 870 includes eight conductive wire cores, of which four conductive wire cores are alternating power wires a1, a2, a3 and a4 respectively connected to the four first connectors 180-X1, 180-Y1, 180-X2 and 180-Y2, two conductive wire cores are receiving data wires RX and transmitting data wires TX electrically connected to the sixth communication transceiver 850 of the fifth adapter 800, and the remaining two conductive wire cores are power wires VCC and ground wires GND for providing working power to at least one temperature detector 114 of each electrode sheet 100 and the main control board of the fifth adapter 800.
  • a sixth connector 880 is provided between the fifth adapter 800 and the electric field generator 300, and the sixth connector 880 is suitable for electrically connecting the electric field generator 300 to the fifth adapter 800.
  • the sixth connector 880 is a sixth plug, and the electric field generator 300 is provided with a second socket 310.
  • the sixth plug and the second socket 310 are press-type spring connectors, that is, the sixth connector 880 connects the fifth adapter 800 and the electric field generator 300 in the form of a connector.
  • each first connector such as 180-X1, 180-Y1, 180-X2 and 180-Y2 is connected to the sixth connector 880 through alternating power lines such as a1, a2, a3 and a4, the sixth connector 880 is connected to the sixth communication transceiver 850 through the receiving data line RX and the sending data line TX, the VCC pin of the sixth connector 880 is connected to the power supply end of the fifth controller 810, the GND pin of the sixth connector 880 is grounded, and the VCC pins of the sixth connector 880 are also respectively connected to the corresponding sampling ends of the fourth analog-to-digital converter 820 through a third voltage-dividing resistor 830.
  • the fifth controller 810 controls the sixth communication transceiver 850 to transmit the digital temperature signal converted by the fourth analog-to-digital converter 820 to the electric field generator 300 via the sixth connector 880. That is, after the analog temperature signal (the voltage value of the corresponding temperature detector 114) collected by the fifth adapter 800 is converted into a digital temperature signal by the fourth analog-to-digital converter 820, it is transmitted to the electric field generator 300 via the sixth communication transceiver 850, the transmission data line TX connected to the sixth communication transceiver 850 and the sixth connector 880.
  • a multiplexing unit 700 is provided on an adapter plate (unnumbered) of the electrode sheet 100 and is connected to a plurality of temperature detectors 114 provided on the adapter plate (unnumbered) so as to output the analog temperature signal detected by each temperature detector 114 in a time-sharing manner, thereby achieving a greater coverage rate of the temperature detectors 114 without increasing the number of cores of the first cable 130; in addition, when the number of temperature detectors 114 on the electrode sheet 100 is large, the weight of the first cable 130 is greatly reduced, and the electrode sheet 100 only increases the weight of the multiplexing unit 700, thereby avoiding excessive load on the electrode sheet 100 and maintaining the application effect of the electrode sheet 100; at the same time, the electrode sheet 100 outputs an analog temperature signal, and the fourth analog-to-digital converter 820 is not provided on the electrode sheet 100, thereby further avoiding an increase in the overall weight of the electrode sheet 100 and improving the application effect of the electrode sheet 100.
  • FIG 44 it is a schematic diagram of the structure of an electrode sheet 100' of another embodiment of the present disclosure.
  • the adapter plate 120' of the electrode sheet 100' in this embodiment has more electrode elements 112 and temperature detectors 114 than the aforementioned electrode sheet 100, and also has a first analog multiplexing switch 710 connected to the signal terminals 114B of the plurality of temperature detectors 114.
  • the electrode elements 112, temperature detectors 114 and first analog multiplexing switch 710 of the electrode sheet 100 in this embodiment are the same as those of the electrode sheet 100 in the aforementioned embodiment, so the previous reference numerals are used.
  • the multiplexing unit 700' of the electrode sheet 100' of this embodiment also includes a second analog multiplexing switch 720 and an inverter 730, the enable control terminal of the second analog multiplexing switch 720 is connected to the output end of the inverter 730, the input end of the inverter 730 is connected to the enable control terminal of the first analog multiplexing switch 710, each channel control terminal of the second analog multiplexing switch 720 is correspondingly connected to each channel control terminal of the first analog multiplexing switch 710, and the signal output terminal of the second analog multiplexing switch 720 is connected to the signal output terminal of the first analog multiplexing switch 710.
  • the first analog multiplexing switch 710 and the second analog multiplexing switch 720 share the enable control line, the channel control line and the channel output line, but when sharing the enable control line, an inverter 730 is added in the middle, so that no matter whether the level of the enable control line is high or low, only one analog multiplexing switch is valid at the same time.
  • the first analog multiplexing switch 710 and the second analog multiplexing switch 720 also share the DC power supply line, the ground line and the AC power supply line, so that the analog temperature signals of more temperature detectors 114 can be transmitted without adding any wire cores.
  • 20 electrode elements 112 are disposed on the adapter plate 120 ′ of the electrode sheet 100 ′, and each electrode element 112 is correspondingly provided with a temperature detector 114. If the number of the signal input terminals 712 of the first analog multiplexing switch 710 is 16 If the number of temperature detectors 114 exceeds the number of signal input terminals 712 of the first analog multiplexing switch 710, then it is obvious that the number of temperature detectors 114 exceeds the number of signal input terminals 712 of the first analog multiplexing switch 710.
  • a second analog multiplexing switch 720 needs to be added to increase the number of signal input terminals 712, that is, to increase the number of selection channels, so as to realize the transmission of analog temperature signals of 20 temperature detectors 114.
  • the structures of the first analog multiplexing switch 710 and the second analog multiplexing switch 720 can both be the structures shown in FIG. 42, that is, both have 4 channel control terminals SA, SB, SC and SD, and 16 signal input terminals 712, so as to realize the transmission of analog temperature signals of more than 16 temperature detectors 114 through two analog multiplexing switches.
  • the enable control terminal INHIBIT of the first analog multiplexing switch 710 is valid if:
  • the channel control line is 0000
  • the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0000 to turn on the analog switch element TG on the selection channel 1 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 1 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-1 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0001, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0001 to turn on the analog switch element TG on the selection channel 2 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 2 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-2 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0010, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0010 to turn on the analog switch element TG on the selection channel 3 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 3 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-3 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0011, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0011 to turn on the analog switch element TG on the selection channel 4 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 4 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-4 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0100
  • the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0100 to turn on the analog switch element TG on the selection channel 5 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 5 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-5 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0101
  • the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0101 to turn on the analog switch element TG on the selection channel 6 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 6 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-6 is transmitted through the first analog multiplexing switch 710.
  • the signal output terminal COMMON and the channel output line of the multiplexing switch 710 are transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 .
  • the channel control line is 0110, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0110 to turn on the analog switch element TG on the selection channel 7 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 7 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-7 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 0111
  • the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0111 to turn on the analog switch element TG on the selection channel 8 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 8 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-8 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1000, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1000 to turn on the analog switch element TG on the selection channel 9 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 9 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-9 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1001, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1001 to turn on the analog switch element TG on the selection channel 10 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 10 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-10 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1010, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 0010 to turn on the analog switch element TG on the selection channel 11 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 11 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-11 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1011, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1011 to turn on the analog switch element TG on the selection channel 12 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 12 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-12 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1100, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1100 to turn on the analog switch element TG on the selection channel 13 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 13 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-13 is transmitted to the fourth analog-to-digital converter of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • Device 820 is provided to the fourth analog-to-digital converter of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1101, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1101 to turn on the analog switch element TG on the selection channel 14 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 14 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-14 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1110, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1110 to turn on the analog switch element TG on the selection channel 15 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 15 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-15 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the channel control line is 1111, and the decoder 711 of the first analog multiplexing switch 710 decodes the binary number 1111 to turn on the analog switch element TG on the selection channel 16 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 16 of the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-16 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal COMMON of the first analog multiplexing switch 710 and the channel output line.
  • the enable control terminal of the second analog multiplexing switch 720 is valid, if:
  • the channel control line is 0000
  • the decoder of the second analog multiplexing switch 720 decodes the binary number 0000 to turn on the analog switch element TG on the selection channel 1 and turn off the analog switch elements TG on the other selection channels, so that only the selection channel 1 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-17 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal and the channel output line of the second analog multiplexing switch 720.
  • the channel control line is 0001, and the decoder of the second analog multiplexing switch 720 decodes the binary number 0001 to turn on the analog switch element TG on the selection channel 2 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 2 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-18 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal and the channel control output of the second analog multiplexing switch 720.
  • the channel control line is 0010, and the decoder of the second analog multiplexing switch 720 decodes the binary number 0010 to turn on the analog switch element TG on the selection channel 3 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 3 among the 16 selection channels is turned on.
  • the analog temperature signal sensed by the temperature detector 114-19 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal and the channel output line of the second analog multiplexing switch 720.
  • the channel control line is 0011, and the decoder of the second analog multiplexing switch 720 decodes the binary number 0011 to turn on the analog switch element TG on the selection channel 4 and turn off the analog switch elements TG on other selection channels, so that only the selection channel 4 is turned on among the 16 selection channels.
  • the analog temperature signal sensed by the temperature detector 114-20 is transmitted to the fourth analog-to-digital converter 820 of the fifth adapter 800 through the signal output terminal and the channel output line of the second analog multiplexing switch 720.
  • the corresponding fifth adapter 800 and the electric field generator 300 are the same as the fifth adapter 800 and the electric field generator 300 corresponding to the electrode sheet 100 shown in FIG. 41 .
  • the fifth controller 810 located in the fifth adapter 800 controls the I/O control unit 840 to cyclically switch the number of selection channels.
  • the I/O control unit 840 only cyclically switches the selection channels 1 to 9 to be turned on, and there is no need to control the selection channels 10 to 16 to be turned on.
  • the I/O control unit 840 needs to cyclically switch the selection channels 1 to 20 to be turned on.
  • a multiplexing unit 700' on the adapter board 120' composed of a flexible circuit board of the electrode sheet 100', and connecting it to a plurality of temperature detectors 114 provided on the adapter board 120', so as to output the analog temperature signal detected by each temperature detector 114 in a time-sharing manner, a greater coverage rate of the temperature detector 114 can be achieved without increasing the number of cores of the first cable 130.
  • the present disclosure provides a tumor treatment device, including: the aforementioned electrode sheets 100, 100', or the aforementioned electric field treatment system.
  • a greater coverage rate of the temperature detector 114 can be achieved without increasing the number of wire cores of the first cable 130.
  • the weight of the wire cores added to the first cable 130 of the traditional electrode sheet can be effectively reduced, thereby avoiding excessive load on the electrode sheets 100, 100' and maintaining the application effect of the electrode sheets.
  • Figures 45 to 52 show an electrode sheet 100 according to an embodiment of the present disclosure.
  • the electrode sheet 100 can be directly plugged into the aforementioned electric field generator 300 to realize the electrical connection between it and the electric field generator, or it can be directly plugged into the aforementioned first adapter 200, and then electrically connected to the electric field generator 300 through the first adapter 200 to realize the electrical connection between it and the electric field generator.
  • the electrode sheet 100 includes at least one electrode unit 110, an adapter plate 120 detachably connected to at least one electrode unit 110, a first cable 130 electrically connected to the adapter plate 120, a backing 140 pasted to the corresponding parts of the electrode unit 110 and the adapter plate 120, a support member 150 surrounding the corresponding part of the electrode unit 110 and pasted to the backing 140, and an adhesive member 160 covering the support member 150 and the corresponding part of the electrode unit 110 and adhering to the body surface skin corresponding to the tumor site of the patient.
  • the electrode sheet 100 is attached to the body surface corresponding to the patient's tumor site through the backing 140, and applies an alternating electric field to the patient's tumor site through at least one electrode unit 110 detachably connected to the adapter plate 120 to interfere with or prevent the mitosis of the patient's tumor cells, thereby achieving the purpose of treating the tumor.
  • the present disclosure forms an electrode sheet 100 by detachably connecting at least one electrode unit 110 with an adapter plate 120 composed of a flexible circuit board, which can realize the detachable replacement of a failed electrode unit 110, or the detachable replacement of a failed adapter plate 120, which can reduce the loss of the entire electrode sheet 100 before the product is shipped, reduce the yield loss of the electrode sheet 100, and avoid causing the entire electrode sheet 100 to be scrapped when the electrode sheet 100 is used, saving costs; the intensity of the alternating electric field applied by the electrode sheet 100 can also be adaptively adjusted according to the size of the tumor by freely selecting the number of electrode units 110 plugged into the adapter plate 120.
  • each electrode unit 110 includes a flexible board substrate 111, a support plate 113 and an electrode element 112 respectively disposed on both sides of the flexible board substrate 111, and a male seat 115 disposed on the same side surface of the flexible board substrate 111 and the electrode element 112.
  • the electrode element 112 and the male seat 115 are respectively located at opposite ends of the flexible board substrate 111, and the electrode element 112 and the support plate 113 are located at the same end of the flexible board substrate 111.
  • the size of the support plate 113 and the electrode element 112 is slightly smaller than the size of the flexible board substrate 111.
  • the electrode element 112 is made of a high dielectric constant material, which has a conductive property of blocking the conduction of direct current and allowing alternating current to pass through. The user's safety can be ensured during electric field therapy of tumors.
  • the center of the electrode element 112 has an opening 1120 that passes through it.
  • the electrode unit 110 also includes a temperature detector 114 that is arranged on the flexible board substrate 111 and is located on the same side as the electrode element 112. The temperature detector 114 is accommodated in the opening 1120 in the center of the electrode element 112 to sense the temperature of the patient's skin attached to the electrode sheet 100.
  • the temperature detector 114 has a ground terminal 114A and a signal terminal 114B.
  • the temperature detector 114 is a thermistor.
  • the three first conductive traces 1114 are embedded in the flexible board substrate 111.
  • the three first conductive traces 1114 include a first grounding line 1114A electrically connected to the grounding terminal 114A of the temperature detector 114 and the male socket 115, a first signal line 1114B electrically connected to the signal terminal 114B of the temperature detector 114 and the male socket 115 for transmitting a temperature signal, and a first AC line 1114C arranged in a ring shape and electrically connected to the electrode element 112 and the male socket 115.
  • the first grounding line 1114A and the first signal line 1114B are both extended along the length direction of the flexible board substrate 111.
  • the first AC line 1114C is arranged in a ring shape along the periphery of the flexible board substrate 111 and is in a two-section structure electrically connected end to end at the location where the male socket 115 is arranged on the flexible board substrate 111, that is, the male socket 115 is electrically connected to the electrode element 112 through two sections of lines. Therefore, when one section of the first AC line 1114C is broken due to bending, the other section of the first AC line 1114C can also transmit electrical signals to the electrode element 112, ensuring the electrical reliability of the electrode unit 110, improving product quality, and reducing product defective rate.
  • the first ground line 1114A and the first signal line 1114B are both located inside the ring-shaped first AC line 1114C to facilitate wiring and reduce wiring difficulty.
  • the first AC line 1114C is arranged in a sealed ring along the periphery of the flexible board substrate 111, and includes a first AC line segment 1115 located at the same end as the electrode element 112 and arranged in an arc shape, and a second AC line segment 1116 extending from the first AC line segment 1115 and arranged in an inverted " ⁇ " shape.
  • the first AC line segment 1115 is electrically connected to the electrode element 112 arranged on the flexible board substrate 111.
  • One end of the second AC line segment 1116 is connected to both opposite ends of the first AC line segment 1115, and the other end is welded to the male socket 115 arranged on the flexible board substrate 111.
  • the electrode unit 110 realizes electrical connection between the electrode element 112 and the male socket 115 by electrically connecting the electrode element 112 to the first AC line segment 1115 of the first AC line 1114C of the flexible board substrate 111, connecting the first AC line segment 1115 of the first AC line 1114C of the flexible board substrate 111 to one end of the second AC line segment 1116, and electrically connecting the other end of the second AC line segment 1116 of the first AC line 1114C of the flexible board substrate 111 to the male socket 115.
  • the second AC line segment 1116 is formed by extending from two opposite ends of the first AC line segment 1115 along the length direction of the flexible board substrate 111 and then closing at the end away from the first AC line segment 1115.
  • the second AC line segment 1116 first extends from one end of the first AC line segment 1115 in a direction away from the electrode element 112, then bends and extends toward the other end of the first AC line segment 1115, and then extends toward the other end of the first AC line segment 1115 until it is connected to the other end of the first AC line segment 1115.
  • the second AC line segment 1116 includes a portion extending from one end of the first AC line segment 1115 and forming an "L"-shaped structure, and a portion extending from the other end of the first AC line segment 1115 and forming an "I"-shaped structure.
  • the second AC line segment 1116 has two parts connected to two opposite ends of the first AC line segment 1115, and when one part of the second AC line segment 1116 is disconnected from one end of the first AC line segment 1115 due to bending, the second part of the second AC line segment 1116 can be connected to the other end of the first AC line segment 1115 through the other part of the second AC line segment 1116, so as to ensure the electrical connection between the second AC line segment 1116 and the first AC line segment 1115, thereby achieving a good and stable electrical connection between the electrode element 112 and the male socket 115.
  • the second AC line segment 1116 of the first AC line 1114C is connected to the two opposite ends of the arc-shaped first AC line segment 1115 at the same time, and even when the second AC line segment 1116 is disconnected from one end of the first AC line segment 1115 due to bending, the electrical signal can still be transmitted to the electrode element 112 through the connection between the second AC line segment 1116 and the other end of the first AC line segment 1115, thereby ensuring the reliability of the electrical connection between the electrode element 112 of the electrode unit 110 and the flexible board substrate 111, thereby improving the product quality and reducing the product defect rate.
  • the first ground line 1114A and the first signal line 1114B are both located in the area circled by the first AC line 1114C to facilitate wiring and reduce wiring difficulty.
  • the same side surface of the flexible board substrate 111 is also provided with a plurality of conductive pads 1111 arranged in an interval shape and welded to the electrode element 112, two first pads 1112 respectively welded to the ground terminal 114A and the signal terminal 114B of the temperature detector 114, and a plurality of second pads 1113 welded to the male socket 115.
  • the conductive pads 1111 and the first pads 1112 are both located at the same end of the flexible board substrate 111, and the second pads 1113 are located at the other end of the flexible board substrate 111.
  • the plurality of conductive pads 1111 are respectively electrically connected to the first AC line segment 1115 of the first AC line 1114C embedded in the flexible board substrate 111, and are connected in series through the arc-shaped first AC line segment 1115.
  • the flexible board substrate 111 is electrically connected to the electrode element 112 through the first AC line segment 1115 of the first AC line 1114C being electrically connected to the conductive pads 1111 and the conductive pads 1111 being welded to the electrode element 112 to achieve electrical connection between the flexible board substrate 111 and the electrode element 112.
  • Two first pads 1112 are located at the middle position surrounded by the plurality of conductive pads 1111.
  • the first pad 1112 soldered to the ground terminal 114A of the temperature detector 114 is the first pad 1112A
  • the first pad 1112 soldered to the signal terminal 114B of the temperature detector 114 is the first pad 1112B.
  • the first pad 1112A is provided at the end of the first ground line 1114A located in the first AC line segment 1115 of the first AC line 1114C
  • the first pad 1112B is provided at the end of the first signal line 1114B located in the first AC line segment 1115 of the first AC line 1114C.
  • the first pad 1112A is electrically connected to one end of the first ground line 1114A
  • the first pad 1112B is electrically connected to one end of the first signal line 1114B.
  • the flexible board substrate 111 is electrically connected to the temperature detector 114 by welding the ground terminal 114A of the temperature detector 114 to the first soldering pad 1112A connected to the first grounding line 1114A and welding the signal terminal 114B of the temperature detector 114 to the first soldering pad 1112B connected to the first signal line 1114B.
  • the second pads 1113 and the first pads 1112 are respectively disposed at opposite ends of the flexible board substrate 111.
  • the second pads 1113 are disposed at one end of the flexible board substrate 111 away from the electrode element 112 and are welded to the male socket 115 to achieve electrical connection between the second pads 1113 and the male socket 115.
  • the second pads 1113A and the first pads 1112A are respectively disposed at opposite ends of the first grounding line 1114A and are electrically connected to each other through the first grounding line 1114A.
  • the second pad 1113B and the first pad 1112B are respectively disposed at two opposite ends of the first signal line 1114B, and are electrically connected to each other through the first signal line 1114B.
  • the second pad 1113C and the conductive pad 1111 are respectively disposed at two opposite ends of the first AC line 1114C, and are electrically connected to each other through the first AC line 1114C.
  • the second pad 1113C is disposed at the end of the second AC line segment 1116 of the first AC line 1114C, and the conductive pad 1111 is disposed on the first AC line segment 1115 of the first AC line 1114C.
  • the flexible board substrate 111 realizes electrical connection between the male socket 115 and the electrode element 112 by welding the conductive pad 1111 disposed on the first AC line segment 1115 of the first AC line 1114C to the electrode element 112, and welding the second pad 1113C disposed at the end of the second AC line segment 1116 of the first AC line 1114C to the male socket 115.
  • the flexible board substrate 111 realizes electrical connection between the temperature detector 114 and the male socket 115 by welding a first soldering pad 1112A provided at one end of the first grounding line 1114A to the grounding end 114A of the temperature detector 114, welding a first soldering pad 1112B provided at one end of the first signal line 1114B to the signal end 114B of the temperature detector 114, and welding a second soldering pad 1113A provided at the other end of the first grounding line 1114A and a second soldering pad 1113B provided at the other end of the first signal line 1114B to the male socket 115.
  • the conductive plate 1111 is welded to the male socket 115 through at least one second pad 1113C provided on the second AC line segment 1116 of the first AC line 1114C, ensuring a stable electrical connection between the conductive plate 1111 and the male socket 115, so that the electrical signal for tumor treatment is transmitted to the conductive plate 1111 through the first AC line 1114C, and then transmitted to the electrode element through the conductive plate 1111.
  • second pads 1113C welded to the male socket 115 are respectively connected to the second AC line segment 1116 of the first AC line 1114C.
  • the present application can also have other implementations.
  • one of the plurality of second pads 1113 is connected to the first ground line 1114A, one is connected to the second AC line segment 1116 of the first AC line 1114C, and the rest are respectively connected to the corresponding first signal lines 1114B in a one-to-one correspondence.
  • one of the plurality of second pads 1113 is connected to the first signal line 1114B, one is connected to the first AC line 1114C, and the rest are respectively connected to the first ground line 1114A. That is, two of the plurality of second pads 1113 are respectively connected to two lines among the first ground line 1114A, the first signal line 1114B and the first AC line 1114C, and the remaining second pads 1113 are all connected to the remaining line among the first ground line 1114A, the first signal line 1114B and the first AC line 1114C.
  • the grounding signal of the temperature detector 114 is transmitted to the corresponding second pad 1113A electrically connected to the first grounding wire 1114A through the first grounding wire 1114A electrically connected to the grounding terminal 114A; the temperature signal detected by the temperature detector 114 is transmitted to the corresponding second pad 1113B electrically connected to the first signal wire 1114B through the first signal wire 1114B electrically connected to the signal terminal 114B; and the temperature signal detected by the temperature detector 114 is transmitted to the electric field generator through welding the second pad 1113 to the male socket 115, plugging the male socket 115 to the adapter board 120, electrically connecting the adapter board 120 to the first cable 130, and plugging the first cable 130 to the electric field generator, thereby achieving the purpose of the electric field generator controlling the alternating electric signal transmitted to the electrode element 112 through the detected temperature signal, thereby avoiding low-temperature burns on the patient's tumor surface caused by excessive temperature.
  • the AC signal generated by the electric field generator is transmitted to the first AC line 1114C arranged in a ring shape through the corresponding at least two second welding pads 1113C, and then transmitted to the electrode element 112 through the multiple conductive plates 1111 welded to the first AC line 1114C, so as to apply the AC electric signal to the tumor site for tumor electric field therapy.
  • the AC signal required by the electrode element 112 is an alternating current signal, which is output by the electric field generator.
  • the electric field generator also outputs a direct current signal to the temperature detector 114, so that the temperature detector 114 is connected to the ground signal and operates to generate a temperature signal.
  • the support plate 113 is bonded to the surface of one side of the flexible board substrate 111 away from the conductive disk 1111 by an adhesive (not shown).
  • the support plate 113 corresponds to the electrode element 112 one by one along the thickness direction.
  • the temperature detector 114 is welded and arranged at the position of the flexible board substrate 111 corresponding to the two first pads 1112, the electrode element 112 is welded and arranged at the position of the flexible board substrate 111 corresponding to the multiple conductive disks 1111, and the male seat 115 is welded and arranged at the position of the second pad 1113 of the flexible board substrate 111.
  • the temperature detector 114, the electrode element 112 and the support plate 113 are all arranged at the same end of the flexible board substrate 111.
  • the support plate 113 When welding the temperature detector 114 and the electrode element 112, the support plate 113 provides strength support for the flexible board substrate 111, and provides a flat welding plane for the welding operation between the flexible board substrate 111 and the temperature detector 114 and the electrode element 112, thereby improving the product yield.
  • a reinforcing plate 116 is attached to one end of the flexible board substrate 111 where the male socket 115 is welded. The reinforcing plate 116 is arranged on the surface of the flexible board substrate 111 on the side opposite to the male socket 115 to provide strength support for the flexible board substrate 111 so as to weld the male socket 115 thereto.
  • the reinforcing plate 116 and the male socket 115 are respectively arranged on opposite sides of the flexible board substrate 111.
  • the reinforcing plate 116 and the male socket 115 are located at the same end of the flexible board substrate 111.
  • the adapter plate 120 is provided with at least one female socket 125 corresponding to and electrically connected to the male socket 115 of the electrode unit 110.
  • a plurality of electrode units 110 can be plugged and combined with the corresponding male socket 115 and the corresponding female socket 125 on the adapter plate 120 to form an electrode sheet 100 having at least one electrode unit 110.
  • the present disclosure can realize the detachable replacement of a failed electrode unit 110 or the detachable replacement of a failed adapter plate 120 by means of the detachable combination of the electrode unit 110 and the adapter plate 120, thereby avoiding the scrapping of the entire electrode sheet 100 and reducing the yield loss of the electrode sheet 100; avoiding the scrapping of the entire electrode sheet 100, avoiding waste and reducing costs; and freely combining and selecting the plug-in
  • the number of electrode units 110 on the adapter plate 120 is adjusted to increase or decrease the electric field strength generated by the electrode sheet 100 to ensure that the electrode sheet 100 generates the electric field strength required by the patient's tumor site.
  • the adapter plate 120 is provided in a sheet shape, and has a body 128 for plugging and combining at least one electrode unit 110 and a wiring portion 127 for electrically connecting the first cable 130.
  • the wiring portion 127 is provided integrally with the body 128.
  • the wiring portion 127 is located at one end of the body 128.
  • the female seat 125 plugged with the male seat 115 of the electrode unit 110 is provided on the body 128 by welding.
  • the first cable 130 is electrically connected to the adapter plate 120 by welding with the wiring portion 127.
  • the electrode unit 110 of the electrode sheet 100 is electrically connected to the adapter plate 120 by plugging with the female seat 125 welded on the adapter plate 120 through its male seat 115, and the adapter plate 120 is electrically connected to the first cable 130 by welding with the first cable 130 through its wiring portion 127.
  • the electrode unit 110 of the electrode sheet 100 is electrically connected to the first cable 130 through the adapter plate 120.
  • the adapter board 120 is a flexible circuit board, and the plurality of electrode units 110 are connected in parallel to the adapter board 120 . Even if the electrical connection between a certain electrode unit 110 and the adapter board 120 is interrupted, it will not affect the electrical connection between the remaining electrode units 110 and the adapter board 120 .
  • the adapter plate 120 has at least one group of third pads 123 disposed on the body 128 and welded to the corresponding female seat 125 and a plurality of fourth pads 124 disposed on opposite sides of the wiring portion 127 and welded to the first cable 130.
  • the configuration of each group of third pads 123 is the same as the configuration of the second pad 1113 of the electrode unit 110, and each group of third pads 123 has a plurality of third pads 123, one third pad 123A of the plurality of third pads 123 is connected to a ground signal, one third pad 123B is connected to a temperature signal, and the remaining third pads 123C are all connected to an AC signal.
  • a group of fourth pads 124 has a plurality of fourth pads 124.
  • the plurality of fourth pads 124 include a fourth pad 124A transmitting a ground signal, a fourth pad 124C transmitting an AC signal, and a plurality of fourth pads 124B transmitting corresponding temperature signals, respectively.
  • the third pads 123A transmitting ground signals in the multiple groups of third pads 123 are all connected in parallel to a fourth pad 124A
  • the multiple third pads 123C transmitting AC signals in the multiple groups of third pads 123 are all connected in parallel to a fourth pad 124C
  • the third pads 123B transmitting temperature signals in the multiple groups of third pads 123 are all connected one by one to the corresponding fourth pads 124B.
  • a plurality of second conductive traces 126 are embedded inside the adapter board 120.
  • the plurality of third pads 123 and the fourth pads 124A, 124B, and 124C are respectively arranged at opposite ends of the plurality of second conductive traces 126, and the electrical connection between the two is realized through the second conductive traces 126.
  • the plurality of third pads 123 are arranged at one end of the plurality of second conductive traces 126 in parallel connection, and the plurality of electrode units 110 can be connected to the adapter board 120 in parallel after the plurality of electrode units 110 are respectively plugged into the female sockets 125 welded to the plurality of third pads 123 through their corresponding male sockets 115, thereby making the signal transmission between each electrode unit 110 and the adapter board 120 independent and independent of each other. Even if one of the electrode units 110 is damaged, it will not affect the signal transmission between the remaining electrode units 110 and the adapter board 120, thereby ensuring the normal operation of the remaining electrode units 110 without replacing or scrapping the entire electrode sheet 100.
  • the multiple second conductive traces 126 include a second ground line 126A for transmitting a ground signal, a second AC line 126C for transmitting an AC signal, and multiple second signal lines 126B for transmitting corresponding temperature signals.
  • the second AC line 126C transmits an AC signal and is arranged in a dendrite-like wiring pattern. It is electrically connected to a third pad 123C connected to an AC signal in each group of third pads 123 and a fourth pad 124C connected to an AC signal in the fourth pad 124, so that each electrode unit 110 assembled with a female socket 125 corresponding to the corresponding third pad 123 can be in an equipotential state, ensuring the AC signal stability of the electrode sheet 100.
  • a third pad 123C connected to an AC signal in each group of third pads 123 is connected to the second AC line 126C in parallel, that is, the AC signal of each electrode unit 110 assembled with a female socket 125 corresponding to the corresponding third pad 123 is not affected by each other. Even if an electrode unit 110 is damaged during use, it does not affect other electrode units 110 to continue to apply an alternating electric field to the patient's tumor site for tumor electric field therapy.
  • the second grounding wire 126A transmits a grounding signal and is arranged in a dendrite-like wiring arrangement and is connected to a third pad connected to the grounding signal in each group of third pads 123.
  • 123A, and a fourth pad 124A in the fourth pad 124 connected to the ground signal are electrically connected.
  • a third pad 123A in each group of third pads 123 connected to the ground signal is connected to the second ground line 126A in parallel, that is, the ground signal of each electrode unit 110 assembled with the mother seat 125 corresponding to the corresponding third pad 123 is not affected by each other.
  • the multi-channel second signal line 126B transmits the corresponding temperature signal, and is electrically connected to a third pad 123B in a corresponding group of third pads 123 connected to the temperature signal, and a corresponding fourth pad 124B in the group of fourth pads 124 connected to the temperature signal in one-to-one correspondence.
  • At least one group of third pads 123 is connected in parallel to realize that at least one electrode unit 110 is connected in parallel to the adapter board 120, and the AC signal, ground signal and temperature signal of each electrode unit 110 are not affected by each other.
  • a plurality of third pads 123C are connected in parallel to the second AC line 126C.
  • a plurality of third pads 123A are also connected in parallel to the second ground line 126A.
  • a plurality of third pads 123B are respectively connected to the corresponding second signal line 126B, and are connected to the corresponding fourth pad 124B through the corresponding second signal line 126B.
  • Each female socket 125 is arranged in parallel on the adapter board 120 by welding with the corresponding group of third pads 123, and each electrode unit 110 can be connected in parallel to the adapter board 120 after each electrode unit 110 is plugged into the corresponding female socket 125 through its corresponding male socket 115, so that the signal on and off between each electrode unit 110 and the adapter board 120 does not affect each other, and even if one of the electrode units 110 is damaged or the electrical connection between it and the adapter board 120 is disconnected, it will not affect the electrical connection and signal transmission between the remaining electrode units 110 and the adapter board 120.
  • Multiple third solder pads 123A for transmitting ground signals and a fourth solder pad 124A for transmitting ground signals are respectively arranged at opposite ends of a second ground line 126A, and the electrical connection between the corresponding third solder pads 123A and the fourth solder pad 124A is realized through the second ground line 126A, and the multiple third solder pads 123A are arranged in parallel at one end of the second ground line 126A, so that after the multiple electrode units 110 are plugged into the corresponding female sockets 125 of the adapter board 120, the ground signal transmission of each electrode unit 110 can be independent and not affect each other.
  • each second signal line 126B for transmitting the temperature signal is connected to a third solder pad 123B for transmitting the temperature signal, and the other end is connected to a fourth solder pad 124B for transmitting the temperature signal and corresponding to the third solder pad 123B, so as to respectively transmit the temperature signal collected by the temperature detector 114 of each electrode unit 110.
  • the temperature signal transmission between each electrode unit 110 can be independent and non-interfering.
  • the plurality of third pads 123C for transmitting AC signals and the fourth pad 124C for transmitting AC signals are respectively arranged at opposite ends of a second AC line 126C, and the electrical connection between the corresponding third pads 123C and the fourth pad 124C is realized through the second AC line 126C, and the plurality of third pads 123C are arranged at one end of the second AC line 126C in parallel connection.
  • the second AC line 126C for transmitting AC signals is wired in a dendrite-like manner, one end of which is electrically connected to a third pad 123C in each group of third pads 123, and the other end is electrically connected to a fourth pad 124C in the plurality of fourth pads 124, so that the AC signal transmission of each electrode unit 110 can be independent and not affect each other after each electrode unit 110 is plugged into the corresponding female socket 125 of the adapter board 120 through its corresponding male socket 115.
  • the number of the fourth pads 124 is greater than the number of the second conductive traces 126, and includes conductive pads 124A, 124B, and 124C electrically connected to the corresponding second conductive traces 126.
  • the fourth pad 124 also includes a dummy pad 124D that is disconnected from the second conductive trace 126, which can enhance the welding firmness of the flexible transfer board 120 and the first cable 130.
  • the multiple second conductive traces 126 embedded in the adapter board 120 are arranged in two wiring layers to avoid mutual interference between the second conductive traces 126.
  • the second AC line 126C is distributed in one layer
  • the second ground line 126A and the second signal line 126B are distributed in two wiring layers to avoid the second AC line 126C.
  • the multiple second conductive traces 126 embedded in the adapter board 120 are arranged in three or more wiring layers, which can improve the efficiency of the multiple second conductive traces. 126 wiring flexibility.
  • the adapter board 120 has a plurality of female sockets 125 respectively welded to the third pads 123 of the corresponding groups.
  • the plurality of female sockets 125 are welded and arranged on the body 128 at intervals.
  • the body 128 of the adapter board 120 also has a trunk 121 and at least one branch 122.
  • the wiring portion 127 is located at one end of the trunk 121 of the body 128.
  • the second conductive trace 126 of the adapter board 120 is embedded in the trunk 121 and the branch 122 of the body 128.
  • the plurality of female sockets 125 are welded and arranged on a trunk 121 and at least one branch 122 at intervals, so that the plurality of electrode units 110 are arranged on the adapter board 120 at intervals through the plug-in cooperation of the female sockets 125 and the male sockets 115 of the electrode units 110, and the electrical connection between the plurality of electrode units 110 and the adapter board 120 is realized at the same time.
  • the trunk 121 of the body 128 of the adapter plate 120 is provided with at least one hollow hole 1211 arranged in a through shape.
  • the hollow hole 1211 of the body 128 of the adapter plate 120 can allow the electrode element 112 of the corresponding electrode unit 110 to pass through, so that the electrode element 112 of the corresponding electrode unit 110 can be exposed to the side of the adapter plate 120 away from the female seat 125, and then the electrode element 112 of the corresponding electrode unit 110 can pass through the adapter plate 120 and be configured on the surface of human skin.
  • the adapter plate 120 has a trunk 121 and four branches 122 extending from the trunk 121 to both sides, and two branches 122 are respectively arranged on both sides of the trunk 121.
  • the branches 122 located on different sides of the trunk 121 are arranged in pairs.
  • 13 female sockets 125 are provided on the adapter plate 120, and the 13 female sockets 125 are respectively arranged on a trunk 121 and four branches 122 of the main body 128.
  • Three female sockets are provided on the trunk 121, two female sockets are respectively provided on the two branches 122 close to the wiring part 127, and three female sockets are respectively provided on the other two branches 122.
  • Two hollow holes 1211 are provided through the trunk 121 to respectively accommodate the dielectric elements of the corresponding electrode unit 110.
  • the three female sockets 125 located on the trunk 121, the two hollow holes 1211 provided on the trunk 121, and the wiring part 127 are all arranged in an axially symmetrical shape, and the straight lines where the axes of symmetry of the three coincide.
  • the three female sockets 125 located on the trunk 121 and the two hollow holes 1211 provided on the trunk 121 are arranged in a longitudinally aligned shape. Two of the three female sockets 125 on the trunk 121 are located on the same side of a hollow hole 1211 away from the wiring portion 127 , and the other one is located at a position of the trunk 121 between the two hollow holes 1211 .
  • the two female seats 125 provided on the branches 122 close to the connection portion 127 are arranged on the corresponding branches 122 in a roughly "L" shape.
  • the three female seats 125 provided on the branches 122 away from the connection portion 127 are arranged on the corresponding branches 122 in a roughly " ⁇ " shape with one end open, and the opening of the " ⁇ " formed by the three female seats 125 faces the trunk 121.
  • the multiple female seats 125 provided on the branches 122 are all symmetrically arranged along the longitudinal symmetry axis of the trunk 121.
  • Two of the five female seats 125 on the two branches 122 on the same side of the trunk 121 are longitudinally aligned and respectively arranged at the ends of the corresponding branches 122, and the remaining three are longitudinally aligned and respectively arranged at the positions of the corresponding branches 122 close to the trunk 121.
  • the three female seats 125 provided on the trunk 121 are arranged in a longitudinally aligned state.
  • the four female seats 125 located on the branches 122 on opposite sides of the trunk 121 and close to the connection portion 127 are arranged in a transverse alignment in pairs.
  • the two female seats 125 respectively arranged at the ends of the two branches 122 close to the connection portion 127 are arranged in a transverse alignment
  • the two female seats 125 respectively arranged at the ends of the two branches 122 close to the connection portion 127 and close to the trunk 121 are also arranged in a transverse alignment
  • the two female seats 125 arranged on the two branches 122 away from the connection portion 127 and located at the ends of the corresponding branches 122 are arranged in a transverse alignment
  • two of the four female seats 125 arranged on the two branches 122 away from the connection portion 127 and located at the positions of the corresponding branches 122 close to the trunk 121 are arranged in a transverse alignment
  • the other two are also arranged in a transverse alignment. Alignment setting.
  • the female sockets 125 located on the branches 122 are all arranged at the edges of the corresponding branches 122, and the female sockets 125 located on the trunk 121 are respectively arranged in a horizontal alignment with the corresponding female sockets 125 located on the branches 122, so as to facilitate the wiring arrangement of the second conductive traces 126 of the adapter plate 120, so that each female socket 125 is connected in parallel and arranged on the adapter plate 120 through the second conductive traces 126.
  • the electrode units 110 detachably connected to the female sockets 125 located at the ends of each branch 122 are horizontally assembled on the adapter plate 120, and the electrode units 110 detachably assembled with the female sockets 125 located outside the ends of each branch 122 are all longitudinally assembled on the adapter plate 120.
  • the electrode units 110 are connected in parallel to the adapter board 120, the on and off of the AC signals, ground signals and temperature signals of each electrode unit 110 do not affect each other, and the number of disassembled and assembled electrode units 110 on the adapter board 120 is less than the number of female sockets 125 on the adapter board 120.
  • first cable 130 is electrically connected to the wiring portion 127 of the adapter plate 120, and the other end is provided with a first plug 132.
  • the first cable 130 is a Lemo female sheathed cable.
  • the first cable 130 has a plurality of cores (not shown), and each core (not shown) is respectively welded to the corresponding fourth pads 124 on both sides of the surface of the wiring portion 127.
  • the number of electrode units 110 of the electrode sheet 100 is 13, and the number of cores (not shown) of the first cable 130 is 16.
  • a circle of heat shrink tubing 131 is also provided around the welding point between the first cable 130 and the wiring part 127 to seal and insulate the welding point between the adapter plate 120 and the first cable 130 to avoid breakage at the welding point between the adapter plate 120 and the first cable 130 and to prevent dust and water.
  • the first cable 130 also includes a shielding grid wire (not shown) wrapped around the outer periphery of the plurality of wire cores (not shown).
  • the fourth pad 124 also includes a shielding pad 124E located at the end of the wiring portion 127, which can be welded to the shielding grid wire (shown) of the first cable 130 to shield the first cable 130 and prevent external signals from interfering with the signals transmitted by the plurality of wire cores (not shown) of the first cable 130.
  • the shielding pad 124E for shielding and the fourth pad 124A for transmitting the ground signal are both connected to the second ground wire 126A of the second conductive trace 126.
  • the first plug 132 of the first cable 130 can also be plugged with an adapter wire 133, which can be plugged into the electric field generator through the adapter wire 133 to realize the electrical connection between it and the electric field generator, or it can be plugged into the adapter unit through the adapter wire 133, and then the adapter unit and the electric field generator are plugged to realize the electrical connection between it and the electric field generator.
  • the adapter wire 133 is detachably connected to the first cable 130, which can not only increase or shorten the distance between the first cable 130 and the electric field generator or the adapter unit as needed, but also when the electrode sheet 100 is scrapped and needs to be replaced, only the first cable 130 welded with the adapter plate 120 is scrapped, without scrapping the adapter wire 133, which can reduce costs and avoid unnecessary waste.
  • the number of wire cores (not shown) of the adapter wire 133 is consistent with the number of wire cores (not shown) of the first cable 130, and corresponds one to one.
  • the adapter wire 133 is a Leimer double male sheathed wire.
  • the backing 140 is provided in a sheet shape, and has at least one through hole 141 corresponding to the electrode unit 110 and provided in a through shape.
  • the through hole 141 of the backing 140 allows the corresponding part of the electrode unit 110 to expose its side surface away from the adapter plate 120, which is conducive to dissipating the heat generated by the electrode sheet 100 during the tumor electric field therapy.
  • the support plate 113 of the electrode unit 110 passes through the through hole 141 of the backing 140 and exposes the side surface of the backing 140 away from the adapter plate 120.
  • the size of the through hole 141 of the backing 140 is slightly larger than the size of the support plate 113.
  • the support member 150 is provided in a sheet shape and has a plurality of through holes 151 provided in a through shape.
  • the plurality of through holes 151 of the support member 150 include a plurality of first through holes 151A distributed corresponding to the corresponding electrode units 110 and two second through holes 151B provided in a strip shape and located between the plurality of first through holes 151A.
  • Each first through hole 151A accommodates the electrode element 112 of the corresponding electrode unit 110.
  • the surface of the support member 150 close to the patient's body surface is flush with the surface of the electrode element 112 close to the patient's body surface, and the adhesive member 160 can be evenly covered on the support member 150 and the electrode element 112 to improve the comfort of applying the electrode sheet 100.
  • the two second perforations 151B respectively correspond to the parts where the branches 122 are arranged laterally extending from the trunk 121 of the adapter plate 120, so that part of the heat of the electrode sheet 100 can be transferred from the adapter plate 120 to the external environment through the backing 140 to achieve the purpose of heat dissipation.
  • the two second perforations 151B are both long holes.
  • the size of the first perforation 151A is slightly larger than the size of one end of the electrode unit 110 welded to the electrode element 112.
  • the support member 150 is foam.
  • Each adhesive piece 160 is roughly arranged in a strip-shaped sheet shape, which has double-sided adhesiveness, one side of which is in contact with the corresponding parts of the support member 150 and the electrode element 112, and the other side is in contact with the patient's body surface.
  • the adhesive piece 160 is a conductive hydrogel.
  • Each adhesive piece 160 covers the electrode element 112 of at least one electrode unit 110. In this embodiment, there are 5 adhesive pieces 160, each covering the electrode elements 112 of 2 or 3 electrode units 110.
  • the 2 adhesive pieces 160 arranged in parallel in the vertical direction are distributed on both sides of the 3 adhesive pieces 160 arranged in parallel in the horizontal direction.
  • the electrode sheet 100 may further include at least one release paper 170.
  • the release paper 170 is located on the side of the adhesive member 160 away from the backing 140 and covers the corresponding parts of the adhesive member 160 and the backing 140 to protect the adhesive member 160 and the backing 140 from being contaminated.
  • the electrode sheet 100 has two release papers 170. The two release papers 170 cover the adhesive member 160 and the backing 140 together.
  • the electrode sheet 100 of the first embodiment of the electric field therapy system disclosed in the present invention is composed of multiple electrode units 110 and a removable connection with an adapter plate 120, and the multiple electrode units 110 are connected in parallel to the adapter plate 120. Therefore, the on and off of the AC signals of the multiple electrode units 110 do not affect each other. Even if an electrode unit 110 is damaged during use, it does not affect other electrode units 110 to continue to apply an alternating electric field to the patient's tumor site for tumor electric field therapy, which improves the stability of the electrical signal of the tumor electric field therapy and can reduce the patient's treatment cost to a certain extent.
  • FIGS 53 to 55 are electrode sheets 100 according to another embodiment of the present disclosure.
  • the electrode sheet 100 of this embodiment includes an electrode unit 110, an adapter plate 120 detachably connected to the electrode unit 110, a first cable 130 electrically connected to the adapter plate 120, a backing 140 attached to the corresponding parts of the electrode unit 110 and the adapter plate 120, a support member 150 surrounding the corresponding part of the electrode unit 110 and attached to the backing 140, and an adhesive member 160 covering the support member 150 and the corresponding part of the electrode unit 110 and attached to the body surface skin corresponding to the patient's tumor site.
  • the electrode sheet 100 is attached to the body surface corresponding to the patient's tumor site through the backing 140, and an alternating electric field is applied to the patient's tumor site through the electrode unit 110 detachably connected to the adapter plate 120 to interfere with or prevent the mitosis of the patient's tumor cells, thereby achieving the purpose of treating the tumor.
  • the electrode sheet 100 of this embodiment also includes an adapter plate 120, an electrode unit 110 detachably assembled on the adapter plate 120, a first cable 130 welded to the adapter plate 120, a backing 140 adhered to the corresponding parts of the electrode unit 110 and the adapter plate 120, a support member 150 surrounding the corresponding part of the electrode unit 110 and adhered to the backing 140, and an adhesive member 160 covering the support member 150 and the corresponding part of the electrode unit 110 and adhering to the body surface skin corresponding to the tumor site of the patient.
  • the electrode unit 110 of the electrode sheet 100 of this embodiment has the same structure as the electrode unit 110 of the electrode sheet 100 of the embodiment shown in Figures 45 to 52, and also includes an insulating plate 13 and an electrode element 112 arranged on opposite sides of a flexible board substrate 111, and a male seat 115 located on the same side of the flexible board substrate 111 as the electrode element 112 and arranged on opposite ends of the flexible board substrate 111 with the electrode element 112.
  • the difference between the electrode sheet 100 of this embodiment and the electrode sheet 100 of the first embodiment is that: the electrode The sheet 100 includes only one electrode unit 110 that is detachably plugged into the adapter plate 120 , and the shapes of the adapter plate 120 and the backing 140 are different depending on the number of the plugged electrode units 110 .
  • the adapter plate 120 also includes a body 128 plugged with the electrode unit 110, a female socket 125 disposed on the body 128, and a wiring portion 127 extending laterally from the body 128.
  • the male socket 115 of the electrode unit 110 is plugged and connected with the female socket 125 to realize the electrical connection between the electrode unit 110 and the adapter plate 120.
  • the wiring portion 127 is welded with the first cable 130 to realize the electrical connection between the adapter plate 120 and the first cable 130.
  • the body 128 has only one trunk 121, and the female socket 125 is disposed on the trunk 121 and is located at opposite ends of the trunk 121 with the wiring portion 127.
  • the trunk 121 has only one set of third pads 123 welded with the female socket 125.
  • the third pad 123 includes a third pad 123B for transmitting a temperature signal, a third pad 123A for transmitting a ground signal, and a plurality of third pads 123C for transmitting an alternating current signal.
  • the plurality of third pads 123C are electrically connected to a transmission AC signal line.
  • the fourth pad 124 includes a fourth pad 124A for transmitting a ground signal, a fourth pad 124B for transmitting a temperature signal, a fourth pad 124C for transmitting an alternating current signal, a plurality of fourth pads 124D, and a fourth pad 124E for shielding.
  • the fourth pads 124D are respectively arranged on opposite sides of the connection portion 127 of the adapter board 120. In this embodiment, there are seven fourth pads 124D, two of which are arranged on the same side of the adapter board 120, and the other five are arranged on the other side of the adapter board 120.
  • the two fourth pads 124D located on the same side are respectively arranged on one side of the end of the connection portion 127 in a manner of spacing the three fourth pads 124A, 124B, and 124C located on the same side.
  • the fourth pads 124D can be welded to the corresponding wire core of the first cable 130, so as to make the welding between the connection portion 127 and the first cable 130 more firm, so as to avoid damage to the adapter board 120 and failure to transmit signals due to disconnection of the welding portion between the connection portion 127 and the first cable 130 when the first cable 130 is pulled by force.
  • Three second conductive traces 126 are embedded in the adapter board 120. None of the fourth pads 124D is electrically connected to the second conductive traces 126.
  • the three second conductive traces 126 are respectively a second ground line 126A, a second signal line 126B, and a second AC line 126C.
  • One end of the second ground line 126A is connected to the third pad 123A, and the other end is connected to a fourth pad 124A for transmitting a ground signal.
  • One end of the second signal line 126B is connected to the third pad 123B, and the other end is connected to the fourth pad 124B for transmitting a temperature signal.
  • One end of the second AC line 126C is connected in series to the remaining four third pads 123C, and the other end is connected to a fourth pad 124C for transmitting an alternating current signal.
  • the number of the fourth pads 124 in this embodiment is greater than the number of the fourth pads 124 connected to the second conductive trace 126.
  • the five fourth pads 124 on the other side of the connection portion 127 are all fourth pads 124D, which are not electrically connected to the second conductive trace 126.
  • the fourth pads 124 electrically connected to the second conductive trace 126 are all conductive pads 124A, 124B, 124C, and the fourth pads 124 not electrically connected to the second conductive trace 126 are all dummy pads 124D.
  • the three conducting pads 124A, 124B, 124C and the third pads 123A, 23B, 23C are all located on the same side of the adapter board 120.
  • the fourth pad 124E for shielding is a shielding pad, which is also electrically connected to the second ground line 126A.
  • the first cable 130 has 10 wire cores (not shown), of which 3 wire cores (not shown) are respectively welded to the 3 conductive pads 124A, 124B, and 124C in the fourth pad 124 of the connection portion 127, and the remaining 7 wire cores (not shown) are respectively welded to the 7 virtual pads 124A, 124B, and 124C.
  • the dummy pads 124D are welded one by one.
  • the first cable 130 is provided with a first plug 132 at one end away from the wiring portion 127.
  • the first plug 132 can also be connected to a transfer line 133.
  • the number of wire cores (not shown) of the transfer line 133 is consistent with the number of wire cores (not shown) of the first cable 130, and they correspond one by one.
  • the heat shrink tube 131 is wrapped around the outer periphery of the welding point between the first cable 130 and the wiring portion 127 of the adapter board 120.
  • the backing 140 is generally in the shape of a square sheet, and at least two lugs 142 are provided on its edge, so that the operator can hold the electrode sheet 100 and apply the electrode sheet 100 to the body surface corresponding to the tumor site of the patient.
  • the side of the electrode unit 110 away from the electrode element 112 is attached to the backing 140.
  • the backing 140 is also attached to the corresponding parts of the adapter plate 120 and the heat shrink tube 131.
  • the heat shrink tube 131 can also be wrapped around the outer periphery of the male seat 115 and the female seat 125 for disassembly and assembly.
  • the support member 150 is generally in the shape of a square sheet, and a through hole 151 is provided in the middle thereof.
  • the through hole 151 is similar to the first through hole 151A of the embodiment, and is used to receive the electrode element 112 of the electrode unit 110.
  • the support member 150 is generally flush with the surface of the electrode element 112 of the electrode unit 110 away from the backing 140.
  • the adhesive member 160 is substantially in the shape of a square sheet, covering the support member 150 and the surface of the electrode element 112 of the electrode unit 110 on one side away from the backing 140.
  • the size of the adhesive member 160 is substantially the same as that of the support member 150.
  • the electrode sheet 100 of the electric field treatment system disclosed in the present invention is composed of at least one electrode unit 110 and an adapter plate 120 that are detachably connected, so as to realize the detachable replacement of the failed electrode unit 110 on the electrode sheet 100, or the detachable replacement of the failed adapter plate 120 on the electrode sheet 100, reduce the loss of the entire electrode sheet 100, reduce the yield loss of the electrode sheet 100, and avoid the scrapping and waste of the entire electrode sheet 100 when one of the electrode unit 110 and the adapter plate 120 is damaged.
  • the electrode sheet 100 of the present application cooperates with the multiple female seats 125 provided on the adapter plate 120 and the electrode units 110 that can be plugged into the female seats 125. According to the size and location of the tumor site, the electrode units 110 can be freely selected to be plugged into the adapter plate 120, which can ensure that the coverage area of the electrode sheet 100 and the strength of the applied alternating electric field reach the electric field strength required for tumor treatment.
  • FIG. 56 is a method for manufacturing the electrode sheet 100 of the present disclosure shown in FIGS. 45 to 55 , which comprises the following steps:
  • the adapter board 120 further includes the body 128 of the above first embodiment and the second embodiment. At least one group of third pads 123 is distributed on the body 128. The body 128 is connected to the wiring portion 127.
  • the first cable 130 may also be plugged into a switching cable 133 of the first embodiment and the second embodiment.
  • the manufacturing method of the electrode sheet 100 of the present disclosure further includes the following steps:
  • the support member 150 has at least one through hole 151 disposed therethrough to accommodate a corresponding portion of the corresponding electrode unit 110 .
  • a method for manufacturing an electrode unit 110 of an electrode sheet 100 of the present disclosure includes the following steps:
  • step S21 the conductive pad 1111, the first pad 1112 and the second pad 1113 are all disposed on the same side surface of the flexible board substrate 111.
  • the conductive pad 1111 and the second pad 1113 are located at opposite ends of the flexible board substrate 111, respectively.
  • the electrode sheet 100 includes a backing 140, an electrical functional component 190 supported by the backing 140, a first cable 130 electrically connected to the electrical functional component 190, a plurality of support members 150 surrounding the periphery of the corresponding portion of the electrical functional component 190, and a plurality of adhesive members 160 adhered to the surface of the support member 150 on one side away from the backing 140.
  • the electrical functional component 190 includes an adapter plate 120 made of a flexible circuit board, a plurality of electrode elements 112 and a plurality of temperature detectors 114 arranged on the adapter plate 120, each electrode element 112 can apply an alternating electric field, and each temperature detector 114 is arranged corresponding to one electrode element 112 to detect the temperature at the corresponding electrode element 112.
  • the electrical functional component 190 includes an adapter plate 120 arranged in a grid shape, a plurality of electrode elements 112 arranged at intervals on the adapter plate 120 and applying an alternating electric field to a patient, and a plurality of temperature detectors 114 arranged in groups on the adapter plate 120.
  • Each electrode element 112 is provided with an opening 1120, and the opening 1120 is suitable for installing a temperature detector 114.
  • the middle part of each electrode element 112 has a through opening 1120, and each temperature detector 114 is accommodated in the opening 1120 of the corresponding electrode element 112.
  • the electrode sheet 100 has 20 electrode elements 112 and 20 temperature detectors 114.
  • the electrode element 112 is a dielectric element, such as a ceramic sheet.
  • the electrical functional component 190 also includes a support plate 113 located on the side of the adapter plate 120 away from the electrode element 112 to provide strength support for the adapter plate 120.
  • Each support member 150 has a plurality of through holes 151, and the electrode elements 112 are respectively accommodated in the through holes 151 of the corresponding support members 150.
  • a plurality of adhesive members 160 correspond one-to-one to the corresponding support members 150.
  • the electrode element 112 may also be a polymer dielectric layer disposed on the adapter plate 12, and the temperature detector 114 may be disposed at a position on the adapter plate 120 and capable of detecting the temperature of the corresponding electrode element 112, or may be other elements capable of detecting the temperature of the electrode element 112 formed by the polymer dielectric layer.
  • the electrode element 112 may not be provided with an opening or space for accommodating the temperature detector 114.
  • the electrode sheets in FIG. 2 and FIG. 4 are both electrode sheets 100, but the electrode sheet 100 in FIG. 2 includes 20 electrode units, while the electrode sheet 100 in FIG. 4 includes 13 electrode units.
  • the two electrode sheets 100 have the same functions but different structures. Other details will not be described here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本公开提供了一种电极片、电场治疗***及控制方法,电极片(100)包括多个电极元件(112)、与多个电极元件(112)分别一一对应设置并用于监测与其对应的电极元件(112)处的温度且输出检测信号的多个温度检测器(114)、多路第二接地线(126A)以及多路第二信号线(126B),多路第二接地线(126A)共同将所有温度检测器(114)的接地端(114A)短接接地,多路第二信号线(126B)共同将所有温度检测器(114)的信号端(114B)连接并用于传输温度检测器(114)的检测信号;每一温度检测器(114)以及与其对应的一个电极元件(112)构成一个电极单元(110),多个电极单元(110)被分为不同组,第二接地线(126A)与第二信号线(126B)的总路数少于温度检测器(114)的数量。

Description

电极片、电场治疗***及控制方法
本申请要求以下专利申请的优先权:
申请日为2022年10月27日的中国专利申请第202211324418.9号;
申请日为2022年10月27日的中国专利申请第202222848795.4号;
申请日为2022年12月30日的中国专利申请第202211723961.6号;
申请日为2022年12月30日的中国专利申请第202223590656.2号;
申请日为2022年12月30日的中国专利申请第202211739919.3号;
申请日为2022年12月30日的中国专利申请第202223561065.2号;
申请日为2022年12月30日的中国专利申请第202211722169.9号;
申请日为2022年12月30日的中国专利申请第202211721874.7号;
申请日为2022年12月30日的中国专利申请第202211722151.9号;
申请日为2022年12月30日的中国专利申请第202211722158.0号;
申请日为2022年12月30日的中国专利申请第202223562251.8号;
申请日为2022年12月30日的中国专利申请第202211721902.5号;
申请日为2022年12月30日的中国专利申请第202211721864.3号;
申请日为2022年12月26日的中国专利申请第202211678871.X号;
申请日为2022年12月26日的中国专利申请第202223483427.0号;
申请日为2022年12月26日的中国专利申请第202211678713.4号;
申请日为2022年12月26日的中国专利申请第202223483410.5号;
申请日为2022年12月26日的中国专利申请第202211678884.7号;
申请日为2022年12月26日的中国专利申请第202223483419.6号;
上述中国专利申请全部内容通过引用的方式结合在本文的申请中。
技术领域
本公开涉及医疗器械领域,特别是涉及一种电极片、电场治疗***及控制方法。
背景技术
目前,肿瘤的治疗方式主要有手术、放疗、化疗等,但都存在相应的缺点,比如放疗和化疗会产生副作用,会杀死正常的细胞。利用电场来***也是目前研发前沿之一,肿瘤电场治疗是一种利用电场发生器产生一种通过低强度、中高频、交变电场干扰肿瘤细胞有丝***进程的肿瘤治疗方法。研究表明,电场治疗在治疗胶质母细胞瘤、非小细胞肺癌、恶性胸膜间皮瘤等疾病治疗中效果显著,该治疗方法施加的电场可影响微管蛋白的聚集,阻止纺锤体形成,抑制有丝***进程,诱导癌细胞凋亡。
现有的肿瘤电场治疗***主要包括生成肿瘤电场治疗用交变电信号的电场发生装置、与电场发生装置电性连接的转接器以及通过转接器与电场发生装置电性连接的多对电极片。电场发生装置通 过转接器将肿瘤电场治疗用的交变电信号传输至每一电极片,进而通过电极片向患者肿瘤部位施加交变电场进行肿瘤电场治疗。肿瘤治疗电场施用到患者身体上,会在电极贴敷皮肤的相应位置处聚集热量,因此要实时监测电极贴敷在患者肿瘤部位对应体表的温度。当体表温度过高时,要及时调整电场强度,要避免温度过高导致患者皮肤低温烫伤。
每个电极片均设置多个电极单元。现有的电极片在其部分相应的一些电极单元中的每个电极单元上均设置一个热敏电阻元件,并且每个热敏电阻元件之间相互并行连接。热敏电阻元件的阻值随着温度变化而变化,热敏电阻元件的阻值变化对应于电极单元贴敷的体表的温度变化。每个电极片上皆设置有8个热敏电阻元件,每个电极片与转接器之间连接设置10芯导线的线缆。每个电极片均通过10芯导线的线缆传递8个热敏电阻元件的阻值。即10芯导线的线缆包含8根将热敏电阻元件感测的温度信号传输给转接器的信号输出线,另外还包括1根与各个热敏电阻元件连接的接地线和1根向各个电极单元连接的AC信号线。不管电极片上的电极单元数量如何,电极片上热敏电阻元件的数量不超过8个,电极片都通过10芯导线配置的线缆与转接器连接。例如,在具有9个电极单元的电极片上设置8个热敏电阻元件,那么需要8根独立的导线传输8个热敏电阻元件的信号,此时电极片中热敏电阻元件覆盖率是89%(8/9=0.89)。又例如,若在具有13个电极单元的电极片设置8个热敏电阻元件,此时电极片中热敏电阻元件覆盖率是62%(8/13=0.62)。若是在具有20个电极单元的电极片上,只有8个热敏电阻元件分布在20个电极单元中的8个电极单元上,12个电极单元没有覆盖热敏电阻元件,那么超过一半电极单元的温度无法监控,容易出现由于监控不全面而造成患者皮肤低温烫伤的情况。
以此,确有必要提供一种改进的电极片、电场治疗***及控制方法,以全面监控电极片中每一个电极单元对应贴敷的患者体表的温度。
公开内容
本公开提供一种线路结构简化、温度监测全面准确的电极片、电场治疗***及其控制方法。
本公开的电极片通过如下技术方案实现:一种电极片,包括:多个电极元件,被配置成用于施加交变电场;多个温度检测器,与多个电极元件分别一一对应设置并配置成用于监测与其对应的电极元件处的温度且输出检测信号,每一温度检测器均具有一接地端与一信号端;以及多路第二接地线以及多路第二信号线,多路第二接地线共同将所有温度检测器的接地端短接接地,多路第二信号线共同将所有温度检测器的信号端连接并用于传输温度检测器的检测信号;其中,每一温度检测器以及与其对应的一个电极元件构成一个电极单元,多个温度检测器与多个电极元件构成多个电极单元,多个电极单元被分为不同组,每组至少包括一个电极单元,第二接地线与第二信号线的总路数少于温度检测器的个数。
本公开的电场治疗***通过如下技术方案实现:一种电场治疗***,包括:至少一对上述的电极片;电场发生器,配置成向电极片的多个电极元件施加交变电信号;和转接器单元,连接于电极片与电场发生器之间,其被配置成将电场发生器产生的交变电信号传输至电极片,并且还被配置成用于接收电极片的多路第二信号线输出的检测信号。
本公开电场治疗***的控制方法是通过如下方案实现的:一种如上述的电场治疗***的控制方 法,包括:依次单独导通电极片的多路第二接地线中的每路第二接地线,并在每路第二接地线处于导通状态下获取转接器单元接收到的已由该第二接地线接地的一组电极单元中的每个电极单元的温度检测器的检测信号。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
图1是依据本公开第一个实施例的电场治疗***的示意性框图;
图2是图1所示的一个电极片和第一转接器的示意性框图;
图3是图1所示的第一转接器的内部结构的示意性框图;
图4-图8是依据本公开另一些实施例的电场治疗***中的一个电极片和第一转接器的示意性框图;
图9是依据本公开一个实施例的电场治疗***的控制方法的流程图;
图10是依据本公开第二个实施例的电场治疗***的示意性框图;
图11是图10所示的一个电极片和第一转接器的示意性框图;
图12是图10所示的第一转接器的内部结构的示意性框图;
图13是依据本公开一个实施例的温度检测的原理图;
图14-图16是依据本公开另一些实施例的电场治疗***中的一个电极片和第一转接器的示意性框图;
图17是依据本公开一个实施例的电极片故障检测方法的流程图;
图18是依据本公开一个实施例的电极片质量检测方法的流程图;
图19是依据本公开第三个实施例的电场治疗***的示意性框图;
图20是图19所示的一个电极片和第二转接器的电路连接示意性框图;
图21是图19所示的第三转接器的内部结构的示意性框图;
图22是依据本公开一个实施例的电场治疗***的温度检测方法的流程示意图;
图23是依据本公开一个实施例的电场治疗***的工作流程图;
图24是依据本公开一个实施例的电场治疗***的温度检测流程图;
图25-图26是依据本公开另一些实施例的电场治疗***中的一个电极片和第二转接器的示意性框图;
图27是依据本公开第四个实施例的电场治疗***的示意性框图;
图28是图27所示的一个电极片和第四转接器的电路连接示意性框图;
图29是图27所示的第四转接器的内部结构的示意性框图;
图30-图37是依据本公开另一些实施例的电场治疗***中的一个电极片和第四转接器的示意性框图;
图38是依据本公开一个实施例的电场治疗***的电极片温度检测方法的流程示意图;
图39是依据本公开另一个实施例的电场治疗***的电极片温度检测方法的流程示意图;
图40是依据本公开第五个实施例的电场治疗***的示意性框图;
图41是图40所示的一个电极片和第五转接器的电路连接示意性框图;
图42是图41所示的模拟多路复用开关的内部结构的示意性框图;
图43是图40所示的第五转接器的内部结构的示意性框图;
图44是依据本公开另一些实施例的电场治疗***中的一个电极片和第五转接器的示意性框图;
图45A为依据本公开的电场治疗***的电极片的一实施例组合示意图;
图45B为图45A中的电极片的另一视角的整体示意图;
图46为图45B中电极片的局部示意图,其中离型纸未示出;
图47A为图46中的电极单元的分解示意图;
图47B为图46中的电极单元的组合示意图;
图48为图47A中的电极单元的柔性板基体的布线图;
图49为图46中的转接板的结构示意图;
图50A为图49中的转接板的正面布线图;
图50B为图49中的转接板的反面布线图;
图51A为图46中的电极单元、转接板、导线与背衬的一组合示意图;
图51B为图46中的电极单元、转接板、导线与背衬的另一组合示意图;
图52为图45中的电极单元、转接板、导线、背衬与支撑件的组合示意图;
图53A为依据本公开的另一实施例电场治疗***的电极片的分解示意图,其中离型纸未示出;
图53B为图53A所示的电极片的组合示意图,其中离型纸未示出;
图54A为图53A中的转接板与导线的分解示意图;
图54B为图54A中的转接板与导线的组合示意图;
图55A为图54A中的转接板的正面布线图;
图55B为图54A中的转接板的反面布线图;
图56是依据本公开的电场治疗***的电极片的制造方法流程示意图;
图57为图56中所述的电极片的电极单元的制造方法流程示意图;
图58是依据本公开的另一实施例电场治疗***的电极片的立体图;
图59为图58中的电极片的立体分解图;
图60为图59中的电极片中电气功能组件的立体分解图。
具体实施方式
这里将详细地对示例性实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施方式中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的电极片、电场治疗***及控制方法的示例。
第一些实施例
图1所示为本公开一些实施例的电场治疗***。如图1所示,电场治疗***包括:至少一对电极片100、与电极片100连接的第一转接器200和与第一转接器200连接的电场发生器300。电场发生器300向电极片100提供交变电信号,以使得电极片100产生治疗电场。第一转接器200电性连接在电极片100和电场发生器300之间,用于将电场发生器300产生的交变电信号输送给电极片100。也就是说,电场发生器300能够产生交变电信号,其生成的交变电信号通过第一转接器200传递至每个电极片100上,使同一对电极片100之间产生用于***的治疗电场。如图1所示,本实施例中,电极片100的数量是4个。每个电极片100上均包括多个数量相同的电极元件112,每个电极元件112均电性连接到第一转接器200。每个电极片100上的电极元件112的数量均为20个。在另外一些实施例中,电场治疗***还可以具有更多或更少的电极片100。在另外一些实施例中,每一对电极片100具有相同数量的电极元件112,不同对电极片100上也可以具有不同数量的电极元件112。
本公开还提供了一种电极片100。图2示出了根据本公开的第一实施例的电场治疗***中电极片100和第一转接器200的示意性框图。值得注意的是:图2所示的电极元件112的排布是为了更清楚的示出电极片和第一转接器电性连接的情况,图2所示的电极元件112的排布不代表电极元件112在空间结构上的排布。结合图1和图2,该电极片100包括由柔性线路板构成的转接板120、间隔地电性连接于转接板120上多个电极单元110、贴敷至多个电极单元110上的粘贴件(未图示)以及与转接板120电性连接的第一线缆130。转接板120内嵌设有一路第二AC线126C、多路第二接地线126A和多路第二信号线126B。第一线缆130具有多芯导线(未图示),其每一芯导线分别与转接板120的一路第二AC线126C、多路第二接地线126A和多路第二信号线126B一一对应电性连接。
每个电极单元110均包括一电极元件112和一与电极元件112对应的温度检测器114。电极元件112和温度检测器114均焊接于转接板120上。电极元件112配置成用于向患者肿瘤部位施加交变电场。温度检测器114用于检测与电极片100相贴敷的患者体表的温度并向第一转接器200输出检测信号。具体地,温度检测器114检测与患者体表接触的电极片100的粘贴件(未图示)的温度,进而通过粘贴件(未图示)的温度间接反馈与电极片100贴敷的患者体表的温度信号。每一个温度检测器114均具有一接地端114A与一信号端114B。多个电极单元110被分为多组。每组电极单元110均包括至少一个电极单元110。
转接板120的第二AC线126C配置成用于将电场发生器300产生的交变电信号(AC信号)传输至每个电极元件112。本实施例中,转接板120的第二AC线126C与第一线缆130电性连接,再经由第一转接器200电性连接至电场发生器300,用于接收电场发生器300产生的交变电信号并向电极元件112传输交变电信号。电场发生器300生成的交变电信号依次通过第一转接器200、第一线缆130传输至转接板120的第二AC线126C。
多路第二接地线126A在同一时刻只有一路第二接地线126A导通,其余三路第二接地线126A断开。多路第二接地线126A分别用于依次将多组电极单元110中对应的一组电极单元110的温度检测器114短接接地。也即,多路第二接地线126A分别将位于每一组的多个温度检测器114短接接地。位于同一组的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地 线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接。
多路第二信号线126B中的每一路第二信号线126B均用于将每组电极单元110中的至多一个电极单元110的温度检测器114短接到用于接收检测信号的外部装置。多路第二信号线126B中的每一路第二信号线126B连接的温度检测器114互不相同,以避免第二信号线126B后续输出重复信号。即,当一组电极单元110的电极单元110的个数与第二信号线126B的路数相同时,每路第二信号线126B分别与该组的多个电极单元110各自的温度检测器114一一对应电性连接;当一组电极单元110的电极单元110的个数少于第二信号线126B的路数时,存在至少一路第二信号线126B不电性连接电极单元110,剩余的每路第二信号线126B分别一一电性连接该组电极单元110中各自不同的一个电极单元110的温度检测器114。本实施例中,用于接收检测信号的外部装置为第一转接器200。位于同一组的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接。
本公开的电极片100位于同一组的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接,位于同一组的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接,且多路第二接地线126A在同一时刻只有一路第二接地线126A导通,通过上述的温度检测器114与第二接地线126A和第二信号线126B的连接方式可以实现一路第二信号线126B分时获取位于不同组中对应的各电极单元110的温度检测器114的检测信号;通过该多路第二信号线126B即可分时获取电极片100所有位于不同组的电极单元110的温度检测器114的检测信号,从而使患者体表温度检测更全面、准确。
转接板120内嵌设的第二AC线126C、第二接地线126A和第二信号线126B共为10路线路,使得第一线缆130可以配置10芯导线的线缆,以避免第一线缆130的线芯增加,达到控制电极片100整体重量的目的。转接板120内嵌设的第二接地线126A和第二信号线126B共为9路线路。本实施例中,转接板120内嵌设的第二接地线126A为4路线路,第二信号线126B为5路线路。
本实施例中,每个电极单元110中的电极元件112均并行连接至第二AC线126C上。在其他实施例中,每个电极单元110中的电极元件112均串行连接至第二AC线126C上。在其他另一实施例中,每个电极单元110中的电极元件112部分串联部分并联地连接至第二AC线126C上。
电极单元110大致呈二维阵列的形式间隔设置在转接板120上。参考图2,本实施例中的电极片100具有4组电极单元110,每组电极单元110均具有5个电极单元110。本实施例中的电极片100具有20个电极单元110。20个电极单元110可以二维阵列的形式排布。电极片100的20个电极单元110可以呈四行六列排布,第一行与第四行皆为四个电极单元110,且第一行与第四行的每一行中的四个电极单元110皆位于第二列至第五列的各列,中间两行皆为六个电极单元110,中间两行的每一行中的六个电极单元110皆位于第一列至第六列的各列。在呈四行六列排布的20个电 极单元110中,以相互靠近的5个电极单元110组成一组电极单元110,使20个电极单元110分组成四组电极单元110,以便于转接板120内的第二AC线126C、第二接地线126A和第二信号线126B的布线设计。电极片100的20个电极单元110还可以呈四行五列排布。电极片100的每一行包括5个电极单元110,构成一组。在另外一些实施例中,20个电极单元110也可以以其他方式进行布置。当然,在本公开另外一些实施例中,电极片100也可以具有其他数量的电极单元110。总之,本公开的实现不受电极片100的电极单元110的数量和排布形式的限制。
每一个电极单元110均包括电极元件112和温度检测器114。在图2所示的实施例中,电极元件112可以为介电元件,如介电陶瓷片;也可以为设于转接板120上的高分子介电层。温度检测器114可以是热敏电阻,当然,在本公开另外一些实施例中,温度检测器114还可以是除热敏电阻以外的其他温度传感器或可进行温度检测的其他部件。每个电极元件112中部具有贯穿设置的开孔1120,每个电极元件112的开孔1120中收容有相应的温度检测器114。每个电极单元110还可以包括一个第一二极管117。第一二极管117与同一电极单元110的温度检测器114串联连接,其可以阻止电流的反向流入,以防止来自其他电极单元110的检测信号影响该温度检测器114。
图2所示的电极片100包括4路第二接地线126A,每一路第二接地线126A用于将位于同一组的各电极单元110接地。电极片100的4路第二接地线126A分别为第二接地线126A-1、126A-2、126A-3和126A-4。在电极片100的四组电极单元110中,第一组电极单元110为电极单元110-1至电极单元110-5,第二组电极单元110为电极单元110-6至电极单元110-10,第三组电极单元110为电极单元110-11至电极单元110-15,第四组电极单元110为电极单元110-16至电极单元110-20。具体地,第二接地线126A-1用于将第一组电极单元110(即电极单元110-1至电极单元110-5)接地;第二接地线126A-2用于将第二组电极单元110(即电极单元110-6至电极单元110-10)接地;第二接地线126A-3用于将第三组电极单元110(即电极单元110-11至电极单元110-15)接地;第二接地线126A-4用于将第四组电极单元110(即电极单元110-16至电极单元110-20)接地。需要说明的是,这些第二接地线126A是可以选择性地闭合或断开的,这可以通过将每路第二接地线126A分别与一个第一开关240串联实现,这将在下文进行详细描述。上述“将电极单元110接地”可以指将电极单元110中的温度检测器114接地;也可以是将第一二极管117与同一电极单元110的温度检测器114串联连接而一同接地。简而言之,每路第二接地线126A将每组电极单元110中的所有电极单元110的温度检测器114的接地端114A短接起来并接地。
图2所示的电极片100还包括5路第二信号线126B,每一路第二信号线126B的一端分别连接每组电极单元110中的至多一个电极单元110,其另一端用于连接到用于接收检测信号的第一转接器200。也就是说,对于每组电极单元110,每一路第二信号线126B可以选择连接其中一个电极单元110或者不连接该组电极单元110中的任一个电极单元110,并且每一路第二信号线126B所连接的电极单元110互不相同,以避免第二信号线126B后续输出重复信号。具体地,每组电极单元110中的各电极单元110的各温度检测器114的信号端114B分别与不同的第二信号线126B一一对应连接。
本实施例中,电极片100的5路第二信号线126B包括第二信号线126B-1、126B-2、126B-3、126B-4和126B-5。第二信号线126B-1的一端分别连接到电极单元110-1、电极单元110-6、电极 单元110-11、电极单元110-16的各温度检测器114的信号端114B;第二信号线126B-2的一端分别连接到电极单元110-2、电极单元110-7、电极单元110-12、电极单元110-17的各温度检测器114的信号端114B;第二信号线126B-3的一端分别连接到电极单元110-3、电极单元110-8、电极单元110-13、电极单元110-18的各温度检测器114的信号端114B;第二信号线126B-4的一端分别连接到电极单元110-4、电极单元110-9、电极单元110-14、电极单元110-19的各温度检测器114的信号端114B;第二信号线126B-5的一端分别连接到电极单元110-5、电极单元110-10、电极单元110-15、电极单元110-20的各温度检测器114的信号端114B。
具体地,第一组电极单元110中的电极单元110-1至电极单元110-5的各温度检测器114的各信号端114B分别与5路第二信号线126B(第二信号线126B-1至第二信号线126B-5)中各自对应的一路第二信号线126B一一电性连接。第二组电极单元110中的电极单元110-6至电极单元110-10的各温度检测器114的各信号端114B也分别与5路第二信号线126B(第二信号线126B-1至第二信号线126B-5)中各自对应的一路第二信号线126B一一电性连接。第三组电极单元110中的电极单元110-11至电极单元110-15的各温度检测器114的各信号端114B也分别与5路第二信号线126B(第二信号线126B-1至第二信号线126B-5)中各自对应的一路第二信号线126B一一电性连接。第四组电极单元110中的电极单元110-16至电极单元110-20的各温度检测器114的各信号端114B也分别与5路第二信号线126B(第二信号线126B-1至第二信号线126B-5)中各自对应的一路第二信号线126B一一电性连接。
第一组电极单元110中,电极单元110-1的温度检测器114的信号端114B与第二信号线126B-1连接;电极单元110-2的温度检测器114的信号端114B与第二信号线126B-2连接;电极单元110-3的温度检测器114的信号端114B与第二信号线126B-3连接;电极单元110-4的温度检测器114的信号端114B与第二信号线126B-4连接;电极单元110-5的温度检测器114的信号端114B与第二信号线126B-5连接。第二组电极单元110中,电极单元110-6的温度检测器114的信号端114B与第二信号线126B-1连接;电极单元110-7的温度检测器114的信号端114B与第二信号线126B-2连接;电极单元110-8的温度检测器114的信号端114B与第二信号线126B-3连接;电极单元110-9的温度检测器114的信号端114B与第二信号线126B-4连接;电极单元110-10的温度检测器114的信号端114B与第二信号线126B-5连接。第三组电极单元110中,电极单元110-11的温度检测器114的信号端114B与第二信号线126B-1连接;电极单元110-12的温度检测器114的信号端114B与第二信号线126B-2连接;电极单元110-13的温度检测器114的信号端114B与第二信号线126B-3连接;电极单元110-14的温度检测器114的信号端114B与第二信号线126B-4连接;电极单元110-15的温度检测器114的信号端114B与第二信号线126B-5连接。第四组电极单元110中,电极单元110-16的温度检测器114的信号端114B与第二信号线126B-1连接;电极单元110-17的温度检测器114的信号端114B与第二信号线126B-2连接;电极单元110-18的温度检测器114的信号端114B与第二信号线126B-3连接;电极单元110-19的温度检测器114的信号端114B与第二信号线126B-4连接;电极单元110-20的温度检测器114的信号端114B与第二信号线126B-5连接。
简而言之,每路第二信号线126B将不同组且相对应的电极单元110的温度检测器114的信号端114B短接起来并用于连接到外部装置。同组的各电极单元110的各温度检测器114的信号端114B 分别与不同的第二信号线126B连接并通过不同的第二信号线126B连接到外部装置。也即,每组电极单元110中各电极单元110的各温度检测器114的信号端114B分别连接各自对应的一路第二信号线126B并通过各自对应的一路第二信号线126B连接到外部装置。同组的各电极单元110的各温度检测器114的接地端114A均通过同一路第二接地线126A短接接地。不同组且相对应的各电极单元110的各温度检测器114的信号端114B均通过同一路第二信号线126B连接到外部装置。也即,不同组且相对应的各电极单元110的各温度检测器114的信号端114B均并行连接至同一路第二信号线126B上并通过该路第二信号线126B连接至外部装置。不同组且相对应的各电极单元110的各温度检测器114的接地端114A分别通过与各自对应的一路第二接地线126A短接接地。也即,不同组且相对应的各电极单元110的各温度检测器114的接地端114A分别通过不同的多路第二接地线126A短接接地。不同组且不对应的各电极单元110的各温度检测器114的信号端114B分别通过不同的第二信号线126B连接到外部装置,不同组且不对应的各电极单元110的各温度检测器114的接地端114A也分别通过不同的第二接地线126A短接接地。也即,不同组且不对应的各电极单元110的各温度检测器114的信号端114B通过各自不同的第二信号线126B分别连接到外部装置,不同组且不对应的各电极单元110的各温度检测器114的接地端114A通过各自不同的第二接地线126A分别短接接地。
第二AC线126C、多路第二接地线126A以及多路第二信号线126B均为嵌设在转接板120内的线路。转接板120电性连接第一线缆130。转接板120内嵌设的第二AC线126C、多路第二接地线126A以及多路第二信号线126B分别与第一线缆130内相应的一个线芯电性连接。
在电极片100的应用过程中,可以仅利用5路第二信号线126B分时得到20个电极单元110中每个温度检测器114的检测信号。具体地,可以依次单独导通电极片100的多路第二接地线126A中的每路第二接地线126A,在每路第二接地线126A的导通状态下获取由该第二接地线126A接地的一组电极单元110中的每个电极单元110的温度检测器114的检测信号。从而在按顺序多次导通相应的一路第二接地线126A的操作之后,可以得到电极片100的所有电极单元110的温度检测器114的检测信号。在现有技术中,由于每个温度检测器114是同时输出检测信号的,因此需要20个独立的第二信号线126B才能实现对所有的电极元件112的温度检测,会使得转接板120布线难度加大、加工困难、成本增加;并且也会要求相应的第一线缆130包含22个线芯(包括额外的1路第二接地线126A和1路第二AC线126C),这将大幅度增加电极片100整体的重量、提高了第一线缆130的制造成本。而从图2的实施例中可以看出,本公开的电极片100的第一线缆130仅包含10个线芯(未图示),即4个电性连接第二接地线126A的线芯(未图示)、5个电性连接第二信号线126B的线芯(未图示)以及1个电性连接第二AC线126C的线芯(未图示),从而有效控制了电极片100整体的重量,避免电极片100因第一线缆130的线芯(未图示)数增加影响电极片100与患者肿瘤部位对应体表之间的粘附效果,且可降低加工成本;此外,转接板120上仅布设了1路第二AC线126C、5路第二信号线126B以及4路第二接地线126A即可获得20个电极单元110各自的温度检测器114检测的信号,能全面监控电极片100的所有电极单元110的温度,进而通过各电极单元110的温度信号控制施加至电极片100上的交变电信号,避免电极片12的电极单元110温度过高导致与其贴敷的患者皮肤体表发生低温烫伤,同时简化了转接板120的布线设计、降低了制造成本。
在本实施例中,每个电极片100还可以包括第一连接器180。第一连接器180均配置成将相应的一个电极片100连接到第一转接器200。在本实施例中,如图1所示,第一连接器180为第一插头,并设置于相应的电极片100的第一线缆130远离转接板120的一端。第一转接器200上对应多个第一连接器180分别设置第一插座260。第一连接器180具有10个分别与第一线缆130的线芯(未图示)一一对应的接口(1-10),第一连接器180插接到第一转接器200的对应第一插座260上,以将转接板120上4个第二接地线126A、5个第二信号线126B和一个第二AC线126C电性连接到第一转接器200。将第一连接器180设置成插头的形式,便于电极片100和第一转接器200的快速安装和拆卸,并且在其中一个电极片100出现故障时,可以使用另外的电极片100对故障的电极片100进行替换。
本公开的转接板120内嵌设的第二接地线126A的数量与组设于转接板120上的多个电极单元110划分的组数相关,也即,第二接地线126A的数量与电极片100的电极单元110的组数相同。转接板120内嵌设的第二信号线126B的数量与电极片100的每组中的电极单元110的数量相关。具体地,转接板120内嵌设的第二信号线126B的路数与各组电极单元110中具有最多电极单元110的一组电极单元110相关。具体地,转接板120内嵌设的第二信号线126B的路数与具有最多电极单元110的一组中的电极单元110的总数相同。第二接地线126A与第二信号线126B的总路数少于温度检测器114的个数。
本公开还提供了一种电场治疗***。下面将参照图1至图3对本公开的电场治疗***进行详细说明。本公开的电场治疗***包括至少一对上述的电极片100、与电极片100的电性连接的第一转接器200和与第一转接器200电性连接的电场发生器300。第一转接器200连接于电极片100与电场发生器300之间。电场发生器300经由第一转接器200、电极片100的第二AC线126C向电极片100的多组电极单元110中的各电极元件112提供交变电信号。第一转接器200将电场发生器300产生的交变电信号输送给电极片100的第二AC线126C,并且还配置成用于接收电极片100的多路第二信号线126B输出的检测信号。
结合图2,第一转接器200包括:多组第一开关240、第一控制器210、多组第一模数转换器220和第一通信收发器250。第一转接器200内包括多路电路线(未标号)。多路电路线(未标号)分别通过相应的一个电极片100的第一线缆130与相应转接板120内的多路第二接地线126A、多路第二信号线126B、一路第二AC线126C一一电性连接。
每组第一开关240均设有多个第一开关240,多个第一开关240分别接入第一转接器200内并分别电性连接至与相应的一个电极片100的多路第二接地线126A一一对应的电路线(未标号)上,且被配置成用于控制多路第二接地线126A的导通或断开。分别一一电性连接电极片100的多路第二接地线126A的多路电路线(未标号)在靠近第一开关240的一端接地。如图2所示,多个第一开关240分别为第一开关240-1、240-2、240-3和240-4。同组的多个第一开关240均控制同一电极片100的转接板120的多路第二接地线126A的闭合与断开。具体地,位于同组的多个第一开关240分别控制同一电极片100中与其电连接的第二接地线126A的闭合或断开。在本实施例中,第一开关240-1用于控制相应电极片100的第二接地线126A-1的闭合或断开,进而控制该电极片100的第一组电极单元110(即电极单元110-1至电极单元110-5)的各温度检测器114的通电与断电;第 一开关240-2用于控制该电极片100的第二接地线126A-2的闭合或断开,进而控制该电极片100的第二组电极单元110(即电极单元110-6至电极单元110-10)的各温度检测器114的通电与断电;第一开关240-3用于控制该电极片100的第二接地线126A-3的闭合或断开,进而控制该电极片100的第三组电极单元110(即电极单元110-11至电极单元110-15)的各温度检测器114的通电与断电;第一开关240-4用于控制该电极片100的第二接地线126A-4的闭合或断开,进而控制该电极片100的第四组电极单元110(即电极单元110-16至电极单元110-10)的各温度检测器114的通电与断电。上述多个第一开关240可以是机械第一开关,例如继电器。多个第一开关240还可以是电子开关,各个第一开关240可以通过额外的控制器进行开闭操作。
本实施例中,第一开关240均是电子开关。第一控制器210与多组第一开关240连接,用于依次循环地控制每组第一开关240中多个第一开关240的开闭状态,依次单独导通相应电极片100的多路第二接地线126A中的每路第二接地线126A,以持续的监测电极片100上的所有温度检测器114检测到的温度信号,进而可间接获得与电极片100的各电极单元110贴敷的患者体表的温度。
每组第一模数转换器220均通过第一转接器200内的多路电路线(未标号)、相应电极片100的第一线缆130与电极片100的多路第二信号线126B电性连接,并被配置成用于接收相应电极片100的多路第二信号线126B传输的检测信号,并将检测信号由模拟信号转换为数字信号。每组第一模数转换器220包括多个检测通道A、B、C、D、E,每个检测通道用于连接多路第二信号线126B中对应的一路第二信号线126B。如图2所示,每组第一模数转换器220共包含5个检测通道,分别为第一检测通道A、第二检测通道B、第三检测通道C、第四检测通道D和第五检测通道E。第一检测通道A连接第二信号线126B-1,第二检测通道B连接第二信号线126B-2,第三检测通道C连接第二信号线126B-3,第四检测通道D连接第二信号线126B-4,第五检测通道E连接第二信号线126B-5。每个检测通道用于接收对应的第二信号线126B所连接到的电极单元110的温度检测器114的检测信号。另外,每一路检测通道都经由第一转接器200内的第一分压电阻230(高精度电阻)连接到供电电压源(VCC),以用于向该路检测通道提供检测电压。供电电压源(VCC)为直流电源。
第一通信收发器250配置成获取多组第一模数转换器220输出的数字信号,并将数字信号发送至电场发生器300。电场发生器300还配置成根据接收到的数字信号,调节施加至电极片100的多组电极单元110中的电极元件112上的交变电信号的的电压。示例性地,当接收到的多个数字信号中的任一数字信号超过预设阈值,则表示电极片100中的至少一个电极元件112的温度超过预设阈值温度(例如41℃、42℃等),此时可以适当降低电场发生器300输出的交变电信号的电压,以避免电极片100对患者的皮肤造成低温烫伤。上述预设阈值温度和预设阈值可以根据相关实验数据进行确定,范围可在37-42℃。第一通信收发器250由第一控制器210控制并串行地传输多组第一模数转换器220转化的数字信号。
下面将参照图2详细介绍本公开的电场治疗***的工作原理。
每组第一模数转换器220的每个检测通道同一时间仅采集同一组电极单元110中相应的一个温度检测器114的检测信号,上述检测信号可以为电压值。4个第一开关240同时只能有1个第一开关240导通,其他3个断开。如此设置,每组第一模数转换器220可以仅采集与导通的第一开关240对应的一路第二接地线126A短接的一组电极单元110的所有温度检测器114的电压值。具体 地,当第一开关240-1闭合,其余三个第一开关240-2、24-3、24-4都断开,电极单元110-1至电极单元110-5的各温度检测器114通电,电极单元110-6至电极单元110-20的温度检测器114断电,该第一模数转换器220中第一检测通道A上短接电极单元110-1、电极单元110-6、电极单元110-11、电极单元110-16的温度检测器114,由于电极单元110-6、电极单元110-11、电极单元110-16的温度检测器114接地端114A都是断开的,且每个电极单元110上均设有与其温度检测器114串联的第一二极管117,不会影响电极单元110-1的温度检测器114的阻值,因此该第一模数转换器220的第一检测通道A上只有电极单元110-1的温度检测器114有效运行工作,采集到的检测信号(电压值)就是电极单元110-1的温度检测器114的电压值。同理,该第一模数转换器220中第二检测通道B上采集到的电压值就是电极单元110-2的温度检测器114的电压值。该第一模数转换器220中第三检测通道C上采集到的电压值就是电极单元110-3的温度检测器114的电压值。该第一模数转换器220中第四检测通道D上采集到的电压值就是电极单元110-4的温度检测器114电压值。该第一模数转换器220中第五检测通道E上采集到的电压值就是电极单元110-5的温度检测器114电压值。
第一控制器210及多组第一模数转换器220可以通过预先编程好的程序代码自动执行操作,例如第一控制器210首先闭合多组第一开关240中的第一开关240-1,断开其余的第一开关240-2至第一开关240-4,在此期间多组第一模数转换器220获取各个检测通道的检测值并将其存储在另外设置的存储器中,然后间隔预设时间后,第一控制器210再闭合多组第一开关240中的第一开关240-2,断开第一开关240-1、第一开关240-3和第一开关240-4,在此期间多组第一模数转换器220获取各个检测通道的检测值。如此依次单独导通多组第一开关240中的每个第一开关240,即可得到电极片100上所有温度检测器114的检测值,进而可通过该种操作得到至少一对电极片100上所有温度检测器114的检测值。
在本实施例中,上述电场治疗***的第一转接器200还可以包括一个第二连接器280。第二连接器280配置成将第一转接器200连接到电场发生器300。图3是本公开实施例的电场治疗***中第一转接器200以及第二连接器280的示意性框图。如图3所示,该第二连接器280可以包括8个输入端口(1-8),其中第1至4个输入端口分别用于连接相应的第一连接器180,并用于将电场发生器300产生的交变电信号分别通过相应的第一连接器180进一步传递到相应的电极片100的第二AC线126C,使电极片100上的每个电极单元110的电极元件112接通交变电信号并施加于患者肿瘤部位并与相对的电极片100形成***的交变电场。第5个输入端口用于将第一转接器200接地,第6个输入端口连接到第一控制器210,并用于向第一控制器210提供电源电压(VCC)。第7和第8个输入端口分别经由线路TX和RX连接到第一通信收发器250的发送器和接收器。
电场治疗***的第一转接器200还可以包括:第二线缆290。第二线缆290配置成用于连接第一转接器200和第二连接器280。第二线缆290可以包含多根导线,分别与第二连接器280的多个输入端口一一对应。上述第二连接器280可以和第一连接器180类似,制成插头的形式,以便于和电场发生器300连接或断开。
图4示出了根据本公开的第二实施例的电场治疗***中电极片100和第一转接器200的示意性框图。与图2所示的电场治疗***不同的是,该实施例的电极片100仅包含13个电极单元110, 如图4所示,这13个电极单元110分成3组,其中前两组各包含5个电极单元110,第三组仅包含3个电极单元110。因此,图4所示的电极片100的四路第二接地线126A中仅3路第二接地线126A是能够有效通电。同时电极片100包含5路第二信号线126B,其中,每路第二信号线126B分别连接每组电极单元110中的至多一个电极单元110的温度检测器114。具体地,第二信号线126B-1、126B-2和126B-3均分别连接3组电极单元110中各组内相应的一个电极单元110的温度检测器114,而第二信号线126B-4与126B-5仅连接前两组电极单元110的各组中相应的一个电极单元110的温度检测器114,第二信号线126B-4与126B-5均未与第三组中的电极单元110连接。也即,第二信号线126B-1、126B-2和126B-3均各自并行连接有3个电极单元110各自的温度检测器114的信号端114B,第二信号线126B-4与126B-5仅并行连接有2个电极单元110的各自温度检测器114的信号端114B。图4所示的电场治疗***的控制方法和图2所示的电场治疗***的控制方法类似,这里不再赘述,唯一不同的是,图4所示的电场治疗***仅需依次闭合3个第一开关240(第一开关240-1、240-2和240-3),并且在第一开关240-3闭合期间,第一模数转换器220仅有前三个检测通道(A、B、C)能够获取到检测信号。
图5示出了根据本公开的第三实施例的电场治疗***中电极片100和第一转接器200的示意性框图。与第一实施例的电场治疗***相比,本实施例的电极片100具有与第一实施例的电极片100相同结构的电极单元110,每个电极单元110均包括电极元件112、温度检测器114和与温度检测器114串联设置的第一二极管117。每个电极元件112中部具有贯穿设置的开孔1120,每个电极元件112的开孔1120中收容有相应的温度检测器114和第一二极管117。本实施例的第一转接器200具有与第一实施例的第一转接器200相同的第一模数转换器220、第一控制器210、第一通信收发器250。本实施例还具有与第一实施例相同的电场发生器(未图示)。与第一实施例的电场治疗***相比,不同的是,该实施例的电极片100仅包含13个电极单元110,如图5所示,这13个电极单元110构成3组电极单元110,其中前两组各包含5个电极单元110,第三组仅包含3个电极单元110。本实施例中,电极片100的转接板120内嵌设有3路第二接地线126A、5路第二信号线126B和一路第二AC线126C。其中,每路第二信号线126B分别连接每组电极单元110中的至多一个电极单元110的温度检测器114,具体地,第二信号线126B-1、126B-2和126B-3均连接3组电极单元110中各组内相应的一个电极单元110的温度检测器114,而第二信号线126B-4与126B-5仅连接前两组电极单元110的各组中相应的一个电极单元110的温度检测器114,第二信号线126B-4与126B-5均未与第三组的电极单元110连接。3路第二接地线126A分别与相应的一组电极单元110中的每个电极单元110连接。与第一实施例相同的是,位于同一组电极单元110内的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接。位于同一组电极单元110内的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接。
本实施例中,第一线缆(未图示)的导线数为9个。第一线缆(未图示)的9个导线分别与转接板120内嵌设有的3路第二接地线126A、5路第二信号线126B和1路第二AC线126C一一对应连接。
本实施例中,第一转接器200内的每组第一开关240均为3个第一开关240-1、240-2、240-3。在第一开关240-1或第一开关240-2闭合期间,第一模数转换器220所有检测通道(A、B、C、D、E)都能够获取到检测信号;在第一开关240-3闭合期间,第一模数转换器220仅有前三个检测通道(A、B、C)能够获取到检测信号。
图6示出了根据本公开的第四实施例的电场治疗***中电极片100和第一转接器200的示意性框图。第四实施例的电场治疗***与第三实施例的电场治疗***大致相同,区别在于,本实施例的电极片100的13个电极单元110的分组不同,其中前两组各包含4个电极单元110,第三组包含5个电极单元110。本实施例中,电极片100的由柔性线路板构成的转接板120内同样嵌设有3路第二接地线126A、5路第二信号线126B和1路第二AC线126C。其中,第二信号线126B-1、126B-2、126B-3和126B-4均连接3组电极单元110中各组内相应的一个电极单元110的温度检测器114,而第二信号线126B-5仅连接第三组电极单元110中相应的一个电极单元110的温度检测器114,第二信号线126B-5未与前两组的电极单元110连接。
与第三实施例相同的是,本实施例中,位于同一组电极单元110内的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接。位于同一组电极单元110内的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接。
图7示出了根据本公开的第五实施例的电场治疗***中电极片100和第一转接器200的示意性框图。第五实施例的电场治疗***的电极片100与第三、第四实施例电场治疗***对应的电极片100相比,具有相同数量的电极单元110,区别在于,本实施例的电极片100的13个电极单元110的分组不同,本实施例中,电极单元110分为4组,其中前三组各包含3个电极单元110,第四组包含4个电极单元110。本实施例中,电极片100的由柔性线路板构成的转接板120内嵌设有4路第二接地线126A、4路第二信号线126B和1路第二AC线126C。其中,第二信号线126B-1、126B-2和126B-3均连接4组电极单元110中各组内相应的一个电极单元110的温度检测器114,而第二信号线126B-4仅连接第四组电极单元110中相应的一个电极单元110的温度检测器114。与前面实施例相同的是,本实施例中,位于同一组电极单元110内的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接。位于同一组电极单元110内的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接。
本实施例具有与第三、第四实施例相同导线数量的第一线缆(未图示)。第一线缆(未图示)的9个导线分别与转接板120内嵌设有的4路第二接地线126A、4路第二信号线126B和1路第二AC线126C一一对应连接。
本实施例的第一转接器200具有与第三、第四实施例的第一转接器200相同的第一控制器210 和第一通信收发器250。本实施例的第一转接器200的第一开关240与第三、第四实施例的第一转接器200的第一开关240不同,本实施例中,第一转接器200具有与4路第二接地线126A一一对应的四个第一开关240-1、240-2、240-3和240-4。第一模数转换器220具有与4路第二信号线126B一一对应的四个检测通道(A、B、C、D)。在第一开关240-1、240-2和240-3闭合期间,第一模数转换器220均仅有前三个检测通道(A、B、C)能够获取到检测信号;在第一开关240-3闭合期间,第一模数转换器220所有检测通道(A、B、C、D)都能够获取到检测信号。本实施例还具有与第三、第四实施例相同的电场发生器(未图示)。
图8示出了根据本公开的第六实施例的电场治疗***中电极片100和第一转接器200的示意性框图。本实施例的电场治疗***的电极片100的电极单元110的数量为9个,与第五实施例电场治疗***对应的电极片100相比,本实施例中,仅设置了前3组电极单元110,未设置第四组电极单元110。本实施例中,3组电极单元110的每组均为3个电极单元110。本实施例中,电极片100的由柔性线路板构成的转接板120内嵌设有3路第二接地线126A、3路第二信号线126B和1路第二AC线126C。其中,第二信号线126B-1、126B-2和126B-3均连接3组电极单元110中各组内相应的一个电极单元110的温度检测器114的信号端114B。3路第二接地线126A分别与相应的一组电极单元110的所有温度检测器114的接地端114A均连接。与前面实施例相同的是,本实施例中,位于同一组电极单元110内的多个温度检测器114各自的接地端114A均通过转接板120的同一路第二接地线126A短接,位于不同组且相对应的多个温度检测器114各自的接地端114A分别通过转接板120的不同路第二接地线126A并行连接。位于同一组电极单元110内的多个温度检测器114各自的信号端114B分别通过转接板120的不同路第二信号线126B并行连接,位于不同组且相对应的多个温度检测器114各自的信号端114B均通过转接板120的同一路第二信号线126B短接。
本实施例的第一线缆(未图示)的导线数为7个。第一线缆(未图示)的7个导线分别与转接板120内嵌设有的3路第二接地线126A、3路第二信号线126B和一路第二AC线126C一一对应连接。
本实施例的第一转接器200具有与前面实施例的第一转接器200相同的第一控制器210和第一通信收发器250。本实施例的第一转接器200的每组第一开关240与第三、第四实施例的第一转接器200的每组第一开关240结构相同,但均设有3个第一开关240。本实施例中,第一转接器200的每组第一开关240-1、240-2和240-3分别与相应的电极片100的3路第二接地线126A一一对应。第一模数转换器220具有与相应电极片100的3路第二信号线126B一一对应的三个检测通道(A、B、C)。在人一第一开关240闭合期间,第一模数转换器220所有检测通道(A、B、C)都能够获取到检测信号。本实施例还具有与第三、第四实施例相同的电场发生器(未图示)。
本公开的电极片100的每个电极单元110均包括温度检测器114,可通过每路第二接地线126A依次将多组电极单元110中对应的一组电极单元110的温度检测器114接地,通过每路第二信号线126B将每组电极单元110中的至多一个电极单元110的温度检测器114电性连接,以实现多路第二信号线126B分时获取多个温度检测器114的检测信号,从而使患者体表温度检测更全面、准确。同时,通过上述线路连接减少了电极片100连接的第一线缆的导线数,第一线缆的导线数不大于10个,有效减少了电极片100整体的重量,避免电极片100因第一线缆的导线数增加影响电极片100与患者肿瘤部位对应体表之间的粘附效果。
本公开还提供了一种电场治疗***的控制方法,该方法包括:依次单独导通电极片100的多路第二接地线126A中的每路第二接地线126A,在每路第二接地线126A导通状态下:获取第一转接器200接收到的已由该第二接地线126A接地的一组电极单元110中的每个电极单元110的温度检测器114的检测信号;根据获得的检测信号调节施加至各电极单元110上的交变电信号。
图9是依据本公开一个实施例的电场治疗***的控制方法的流程图。以图2所示的电场治疗***为例,如图9所示,该方法包括如下步骤:
S101,第一转接器200的第一控制器210同时控制多组第一开关240中的一组第一开关240的4个第一开关240,使4个第一开关240(第一开关240-1、240-2、240-3和240-4)中的一个第一开关240导通,剩余3个第一开关240断开。
S102,第一转接器200的多组第一模数转换器220中一组第一模数转换器220的通过其相应的检测通道采集与导通的第一开关240短接的多个温度检测器114的检测信号,检测信号为电压模拟信号。
S103,第一转接器200的多组第一模数转换器220中的一组第一模数转换器220将采集到的电压模拟信号转化为数字温度信号。
S104,第一转接器200的第一通信收发器250将数字温度信号串行传递给电场发生器300。
重复S101-S104,使电极片100的每个温度检测器114检测的电压模拟信号都被第一转接器200采集并转换成数字温度信号,并传递给电场发生器300。具体地,在仅第一开关240-1闭合时,第一模数转换器220的所有检测通道A-E将分别采集到电极单元110-1到电极单元110-5的各温度检测器114的检测信号;在仅第一开关240-2闭合时,第一模数转换器220的所有检测通道A-E将分别采集到电极单元110-6到电极单元110-10的各温度检测器114的检测信号;在仅第一开关240-3闭合时,第一模数转换器220的所有检测通道A-E将分别采集到电极单元110-11到电极单元110-15的温度检测器114的检测信号;在仅第一开关240-4闭合时,第一模数转换器220的所有检测通道A-E将分别采集到电极单元110-16到电极单元110-20的温度检测器114的检测信号。具体操作原理详见图2的相关说明,这里不再赘述。如此操作,电场发生器300能够得到电极片100上所有温度检测器114检测的模拟温度信号。
在电场发生器300获得相应电极片100的所有温度检测器114的数字温度信号后,还包括如下步骤:电场发生器300比较其内设定的预设温度阈值以及获取的所有数字温度信号并根据比较结果调整施加至相应的电极片100的各电极单元的交变电信号。
预设温度阈值为37-42℃。所述的根据比较结果调整施加至相应的电极片100的各电极单元的交变电信号具体为:当所有数字温度信号均低于预设温度阈值时,保持或调大施加至相应电极片100的各电极单元110上的交变电信号的电压;当某一数字温度信号等于或高于预设温度阈值时,降低施加至相应电极片100的各电极单元110上的交变电压至0。
本公开的电极片100的多组电极单元110的每个电极单元110均包括一个温度检测器114,且通过每路第二接地线126A依次将多组电极单元110中对应的一组电极单元110的温度检测器114接地,通过每个第二信号线126B将每组电极单元110中的至多一个电极单元110的温度检测器114电性连接,可以实现通过各路第二信号线126B分时获取电极片不同组电极单元110的各个温度检 测器114的检测信号,从而使患者体表温度检测更全面、准确。
第二些实施例
参照图10-图12,电场治疗***包括:至少一对电极片100、第一转接器200和电场发生器300,至少一对电极片100可以成对地配置于患者体表,如图10中的4个电极片100,每两个电极片100作为一对配置于患者体表,第一转接器200与每个电极片100的电性连接,电场发生器300与第一转接器200电性连接。电场发生器300产生肿瘤电场用的交变电信号,并通过第一转接器200将交变电信号传输给每个电极片100,以向患者肿瘤部位施加交变电场进行肿瘤治疗。
电极片100包括由柔性线路板构成的转接板120以及设置在转接板120上的多个电极元件112和多个温度检测器114,每个电极元件112可施加交变电场,每个温度检测器114对应一个电极元件112设置,以检测相应电极元件112处的温度。电极片100还包括与转接板120相连的第一线缆130,每个电极片100与第一转接器200之间均连接设置有一个第一连接器180,第一连接器180适于将相应电极片100连接到第一转接器200。第一连接器180为插头,设置于相应的电极片100的第一线缆130远离转接板120的一端。第一转接器200设有若干个与多个第一连接器180分别一一对应的第一插座260。第一插头与第一插座260为按压式弹簧接插件,即第一连接器180采用接插件的方式将第一转接器200与电极片100进行连接。
电极片100的转接板120呈网格状设置,多个电极元件112和多个温度检测器114间隔设于转接板120上,每个电极元件112上具有贯穿状设置的开孔1120,开孔1120适于安装温度检测器114。本实施例中,开孔1120位于每个电极元件112的中部,每个温度检测器114收容于相应的电极元件112的开孔1120中。可选的,电极元件112为介电元件,如陶瓷片;也可以为设于转接板120上的高分子介电层。温度传感器114也可以设于电极元件112的其他部位处。
多个电极元件112和多个温度检测器114构成多个电极单元110。多个电极元件112大致呈阵列设置,如图10所示,20个电极元件112按照四行六列设置,第一行与第四行皆为四个电极元件112,且第一行与第四行的每一行中的四个电极元件112皆位于第二列至第五列的各列,中间两行皆为六个电极元件112,中间两行的每一行中的六个电极元件112皆位于第一列至第六列的各列。20个电极元件112还可以按照四行五列设置,每行皆有5个电极元件112。与电极元件112一一对应设置的多个温度检测器114的空间排布大致与多个电极元件112的阵列排布相同。
参考图11,多个电极元件112通过转接板120的同一路第二AC线126C并行连接,其被第二AC线126C传递交变电信号,并与相对的电极片100之间形成用于***的治疗电场。多个电极元件112与多个温度检测器114在电路连接上均被配置为多个行组和多个列组,也即多个电极单元110在电路连接上均被配置为多个行组和多个列组。在本实施例中,20个电极元件112在电路连接上按照1~20检测位的顺序排序分组,分成四个行组和五个列组,即20个电极元件112在电路连接上呈四行五列排布。由于多个温度检测器114与多个电极元件112一一对应设置,因而多个温度检测器114在电路连接上也呈四行组五列组排布。需要说明的是,这里的排布方式是为了更清楚的示出电极片100与第一转接器200电性连接的情况,并不代表电极元件112在空间结构上的排布,其空间结构可能是如图10所示的大致呈阵列的结构。
每个温度检测器114均具有一信号端114B和一接地端114A,位于每个列组中对应温度检测器114的信号端114B连接到一起作为温度采样点,位于每个行组中对应温度检测器114的接地端114A共同通过一个第一开关240接地,位于不同行组中对应温度检测器114的接地端114A通过不同第一开关240接地,以便通过配置第一开关240的开闭状态以使每个行组中对应温度检测器114的检测信号由相应温度采样点同时被采样,其中,被采样到的每个温度检测器114的检测信号用于表征电极片100的类型。如图11所示,本实施例中,位于每一行组的五个温度检测器114的接地端114A均通过转接板120的同一路第二接地线126A并行短接,位于每一行组的五个温度检测器114的信号端114B分别通过转接板120的五路第二信号线126B并行连接,位于每一列组内的温度检测器114的信号端114B均通过转接板120的同一路第二信号线126B并行短接,位于每一列组内的温度检测器114的接地端114A通过转接板120的四路第二接地线126A并行连接。
参考图11,每个温度检测器114还串联有第一二极管117,温度检测器114具有信号端114B和接地端114A,第一二极管117具有阳极117B和阴极117A,第一二极管117的阳极117B与温度检测器114的接地端114A相连,第一二极管117的阴极117A连接至相应的第二接地线126A,温度检测器114的信号端114B连接至相应的第二信号线126B。相应温度检测器114在温度检测时通过第一二极管117可以避免其它温度检测器114的阻值对检测信号的影响。
参考图11-图12所示,第一转接器200包括与第一连接器180电性连接的主控制板,主控制板包括第一控制器210、第一模数转换器220、多组第一开关240以及第一通信收发器250。第一控制器210用于配置多组第一开关240的开闭状态,第一模数转换器220与第一控制器210相连,第一模数转换器220用于通过相应温度采样点同时对每个行组中对应温度检测器114的检测信号进行采样,获得若干AD采样值,并将若干AD采样值发送给第一控制器210,以便第一控制器210根据若干AD采样值识别相应电极片100的类型。
本实施例中,第一控制器210通过选择性地控制多个第一开关240中的任一个的导通与断开来选择性地使20个温度检测器114中的任何一行组温度检测器114检测电极片100的温度,第一模数转换器220通过相应温度采样点同时采集该组温度检测器114的检测信号得到若干AD采样值,并对AD采样值进行转换得到数字信号,以及将AD采样值传递给第一控制器210,以便第一控制器210根据若干AD采样值识别相应电极片100的类型。
第一模数转换器220具有多个检测通道,且检测通道的数量大于等于列组的数量。本实施例中,如图11所示,第一模数转换器220具有五个检测通道A、B、C、D和E,每个检测通道在同一时间仅采集相应的一个温度检测器114的检测信号得到AD采样值,该AD采样值为电压值,也即检测信号为电压值。四个第一开关240在同一时间仅有一个第一开关240导通,其它三个第一开关240均断开,这样第一模数转换器220才能采集与导通的第一开关240短接的一组温度检测器114的检测信号。具体的,如图11所示,编号为1、2、3、4、5的温度检测器114的接地端114A短接一起,通过第一转接器200内的第一开关240-1接地,编号为1、2、3、4、5的温度检测器114的信号端114B分别通过相应的温度采样点连接至第一模数转换器220的检测通道A-E;编号为6、7、8、9、10的温度检测器114的接地端114A短接一起,通过第一转接器200内的第一开关240-2接地,编号为6、7、8、9、10的温度检测器114的信号端114B分别通过相应的温度采样点连接至第一模数 转换器220的检测通道A-E;编号为11、12、13、14、15的温度检测器114的接地端114A短接一起,通过第一转接器200内的第一开关240-3接地,编号为11、12、13、14、15的温度检测器114的信号端114B分别通过相应的温度采样点连接至第一模数转换器220的检测通道A-E;编号为16、17、18、19、20的温度检测器114的接地端114A短接一起,通过第一转接器200内的第一开关240-4接地,编号为16、17、18、19、20的温度检测器114的信号端114B分别通过相应的温度采样点连接至第一模数转换器220的检测通道A-E。同时,每个温度采样点经由第一转接器200内的相应第一分压电阻230连接到直流电源VCC。
参考图10所示,第一转接器200与电场发生器300之间设有第二连接器280,第二连接器280适于将电场发生器300连接到第一转接器200。第一转接器200还包括一与第二连接器280连接的第二线缆290。第二连接器280为第二插头,电场发生器300上对应第二连接器280设置第二插座310,第二插头与第二插座310为按压式弹簧接插件,即第二连接器280采用接插件的方式将第一转接器200与电场发生器300进行连接。参考图10-图12所示,每个第一连接器180-X1、180-Y1、180-X2和180-Y2与第二连接器280之间通过AC线相连,第一连接器180-X1、180-Y1、180-X2和180-Y2还分别连接多组第一开关240与第一模数转换器220。第二连接器280与第一通信收发器250之间通过接收数据线RX和发送数据线TX相连,第二连接器280的VCC管脚与第一控制器210的供电端相连,第二连接器280的GND管脚接地,第二连接器280的VCC管脚还通过相应第一分压电阻230与温度采样点相连。
第一控制器210与多组第一开关240连接,第一控制器210连接于第一模数转换器220与第一通信收发器250之间。第一控制器210还可通过第一通信收发器250将若干AD采样值发送给电场发生器300,以便电场发生器300在电极片正常情况下根据若干AD采样值识别相应电极片100的类型。也就是说,在电极片正常情况下,可由第一控制器210或者电场发生器300基于AD采样值确定相应电极片100的类型。
可选的,温度检测器114为热敏电阻,例如,温度检测器114为负温度系数的热敏电阻,其特性是温度越高、阻值越小,温度越低、阻值越大。由于电极片100在使用时贴敷于人体体表,而人体体表温度一般在36℃~37℃,因此可以选择温度范围在0℃~50℃的负温度系数的热敏电阻。例如,可以选择型号为NCP18XH103D03RB的热敏电阻,当其感测的温度为0℃时,对应阻值约为27.45KΩ;感测的温度为25℃时,对应阻值约为10.0KΩ;感测的温度为50℃时,对应阻值约为4.16KΩ。在其它实施例中,温度检测器114为正温度系数的热敏电阻。
如图11和图13所示,当第一控制器210控制多个第一开关240中的任一个第一开关240导通时,直流电源VCC依次为第一分压电阻230、温度检测器114和第一二极管117提供直流电,第一转接器200中的第一模数转换器220通过相应检测通道采集温度检测器114与第一分压电阻230之间的电压,也即温度检测器114与第一二极管117和第一分压电阻230的分压,得到AD采样值即电压值(热敏电阻的电压值),具体如下述公式(1)所示:
VADC=(VCC-VD)×R/(Rz+R)      (1)
其中,VADC为AD采样值即电压值,VCC也用于表示直流电源的电压大小,VD为第一二极管117的压降,R为热敏电阻的阻值,Rz为第一分压电阻230的阻值。
假设,第一二极管117的压降VD为0.3V,第一分压电阻230的阻值Rz为10KΩ,那么当温度检测器114感测的温度为0℃时,对应阻值约为27.45KΩ,基于公式(1)可以得到与之对应的AD采样值V0=(3.3-0.3)×27.45/(10+27.45)=2.20V;当温度检测器114感测的温度为25℃时,对应阻值约为10.0KΩ,基于公式(1)可以得到与之对应的AD采样值V25=(3.3-0.3)×10/(10+10)=1.50V;当温度检测器114感测的温度为50℃时,对应阻值约为4.16KΩ,基于公式(1)可以得到与之对应的AD采样值V50=(3.3-0.3)×4.16/(10+4.16)=0.88V。当温度检测器114断开时,例如温度检测器114未焊接温度检测器114或温度检测器114短路,可以得到与之对应的AD采样值为3.3V。当温度检测器114和第一二极管117短路时,可以得到与之对应的AD采样值为0V。
由于第一模数转换器220采集的是温度检测器114的电压值,温度检测器114检测不同的温度都有对应的不同的电压值,因此可以将第一模数转换器220采集的电压值进行合理的分段以进行区分,同时将该电压值转换成相应的编码,即电压值所处的电压区间不同,对应不同的编码,基于该编码可以确定出电极片100的编码数组,编码数组包括第一编码、第二编码和第三编码中的至少一种,其中,第一编码用于指示温度检测器114处于正常状态,第二编码用于指示温度检测器114处于断路状态或未设置状态,第三编码用于指示温度检测器114处于短路状态。通过编码数组以识别电极片100的类型,即电极片100上的电极元件112的数量。
具体的,以温度检测器114感测0℃~50℃范围内的温度,且第一模数转换器220采样获得的AD采样值即电压值的范围为0.88V~2.20V为例,考虑到检测误差因素等,可将电压值的范围适当的放大为0.5V~3V。
当第一模数转换器220采样获得的AD采样值大于0.5V且小于3V时,相应的编码为第一编码如1;当第一模数转换器220采样获得的AD采样值小于等于0.3V时,相应的编码为第三编码如0;当第一模数转换器220采样获得的AD采样值大于等于3.1V时,相应的编码为第二编码如2。因此,在电极片100的编号为1~20相应检测位中,温度检测器114为短路的,对应编码为第三编码如0;温度检测器114正常的,对应编码为第一编码如1;没有温度检测器114或温度检测器114断开的,对应编码为第二编码如2。
在进行采样时,不管哪种类型的电极片100(即,电极片100的电极元件112或温度检测器114的个数为小于或等于20的任一个数),第一模数转换器220每次采集获得20个AD采样值,并且在每次采集完成后,基于20个AD采样值组成一个20位的编码数组,每种类型的电极片100具有一个相应的预设编码数组,因此通过比较采集获得编码数组与预设编码数组就可以自动识别出电极片100的类型。
第一控制器210根据若干AD采样值可以确定相应电极片100的编码数组,并根据编码数组确定相应电极片100的类型。如图10所示,正常情况下,当电极片100具有20个电极元件112,即电极片100的编号1~20相应检测位均具有温度检测器114,且编码均为1,对20个编码进行组合,得到20位的编码数组11111 11111 11111 11111。
如图14所示,当电极片100具有9个电极元件112和9个温度检测器114时,即具有9个电极单元110时,9个电极元件112与9个温度检测器114在电路连接上呈两行组五列组排布,且9个电极元件112与9个温度检测器114顺序排布,9个温度检测器114顺延的一相应位置短接一导 线(未标号),即在电路连接上位于二行组五列组交叉位置处设置一导线(未标号)与同行组的温度检测器114的接地端114A短接,同时与同列组的温度检测器114的信号端114B短接。每个电极元件112对应的检测位编号为1~9,即电极片100的编号1~9相应检测位均具有温度检测器114,且编码均为1,与具有20个电极元件112的电极片100不同的是,下一个检测位(即对应的检测位编号10)的位置未设置电极元件112(未设有温度检测器114),且由导线(未标号)短接,对应的编码为0;对应的检测位编号11~20的位置未设置电极元件112(未设有温度检测器114),也未由导线(未标号)短接,呈断开状态,对应的编码为2,因此对20位编码进行组合,得到20位的编码数组11111 11110 22222 22222。
如图15所示,当电极片100具有13个电极元件112与13个温度检测器114,13个电极元件112与13个温度检测器114在电路连接上呈三行组五列组排布,且13个电极元件112与13个温度检测器114顺序排布,13个温度检测器114顺延的一相应位置短接一导线(未标号),即在电路连接上位于三行组四列组交叉位置处设置一导线(未标号)与同行组的温度检测器114的接地端114A短接,同时与同列组的温度检测器114的信号端114B短接。每个电极元件112对应的检测位编号为1~13,即电极片100的编号1~13相应检测位均具有温度检测器114,且编码均为1,与具有20个电极元件112的电极片100不同的是,下一个检测位(即对应的检测位编号14)的位置未设置电极元件112(未设有温度检测器114),并由导线(未标号)并行短接,对应的编码为0;对应的检测位编号15~20的位置未设置电极元件112(未设有温度检测器114),也未由导线(未标号)并行短接,呈断开状态,对应的编码为2,因此对20位编码进行组合,得到20位的编码数组为11111 11111 11102 22222。
如图16所示,当电极片100具有19个电极元件112与19个温度检测器114,19个电极元件112与19个温度检测器114在电路连接上呈四行组五列组排布,且19个电极元件112与19个温度检测器114顺序排布,19个温度检测器114顺延的一相应位置短接一导线(未标号),即在电路连接上位于四行组五列组交叉位置处设置一导线(未标号)与同行组的温度检测器114的接地端114A短接,同时与同列组的温度检测器114的信号端114B短接。每个电极元件112对应的检测位编号为1~19,即电极片100的编号1~19相应检测位均具有温度检测器114,且编码均为1,与具有20个电极元件112的电极片100不同的是,下一个检测位(即对应的检测位编号20)的位置未设置电极元件112(未设有温度检测器114),并由导线(未标号)并行短接,对应的编码为0,因此对20位编码进行组合,得到20位的编码数组为11111 11111 11111 11110。
当第一转接器200没有连接电极片100时,第一模数转换器220采集的均是直流电源VCC的电压3.3V,因此得到20位的编码数组为22222 22222 22222 22222。
基于上述规律可知:具有1个电极元件112与1个温度检测器114的电极片100,对应的编码数组为10222 22222 22222 22222;具有2个电极元件112与2个温度检测器114的电极片100,对应的编码数组为11022 22222 22222 22222;具有3个电极元件112与3个温度检测器114的电极片100,对应的编码数组为11102 22222 22222 22222;具有4个电极元件112与4个温度检测器114的电极片100,对应的编码数组为11110 22222 22222 22222;具有5个电极元件112与5个温度检测器114的电极片100,对应的编码数组为11111 02222 22222 22222;具有6个电极元 件112与6个温度检测器114的电极片100,对应的编码数组为11111 10222 22222 22222;具有7个电极元件112与7个温度检测器114的电极片100,对应的编码数组为11111 11022 22222 22222;具有8个电极元件112与8个温度检测器114的电极片100,对应的编码数组为11111 11102 22222 22222;具有9个电极元件112与9个温度检测器114的电极片100,对应的编码数组为11111 11110 22222 22222;具有10个电极元件112与10个温度检测器114的电极片100,对应的编码数组为11111 11111 02222 22222;具有11个电极元件112与11个温度检测器114的电极片100,对应的编码数组为11111 11111 10222 22222;具有12个电极元件112与12个温度检测器114的电极片100,对应的编码数组为11111 11111 11022 22222;具有13个电极元件112与13个温度检测器114的电极片100,对应的编码数组为11111 11111 11102 22222;具有14个电极元件112与14个温度检测器114的电极片100,对应的编码数组为11111 11111 11110 22222;具有15个电极元件112与15个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 02222;具有16个电极元件112与16个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 10222;具有17个电极元件112与17个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 11022;具有18个电极元件112与18个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 11102;具有19个电极元件112与19个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 11110;具有20个电极元件112与20个温度检测器114的电极片100,对应的编码数组为11111 11111 11111 11111;当第一转接器200没有连接电极片100时,对应的编码数组为22222 22222 22222 22222。
以上21个编号数组均不同,因此第一控制器210在电极片100正常的情况下可以通过编码数组来判断第一转接器200连接的电极片100的类型或者是否连接电极片100。需要说明的是,电场发生器300采用相同的方式来判断第一转接器200连接的电极片100的类型或者是否连接电极片100,具体这里不再赘述。
在电极片100的类型确定的情况下,第一控制器210还根据编码数组判断相应电极片100是否出现温度检测故障,其中,被采样到的每个温度检测器114的检测信号还用于表征电极片100是否出现温度检测故障。
如图10所示,在具有20个电极元件112与20个温度检测器114的电极片100中,假设编号为20的温度检测器114损毁(断开),第一模数转换器220采样得到的AD采样值为3.3V,对应的采样编码为第二编码2,对应的异常的编码数组为11111 11111 11111 11112,该编码数组与标准编码数组11111 11111 11111 11111不一致,因此第一控制器210能够区分出温度检测故障。
如图14所示,在具有9个电极元件112与9个温度检测器114的电极片100中,假设编号为1的温度检测器114损毁(断开),第一模数转换器220采样得到的AD采样值为3.3V,对应的采样编码为第二编码2,对应的异常的编码数组为21111 11110 22222 22222,该编码数组与标准编码数组11111 11110 22222 22222不一致,因此第一控制器210能够区分出温度检测故障。
综上,在电极片100的温度检测器114都正常的情况下,对应的20位编码数组中的编码“0”不在最后一位,且在该编码“0”前的编码均为“1”,在该编码“0”后的编码均为“2”;或者,编码“0”在最后一位且在该编码“0”前的编码均为“1”;或者,20位编码数组中所有编码均为 “1”。当电极片100的温度检测器114出现损毁时,对应的20位编码数组中的编码“0”不论是否在最后一位,在该编码“0”前的编码都出现不同于“1”的编码(编码“2”),或者20位编码数组中所有编码均为“1”或“2”。
本公开还提供了一种肿瘤治疗设备(未图示),包括:至少一对前述的电极片100,或者前述的电场治疗***。
根据本公开实施例的肿瘤治疗设备(未图示),通过前述的电极片100或者电场治疗***,在电极片100正常情况下能够自动识别出电极片100的类型,进而实现对不同类型电极片100的温度采集,且不会漏采集或产生干扰信号。在电极片100的类型确定情况下可以判断相应电极片100是否出现温度检测故障。
本公开还提供了一种计算机可读存储介质(未图示),其上存储有电场治疗***的电极片识别程序,该电场治疗***的电极片识别程序被处理器(未图示)执行时,实现前述的电场治疗***的电极片识别。
根据本公开实施例的计算机可读存储介质(未图示),在电极片100正常情况下能够自动识别出电极片100的类型,进而实现对不同类型电极片100的温度采集,且不会漏采集或产生干扰信号。在电极片100的类型确定情况下可以判断相应电极片100是否出现温度检测故障。
本公开还提供了一种电场治疗***的第一转接器200,包括存储器、处理器(未图示)及存储在存储器上并可在处理器(未图示)上运行的电场治疗***的电极片识别程序,处理器(未图示)执行电场治疗***的电极片识别程序时,实现前述的电场治疗***的电极片识别。
根据本公开实施例的电场治疗***的第一转接器200,在电极片100正常情况下,能够自动识别出电极片100的类型,进而实现对不同类型电极片100的温度采集,且不会漏采集或产生干扰信号。在电极片100的类型确定情况下可以判断相应电极片100是否出现温度检测故障。
本公开还提供了一种电场治疗***的电场发生器300,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器上运行的电场治疗***的电极片识别程序,处理器(未图示)执行电场治疗***的电极片识别程序时,实现前述的电场治疗***的电极片识别。
根据本公开实施例的电场治疗***的电场发生器300,在电极片100正常情况下能够自动识别出电极片的类型,进而实现对不同类型电极片100的温度采集,且不会漏采集或产生干扰信号。在电极片100的类型确定情况下可以判断相应电极片100是否出现温度检测故障。
基于上述编码原则,能够在使用过程中进行电极片100的质量监测,以便于用户能够及时更换电极片100,避免低温烫伤。例如,第一控制器210根据采样到的每个温度检测器114的检测信号确定测试编码数组,并将测试编码数组与预设标准编码数组进行比对,识别电极片100中每个温度检测器114的故障情况。其中,标准编码数组包括第一编码和第二编码中的至少第一编码。
在一些实施例中,第一转接器200还包括提醒单元(未图示),提醒单元(未图示)与第一控制器210相连,第一控制器210还在电极片100中存在故障的温度检测器114时,控制提醒单元(未图示)发出第一提醒信息,并指示电场发生器300保持继续工作。例如,第一控制器210在电极片100中未存在故障的温度检测器114时,控制提醒单元如指示灯亮绿色,而在电极片100中存在故障的温度检测器114时,控制提醒单元如指示灯亮红色。
第一控制器210还在将测试编码数组与预设标准编码数组进行比对时确定电极片100中存在故障的温度检测器114的数量,并根据数量判断电极片100是否需要更换。例如,当数量超过预设数量(最小可以设置为1),则判断电极片100需要更换,而在数量未超过该预设数量时,判断电极片100无需更换。第一控制器210还可以在判断电极片100需要更换时,控制提醒单元(未图示)发出第二提醒信息,并指示电场发生器300停止工作。例如,第一控制器210在判断电极片100需要更换时,控制提醒单元(未图示)如指示灯亮红色并闪烁,同时可控制提醒单元(未图示)如蜂鸣器报警,同时通过第一通信收发器250发送相应的信号给电场发生器300,以便电场发生器300停止输出交变电信号。
在电极片100进行肿瘤电场治疗过程中,第一转接器200周期性地执行前述电极片100故障检测,以及时更换电极片100。第一转接器200在周期性地执行前述电极片100故障检测之外,还根据采样到的每个温度检测器114的检测信号得到若干AD采样值,并将AD采样值传递给第一控制器210,第一控制器210根据若干AD采样值进行转换得到温度信号,以确定相应电极元件112处的温度。第一控制器210通过第一通信收发器250将温度信号发送给电场发生器300,电场发生器300根据相应电极元件112处的温度识别电极片100存在过温情况时,电场发生器300降低交变电信号的幅值或停止输出交变电信号。本实施例中,第一控制器210可以基于若干AD采样值计算得到电极片100中每个电极元件112处的温度,然后将该温度与预设温度进行比较,若该温度超过预设温度,则认为该电极片100存在过温情况,此时可以通过第一通信收发器250发送相应的信号给电场发生器300,以便电场发生器300停止输出交变电信号或者降低交变电信号的幅度。其中,预设温度的范围可为39℃~41℃,优选为40.5℃。
需要说明的是,也可以由电场发生器300根据采样到的每个温度检测器114的检测信号确定测试编码数组,并将测试编码数组与预设标准编码数组进行比对,识别电极片100中每个温度检测器114的故障情况。
在一些实施例中,电场发生器300还在电极片100中存在故障的温度检测器114时,发出第一提醒信息,并继续输出交变电信号。例如,电场发生器300可包括提醒单元(未图示),电场发生器300在电极片100中未存在故障的温度检测器114时,控制提醒单元(未图示)如指示灯亮绿色,而在电极片100中存在故障的温度检测器1144时,控制提醒单元(未图示)如指示灯亮红色。
电场发生器300还在将测试编码数组与预设标准编码数组进行比对时确定电极片100中存在故障的温度检测器114的数量,并根据数量判断电极片100是否需要更换。例如,当数量超过预设数量,则判断电极片100需要更换,而在数量未超过该预设数量时,判断电极片100无需更换。电场发生器300还在判断电极片100需要更换时,发出第二提醒信息,并停止输出交变电信号。例如,电场发生器300在判断电极片100需要更换时,控制提醒单元(未图示)如指示灯亮红色并闪烁,同时可控制提醒单元(未图示)如蜂鸣器报警,同时停止输出交变电信号。
电场发生器300还根据若干AD采样值确定相应电极元件112处的温度,并根据相应电极元件112处的温度识别电极片100存在过温情况时,降低交变电信号的幅值或停止输出交变电信号。例如,电场发生器300可以基于若干AD采样值计算得到电极片100中每个电极元件112处的温度,然后将该温度与预设温度进行比较,若该温度超过预设温度,则认为该电极片100存在过温情况, 此时可以停止输出交变电信号或者降低交变电信号的幅度。其中,预设温度的范围可为39℃~41℃,优选为40.5℃。
也就是说,可由第一转接器200或者电场发生器300基于AD采样值确定电极片100的测试编码数组,并根据测试编码数组识别电极片100中的多个温度检测器114是否存在故障情况,以及在存在故障情况时执行相应的提醒和保护策略;还可以在存在故障情况时,基于测试编码数组获取存在故障的温度检测器114的数量,并基于数量确定是否需要更换电极片100,以及在需要更换电极片100时执行相应的提醒和保护策略;还可以基于AD采样值获得电极片100中每个电极元件112处的温度,并根据温度判断电极片100是否存在过温情况,以及在存在过温情况时执行相应的提醒和保护策略。
下面以一个实施例来说明,具体包括如下过程:
步骤一:提供至少一对合格的电极片100(由于电极片100为医疗器械,每个电极片100出厂前会经过多方面检测来确保电极片100是合格的,因此提供到用户手中的电极片100均为合格的电极片100)。将至少一对合格的电极片100与前述第一转接器200连接,并将前述第一转接器200与前述电场发生器300连接。
步骤二:将电场发生器300通电,为至少一对合格的电极片100中的温度检测器114提供直流电源VCC,以进行温度检测。第一转接器200中的第一模数转换器220采集至少一对合格的电极片100的温度检测器114的检测信号,获得若干AD采样值,第一转接器200中的第一控制器210依据前述编码规则获得至少两组标准编码数组A1、A2,至少两组标准编码数组A1、A2可存入第一转接器200中,并作为对比编码。
步骤三:关闭电场发生器300的电源,将前述至少一对合格的电极片100配置在患者肿瘤部分对应体表。
步骤四:将电场发生器300通电,为至少一对合格的电极片100中的温度检测器114提供直流电源VCC,以进行温度检测,同时为电极片100中的电极元件112提供交变电信号,以在成对的电极片100之间形成交变电场进行肿瘤电场治疗。第一转接器200中的第一模数转换器220采集至少一对合格的电极片100的温度检测器114的检测信号,获得若干AD采样值,第一转接器200中的第一控制器210依据前述编码规则获得至少两组测试编码数组B1’、B2’。
步骤五:第一转接器200中的第一控制器210将测试编码数组B1’、B2’分别与对应的标准编码数组A1、A2一一对比判断,若测试编码数组B1’、B2’与标准编码数组A1、A2一致,则循环进行步骤四与步骤五;若存在至少一测试编码数组B1’或B2’与标准编码数组A1、A2不一致,则进行步骤六。
步骤六:第一转接器200确认不一致测试编码数组B1’或/和B2’对应的电极片100中异常的温度检测器114的数量,并判断对应的电极片100中异常的温度检测器114的数量是否超上限,若未超上限,则进行步骤七;若超上限则进行步骤八。
步骤七:继续循环进行步骤四与步骤五。
步骤八:第一转接器200通过控制其内部的提醒单元(未图示)发出报警,同时通过第一通信收发器250向电场发生器300发出相应的信号,以便电场发生器300停止对电极片100中的电极元件 112提供交变电信号,提醒用户更换相应的电极片100。
步骤九:关闭电场发生器300电源,将需要更换的电极片100从第一转接器200取下,并将新的电极片100连接到第一转接器200上。
步骤十:将电场发生器300通电,继续为第一转接器200上连接的电极片100中的温度检测器114提供直流电源VCC,以进行温度检测。第一转接器200中的第一模数转换器220采集替换上的合格的电极片100的温度检测器114检测的温度信号,获得若干AD采样值,第一转接器200中的第一控制器210依据前述编码规则获得新的标准编码数组A1’或/和A2’,至少一组新的标准编码数组A1’或/和A2’前述存储的对应的标准编码数组A1或/和A2进行对比,若新的标准编码数组A1’或/和A2’与标准编码数组A1或/和A2一致,则关闭电场发生器300电源,将更换后的新的电极片100配置在患者肿瘤部分对应体表,之后循环步骤四和五;若新的标准编码数组A1’或/和A2’与前述存储的标准编码A1或/和A2一一对比后,存在至少一组新的标准编码数组A1’和/或A2’与前述存储并对应的标准编码数组A1和/或A2不一致,则循环步骤九和步骤十,直到替换上的合格的电极片100的新的标准编码数组A1’和/或A2’与前述存储并对应的标准编码数组A1和/或A2一致。
需要说明的是,上述步骤中,成对的电极片100可采用相同设计的电极片100,即成对的电极片100的标准编码数组相同,即标准编码数组A1与A2相同。
上述步骤一和二,可以替换为用户输入至少两组标准编码数组A1、A2,至少两组标准编码数组A1、A2可存入第一转接器200中,并作为对比编码。
上述步骤六中,对应的电极片100中异常的温度检测器114的数量通过不一致编码数组A1’和/或A2’与相应标准编码数组A1、A2对比存在差异的编码的数量确定,例如,A1’与A1比对,仅第一个编码存在差异,则对应的电极片100中异常的温度检测器114的数量为1;又如,A1’与A1比对,仅最后两个编码存在差异,则对应的电极片100中异常的温度检测器114的数量为2;等等。
上述步骤六中,上限可以设置为1,即电极片100上存在一个温度检测器114异常,即进行步骤八报警及更换电极片100。在其他实施例中,上述步骤六中,上限不局限与1,还可以以电极片100的温度检测器114的数量的比例数接近的正整数。
上述步骤八中,提醒单元(未图示)可包括至少与电极片100一一对应的两个指示灯(未图示),表示相应的一个电极片100的状态。当无需更换电极片100时,指示灯(未图示)都亮绿灯;当需要更换电极片100时,对应需更换的电极片100的指示灯(未图示)亮红灯。也可以通过指示灯(未图示)长亮或闪烁表示电极片100无需更换或需要更换的状态。
上述步骤八中,提醒单元(未图示)还可包括蜂鸣器(未图示),表示电极片100的状态,与指示灯(未图示)报警同时提醒用户。当无需更换电极片100时,蜂鸣器(未图示)不发出声音报警;当需要更换电极片100时,蜂鸣器(未图示)发出声音报警。
在上述步骤四、五、六进行测试编码数组与标准编码数组对比的同时,还同时进行温度监测,步骤包括如下:
步骤十一:第一转接器200中的第一控制器210根据若干AD采样值计算得到温度检测器114 检测的温度信号,并判断温度信号是否超过预设温度,若存在电极片100的温度检测器114检测的温度信号超过预设温度,则进行步骤十二;若电极片100的温度检测器114检测的温度信号均在预设温度以下,则继续步骤十一。
步骤十二:第一转接器200中的第一控制器210在检测到电极片100的温度检测器114检测的温度超过预设温度时,通过第一通信收发器250发送相应的信号,以便电场发生器300降低或关闭相应一对电极片100的交变电信号,直到相应电极片100的温度检测器114检测的温度在预设温度以下。其中,预设温度的范围可为39℃~41℃,优选为40.5℃。
需要说明的是,上述过程均以第一转接器200进行电极片100的质量监测为例进行说明,也可以由电场发生器300进行电极片100的质量监测,也可以由第一转接器200和电场发生器300分别进行部分质量监测,具体这里不再赘述。另外,上述电极片100的数量、每个电极片100的电极元件112的数量以及采样编码的设置等,均为示例性说明,并不作为对本公开的限制。
上述实施例中,通过将多个电极元件112配置为至少一个行组和至少一个列组,且每个列组中对应温度检测器114的信号端114B连接到一起作为温度采样点,每个行组中对应温度检测器114的接地端114A共同通过一个第一开关240接地,通过配置第一开关240的开闭状态以使每个行组中对应温度检测器114检测的模拟检测信号由相应温度采样点同时被采样,其中,在电极片100正常情况下被采样到的每个温度检测器114的检测信号用于表征电极片100的类型,从而能够自动识别出电极片100的类型,进而实现对不同类型电极片100的温度采集,且不会漏采集或产生干扰信号;在电极片类型确定情况下被采样到的每个温度检测器114的检测信号还用于表征电极片100是否出现温度检测故障,从而能够识别出异常的温度检测器114。
本公开还提供了一种电极片故障检测方法,应用于前述的电场治疗***,参考图17所示,方法包括:
S201,获取电极片100中每个温度检测器114检测的模拟温度信号。
S202,根据每个温度检测器114检测的模拟温度信号确定电极片100的测试编码数组。
作为一种实现方式,模拟温度信号以电压值进行表征,根据每个温度检测器114检测的模拟温度信号确定电极片100的测试编码数组,包括:确定电压值所处的电压区间;根据电压值所处的电压区间确定相应温度检测器114对应的编码,其中,电压值所处的电压区间不同,对应不同的编码;根据每个温度检测器114对应的编码生成相应电极片100的测试编码数组。举例来说,测试编码数组包括第一编码、第二编码和第三编码中的至少一种,其中,第一编码用于指示温度检测器114处于正常状态,第二编码用于指示温度检测器114处于断路状态或未设置状态,第三编码用于指示温度检测器114处于短路状态。
S203,将测试编码数组与预设标准编码数组进行比对,识别电极片100中每个温度检测器114的故障情况。
进一步的,在识别到电极片100中存在故障的温度检测器114时,方法还包括:控制电场治疗***发出第一提醒信息,并控制电场发生器300保持继续工作。
可选的,在将测试编码数组与预设标准编码数组进行比对之后,方法还包括:确定电极片100中存在故障的温度检测器114的数量;根据数量判断电极片100是否需要更换。进一步的,在判断 电极片100需要更换时,方法还包括:控制电场治疗***发出第二提醒信息,并控制电场发生器300停止工作。
可选的,在将测试编码数组与预设标准编码数组进行比对之前,方法还包括:在检测合格的电极片100通过第一转接器200连接到电场发生器300时,控制电场发生器300进行工作,并根据当前每个温度检测器114检测的模拟温度信号确定预设标准编码数组。
可选的,在获取电极片100中每个温度检测器114检测的模拟温度信号之后,方法还包括:根据每个温度检测器114检测的模拟温度信号确定相应电极元件112处的温度;在根据相应电极元件112处的温度识别电极片100存在过温情况时,控制电场发生器300降低交变电信号的幅值或停止输出交变电信号。
需要说明的是,关于电极片故障检测方法的描述,请参考前述关于电场治疗***的描述,这里不再赘述。
上述实施例中,通过对电极片100中每个温度检测器114检测的模拟温度信号进行采样,并根据采样到的每个温度检测器114检测的模拟温度信号确定电极片100的测试编码数组,以及将测试编码数组与预设标准编码数组进行比对,识别电极片100中每个温度检测器114的故障情况、存在故障的温度检测器114的数量,进而基于数量确定是否需要更换电极片100,从而能够在使用过程中监测电极片100是否损坏,以便于用户可以及时地更换电极片100,避免或减少患者低温烫伤的风险;还可以根据采样到的每个温度检测器114检测的温度信号确定电极片100是否存在过温情况,以避免患者低温烫伤。
在一些实施例中,提供了一种肿瘤治疗设备,包括:前述的电场治疗***。
根据本公开实施例的肿瘤治疗设备,通过前述的电场治疗***,能够在使用过程中监测电极片100是否损坏,以便于用户可以及时地更换电极片100,避免或减少患者低温烫伤的风险;还可以确定电极片100是否存在过温情况,以避免患者低温烫伤。
本公开还提供了一种计算机可读存储介质(未图示),其上存储有电极片故障检测程序,该电极片故障检测程序被处理器执行时,实现前述的电极片故障检测方法。
根据本公开实施例的计算机可读存储介质(未图示),通过前述的电极片故障检测方法,能够在使用过程中监测电极片是否损坏,以便于用户可以及时地更换电极片100,避免或减少患者低温烫伤的风险;还可以确定电极片100是否存在过温情况,以避免患者低温烫伤。
本公开还提供了一种电场治疗***的第一转接器200,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电极片故障检测程序,处理器(未图示)执行电极片故障检测程序时,实现前述的电极片故障检测方法。
根据本公开实施例的电场治疗***的第一转接器200,通过前述的电极片故障检测方法,能够在使用过程中监测电极片100是否损坏,以便于用户可以及时地更换电极片100,避免或减少患者低温烫伤的风险;还可以确定电极片100是否存在过温情况,以避免患者低温烫伤。
本公开还提供了一种电场治疗***的电场发生器300,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电极片故障检测程序,处理器执行电极片故障检测程序时,实现前述的电极片故障检测方法。
根据本公开实施例的电场治疗***的电场发生器300,通过前述的电极片故障检测方法,能够在使用过程中监测电极片100是否损坏,以便于用户可以及时地更换电极片100,避免或减少患者低温烫伤的风险;还可以确定电极片100是否存在过温情况,以避免患者低温烫伤。
基于上述编码原则,能够在生产过程中进行电极片100的质量检测。例如,第一控制器210或电场发生器300根据采样到的每个温度检测器114的检测信号确定测试编码数组,并将测试编码数组发送给上位机(未图示),由上位机将测试编码数组与被检测的同类型的电极片100合格时的标准编码数组进行比较,判断电极片100是否合格。
在一些实施例中,上位机还连接有显示器(未图示)和报警器(未图示),上位机在进行质量检测时,还控制显示器显示电极片100的测试编码数组、标准编码数组以及电极片100是否合格,以及在电极片100不合格时,控制报警器发出提醒信息。需要说明的是,第一转接器200和/或电场发生器300、上位机、显示器和报警器构成了电极片的质量检测***。
下面以一个实施例进行说明,具体包括如下过程:
步骤一:提供一个合格电极片100,将该电极片100与前述第一转接器200连接,前述第一转接器200与前述电场发生器300连接,前述电场发生器300还与上位机(如计算机)连接,上位机还与显示器连接,以由上位机控制显示器显示合格电极片100的编码数组(即标准编码数组)及与该合格电极片100同批次、同类型的被测电极片100’的编码数组(即测试编码数组)。
步骤二:将电场发生器300通电,为合格电极片100的温度检测器114提供直流电源VCC进行温度检测,前述第一转接器200依据前述编码规则获得一组标准编码数组A,该标准编码数组A由前述第一转接器200路由前述电场发生器300到上位机,最终存入上位机中,并作为比较用的标准编码数组。
步骤三:提供一个与该合格电极片100同批次、同类型的被测电极片100’,将被测电极片100’与前述第一转接器200连接,前述第一转接器200依据前述编码规则获得一组测试编码数组B,该测试编码数组B由前述第一转接器200路由前述电场发生器300到上位机,并在显示器上显示。
步骤四:上位机将测试编码数组B与标准编码数组A进行对比判断,若测试编码数组B与标准编码数组A一致,则进行步骤五;若测试编码数组B与标准编码数组A不一致,则进行步骤六。
步骤五:显示器显示该被测电极片100’“合格”,将该被测电极片100’放置在良品区域,之后循环步骤三至步骤四,进行下一被测电极片100’的检测。
步骤六:显示器显示该被测电极片100’“不合格”,将该被测电极片100’放置在不良品区域,之后循环步骤三至步骤四,进行下一被测电极片100’的检测。
上述步骤六中,在显示器显示该被测电极片100’“不合格”的同时,还可以由上位机控制报警器报警,以警示操作员被测电极片100’“不合格”需要放置在不良品区域。报警器报警可以是声音报警、光报警等。
需要说明的是,通过上述电极片100的质量检测步骤,可以将多种合格电极片100的标准编码数组存入上位机中,以形成合格电极片100的标准编码数组库。当有相同规格的被测电极片100’再次进行检测时,可以调用标准编码数组库中的对应的标准编码数组A作为该批被测电极片100’检测的对比编码与被测电极片100’对应的测试编码数组B进行对比,并判断识别该批被测电极片 100’是否合格。
上述步骤中的标准编码数组A及对应的被测电极片100’的测试编码数组B的编码组合由多位编码排列而成,不局限于前述图11实施例电极片100对应的20位编码组合,可以是13位、24位等的编码排列组合而成。
上述步骤是以第一转接器200进行电极片100的质量检测为例进行说明,也可以由电场发生器300进行电极片100的质量检测。另外,上述第一转接器200所能连接的电极片100的数量、每个电极片100中电极片单元33的数量以及采样编码的设置等,均为示例性说明,并不作为对本公开的限制。
上述实施例中,通过对电极片100中每个温度检测器114检测的温度信号进行采样,并根据采样到的每个温度检测器114的模拟温度信号确定电极片的测试编码数B,以及将测试编码数组B与标准编码数组A进行比较,判断电极片是否合格,能够在电极片100的生产过程中监测电极片100的每个温度检测器114是否正常连接,进而确定电极片100是否合格,以便将不合格的电极片100筛选出来,从而确保出厂的电极片100的每个温度检测器114都能够正常进行检测。
在一些实施例中,提供了一种电极片的质量检测方法,应用于前述的电极片的质量检测***,参考图18所示,方法包括:
S301,获取电极片100中每个温度检测器114检测的温度信号。
S302,根据每个温度检测器114检测的温度信号确定电极片100的测试编码数组B。
可选的,模拟温度信号以电压值进行表征,根据每个温度检测器114检测的模拟温度信号确定电极片100的测试编码数组B,包括:确定电压值所处的电压区间;根据电压值所处的电压区间确定相应温度检测器114对应的编码,其中,电压值所处的电压区间不同,对应不同的编码(0、1或2);根据每个温度检测器114对应的编码(0、1或2)生成相应电极片100的测试编码数组B。
S303,将测试编码数组B与标准编码数组A进行比较,判断电极片100是否合格。
可选的,标准编码数组A至少包括第一编码,标准编码数组A还可以包括第二编码。测试编码数组B至少包括第一编码、第二编码和第三编码的至少一种。其中,第一编码用于指示温度检测器114处于正常状态,第二编码用于指示温度检测器114处于断路状态或未设置状态,第三编码用于指示温度检测器114处于短路状态。本实施例中,第一编码为“1”,第二编码为“2”,第三编码为“0”。
可选的,在将测试编码数组B与标准编码数组A进行比较,判断电极片100是否合格之后,方法还包括:显示电极片100的测试编码数组B、标准编码数组A以及电极片100是否合格。进一步的,在电极片100不合格时,方法还包括:控制电极片的质量检测***发出提醒信息。
可选的,在将测试编码数组B与标准编码数组A进行比较之前,方法还包括:在检测合格的电极片100连接到第一转接器200时,控制第一转接器200进行工作,并根据当前每个温度检测器114检测的模拟温度信号确定标准编码数组A。
上述实施例中,获取电极片100中每个温度检测器114检测的模拟温度信号;根据每个温度检测器114检测的模拟温度信号确定电极片100的测试编码数组B;将测试编码数组B与标准编码数组A进行比较,判断电极片100是否合格。由此,在电极片100的生产过程中,能够监测电极片 100的每个温度检测器114是否正常连接,进而确定电极片100是否合格,以便将不合格的电极片100筛选出来,从而确保出厂的电极片100的每个温度检测器114都能够正常进行检测。
在一些实施例中,提供了一种计算机可读存储介质(未图示),其上存储有电极片100的质量检测程序,该电极片100的质量检测程序被处理器(未图示)执行时,实现前述的电极片的质量检测方法。
根据本公开实施例的计算机可读存储介质(未图示),通过前述的电极片的质量检测方法,在电极片100的生产过程中,能够监测电极片100的每个温度检测器114是否正常连接,进而确定电极片100是否合格,以便将不合格的电极片100筛选出来,从而确保出厂的电极片100的每个温度检测器114都能够正常进行检测。
在一些实施例中,提供了一种电极片的质量检测***的第一转接器200,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电极片的质量检测程序,处理器(未图示)执行电极片的质量检测程序时,实现前述的电极片的质量检测方法。
根据本公开实施例的电极片的质量检测***的第一转接器200通过前述的电极片的质量检测方法,在电极片100的生产过程中,能够监测电极片100的每个温度检测器114是否正常连接,进而确定电极片100是否合格,以便将不合格的电极片100筛选出来,从而确保出厂的电极片100的每个温度检测器114都能够正常进行检测。
在一些实施例中,提供了一种电极片的质量检测***的电场发生器300,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电极片的质量检测程序,处理器(未图示)执行电极片的质量检测程序时,实现前述的电极片的质量检测方法。
根据本公开实施例的电极片的质量检测***的电场发生器300,通过前述的电极片的质量检测方法,在电极片100的生产过程中,能够监测电极片100的每个温度检测器114是否正常连接,进而确定电极片100是否合格,以便将不合格的电极片100筛选出来,从而确保出厂的电极片100的每个温度检测器114都能够正常进行检测。
第三些实施例
参考图19所示,电场治疗***包括:至少一对电极片100、转接器单元(未标号)和电场发生器300,至少一对电极片100成对地配置于患者体表,转接器单元(未标号)包括第三转接器500和至少一对第二转接器400,第二转接器400适于连接相应的电极片100,第三转接器500适于将每个第二转接器400连接到电场发生器300。即,电场治疗***包括成对配置于患者体表的电极片100、与电极片100的电性连接的第二转接器400、与第二转接器400电性连接的第三转接器500以及与第三转接器500电性连接的电场发生器300。
电场发生器300产生肿瘤电场治疗用的交变电信号,并通过第三转接器500和第二转接器400将交变电信号传输给每对电极片100,以在成对电极片100之间形成交变电场作用于患者肿瘤部位进行肿瘤治疗。本实施例中,电场治疗***包括两对电极片100,如图19所示,包括电极片100-X1、电极片100-Y1、电极片100-X2和电极片100-Y2。电场发生器300生成两组切换的交变电信号X1和X2、Y1和Y2,其中,交变电信号X1、X2为一组,通过第三转接器500、第二转接器400同时施 加到一对电极片100;交变电信号Y1、Y2为一组,通过第三转接器500、第二转接器400同时施加到另一对电极片100。其中,电极片100-X1与电极片100-X2为一对,施加在电极片100-X1与电极片100-X2上的交变信号X1、X2同时关闭同时打开;电极片100-Y1与电极片100-Y2为一对,施加在电极片100-Y1与电极片100-Y2上的交变电信号Y1、Y2同时关闭同时打开。
参考图19-图20,每个电极片100均包括背衬(未图示)、由背衬(未图示)支撑的电气功能组件190、与电气功能组件190电性连接的第一线缆130。每个电极片100与第二转接器400之间均连接设置有一个第一连接器180,第一连接器180适于将相应电极片100连接到对应的第二转接器400。第一连接器180为第一插头,同时第二转接器400上对应设置有第三插座460,第一插头和第三插座460为接插件,即第一连接器180采用接插件的方式将第二转接器400与电极片100进行连接。
电气功能组件190包括由柔性线路板构成的转接板120、设置在转接板120上的多个电极元件112、多个温度检测器114和握手芯片118。每个电极元件112可施加交变电场。每个温度检测器114与电极元件112一一对应设置,以检测相应电极元件112处的温度。在图20中,电气功能组件190包括20个间隔设于转接板120上并向患者施加交变电场的电极元件112以及20个组设于转接板120上的温度检测器114。每个温度检测器114均包括接地端114A和信号端114B,每个温度检测器114还串联有单向导电电子元件如第一二极管117,第一二极管117的具有阳极117B和阴极117A,第一二极管117的阳极117B与温度检测器114的接地端114A相连,第一二极管117的阴极117A作为温度检测器114的接地端114A;通过温度检测器114检测相应电极元件112处的温度,通过第一二极管117来避免其他温度检测器114的阻值对检测的温度检测器114的阻值的影响。每个电极元件112的中部具有贯穿状设置的开孔1120,开孔1120中收容有串联连接的一个温度检测器114和一个第一二极管117。可选的,电极元件112为介电元件,如高介电陶瓷片或设于转接板120上的高分子介电层;温度检测器114为热敏电阻;第一二极管117为低漏电流、低导通电压二极管,握手芯片118为具有加密功能的EEPROM。温度检测器114也可以设于电极元件112的其他部位。
电极片100具有多种类型,例如:带有20个电极元件112的电极片100记为C型电极片100,带有13个电极元件112的电极片100记为B型电极片100,带有9个电极元件112的电极片100记为A型电极片100。电极片100还可以带有其他数量的电极元件112。图19所示为C型电极片100,每个电极片100上均设置有20个电极元件112。20个电极元件112大致呈阵列排布,例如,20个电极元件112可以呈四行五列排布,每行有5个电极元件112;又如,20个电极元件112也可以呈四行六列排布(如图19所示),第一行与第四行皆为四个电极元件112,且第一行与第四行的每一行中的四个电极元件112皆位于第二列至第五列的各列,中间两行皆为六个电极元件112,中间两行的每一行中的六个电极元件112皆位于第一列至第六列的各列。
多个电极元件112在电路连接上被配置为多个行组和多个列组,每个列组中对应温度检测器114的信号端114B连接到一起作为温度采样点,每个行组中对应温度检测器114的接地端114A共同通过第二转接器400中的开关单元440(也即图2至图16中的第一开关240、240-1、240-2、240-3、240-4)连接到接地管脚GND。在图20中,20个电极元件112并行连接到转接板120的同一路导电 迹线(也即第二AC线),对应传输交变电信号AC。20个温度检测器114分成四个行组和五个列组,每个行组的5个温度检测器114的接地端114A均通过转接板120的同一路导电迹线(也即第二接地线)短接,且通过开关单元440连接到接地管脚GND,每个行组的5个温度检测器114的信号端114B分别通过转接板120的5路导电迹线(也即第二信号线)并行连接;每个列组内的4个温度检测器114的信号端114B均通过转接板120的同一路导电迹线(也即第二信号线)短接,且短接点作为一个温度采样点,每个列组内的4个温度检测器114的接地端114A分别通过转接板120的4路导电迹线(也即第二接地线)并行连接。
在图20示例中,由柔性线路板构成的转接板120和第一连接器180均包括4路连接到接地管脚GND的第二接地线(1号导线、2号导线、3号导线、4号导线)、5路传输相应温度检测器114检测的模拟温度信号的第二信号线(6号导线、7号导线、8号导线、9号导线、10号导线)、一路传输交变电信号的第二AC线(11号导线)。转接板120和第一连接器180均还包括一路与由转接板120上设置的握手芯片118向第二转接器400传输通信信号(RSD)的通信线(5号导线)。结合图19和图20所示,第一线缆130与转接板120电性连接,其具有11根导线,分别与4路连接到接地管脚GND的第二接地线(1号导线、2号导线、3号导线、4号导线)、5路传输相应温度检测器114检测的模拟温度信号的第二信号线(6号导线、7号导线、8号导线、9号导线、10号导线)、一路传输交变电信号的第二AC线(11号导线)以及一路由握手芯片118向第二转接器400传输通信信号的通信线(5号导线)一一对应。
握手芯片118的接地引脚与一第二接地线连接(1号导线、2号导线、3号导线和4号导线中的一路导线),并通过开关单元440连接到接地管脚GND,握手芯片118的通信引脚通过通信线(5号导线)连接到第二转接器400。如图20所示,握手芯片118与第一连接器180上的5号导线连接以获得电源及开启数据通讯功能,握手芯片118与第一连接器180上的一路第二接地线连接以获得可控的GND电气连接,本实施例中,参考图20,握手芯片118与第一连接器180上的4号第二接地线连接。握手芯片118可为储能元件(未图示)或外置储能元件(未图示)在通信线(5号导线)传输高电平时存储能量,并在通信线(5号线)传输低电平时释放能量,以使握手芯片118获有足够电量并正常工作。可选的,储能元件为电容器。如此,握手芯片118只需额外使用1根导线即可正常工作。握手芯片118适于与外部装置如电场发生器300进行握手通信以判断每对电极片100的连接状态,其中,在握手芯片118与电场发生器300完成握手通信后,通过配置开关单元440的开关状态以使每个行组中对应温度检测器114检测的模拟温度信号由相应温度采样点同时被采样。被采样到的每个温度检测器114检测的模拟温度信号转换后可以在电极片100合格的情况下用于表征电极片100的类型,也可以用于表征电极片100是否出现温度异常。
结合图19、图20,第二转接器400包括第二控制器410、第二模数转换器420、滤波模块490、第二通信收发器450、开关单元440、电阻器组430以及第三线缆470。第二控制器410、第二模数转换器420、滤波模块490、第二通信收发器450、开关单元440以及电阻器组430均设于第二转接器400的内部。第三线缆470与第三插座460分别设于第二转接器400的相对两侧。
第二控制器410电气连接到第一连接器180的通信线(5号导线)及转接板120,以与握手芯片118进行数据通讯。第二控制器410在接收到电场发生器300发送的握手信号时,配置开关单元440 的开关状态,以使握手芯片118上电工作,并将握手信号发送给握手芯片118,以及根据握手芯片118的反馈信号判断与握手芯片118是否完成握手通信,并在完成握手通信后通过配置开关单元440的开关状态,以便第二模数转换器420通过相应温度采样点同时对每个行组中对应温度检测器114检测的温度信号进行采样,获得若干AD采样值,进而在电极片100合格的情况下可以根据若干AD采样值识别相应电极片100的类型,也可以在电场发生器300向相应电极片100传输交变电信号的过程中,根据若干AD采样值判断相应电极片100是否出现温度异常。其中,在配置开关单元440的开关状态时,第二控制器410可控制开关单元440以使第一连接器180中的4路第二接地线1、2、3、4依次单独与接地管脚GND电气连接,以使相应一路第二接地线连接的一组温度检测器114通电进行温度检测。在第二控制器410控制开关单元440使第一连接器180中4路中的一路第二接地线与接地管脚GND电气连接时,第二控制器410还控制开关单元440以使第一连接器180中其他三路第二接地线与接地管脚GND电气断开。
电阻器组430为5个高精度的分压电阻,分别串行连接到直流电源VCC与第一连接器180的5路传输相应温度检测器114检测的模拟温度信号(温度检测器114的电压值)的第二信号线(6号导线、7号导线、8号导线、9号导线及10号导线),即每个温度采样点通过相应分压电阻连接到直流电源VCC。5个分压电阻分别与相应的温度检测器114串联分压,以便于计算温度检测器114的电压值及通过第二模数转换器420转换成数字温度信号得到AD采样值,AD采样值对应的是数字温度。因此,可以将AD采样值按温度范围分区,以便于识别相应电极片100的类型和判断相应电极片100是否出现温度异常。若是AD采样值明显偏离检测的温度范围,例如低于0℃或高于50℃,便判断该AD采样值对应的采样点未设温度检测器114和电极元件112,以此确定电极元件112的数量来识别电极片100的类型。
滤波模块490设置在第二模数转换器420与相应温度采样点之间,滤波模块490用于对每个温度检测器114检测的温度信号进行滤波处理。滤波模块490包括与电阻器组430一一对应的5组滤波器,作用是衰减所设定截止频率以上信号的强度。第一组滤波器与滤波模块490中的1、6端口串行连接;第二组滤波器与滤波模块490中的2、7端口串行连接;第三组滤波器与滤波模块490中的3、8端口串行连接;第四组滤波器与滤波模块490中的4、9端口串行连接;第五组滤波器与滤波模块490中的5、10端口串行连接。可选的,滤波器使用截止频率小于1/10的交变电信号AC频率的一阶RC低通滤波器。可选的,滤波模块490中可加入电压跟随器以优化第二模数转换器420采样。
第二模数转换器420具有5个检测通道A、B、C、D、E。第二模数转换器420的5个检测通道分别与滤波模块490的相应的一组滤波器电性连接。具体的,第二模数转换器420的5个检测通道分别与滤波模块490的6、7、8、9、10端口一一对应连接以分别电性连接相应的一组滤波器。第二模数转换器420可以将经过滤波模块490过滤后的多个模拟温度信号转换为多个数字温度信号得到多个AD采样值。第二模数转换器420转换后的多个AD采样值由第二控制器410控制第二通信收发器450向第三转接器500串行传输。
第二转接器400通过第二通信收发器450与第三转接器500进行数据交互。第二通信收发器450使第二控制器410与第三转接器500进行数据交互。可选的,第二通信收发器450使用UART 单元。
参考图20,第二转接器400的第三线缆470包括5根导线。第三线缆470的5根导线分别传输交变电信号AC、GND、VCC、双向串行传输数据。第二转接器400内的GND、VCC同名端相连。
结合图19、图21,第三转接器500包括第三通信收发器520、第三控制器510、第四通信收发器530以及第四线缆560。第三通信收发器520、第三控制器510和第四通信收发器530均位于第三转接器500的内部。
第三转接器500与4个第二转接器400分别通过相应的一个第三连接器480电气连接,每个第三连接器480适于将相应第二转接器400连接到第三转接器500。第三连接器480传输第三线缆470所传输的信号,即交变电信号AC、GND、VCC、双向串行传输数据。第三连接器480为第三插头,同时第三转接器500上设置有相应的多个第四插座550,第三插头和第四插座550为插接件,即第三连接器480被构造为采用接插件的方式将第二转接器400与第三转接器500进行连接。第四线缆560和多个第四插座550分别位于第三转接器500的相对两侧。第三转接器500上设有4个第四插座550,4个第四插座550分别与四个电极片100一一对应连接的4个第二转接器400一一对应连接。每个第四插座550分别设有5个连接端子传输第三线缆470所传输的信号:交变电信号AC、GND、VCC、双向串行传输数据。
4个第四插座550均有一个交变电信号AC的连接端,分别连接4种交变电信号(X1、X2、Y1、Y2)中的一种。4个第四插座550分别传输4种交变电信号(X1、X2、Y1、Y2)中的一种,并分别通过相应的一个第二转接器400与电极片100-X1、100-X2、100-Y1、100-Y2电性连接。其中,传输交变电信号X1的第四插座550与连接至电极片100-X1的相应的一个第二转接器400的第三连接器480电气连接;传输交变电信号X2的第四插座550与连接至电极片100-X2的相应的一个第二转接器400的第三连接器480电气连接;传输交变电信号Y1的第四插座550与连接至电极片100-Y1的相应的一个第二转接器400的第三连接器480电气连接;传输交变电信号Y2的第四插座550与连接至电极片100-Y2的相应的一个第二转接器400的第三连接器480电气连接。
第三转接器500与电场发生器300通过第四连接器540电气连接,第四连接器540适于将电场发生器300连接到第三转接器500,使电场发生器300的GND、VCC以及其产生的交变电信号X1、X2、Y1和Y2通过第四连接器540传递至第三转接器500。第四连接器540为第四插头,同时电场发生器300上设置有第二插座310,第四插头和第二插座310均为接插件,即第四连接器540被构造为采用接插件的方式将第三转接器500与电场发生器300进行连接。
第三通信收发器520连接于四个第三连接器480与第三控制器510之间。第三控制器510通过第三通信收发器520与4个第二转接器400的第二通信收发器450进行数据交互。可选的,第三通信收发器520使用UART单元。第二控制器410可将相应握手芯片118的反馈信号发送给第三控制器510,以便第三控制器510根据握手芯片118的反馈信号判断相应的第二控制器410与握手芯片118是否完成握手通信。第二控制器410还可以将若干AD采样值发送给第三控制器510,以便在电极片100合格的情况下第三控制器510根据若干AD采样值识别相应电极片100的类型,和/或,在电场发生器300向相应电极片100传输交变电信号的过程中,根据若干AD采样值判断相应电极片100是否出现温度异常。
第三控制器510大致连接于第三通信收发器520和第四通信收发器530之间。第四通信收发器530大致通过第四连接器540与电场发生器300电性连接。第三控制器510通过第四通信收发器530与电场发生器300进行数据交互。可选的,第四通信收发器530为RS485-UART收发器。第三转接器500内部的交变电信号分别与第四插座550的一个传输交变电信号(X1或X2或Y1或Y2)的连接端子一一对应。第二控制器410可以通过第三转接器500将握手芯片118的反馈信号发送给电场发生器300,以便电场发生器300根据握手芯片118的反馈信号判断第二控制器410与握手芯片118是否完成握手通信。第二控制器410还可以通过第三转接器500将若干AD采样值发送给电场发生器300,以便在电极片100合格的情况下电场发生器300根据若干AD采样值识别相应电极片100的类型,和/或,在向相应电极片100传输交变电信号的过程中,根据若干AD采样值判断相应电极片100是否出现温度异常。
从前述描述可知,握手通信的判断、电极片100的类型识别以及电极片100是否出现温度异常的识别,可由第二转接器400中的第二控制器410、第三转接器500中的第三控制器510或者电场发生器300实现,具体这里不做限制。需要说明的是,上述电极片100的数量、每个电极片100的电极元件112的数量、温度检测器114设置的数量等,均为示例性说明,并不作为对本公开的限制。
上述实施例中,通过将多个电极元件112在电路连接上配置为多个行组和多个列组,且每个列组中对应温度检测器114的信号端114B连接到一起作为温度采样点,每个行组中对应温度检测器114的接地端114A共同通过开关单元440连接到接地管脚GND,并通过握手芯片118与电场发生器300进行握手通信以判断电极片100的连接状态,其中,在握手芯片118与电场发生器300完成握手通信后,通过配置开关单元440的开关状态以使每个行组中对应温度检测器114检测的模拟温度信号由相应温度采样点同时被采样,由此,能够在控制线缆线芯数量的情况下,有效增加温度传感器的覆盖率,避免了电极片100的负重过大,保持了电极片100的贴敷效果;同时,基于采样模数转换获得的AD采样值,可实现电极片100的类型识别以及电极片100是否出现温度异常的识别。
本公开还提供了一种电场治疗***的温度检测方法,参考图22所示,方法包括:
在步骤S401中,通过转接器单元(未标号)与握手芯片118进行握手通信,以判断相应电极片100的连接状态。
在步骤S402中,在每个电极片100与转接器单元连接成功时,通过转接器单元对开关单元440的开关状态进行配置,以便通过相应温度采样点同时对每个行组中对应温度检测器114检测的温度信号进行采样。
可选的,方法还包括:根据采样到的每个温度检测器114检测的温度信号识别相应电极片100的类型。例如,根据采样到的每个温度检测器114检测的模拟温度信号,模数转换获得若干AD采样值;根据若干AD采样值确定相应电极片的50电极元件112数量,并根据电极元件112数量确定相应电极片100的类型。
可选的,在电场发生器300向相应电极片100传输交变电信号的过程中,方法还包括:根据若干AD采样值判断相应电极片100是否出现温度异常。
可选的,在电场发生器300向相应电极片100传输交变电信号的过程中,方法还包括:根据若干AD采样值对交变电信号的参数进行调节。
举例来说,电场治疗***的握手、温度检测及电场控制的流程如图23。流程可以应用到图19所示电场治疗***中,以便进行肿瘤电场治疗。流程不局限于应用到图19所示示例中,图25、图26所示示例同样适用流程。以下步骤介绍针对图19所示示例。
在S501中,连接电场治疗***。具体的,将4个C型电极片100分别连接至相应的一个第二转接器400,将4个第二转接器400连接至一个第三转接器500,将第三转接器500连接至电场发生器300,将电场发生器300连接至适配的电源。
在S502中,检测用户是否发出开启电场的命令。若未检测到开启电场的命令,则重复S502;若检测到电场开启命令,则进入S503。
在S503中,电场治疗***的电场发生器300通过第三转接器500对X1端口(第三连接器480-X1、第二转接器400)发送握手信号后,与第三连接器480-X1连接的第二转接器400的第二控制器410接收相应的第一连接器180上5号导线传输的数据判断握手是否通过,若未通过则进入S504;若通过则进入S505。此判断步骤可以发生在第二转接器400中、第三转接器500中或电场发生器300中。本实施例中判断步骤发生在第二转接器400中。具体的,当电极片100-X1连接正常,握手芯片118能接收电场发生器300的握手请求信号,并向第二转接器400的第二控制器410反馈握手状态,第二转接器400的第二控制器410判断握手成功。反之,当电极片100-X1连接异常,第二转接器400的第二控制器410得不到握手芯片118的反馈信号,第二转接器400的第二控制器410判断握手失败。
在S504中,电场治疗***因握手失败发出报警,随后进入步骤S502。
在S505中,电场治疗***的电场发生器300通过第三转接器500对X2端口(第三连接器480-X2、第二转接器400)发送握手信号后,与第三连接器480-X2连接的第二转接器400的第二控制器410接收相应的第一连接器180上5号导线传输的数据判断握手是否通过,若未通过则进入S502;若通过则进入S506。此判断步骤可以发生在第二转接器400中、第三转接器500中或电场发生器300中。本实施例中判断步骤发生在第二转接器400中。具体的,当电极片100-X2连接正常,握手芯片118能接收电场发生器300的握手请求信号,并向第二转接器400的第二控制器410反馈握手状态,第二转接器400的第二控制器410判断握手成功。反之,当电极片100-X2连接异常,第二转接器400的第二控制器410得不到握手芯片118的反馈信号,第二转接器400的第二控制器410判断握手失败。
在S506中,电场治疗***的电场发生器300通过第三转接器500对Y1端口(第三连接器480-Y1、第二转接器400)发送握手信号后,与第三连接器480-Y1连接的第二转接器400的第二控制器410接收相应的第一连接器180上5号导线传输的数据判断握手是否通过,若未通过则进入S502;若通过则进入S507。此判断步骤可以发生在第二转接器400中、第三转接器500中或电场发生器300中。本实施例中判断步骤发生在第二转接器400中。具体的,当电极片100-Y1连接正常,握手芯片118能接收电场发生器300的握手请求信号,并向第二转接器400的第二控制器410反馈握手状态,第二转接器400的第二控制器410判断握手成功。反之,当电极片100-Y1连接异常,第二转接器400的第二控制器410得不到握手芯片118的反馈信号,第二转接器400的第二控制器410判断握手失败。
在S507中,电场治疗***的电场发生器300通过第三转接器500对Y2端口(第三连接器480-Y2、第二转接器400)发送握手信号后,与第三连接器480-Y2连接的第二转接器400的第二控制器410接收相应的第一连接器180上5号导线传输的数据判断握手是否通过,若未通过则进入S502;若通过则进入S508。此判断步骤可以发生在第二转接器400中、第三转接器500中或电场发生器300中。本实施例中判断步骤发生在第二转接器400中。具体的,当电极片100-Y2连接正常,握手芯片118能接收电场发生器300的握手请求信号,并向第二转接器400的第二控制器410反馈握手状态,第二转接器400的第二控制器410判断握手成功。反之,当电极片100-Y2连接异常,第二转接器400的第二控制器410得不到握手芯片118的反馈信号,第二转接器400的第二控制器410判断握手失败。
以上S503、S505、S506、S507中第二转接器400在收到电场治疗***的握手信号后,需要通过第二控制器410控制开关单元440,使第一连接器180上的4号导线与接地管脚GND电气连接,以便握手芯片118得以正常工作。如果电场发生器300与第三转接器500之间、第三转接器500与第二转接器400之间、第二转接器400与电极片100之间都正常连接,那么电场发生器300发出的握手信号能最终到达电极片100的握手芯片118,并且握手芯片118的握手状态能够反馈给电场发生器300。如果电场发生器300与第三转接器500之间、第三转接器500与第二转接器400之间、第二转接器400与电极片100之间出现至少一处连接异常,握手芯片118因无法连接VCC与GND形成回路,导致第二转接器400、第三转接器500、电场发生器300接收握手状态为空信号,则握手失败。
在S508中,电场治疗***的电场发生器300设置电场参数后进入S509。电场参数包括交变电信号的频率、幅度等。
在S509中,第三转接器500会向第三连接器480-Y1、第三连接器480-Y2对应的2个第二转接器400发送温度读取请求后,读取温度信号以采集电极片100-Y1、100-Y2上共40个温度检测器114对应的温度。进入S510。
在S510中,电场治疗***通过温度信号判断电极片100-Y1、100-Y2的类型后进入S511。判断100-Y1、100-Y2的类型,判断的是电极片100-Y1、100-Y2的电极元件112及温度检测器114的数量。此判断过程可以发生在第二转接器400中、第三转接器500中或电场发生器300中。在图19所示示例中,100-Y1、100-Y2均被判断为C型电极片100。C型电极片100具有20个温度检测器114,因此C型电极片100包含20个有效温度信号,100-Y1、100-Y2共40个有效温度信号。
在S511中,电场治疗***判断第二转接器400采集的40个有效温度信号中的任意一个是否异常,若异常则进入S513。若40个有效温度信号均为正常,则进入S512。
在S512中,电场发生器300开启交变电信号Y1、Y2,关闭交变电信号X1、X2并进入S514。
在S513中,电场治疗***因电极片100-Y1、100-Y2的有效温度信号异常报警,随后立刻进入S519。
在S514中,第三转接器500会向第三连接器480-X1、第三连接器480-X2对应的2个第二转接器400发送温度读取请求后,读取温度信号以采集电极片100-X1、100-X2上所有温度检测器114对应的温度。进入S515。
以上S509与S514对于第二转接器400步骤一致,第二转接器400中的S509与S514具体流程可参考图24所示流程。
在S515中,电场治疗***通过温度信号判断电极片100-X1、100-X2的类型后进入S516。此判断过程可以发生在第二转接器400中、第三转接器500中或者电场发生器300中。在图19所示示例中,100-X1、100-X2均被判断为C型电极片100。C型电极片100具有20个温度检测器114,因此C型电极片100包含20个有效温度信号,100-X1、100-X2共40个有效温度信号。
在S516中,电场治疗***判断第二转接器400采集的40个有效温度信号中的任意一个是否异常,若异常则进入S513。若40个有效温度信号均为正常,则进入S517。
在S517中,电场发生器300开启交变电信号X1、X2,关闭交变电信号Y1、Y2并进入S518。S512、S514、S515、S516至S517的总时间固定,总时间为1s。
在S518中,电场治疗***会检测是否收到过用户发出的关闭电场命令,若检测到收到过关闭电场命令,则进入S519;若未检测到收到过关闭电场命令,则进入S520。
在S519中,电场治疗***关闭电场后进入S502。此时结束电场治疗等待下一个开启电场命令。
在S520中,电场治疗***根据当前电场幅度及采集的温度信号判断是否需要调整电场参数,若需要调整电场参数,则进入S508;若不需要调整电场参数,则进入S509至S518进行循环。S517、S518、S520、S509、S510、S511至S512的总时间固定,在实施例中为1s,如此电场治疗***可实现X1、X2方向上的交变电信号与Y1、Y2方向上的交变电信号以2s为周期交替的连续输出交变电信号。同时,电场治疗***可实现将关闭交变电信号X1、X2与开启交变电信号Y1、Y2之间的时间间隔降至0s;将关闭交变电信号Y1、Y2与开启交变电信号X1、X2之间的时间间隔降至0s,在保证温度采集精确度的前提下提高电场治疗效率。
温度采集流程如图24,此流程可应用到任意一个适用电极片100-X1、100-X2、100-Y1、100-Y2的第二转接器400的温度采集流程中,以上流程图以连接到100-X1的第二转接器400为例。
在S601中,连接第二转接器400至电极片100-X1与第三转接器500。进入S602。
在S602中,第二转接器400判断是否收到第三转接器500发送的温度读取请求,若收到温度读取请求,则进入S603;若未收到温度读取请求,则重复S602。
在S603中,第二转接器400的第二控制器410控制开关单元440,使第一连接器180的1号导线与第二转接器400中的GND电气连接,2、3、4号导线断开(2、3、4号导线与GND断开)。此时电极片100-X1上的编号为1-5的5个温度检测器114与电阻器组430和GND电气连接,编号为6-20的15个温度检测器114未电气导通。
在S604中,第二模数转换器420采集滤波后的电极片100-X1上编码为1-5的温度检测器114对应的温度信号。第二模数转换器420按检测通道A-E的顺序采集滤波后的电极片100-X1上编号为1-5的5个温度检测器114所检测到的模拟温度信号并转换为数字温度信号,之后进入S605。在采集温度的时间段,电场发生器300发出的交变电信号与Y1、Y2电气连接,实施例中Y1、Y2之间电压幅度通常大于100Vpp。此时电场发生器300发出的交变电信号与X1、X2断开电气连接,但是由于控制交变电信号开关的器件通常具有一定的寄生参数,在施加交变电信号并断开X1、X2时,X1、X2仍具有一定的电压幅度,图19所示示例中X1、Y1电压幅度通常大于4Vpp。此时X1、X2之 间的残余交变电信号会耦合至第二转接器400内部的各个模块及导电迹线上,影响第二转接器400的温度采集并产生一定的误差,因此需要滤波模块490对相应温度检测器114检测到的模拟温度信号中的中高频信号做衰减处理后供第二模数转换器420转换成更为精确的数字温度信号。
在S605中,第二转接器400的第二控制器410控制开关单元440,使第一连接器180的2号导线与第二转接器400中的GND电气连接,1、3、4号导线断开(1、3、4号导线与GND断开)。此时电极片100-X1上编号为6-10的5个温度检测器114与电阻器组430和GND电气连接,编号为1-5和编码为11-20的15个温度检测器114未电气导通。进入S606。
在S606中,第二模数转换器420采集滤波后的电极片100-X1上编码为6-10的温度检测器114对应的温度信号。第二模数转换器420按检测通道A-E的顺序采集滤波后的电极片100-X1上编号为6-10的5个温度检测器114所检测到的模拟温度信号并转换为数字温度信号,之后进入S607。
在S607中,第二转接器400的第二控制器410控制开关单元440,使第一连接器180的3号导线与第二转接器400中的GND电气连接,1、2、4号导线断开(1、2、4号导线与GND断开)。此时电极片100-X1上编号为11-15的5个温度检测器114与电阻器组430和GND电气连接,编号为1-10和16-20的15个温度检测器114未电气导通。进入S608。
在S608中,第二模数转换器420采集滤波后的电极片100-X1上编码为11-15的温度检测器114对应的温度信号。第二模数转换器420按检测通道A-E的顺序采集滤波后的电极片100-X1上编号为11-15的5个温度检测器114所检测到的模拟温度信号并转换为数字温度信号,之后进入S609。
在S609中,第二转接器400的第二控制器410控制开关单元440,使第一连接器180内的4号导线与第二转接器400中的GND电气连接,1、2、3号导线断开(1、2、3号导线与GND断开)。此时电极片100-X1上编号为16-20的5个温度检测器114与电阻器组430和GND电气连接,编号为1-15的15个温度检测器114未电气导通。进入S610。
在S610中,第二模数转换器420采集滤波后的电极片100-X1上编码为16-20的温度检测器114对应的温度信号。第二模数转换器420按检测通道A-E的顺序采集滤波后的电极片100-X1上编码为16-20的5个温度检测器114所检测到的模拟温度信号并转换为数字温度信号,之后进入S611。
在S611中,第二转接器400结束温度采集,第二控制器410通过第二通信收发器450发送温度信号至第三转接器500后进入S602。该步骤中的温度信号为经过第二模数转换器420转换的数字温度信号。可选的,发送的温度信号中可以包括关于电极片100-X1类型的信息。
在一些实施例中,如图25所示,电极片100为B型电极片100,其具有13个电极元件112;如图26所示,电极片100为A型电极片100,其具有9个电极元件112。
需要说明的是,图19示例中,电极片100-X1、100-X2、100-Y1、100-Y2可从A型、B型、C型电极片100中任意组合使用。例如,50X1、100-X2使用B型电极片100,100-Y1、100-Y2使用C型电极片100。
本实施例中对B型电极片100的温度采集流程与对图19所示的C型电极片100的流程一致,但是在温度采集流程的S608中第二模数转换器420的检测通道D、E所采集的模拟温度信号接近 VCC供电电压值的模拟信号,这是由于与检测通道D、E电气连接的电极片100上的4、5、9、10号导线均未与GND电气连接。同理,在温度采集流程的S610中第二模数转换器420的检测通道A-E所采集的模拟温度信号均接近VCC供电电压值的模拟信号,这是由于与检测通道A-E电气连接的电极片100上的1-13导线均未与GND电气连接。因此在S611中,第二转接器400所发送的温度信号包含电极片100上的1-13共13个温度检测器114对应的数字温度信号与14-20共7个未设温度检测器114的由接近VCC供电电压值的模拟信号所转化的数字温度信号。这7个由接近VCC供电电压值的模拟信号所转化的数字温度信号为干扰温度数据。
本实施例中对B型电极片100的电场治疗***流程与对图19所示C型电极片100的流程一致。以B型电极片100-X1为例,S515中温度信号中编号为14-20的7个未设温度检测器114所对应的模拟温度信号均接近VCC供电电压值的模拟信号。第三转接器500即可通过上述依据判断出100-X1为B型电极片。可选的,判断过程可以发生在第二转接器400中。在处理温度信号时,电场治疗***即可排除掉编号为14-20的7个未设温度检测器114所对应的温度信号再进行数据处理。例如,对于电极片100-X1、100-X2使用B型电极片100,电极片100Y1、100-Y2使用C型电极片100的***,电场治疗***可以在S510中判断出电极片100-Y1、100-Y2均为C型电极片100,40个温度信号均为有效温度数据,在S511中对40个有效温度数据判断是否存在异常;在S515中判断出电极片100-X1、100-X2均为B型电极片100,因此电极片100-X1、100-X2各自分别对应的编号为1-13共13个温度检测器114的温度信号为有效温度数据,电极片100-X1、100-X2共26个有效温度数据,再在S516中对此26个有效温度数据判断是否存在异常。
本实施例中对A型电极片100的温度采集流程与图19所示的C型电极片100的流程一致,但是在S606中第二模数转换器420的检测通道E所采集的模拟温度信号接近VCC供电电压值的模拟信号,这是由于与采样通道5电气连接的电极片100上的10号导线未与GND电气连接。同理,S608中第二模数转换器420的检测通道A-E所采集的模拟温度信号均接近VCC供电电压值的模拟信号,这是由于与检测通道A-E电气连接的电极片100上的3、6、7、8、9、10号导线均未与GND电气连接。S610中第二模数转换器420的检测通道A-E所采集的模拟温度信号均接近VCC供电电压值的模拟信号,这是由于与检测通道A-E电气连接的电极片100上的6、7、8、9、10号导线均未与GND电气连接。因此在S611中,第二转接器400所发送的温度信号包含电极片100上的编号为1-9的9个温度检测器114对应的数字温度信号与编号为10-20的11个未设温度检测器114对应的由接近VCC供电电压值的模拟信号所转化的数字温度信号。
本实施例中对A型电极片100的电场治疗***流程与对图19所示C型电极片100的流程一致。以A型电极片100-X1为例,S515中温度信号中编号为10-20的11个未设温度检测器114所对应的模拟温度信号均接近VCC供电电压值的模拟信号。第三转接器500即可通过上述依据判断出100-X1为A型电极片。可选的,判断过程可以发生在第二转接器400中。在处理信号时,电场治疗***即可排除掉编号为10-20所对应的温度信号再进行信号处理。例如,对于100-X1、100-X2使用A型电极片100,100-Y1、100-Y2使用C型电极片100的***,电场治疗***可以在S510中判断出100-Y1、100-Y2均为C型电极片100,40个温度信号均为有效温度数据,在S511中对40个有效温度数据判断是否存在异常;在S515中判断出100-X1、100-X2均为A型电极片100,因此 100-X1、100-X2所对应的编号为1-9通道的温度信号为有效温度数据,共18个有效温度数据,再在S516中对此18个有效温度数据判断是否存在异常。
如此,A型、B型、C型电极片100可以在不改变电场发生器300、第三转接器500、第二转接器400与电场治疗***流程的前提下组合使用,并在不影响电极线缆灵活性的同时提高电场治疗效率。
上述实施例中,通过采用矩阵网络温度检测技术,并配合相应的电场控制算法,进而温度检测与电场控制,不仅能够在控制线缆线芯数量的情况下,有效增加温度检测器114的覆盖率,避免电极片100的负重过大,保持电极片100的贴敷效果,而且具有电极片100组合灵活,电极片100识别准确,电场关断间隔小的优势,可以提高患者的依从性,提高患者治疗效果;同时,可基于检测的温度控制相应一对电极片100是否关闭电场或调整电场参数。
本公开还提供了一种肿瘤治疗设备,包括:至少一对前述的电极片100,或者前述的电场治疗***。
根据本公开实施例的肿瘤治疗设备,通过前述的电极片100,或者前述的电场治疗***,能够在控制线缆线芯数量的情况下,使温度检测器114达到100%的覆盖率,避免了电极片100的负重过大,保持了电极片100的贴敷效果。
本公开还提供了一种计算机可读存储介质(未图示),其上存储有电场治疗***的温度检测程序,该电场治疗***的温度检测程序被处理器(未图示)执行时,实现前述的电场治疗***的电极片识别方法。
根据本公开实施例的计算机可读存储介质,通过前述的电场治疗***的温度检测方法,能够在控制线缆线芯数量的情况下,有效增加温度检测器114的覆盖率,避免了电极片100的负重过大,保持了电极片100的贴敷效果。
本公开还提供了一种电场治疗***的第三转接器500,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电场治疗***的温度检测程序,处理器执行电场治疗***的温度检测程序时,实现前述的电场治疗***的温度检测方法。
根据本公开实施例的电场治疗***的第三转接器500,通过前述的电场治疗***的温度检测方法,能够在控制线缆线芯数量的情况下,有效增加温度检测器114的覆盖率,避免了电极片的负重过大,保持了电极片的贴敷效果。
本公开还提供了一种电场治疗***的第二转接器400,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电场治疗***的温度检测程序,处理器执行电场治疗***的温度检测程序时,实现前述的电场治疗***的温度检测方法。
根据本公开实施例的电场治疗***的第二转接器400,通过前述的电场治疗***的温度检测方法,能够在控制线缆线芯数量的情况下,有效增加温度检测器114的覆盖率,避免了电极片100的负重过大,保持了电极片100的贴敷效果。
本公开还提供了一种电场治疗***的电场发生器300,包括存储器(未图示)、处理器(未图示)及存储在存储器(未图示)上并可在处理器(未图示)上运行的电场治疗***的温度检测程序,处理器(未图示)执行电场治疗***的温度检测程序时,实现前述的电场治疗***的温度检测方法。
第四些实施例
参考图27至图29所示,电场治疗***包括:至少一对电极片100、与每个电极片100的电性连接的第四转接器600和与第四转接器600电性连接的电场发生器300。至少一对电极片100可以成对地配置于患者体表,如图27中的4个电极片100-X1、100-Y1、100-X2和100-Y2,每两个电极片100作为一对贴敷于患者肿瘤部位所对应的体表。电场发生器300用于产生交变电信号,并通过第四转接器600将交变电信号切换传递给至少一对电极片100,每对电极片100将交变电信号施加于患者肿瘤部位,使得在同一对电极片100之间产生治疗用交变电场(即肿瘤治疗电场),并作用于患者肿瘤部位以对患者进行肿瘤治疗。同一对电极片100中的两电极片100施加的交变电信号不同,两电极片100分别施加的是一组极性相反的交变电信号,并在两电极片100之间产生一个方向的交变电场。不同对电极片100之间产生不同方向的交变电场。
参考图28所示,每个电极片100均包括由柔性线路板构成的转接板120”、设置在转接板120”上的多个电极元件112和多个温度检测器114。如图28所示,多个电极元件112大致呈阵列设置,每个电极元件112可施加交变电场。同一电极片100的多个电极元件112均施加相同的交变电信号。每个温度检测器114对应一个电极元件112设置,温度检测器114的数量等于电极元件112的数量,即电极片100上的温度检测器114的覆盖率达到100%。本实施例中,每个电极片100均包括13个电极元件112,每个电极元件112均对应设置一个温度检测器114,通过温度检测器114检测相应电极元件112处的温度。
每个电极元件112上设有贯穿设置的开孔(未标号),其开孔内适于收容相应的一个温度检测器114,从而实现对每个电极元件112温度的实时监测,避免部分电极元件112的温度监测不到,导致患者体表的温度过高造成患者低温烧伤。如图28所示,每个电极元件112的开孔位于其中部。本实施例中,电极元件112为介电元件或设于转接板120”上的高分子介电层,可选的,电极元件112为陶瓷片。温度检测器114也可设于电极元件112的其他部位,只要可以实现对与其相应的电极元件112处的温度检测即可。
如图28所示,多个电极元件112与对应设置的多个温度检测器114在电路连接结构方面均被配置为至少三个行组和至少三个列组。位于同一行组的电极元件112与温度检测器114的数量均不完全相同,位于同一列组的电极元件112与温度检测器114的数量均不完全相同。每个行组的多个电极元件112均并联至同一线路,各行组的多个电极元件112并联的线路级联成一路线路,该线路为交流电信号线(AC线),用于向多个电极元件112传递交流电信号。需要说明的是,这里的排布方式是为了更清楚的示出电极片100内部电路连接以及电极片100与第四转接器600电性连接的情况,并不代表电极元件112在空间结构上的排布,其空间结构可能是如图27所示的大致呈阵列的结构。
每个温度检测器114的两端分别为信号端114B和接地端114A。位于同一行组的多个温度检测器114呈串联连接,并在位于各行组端部的一个信号端114B通过串联连接的第二开关640和第二分压电阻630连接到直流电源VCC,每个列组中对应温度检测器114的接地端114A连接到一起后,通过第三开关690连接到接地管脚GND。第二开关640和第三开关690的数量总和不超过9个,电 场治疗***通过配置第二开关640和第三开关690的开关时序以使电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号分别被采样。
本实施例中,如图28所示,在电路连接结构方面,13个电极元件112被配置为三个行组和五个列组,其中,第一行组和第二行组均为5个电极元件112,第三行组为3个电极元件112,且第一列组至第三列组均为3个电极元件112,第四列组和第五列组均为2个电极元件112,即13个电极元件112呈三行五列排布。如图28所示,位于同一行组的所有温度检测器114串联成一路线路(如线路1、2或3中的一路)连接至直流电源VCC,位于同一行组的所有温度检测器114的接地端114A分别由5路接地线(如接地线4、5、6、7和8)连接至接地管脚GND,位于同一列组的所有温度检测器114的接地端114A连接同一路接地线(如接地线4、5、6、7和8中的一路),每一行组串联设置的温度检测器114在直流电源VCC端分别串接一个第二开关640(如第二开关640-1、640-2或640-3)和第二分压电阻630(如第二分压电阻630-1、630-2或630-3),且第二分压电阻630(如第二分压电阻630-1、630-2或630-3)均比第二开关640(如第二开关640-1、640-2或640-3)靠近直流电源VCC端,每一路接地线分别串接一个第三开关690(如第三开关690-1、690-2、690-3、690-4或690-5)。需要说明的是,第二开关640和第三开关690的类型不做限制,如可以为常开开关或常闭开关。
具体来说,位于第一行组的五个温度检测器114(对应序号为1、2、3、4和5)首尾相连串联成一路线路1连接至直流电源VCC,并连接第二开关640-1和第二分压电阻630-1,第一行组的第一个温度检测器114(对应序号为1)的接地端114A连接接地线4,并连接第三开关690-1,第二个温度检测器114(对应序号为2)的接地端114A连接接地线5,并连接第三开关690-2,第三个温度检测器114(对应序号为3)的接地端114A连接接地线6,并连接第三开关690-3,第四个温度检测器114(对应序号为4)的接地端114A连接接地线7,并连接第三开关690-4,第五个温度检测器114(对应序号为5)的接地端114A连接接地线8,并连接第三开关690-5。
位于第二行组的五个温度检测器114(对应序号为6、7、8、9和10)首尾相连串联成一路线路2连接至直流电源VCC,并连接第二开关640-2和第二分压电阻630-2,第二行组的第一个温度检测器114(对应序号为6)的接地端114A连接接地线4,并连接第三开关690-1,第二个温度检测器114(对应序号为7)的接地端114A连接接地线5,并连接第三开关690-2,第三个温度检测器114(对应序号为8)的接地端114A连接接地线6,并连接第三开关690-3,第四个温度检测器114(对应序号为9)的接地端114A连接接地线7,并连接第三开关690-4,第五个温度检测器114(对应序号为10)的接地端114A连接接地线8,并连接第三开关690-5。
位于第三行组的三个温度检测器114(对应序号为11、12和13)首尾相连串联成一路线路3连接至直流电源VCC,并连接第二开关640-3和第二分压电阻630-3,第三行组的第一个温度检测器114(对应序号为11)的接地端114A连接接地线4,并连接第三开关690-1,第二个温度检测器114(对应序号为12)的接地端114A连接接地线5,并连接第三开关690-2,第三个温度检测器114(对应序号为13)的接地端114A连接接地线6,并连接第三开关690-3。
每个电极片100还包括多个第二二极管117',每个第二二极管117'对应一个温度检测器114设置。第二二极管117'具有阳极117'B和阴极117'A。每个列组中对应温度检测器114的接地端114A与相应第二二极管117'的阳极117'B相连后,通过相应第二二极管117'的阴极117'A连接到 一起。如图28所示,第一列组的各个温度检测器114(对应序号为1、6和11)的接地端114A分别对应连接有一个第二二极管117',且位于第一列组的第二二极管117'的阳极117'B与相应温度检测器114的接地端114A相连,位于第一列组的各个第二二极管117'的阴极117'A均连接至接地线4;第二列组的各个温度检测器114(对应序号为2、7和12)的接地端114A分别对应连接有一个第二二极管117',且位于第二列组的第二二极管117'的阳极与相应温度检测器114的接地端114A相连,位于第二列组的各个第二二极管117'的阴极117'A均连接至接地线5;第三列组的各个温度检测器114(对应序号为3、8和13)的接地端114A分别对应连接有一个第二二极管117',且位于第三列组的第二二极管117'的阳极117'B与相应温度检测器114的接地端114A相连,位于第三列组的各个第二二极管117'的阴极117'A均连接至接地线6;第四列组的各个温度检测器114(对应序号为4和9)的接地端114A分别对应连接有一个第二二极管117',且位于第四列组的第二二极管117'的阳极117'B与相应温度检测器114的接地端114A相连,位于第四列组的各个第二二极管117'的阴极117'A均连接至接地线7;第五列组的各个温度检测器114(对应序号为5和10)的接地端114A分别对应连接有一个第二二极管117',且位于第五列组的第二二极管117'的阳极117'B与相应温度检测器114的接地端114A相连,位于第五列组的各个第二二极管117'的阴极117'A均连接至接地线8。即,位于同一列组的所有温度检测器114的接地端114A与接地管脚GND之间分别连接一个第二二极管117',通过该第二二极管117'能够有效避免其它温度检测器114影响由第二开关640和第三开关690的开关时序控制检测的相应温度检测器114的阻值。
如图27-图29所示,每个电极片100与第四转接器600之间均连接有一个第一连接器180,第一连接器180适于将相应电极片100连接到第四转接器600。每个电极片100具有一个与其由柔性线路板构成的转接板120”电性连接的第一线缆130,第一连接器180为第一插头,第四转接器600上对应设有第五插座660。第一插头与第五插座660为按压式弹簧接插件,即第一连接器180采用接插件的方式将第四转接器600与电极片100进行连接。
如图27所示,4个电极片100-X1、100-Y1、100-X2和100-Y2分别通过一个第一连接器180连接至第四转接器600,其中,电极片100-X1和100-X2配置为一对电极片100,电极片100-Y1和100-Y2配置为另一对电极片100。如图29所示,每个第一连接器180分别连接图29中线路a1、a2、a3和a4中相应的一路线路,以传输相应的一个方向且相应极性的交变电信号,使相应的一对电极片100(例如电极片100-X1和100-X2或电极片100-Y1和100-Y2)之间产生用于***的治疗电场。可以理解为,线路a1、a2、a3和a4是传输相应方向和相应极性的交变电信号的AC线,并延伸至相应的一个电极片100中,为该电极片100的多个电极元件112提供相应的交变电信号。线路a1、a2、a3和a4在远离第一连接器180的方向连接有第五连接器680,第五连接器680连接电场发生器300。电场发生器300由直流电源供电,其将直流电源经过逆变、滤波等产生两组切换的交变电信号,每组交变电信号为两极性相反的两个交变电信号。电场发生器300产生的两组交变电信号分别通过第五连接器680、线路a1、a2、a3、a4中相应的一路线路及相应的第一连接器180传输至相应的一个电极片100的多个电极单元112。另外,电场发生器300还将直流电源通过第五连接器680、第四转接器600内部的直流电源VCC的电源线和接地线、相应的第一连接器180传输至相应的一个电极片100的多个温度检测器114,以使相应的温度检测器114工作并产生模拟温度 信号。在图29所示示例中,在线路a1、a2、a3和a4之间还设置有反相器FX,其中,线路a1和a3相连后与反相器FX的一端相连,线路a2和a4相连后与反相器FX的另一端相连,以通过反相器FX实现向两对电极片100交错施加交变电信号。
如图28-图29所示,每个第一连接器180还分别连接一组多线路温度切换采集线路a5、a6、a7或a8,其中每个温度切换采集线路均包括:分别连接第二开关640-1、640-2、640-3和640-4的4路信号路以及分别连接第三开关690-1、690-2、690-3、690-4和690-5的5路接地线。在本实施例中,参考图28示例中,第二开关640-4不连接任何一个温度检测器114,作为预设开关,可以适配其它类型的电极片100的连接,例如,可以适配包括其他电路连接设计的13个或其他数量电极元件112的电极片100,如此,可以采用大致相同配置的第四转接器600与不同类型的电极片100进行连接,从而可以提高第四转接器600的适用率。第二开关640-4可与第一连接器180呈断开状设置,此时可以减少与第一连接器180相连的电极片100的第一线缆130的线芯数量;第二开关640-4也可与第五插座660连接,相应电极片100上的第一线缆130的线芯少一根,仅相应第一插头与第五插座660连接,从而可以减少电极片100的第一线缆130线芯数量。
结合图27至图29所示,在第二开关640-4与第一连接器180呈断开或连接状设置时,电极片100-X1的第一线缆130与第一连接器180相连的线路为9路线路。于此类推,电极片100-Y1的第一线缆130与第一连接器180相连的线路为9路线路,电极片100-X2的第一线缆130与第一连接器180相连的线路为9路线路,电极片100-Y2与第一连接器180相连的线路为9路线路。相应的,如图27-图28所示,每个电极片100与相应的第一连接器180之间的第一线缆130均为9芯线缆。
如图28-图29所示,多个第二开关640(640-1、640-2、640-3和640-4)以及多个第三开关690(690-1、690-2、690-3、690-4和690-5)构成一个温度检测开关单元(未标号),且温度检测开关单元及与每个温度检测开关单元中的第二开关640相连的第二分压电阻630(如第二分压电阻630-1至630-4、630-5至630-8、630-9至630-12或630-13至630-16)均位于第四转接器600中。第四转接器600包括前述多个温度检测开关单元、第二分压电阻630(如第二分压电阻630-1至630-4、630-5至630-8、630-9至630-12或630-13至630-16),还包括采集相应温度检测器114的模拟温度信号的第三模数转换器620、控制相应温度检测开关单元中的多个第二开关640和多个第三开关690的时序通断的第四控制器610。第四控制器610用于对第二开关640和第三开关690进行组合控制,以使第三模数转换器620获取所有组合中每种组合对应的模拟信号;第四控制器610还用于根据模拟信号确定具有模拟温度信号的组合,并根据具有模拟温度信号的组合对第二开关640和第三开关690进行控制,以使第三模数转换器620对电极片中每个温度检测器114检测的模拟温度信号进行采样,再由第四控制器610将第三模数转换器620采集的模拟温度信号运算转换成数字温度信号。其中,在模拟信号处于预设信号范围内时,确定模拟信号为模拟温度信号,该模拟温度信号对应的组合即为温度检测时的组合。
如图29所示,第四转接器600中的多个温度检测开关单元分别通过一组线路组(a9、a10、a11和a12中的一组)将模拟温度信号传递给第三模数转换器620的相应通道。结合图28和图29所示,在本实施例中,四个温度检测开关单元分别通过一组线路组(a9、a10、a11和a12中的一组)将模拟温度信号传递给第三模数转换器620的相应通道。与电极片100-X1对应的温度检测开关单元通 过4路线路组a9将电极片100-X1的温度检测器114产生的模拟温度信号传输至第三模数转换器620的通道1-4;与电极片100-Y1对应的温度检测开关单元通过4路线路组a10将电极片100-Y1的温度检测器114产生的模拟温度信号传输至第三模数转换器620的通道5-8;与电极片100-X2对应的温度检测开关单元通过4路线路组a11将电极片100-X2的温度检测器114产生的模拟温度信号传输至第三模数转换器620的通道9-12;与电极片100-Y2对应的温度检测开关单元通过4路线路组a12将电极片100-Y2的温度检测器114产生的模拟温度信号传输至第三模数转换器620的通道13-16。第四控制器610控制相应温度检测开关单元中的多个第二开关640和多个第三开关690的通断,且使一个第二开关640(例如640-1、640-2、640-3和640-4中的一个)和一个第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)闭合,以使相应的温度检测器114产生模拟温度信号,第三模数转换器620采集该模拟温度信号并由连接闭合的第二开关640的一路线路传递至第三模数转换器620的相应的通道。即第三模数转换器620在采集每个电极片100上相应温度检测器114的模拟温度信号时,均从相应线路组(a9、a10、a11和a12中的一组)中与闭合的第二开关640连接的一路线路传递至其相应的通道。
第四控制器610控制各个温度检测开关单元中多个第二开关640和多个第三开关690的通断,且使一个第二开关640(例如640-1、640-2、640-3和640-4中的一个)和一个第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)闭合,以依次获得电极片100中相应温度检测器114产生的模拟温度信号。本实施例中,如图28所示,当第四控制器610控制第二开关640-1和第三开关690-1导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个温度检测器114(对应序号为1)的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-2导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第二个温度检测器114(对应序号为1和2)合并后的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-3导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第三个温度检测器114(对应序号为1、2和3)合并后的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-4导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第四个温度检测器114(对应序号为1、2、3和4)的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-5导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第五个温度检测器114(对应序号为1、2、3、4和5)的模拟温度信号。依此类推,可以得到其它行组的温度检测器114所产生的模拟温度信号。
如图28-图29所示,第四转接器600还包括第五通信收发器650,第五通信收发器650将第四控制器610运算转换的数字温度信号传输给电场发生器300。第五通信收发器650由第四控制器610控制,第四控制器610运算转换的数字温度信号通过第五通信收发器650将各个温度检测器114的数字温度信号进行串行传输,如传输给电场发生器300。
本实施例中,如图28所示,第二开关640(例如640-1、640-2、640-3和640-4)为4个,第三开关690(例如690-1、690-2、690-3、690-4和690-5)为5个,取一个第二开关640(例如640-1、640-2、640-3和640-4)和一个第三开关690(例如690-1、690-2、690-3、690-4和690-5)导通,其余开关断开,按照这样的方式可得到20个组合,分别为:640-1和690-1、640-1和690-2、640-1 和690-3、640-1和690-4、640-1和690-5、640-2和690-1、640-2和690-2、640-2和690-3、640-2和690-4、640-2和690-5、640-3和690-1、640-3和690-2、640-3和690-3、640-3和690-4、640-3和690-5、640-4和690-1、640-4和690-2、640-4和690-3、640-4和690-4、640-4和690-5。在进行温度检测之前,第四控制器610可先根据这些组合预判模拟温度信号,此时第四控制器610依次对这些组合中的第二开关640(例如640-1、640-2、640-3和640-4中的一个)和第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)进行导通,并通过第三模数转换器620采集各个组合对应的模拟信号,在这些模拟信号中,部分是模拟温度信号,部分是0值或满量程值。例如,前述的20个组合中,640-1和690-1、640-1和690-2、640-1和690-3、640-1和690-4、640-1和690-5、640-2和690-1、640-2和690-2、640-2和690-3、640-2和690-4、640-2和690-5、640-3和690-1、640-3和690-2、640-3和690-3具有模拟温度信号,而640-3和690-4、640-3和690-5、640-4和690-1、640-4和690-2、640-4和690-3、640-4和690-4、640-4和690-5的模拟信号为满量程值。因此基于模拟信号可以筛选出具有模拟温度信号的组合,然后对具有模拟温度信号的组合进行存储,以作为温度检测时的组合。在进行温度检测时,第四控制器610仅对640-1和690-1、640-1和690-2、640-1和690-3、640-1和690-4、640-1和690-5、640-2和690-1、640-2和690-2、640-2和690-3、640-2和690-4、640-2和690-5、640-3和690-1、640-3和690-2、640-3和690-3这些组合中的第二开关640(例如640-1、640-2、640-3和640-4中的一个)和第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)进行导通,并通过第三模数转换器620对电极片100中相应温度检测器114检测的模拟温度信号进行采样,第四控制器610将第三模数转换器620采集的模拟温度信号运算转换成数字温度信号,然后通过第五通信收发器650将数字温度信号传输给电场发生器300。
本实施例中,在进行温度检测时,当第四控制器610控制第二开关640-1和第三开关690-1导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个温度检测器114(对应序号为1)的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-2导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第二个温度检测器114(对应序号为1和2)合并后的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-3导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第三个温度检测器114(对应序号为1、2和3)合并后的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-4导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第四个温度检测器114(对应序号为1、2、3和4)的模拟温度信号;当第四控制器610控制第二开关640-1和第三开关690-5导通,其它开关断开时,第三模数转换器620采样得到第一行组的第一个至第五个温度检测器114(对应序号为1、2、3、4和5)的模拟温度信号。依次类推,可以得到其它行组的温度检测器114所产生的模拟温度信号。第五通信收发器650由第四控制器610控制,第四控制器610将第三模数转换器620采集的模拟温度信号运算转换成数字温度信号,第四控制器610通过第五通信收发器650将各个温度检测器114的数字温度信号进行串行传输至传输给电场发生器300。
可选的,温度检测器114为热敏电阻;也可以为其他可以检测温度的部件或材料。如图28所示,将序号1-13作为检测点标号时,每个检测点标号对应的热敏电阻的阻值可用Rtn表示,例如, 检测点标号1对应的热敏电阻的阻值为Rt1,具体是第一行组的第一个热敏电阻的对应温度的阻值,检测点标号2对应的热敏电阻的阻值为Rt2,具体是第一行组的第二个热敏电阻的对应温度的阻值,依次类推。
第四控制器610在获得检测点标号对应的模拟温度信号后,模拟温度信号为电极片100的全部温度检测器114中相应的一个或多个组合的阻值,通过下述公式(2)计算得到检测点标号对应的热敏电阻的实际温度:
其中,Tn为检测点标号n对应的热敏电阻的实际温度,x为采样获得的检测点标号n对应的模拟温度信号,span为第三模数转换器620的最大量程,例如,当第三模数转换器620采用16位的采样芯片时,span为65535,R为第二分压电阻的阻值,如第二分压电阻630-1、630-2、630-3或630-4的阻值。
通过下述公式(3)可以计算得到检测点标号对应的热敏电阻的阻值:
可以理解的是,通过对公式(3)进行变形,在获得检测点标号对应的热敏电阻的阻值时,可以得到检测点标号对应的热敏电阻的模拟温度信号:
其中,y为检测点标号对应的热敏电阻的模拟温度信号。
需要说明的是,通过选择合适阻值的第二分压电阻630,如第二分压电阻630-1、630-2、630-3和630-4,可以限制流过热敏电阻的电流,避免电流过大导致热敏电阻温升过大,从而影响测试精度,严重时甚至可能导致热敏电阻损坏等。
具体地,第四控制器610在预判出具有模拟温度信号的开关组合后,对温度检测开关单元进行控制,以使具有模拟温度信号的开关组合中的第二开关640(例如640-1、640-2、640-3和640-4中的一个)和第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)导通,使得相应的热敏电阻检测到的模拟温度信号被第三模数转换器620采样,并通过上述公式(2)-(4)计算得到相应的温度。
例如,以图28所示第一行组的温度检测为例。第四控制器610先控制第二开关640-1和第三开关690-1导通,其它开关断开,此时采样获得第一行组的第一个热敏电阻的模拟温度信号,通过上述公式(2)可以计算得到该热敏电阻的实际温度T1,通过上述公式(3)可以计算得到该热敏电阻的阻值Rt1。
接着,控制第二开关640-1和第三开关690-2导通,其它开关断开,此时采样获得第一行组的第一个至第二个热敏电阻合并后的模拟温度信号,通过上述公式(3)可以计算得到第一个至第二个热敏电阻合并后的阻值,即Rt1+Rt2,由于已经获得Rt1,因此可以计算得到Rt2,然后根据Rt2 和上述公式(4)可以计算出第二个热敏电阻的模拟温度信号,将该模拟温度信号代入上述公式(2)计算得到第二个热敏电阻的实际温度T2。
接着,控制第二开关640-1和第三开关690-3导通,其它开关断开,此时采样获得第一行组的第一个至第三个热敏电阻合并后的模拟温度信号,通过上述公式(3)可以计算得到第一个至第三个热敏电阻合并后的阻值,即Rt1+Rt2+Rt3,由于已经获得Rt1和Rt2,因此可以计算得到Rt3,然后根据Rt3和上述公式(4)可以计算出第三个热敏电阻的模拟温度信号,将该模拟温度信号代入上述公式(2)计算得到第三个热敏电阻的实际温度T3。
接着,控制第二开关640-1和第三开关690-4导通,其它开关断开,此时采样获得第一行组的第一个至第四个热敏电阻合并后的模拟温度信号,通过上述公式(3)可以计算得到第一个至第四个热敏电阻合并后的阻值,即Rt1+Rt2+Rt3+Rt4,由于已经获得Rt1、Rt2和Rt3,因此可以计算得到Rt4,然后根据Rt4和上述公式(4)可以计算出第四个热敏电阻的模拟温度信号,将该模拟温度信号代入上述公式(2)计算得到第四个热敏电阻的实际温度T4。
接着,控制第二开关640-1和第三开关690-5导通,其它开关断开,此时采样获得第一行组的第一个至第五个热敏电阻合并后的模拟温度信号,通过上述公式(3)可以计算得到第一个至第五个热敏电阻合并后的阻值,即Rt1+Rt2+Rt3+Rt4+Rt5,由于已经获得Rt1、Rt2、Rt3和Rt4,因此可以计算得到Rt5,然后根据Rt5和上述公式(4)可以计算出第五个热敏电阻的模拟温度信号,将该模拟温度信号代入上述公式(2)计算得到第五个热敏电阻的实际温度T5。
对于图28所示第二行组和第三行组的温度检测与第一行组的温度检测过程相同,具体参考前述,这里不再赘述,从而可以得到每个电极元件112对应的热敏电阻的温度,也即得到电极元件112处的温度。
由此,通过对第二开关640(例如640-1、640-2、640-3和640-4中的一个)和第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)的组合控制,不仅能够在不增加第一线缆130线芯数量的情况下,达到100%温度检测器114覆盖率,避免电极片100负重过大,保持电极片100的贴敷效果,而且通过对第二开关640(例如640-1、640-2、640-3和640-4中的一个)和第三开关690(例如690-1、690-2、690-3、690-4和690-5中的一个)的开关组合进行筛选,并基于筛选后的开关组合进行温度检测,能够在保证对每个温度检测器114进行检测的基础上,提高温度检测的速度,降低资源占用。
第四控制器610还可以根据具有模拟温度信号的组合确定多个电极元件112的个数、行组数和列组数。如图28所示,在电极片正常情况下,前述20个组合中640-1和690-1、640-1和690-2、640-1和690-3、640-1和690-4、640-1和690-5、640-2和690-1、640-2和690-2、640-2和690-3、640-2和690-4、640-2和690-5、640-3和690-1、640-3和690-2、640-3和690-3具有模拟温度信号,有模拟温度信号的组合恰好与电极片的电极元件112的数量相同,因此根据具有模拟温度信号的组合可以确定出电极片100中多个电极元件112的个数。另外,在具有模拟温度信号的组合中,行组数与第二开关640出现的个数相同,列组数与第三开关690出现的个数相同,如图28所示,多个电极元件112呈三行五列排布,在具有模拟温度信号的组合中,第二开关640出现的个数为3个(第二开关640-1、640-2和640-3),第三开关690出现的个数为5个(第三开关690-1、690-2、 690-3、690-4和690-5),即行组数为3,列组数为5,因此根据具有模拟温度信号的组合可以确定出多个电极元件112的行组数和列组数。另外,通过电极片100的多个电极元件112的行组数和列组数可以确定第一线缆130的线芯数量,第一线缆130的线芯数量为电极片100的多个电极元件112的行组数加列组数加1。
第四控制器610还用于根据多个电极元件112的行组数和列组数以及模拟温度信号判断相应电极片中是否存在异常温度检测器114。设定电极片100的所有温度检测器114及温度检测电路连接均正常,如图28所示,可以先不开启电场发生器300,此时电极片的每个温度检测器114产生的模拟温度信号近似相同,相应的实际温度以及阻值也近似相同,例如检测点标号为1、2、3、4和5对应的热敏电阻的阻值Rt1、Rt2、Rt3、Rt4和Rt5近似相同,第四控制器610通过控制第二开关640-1和第三开关690-5导通,其它开关断开,可以得到第一行组的5个热敏电阻合并后的阻值为Rt,由于Rt=Rt1+Rt2+Rt3+Rt4+Rt5,且Rt1、Rt2、Rt3、Rt4和Rt5近似相同,因此Rt近似等于5倍的Rt1,根据采样获得的模拟温度信号,通过上述公式可以计算得到Rt1对应的实际温度Tz1;同理,可以得到第二行组的5个热敏电阻的平均阻值对应的实际温度Tz2以及第三行组的3个热敏电阻的平均阻值对应的实际温度Tz3,且Tz1、Tz2和Tz3近似相同。因此,在获得Tz1、Tz2和Tz3时,若Tz1、Tz2和Tz3近似相同,那么电极片100中未存在异常的热敏电阻或异常的电路连接;若Tz1、Tz2和Tz3之间的差异较大,那么电极片100中存在异常的热敏电阻或异常的电路连接。从而,根据多个电极元件112的行组数和列组数以及模拟温度信号能够判断出电极片100中是否存在异常温度检测器114。
参考图27所示,第四转接器600与电场发生器300之间设有第五连接器680,第五连接器680适于将电场发生器300连接到第四转接器600。第四转接器600还具有一第五线缆670。第五连接器680可为第五插头,同时电场发生器300上设有第二插座310。第五插头与第二插座310为按压式弹簧接插件,即第五连接器680采用接插件的方式将第四转接器600与电场发生器300进行连接。
参考图29所示,当电极片为4个时,第二线缆为8芯线缆,其中4根线芯为分别与4个第一连接器180相连的交变电源线(a1、a2、a3和a4),用于提供相应方向和相应极性的交变电信号,2根线芯为与第四转接器600中第五通信收发器650电性连接的接收数据线RX和发送数据线TX,剩余2根线芯为与每个电极片100的至少一个温度检测器114提供直流电源VCC的电源线和接地线。第四控制器610将第三模数转换器620采样相应的温度检测器114的模拟温度信号通过运算转换为数字温度信号,第四控制器610控制第五通信收发器650将数字温度信号经由第五连接器680传递给电场发生器300。即,第四转接器600由第三模数转换器620采集到的模拟温度信号经第四控制器610转成数字温度信号后,经由第五通信收发器650、与第五通信收发器650相连的发送数据线TX和第五连接器680传递给电场发生器300。需要说明的是,第四控制器610也可以通过第五通信收发器650传输其它信息如电极片中多个电极元件112的个数、行组数、列组数以及有无异常温度检测器114,这里不做限制。
上述实施例中,通过将电极片100上的多个电极元件112在电路连接上分组连接,位于同一行组的温度检测器114串联连接后,通过串联连接的第二开关640(640-1、640-2、640-3和640-4中的一个)和第二分压电阻630(630-1、630-2、630-3和630-4中的一个)连接到直流电源VCC,位于 同一列组的温度检测器114的接地端114A连接到一起后,通过第三开关690(690-1、690-2、690-3、690-4和690-5中的一个)连接到接地管脚GND,且通过对具有模拟温度信号的组合中的第二开关640(640-1、640-2、640-3和640-4中的一个)和第三开关690(690-1、690-2、690-3、690-4和690-5中的一个)进行控制,以使每个温度检测器114检测的模拟温度信号分别被采样,能够在不增加第一线缆130线缆线芯数量的情况下,达到100%的温度传感器覆盖率,避免电极片100负重过大,保持电极片100的贴敷效果。例如,当图28所示电极片100上的温度检测器114的覆盖率达到100%时,相关技术中第一线缆130需要15根线芯才能实现,导致第一线缆130很粗,柔软性很差,贴敷效果很差,而在该实施例中,能够在不增加第一线缆130线芯数量的情况下,保证温度检测器114的覆盖率达到100%,从而实现电极片100中每个电极元件112的温度全面监控;同时,在进行温度检测之前,通过对第二开关640(640-1、640-2、640-3和640-4中的一个)和第三开关690(690-1、690-2、690-3、690-4和690-5中的一个)的开关组合进行筛选,并在进行温度检测时,基于筛选后的开关组合进行温度检测,能够在保证对每个温度检测器114进行检测的基础上,提高温度检测的速度,降低资源占用。而且,根据具有模拟温度信号的组合还可以确定出多个电极元件112的个数、行组数和列组数,以及判断相应电极片100中是否存在异常温度检测器114。
在其他实施例中,如图30所示,图30为图27中的为另一实施例中的一个电极片100与第四转接器600的结构示意图,与前述图27中所示实施例的电极片100的区别在于:虽然本实施例的电极片100的多个电极元件112与多个温度检测器114也均为13个,但在电路连接方面其呈四行组、四列组排布,即本实施例的电极片100具有与前述实施例的电极片100不同的行组数和列组数。本实施例中,电极片100的多个电极元件112与多个温度检测器114均具有四个行组、四个列组。由于电极元件112、温度检测器114和第二二极管117'均与前述实施例的相同,故沿用前述实施例的标号。本实施例的电极片100的前三行组的电极元件112和温度检测器114的数量均为4个,最后一行组的电极元件112和温度检测器114的数量均为1个,前一列组的电极元件112和温度检测器114的数量均为4个,后三列组的电极元件112和温度检测器114的数量均为3个。电极片100的第一线缆130的线芯数量为9个。第四转接器600的4个第二开关640-1、640-2、640-3和640-4中的一个分别与相应的一行组端部的一个信号端114B连接,第四转接器600的4个第三开关690-1、690-2、690-3和690-4中的一个分别与相应的一列组的所有温度检测器114的接地端114A连接,剩余一个第三开关690-5不连接任何一个温度检测器114。
在其他实施例中,如图31所示,图31为图27中所示的另一个实施例的一个电极片100与第四转接器600的结构示意图,本实施例的电极片100具有与前述图30中所示的电极片100相同数量的电极元件112和相同数量的温度检测器114,本实施例的电极片100具有与前述图30中所示的电极片100相同的行组数和列组数,与前述图30中所示的电极片100的区别在于:本实施例的电极片100各行组、各列组电极元件112与多个温度检测器114的数量与图30中所示的电极片100各行组、各列组电极元件112与多个温度检测器114的数量不同。由于电极元件112、温度检测器114和第二二极管117'均与前述图28、图30中所示的相同,故沿用图27至图29中相应的标号。本实施例的电极片100的前一行组的电极元件112和温度检测器114的数量均为4个,后三行组的极片单元112和温度检测器114的数量均为3个,前三列组的电极元件112和温度检测器114的数 量均为4个,最后一列组的极片单元112和温度检测器114的数量均为1个。电极片100的第一线缆130的线芯数量为9个。第四转接器600的4个第二开关640-1、640-2、640-3和640-4中的一个分别与相应的一行组端部的一个信号端114B连接,第四转接器600的4个第三开关690-1、690-2、690-3和690-4中的一个分别与相应的一列组的所有温度检测器114的接地端114A连接,剩余一个第三开关690-5不连接任何一个温度检测器114。
在其他实施例中,如图32所示,图32为图27中的另一个实施例的一个电极片100与第四转接器600的结构示意图,与前述图28、图30、图31中所示的电极片100的区别在于:本实施例的电极片100具有与前述图28、图30、图31所示的电极片100不同个数的电极元件112。本实施例的电极片100的电极元件112和温度检测器114的数量均为9个,并呈三行组、四列组排布。由于电极元件112、温度检测器114和第二二极管117'均与前述图28、图30中的相同,故沿用相同的标号。本实施例的电极片100的前两行组的电极元件112和温度检测器114的数量均为4个,后一行组的极片单元112和温度检测器114的数量均为1个,前一列组的电极元件112和温度检测器114的数量均为3个,后三列组的极片单元112和温度检测器114的数量均为2个。电极片100的第一线缆130的线芯数量为8个。第四转接器600的3个第二开关640-1、640-2和640-3中的一个分别与相应的一行组端部的一个信号端114B连接,第四转接器600的4个第三开关690-1、690-2、690-3和690-4中的一个分别与相应的一列组的所有温度检测器114的接地端114A连接,剩余一个第二开关640-4和一个第三开关690-5不连接任何一个温度检测器114。
从图28、图30-图32可以看出,在多个电极元件112在电路连接上被配置为至少三个行组和至少三个列组时,各行组的电极元件112的个数不完全相同,各列组的电极元件112的个数不完全相同,因此在进行温度检测之前,需先对第二开关640和第三开关690的所有组合进行筛选,以筛选出能够检测出模拟温度信号的组合,然后基于能够检测出模拟温度信号的组合进行温度检测。在进行温度检测时,具有模拟温度信号的组合不完全相同,但是筛选具有模拟温度信号的组合、以及基于筛选出的具有模拟温度信号的组合进行温度检测、电极元件112的个数、行组数和列组数的确定、以及判断电极片中是否存在异常温度检测器114的过程是相同的,具体如前述。
从图28、图30-图32可以看出,第二开关640的数量大于等于行组数,第三开关690的数量大于等于列组数。例如,当第二开关640为4个,第三开关690为5个时,分别为第二开关640-1、640-2、640-3和640-4以及第三开关690-1、690-2、690-3、690-4和690-5,但在图28所示示例中,第二开关640-4处于断路状态,即不连接任何一个温度检测器114。
在其他一些实施例中,不连接任何一个温度检测器114的第二开关640及与第二开关640串联的第二分压电阻630和/或不连接任何一个温度检测器114的第三开关690可不设置。如图33所示,图33为图27中的另一实施例的一个电极片100与第四转接器600的结构示意图,本实施例中的第四转接器600相较于图28所示实施例的第四转接器600未设置第二开关640-4和第二分压电阻630-4。如图34所示,图34为图27中的另一实施例的一个电极片100与第四转接器600的结构示意图,本实施例中的第四转接器600相较于图30所示实施例的第四转接器600未设置第三开关690-5。如图35所示,图35为图27中的另一实施例中的一个电极片100与第四转接器600的结构示意图,本实施例中的第四转接器600相较于图31所示实施例的第四转接器600未设置第三开关 690-5。如图36所示,图36为图27中的又一实施例的一个电极片100与第四转接器600的结构示意图,本实施例中的第四转接器600相较于图32所示实施例的第四转接器600未设置第二开关640-4、第二分压电阻630-4和第三开关690-5。
在其它实施例中,如图37所示,图37为图27中的又一个实施例的一个电极片100与第四转接器600的结构示意图,与前述多个实施例的电极片100的区别在于:本实施例的电极片100具有与前述多个实施例的电极片100不同个数的电极元件112。本实施例的电极片100的电极元件112和温度检测器114的数量均为20个,并呈四行组、五列组排布。由于电极元件112、温度检测器114和第二二极管117'均与前述第一、二实施例的相同,故沿用图27至图29中相应的标号。
如图37所示,每个行组具有五个温度检测器114,每个列组具有四个温度检测器114。20个电极元件112呈拓扑结构状连接,且并联在一根交流电信号线(AC线)上,以被交流电信号线(AC线)传递交变电信号,并在与相对的电极片100之间形成用于***的治疗电场。每个行组中对应的五个温度检测器114串联连接后,通过串联连接的第二开关640(640-1、640-2、640-3和640-4中的一个)和第二分压电阻630(630-1、630-2、630-3和630-4中的一个)连接到直流电源VCC,每个列组中对应的四个温度检测器114的接地端114A连接到一起后,通过第二开关690(690-1、690-2、690-3、690-4和690-5中的一个)连接到接地管脚GND,以便通过配置第二开关640(640-1、640-2、640-3和640-4)和第三开关690(690-1、690-2、690-3、690-4和690-5)的开关时序以使相应温度检测器114检测的模拟温度信号分别被采样。如图37所示,位于同一行组的所有温度检测器114串联成一路线路(如线路1、2、3和4中的一路线路)并通过与位于每个行组端部的一个的信号端114B连接的线路连接至直流电源VCC,位于同一行组的所有温度检测器114的接地端114A分别由5路接地线(如接地线5、6、7、8和9)一一对应连接至接地管脚GND,位于同一列组的所有温度检测器114的接地端114A均连接同一路接地线(如接地线5、6、7、8或9中的一路线路),每一行组串联设置的温度检测器114在直流电源VCC端均串接一个第二开关640(如第二开关640-1、640-2、640-3和640-4中的一个)和一个第二分压电阻630(如第二分压电阻630-1、630-2、630-3和630-4中的一个),且第二分压电阻630(如第二分压电阻630-1、630-2、630-3和630-4)均比第二开关640(如第二开关640-1、640-2、640-3和640-4)靠近直流电源VCC端,每一路接地线(如接地线5、6、7、8和9中的一路)均串接一个第三开关690(如第二开关690-1、690-2、690-3、690-4和690-5中的一个)。
在电极片100为测试合格的条件下,温度检测器114与电极元件112一一对应设置的特点,第四控制器610还可以通过配置各个温度检测开关单元中各个第二开关640和第三开关690的开关组合关系,以便根据被采样到的每个温度检测器114的模拟温度信号识别电极片100的类型(电极片100是几个电极元件112的电极片100)。需要说明的是,测试合格的电极片100至少包括:所有温度检测器114及其电性连接无异常、所有电极元件112及其电性连接无异常。这里的电极片100的类型是基于电极片100所包含的电极元件112的数量确定,例如,具有20个电极元件112的电极片100为一类型,具有16个电极元件112的电极片100为另一类型,具有9个电极元件112的电极片100为又一类型。
如图37所示,在电极片100为测试合格的条件下,在电场治疗***初始化时,电场发生器300 先不向第四转接器600及电极片100的多个电极元件112传递交变电信号,仅向第四转接器600及电极片100的相应的温度检测器114传递直流电源VCC运行工作,避免交流电信号产生的交变电场导致温度变化对温度检测器114检测的模拟温度信号有影响,电极片100的每个温度检测器114产生的模拟温度信号近似相同,相应的实际温度以及阻值也近似相同。例如检测点标号为1、2、3、4和5对应的热敏电阻的阻值Rt1、Rt2、Rt3、Rt4和Rt5近似相同,第四控制器610通过控制第二开关640-1和第三开关690-5导通,其它开关断开,可以得到第一行组的五个热敏电阻合并后的阻值为Rt,由于Rt=Rt1+Rt2+Rt3+Rt4+Rt5,且Rt1、Rt2、Rt3、Rt4和Rt5近似相同,因此Rt近似等于5倍的Rt1,同理,可以分别得到第二行组、第三行组以及第四行组五个热敏电阻合并后的阻值为Rt与Rt1的5倍数关系,因此能够计算出电极片100中电极元件112的数量,从而可以确定出电极片100的类型为20个电极元件112的电极片100。根据采样获得的模拟温度信号,通过上述公式(2)可以计算得到每个热敏电阻对应的实际温度Tz1,同理可以分别得到第二行组、第三行组以及第四行组的每个热敏电阻的实际温度Tz2、Tz3以及Tz4,且Tz1、Tz2、Tz3和Tz4近似相同,均近似为Rt1对应的实际温度。
如图37所示,第四控制器610还可以通过配置各个温度检测开关单元中各个第二开关640和第三开关690的开关组合关系,以便根据被采样到的电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号判断电极片100中是否存在异常温度检测器114。
如图37所示,电场发生器300向第四转接器600及电极片100的多个电极元件112传递交变电信号之前,先向第四转接器600及电极片100的相应的温度检测器114传递直流电源VCC运行工作,避免交流电信号产生的交变电场导致温度变化对温度检测器114检测的模拟温度信号有影响,电极片100的每个温度检测器114(热敏电阻)产生的模拟温度信号近似相同,相应的实际温度以及阻值也近似相同。即相同数量热敏电阻的各行组的所有热敏电阻合并后对应的总阻值近似相同。
对每一行组所有热敏电阻合并后对应的总阻值进行采集对比,例如,控制第二开关640-1和第三开关690-5导通,其它开关断开,获取第一行组的五个热敏电阻合并后对应的总阻值,接着控制第二开关640-2和第三开关690-5导通,其它开关断开,获取第二行组的五个热敏电阻合并后对应的总阻值,依此类推,完成所有行组五个热敏电阻合并后对应的总阻值,最后判断各组五个热敏电阻合并后对应的总阻值是否一致或接近,来确定各热敏电阻是否异常。在此过程中,各组五个热敏电阻合并后对应的总阻值近似相同,则电极片100的每个温度检测器114(热敏电阻)都正常。若某一行组五个热敏电阻合并后对应的总阻值异常(不同于其他行组的五个热敏电阻合并后对应的总阻值),则按照前述方式获取每个检测点标号对应的热敏电阻的电阻和实际温度。
以第一行组五个热敏电阻合并后对应的总阻值异常为例。可以采用前述方式得到五个热敏电阻的实际温度T1、T2、T3、T4和T5,并对五个热敏电阻的实际温度T1、T2、T3、T4和T5进行比较,若某一热敏电阻的实际温度与其它热敏电阻的实际温度相差较大,说明该热敏电阻存在温度异常,从而可以快速定位到异常热敏电阻。若是电极片100在环境温度下进行的上述温度检测器114(热敏电阻)的异常检测,也可以将五个热敏电阻的实际温度T1、T2、T3、T4和T5与环境温度进行比较,若某一(些)热敏电阻的实际温度与环境温度相差较大,则该(些)热敏电阻为异常热敏电阻。
需要说明的是,若所有行组的阻值均正常,也即温度均正常,则按照上述方式能够获得每个检 测点标号对应的热敏电阻的实际温度,也就是说,通过上述方式不仅可以获得每个热敏电阻的实际温度,而且通过简单比较能够及时发现并快速定位出异常的热敏电阻,并发现具有异常热敏电阻的电极片100,以便于电极片100质量检测。
本实施例中,通过将电极片100上的多个电极元件112分组连接,位于同一行组的温度检测器114串联连接后,通过串联连接的第二开关640和第二分压电阻630连接到直流电源,位于同一列组的温度检测器114的接地端114A连接到一起后,通过第三开关690连接到接地管脚GND,第二开关640和第三开关690的数量总和不超过9个,且通过配置第二开关640和第三开关690的开关时序以使电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号分别被采样,能够在不增加线缆线芯数量的情况下,达到100%的温度检测器114覆盖率,避免电极片100负重过大,保持电极片100的贴敷效果。例如,图37所示电极片100上的温度检测器114的覆盖率达到100%时,相关技术中需要22根线芯才能实现,导致第一线缆130很粗,柔软性很差,贴敷效果很差,而在该实施例中,能够在不增加第一线缆130的线芯数量的情况下,保证温度检测器114的覆盖率达到100%,从而实现电极片100中每个电极元件112的温度全面监控。同时,通过配置第二开关640和第三开关690的开关时序,以使电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号分别被采样,不仅能够获得各个温度检测器114的实际温度,也即电极元件112的实际温度,而且能够快速定位出温度异常的电极元件112,同时能够区分不同的电极片100类型。另外,由于电极片100输出的是模拟温度信号,避免了在电极片100上设置第三模数转换器620等,进一步降低了电极片100的整体重量,提高了电极片100的贴敷效果。
需要说明的是,上述实施例所提到的电极元件112的个数以及电极片100的个数,均是可以根据实际情况进行设置,这里仅是示例性说明,并不作为对本公开的限制。
本公开还提供了一种肿瘤治疗设备,包括前述的电场治疗***。
根据本公开实施例的肿瘤治疗设备,通过前述的电场治疗***,不仅能够在不增加第一线缆130线芯数量的情况下,达到100%的温度检测器114覆盖率,避免电极片100负重过大,保持电极片100的贴敷效果,而且通过对第二开关640-1、640-2、640-3和640-4和第三开关690-1、690-2、690-3、690-4和690-5的开关组合进行筛选,并基于筛选后的开关组合进行温度检测,能够在保证对每个温度检测器114进行检测的基础上,提高温度检测的速度,降低资源占用。
本公开还提供了一种电场治疗***的电极片温度检测方法,电场治疗***包括前述的电极片100,如图38所示,方法包括:
S701,对第二开关和第三开关的开关时序进行配置,以对电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号分别被采样,获得每个温度传感器对应的数字温度信号。
S702,将数字温度信号传输给电场治疗***的电场发生器300,以便电场发生器300根据数字温度信号确定每个电极元件112处的温度。
可选的,在电极片100为测试合格的条件下,在获得每个温度传感器对应的数字温度信号之后,方法还包括:确定第二开关和第三开关的开关组合关系;根据第二开关和第三开关的开关组合关系、以及采样到的电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号 识别相应电极片100的类型。
可选的,在确定电极片100各行组温度检测器114数量与各列组温度检测器114数量的条件下,在获得每个温度传感器对应的数字温度信号之后,方法还包括:确定第二开关和第三开关的开关组合关系;根据第二开关和第三开关的开关组合关系、以及采样到的电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号判断相应电极片100中是否存在异常的温度检测器114。
根据本公开实施例的电场治疗***的电极片温度检测方法,通过对第二开关和第三开关的开关时序进行配置,以对电极片100的全部温度检测器114中相应的一个或多个组合进行检测的模拟温度信号分别被采样,获得数字温度信号,并将数字温度信号传输给电场治疗***的电场发生器300,以便电场发生器300根据数字温度信号确定每个电极元件112处的温度,从而能够在不增加第一线缆130线芯数量的情况下,达到100%的温度检测器114覆盖率,避免电极片100的负重过大,保持电极片100的贴敷效果。
本公开还提供了一种电极片温度检测方法,应用于前述的电场治疗***,如图39所示,方法包括:
S801,对第二开关和第三开关进行组合控制,并获取所有组合中每种组合对应的模拟信号。
S802,根据模拟信号确定具有模拟温度信号的组合。
S803,根据具有模拟温度信号的组合对电极片100中每个温度检测器114检测的模拟温度信号进行采样,转换获得数字温度信号。
S804,将数字温度信号传输给电场治疗***的电场发生器,以便电场发生器根据数字温度信号确定每个电极元件处的温度。
在S802中,根据模拟信号确定具有模拟温度信号的组合,包括:在模拟信号处于预设信号范围内时,确定模拟信号为模拟温度信号。
在S802之后,即在获得具有模拟温度信号的组合之后,方法还包括:根据具有模拟温度信号的组合确定多个电极元件112的个数、行组数和列组数。
在本实施例中,在获得多个电极元件112的行组数和列组数之后,并在电极片100使用一段时间后,方法还包括:根据多个电极元件112的行组数和列组数以及模拟温度信号判断相应电极片112中是否存在异常温度传感器。
根据本公开实施例的电极片温度检测方法,在进行温度检测之前,可对第二开关和第三开关进行组合控制,并获取所有组合中每种组合对应的模拟信号,以及根据模拟信号确定具有模拟温度信号的组合;在进行温度检测时,根据具有模拟温度信号的组合对电极片100中每个温度检测器114检测的模拟温度信号进行采样,获得模拟温度信号,并将模拟温度信号传输给电场治疗***的电场发生器300,以便电场发生器300根据模拟温度信号确定每个电极元件112处的温度。由此,不仅能够在不增加第一线缆130、115线芯数量的情况下,达到100%的温度检测器114覆盖率,避免电极片100负重过大,保持电极片100的贴敷效果,而且通过对第二开关和第三开关的开关组合进行筛选,并基于筛选后的开关组合进行温度检测,能够在保证对每个温度检测器114进行检测的基础上,提高温度检测的速度,降低资源占用。
第五些实施例
在一些实施例中,参考图40所示,电场治疗***包括:至少一对电极片100、第五转接器800和电场发生器300,至少一对电极片100成对地配置于患者体表。如图40中的4个电极片100,每两个电极片100作为一对配置于患者体表,第五转接器800与每个电极片100电性连接,电场发生器300与第五转接器800电性连接。电场发生器300产生肿瘤电场治疗用的交变电信号,并通过第五转接器800将交变电信号传输给每个电极片100,以在成对的电极片之间形成交变电场作用于患者肿瘤部位进行肿瘤治疗。
参考图40、图41所示,每个电极片100均包括背衬(未图示)、由背衬支撑的电气功能组件(未标号)、与电气功能组件电性连接的第一线缆130。每个电极片100与第五转接器800之间均连接设置有一个第一连接器180,第一连接器180适于将相应电极片100电性连接到第五转接器800,第一连接器180为第一插头,同时第五转接器800上设有第六插座860,第一插头与第六插座860为按压式弹簧接插件,即第一连接器180采用接插件的方式将第五转接器800与电极片100进行连接。
如图41所示,电气功能组件包括由柔性线路板构成的转接板120、设置在转接板120上的多个电极元件112、多个温度检测器114和多路复用单元700。多个电极元件112呈阵列设置,每个电极元件112可施加交变电压。每个温度检测器114对应一个电极元件112设置。即温度检测器114的数量等于电极元件112的数量,当需要电极片100上的温度检测器114的覆盖率达到100%时,每个电极元件112均设置一个温度检测器114。如图41所示,电气功能组件包括9个间隔设于转接板上并向患者施加交变电场的电极元件112、9个组设于转接板上的温度检测器114以及设于转接板上并将9个温度检测器114检测的模拟温度信号分时输出的多路复用单元700。多路复用单元700与每个温度检测器114相连。在本实施例中,电场治疗***通过温度检测器114检测相应电极元件112处的温度,并通过多路复用单元700将每个温度检测器114检测到的模拟温度信号分时输出至第五转接器800。
每个电极元件112上设有贯穿的开孔1120,开孔1120适于安装温度检测器114。如图41所示,每个电极元件112的中部具有呈贯穿状设置的开孔1120,每个温度检测器114收容于相应的一个电极元件112的开孔1120中。当温度检测器114的覆盖率达到100%时,温度检测器114与电极元件112一一对应,即每个电极元件112中部的开孔1120内均收容一个温度检测器114,从而实现对每个电极元件112温度的实时监测,避免某些电极元件112的温度监测不到,导致患者体表部分区域的温度过高造成患者低温烧伤。可选的,电极元件112为高介电元件,如陶瓷片。
每个温度检测器114均具有一个接地端114A和一个信号端114B,多个温度检测器114的接地端114A共同连接到接地管脚GND0,每个温度检测器114的信号端114B连接到多路复用单元700的一个信号输入端子712。如图41所示,9个温度检测器114的接地端114A共同连接至接地管脚GND0,9个温度检测器114的信号端114B并联连接至多路复用单元700的9个信号输入端子712,9个温度检测器114检测到的模拟温度信号经由多路复用单元700分时输出至第五转接器800。可选的,温度检测器114为热敏电阻。
参考图41所示,多路复用单元700包括第一模拟多路复用开关710,第一模拟多路复用开关710包括多个信号输入端子712、一个信号输出端子、一个使能控制端子和多个通道控制端子。本实施例中,第一模拟多路复用开关710的信号输入端子712也即多路复用单元700的信号输入端子712,每个信号输入端子712连接有一个温度检测器114。第一模拟多路复用开关710的信号输出端子与每个信号输入端子712之间还分别设有选择通道。第一模拟多路复用开关710根据使能控制端子和多个通道控制端子接收的信号对选择通道进行控制。如图42所示,第一模拟多路复用开关710包括16个信号输入端子712、1个信号输出端子COMMON、1个使能控制端子INHIBIT和4个通道控制端子SA、SB、SC和SD,在每个信号输入端子712与信号输出端子COMMON之间均具有一个选择通道,共计16个选择通道,使能控制端子INHIBIT用于控制16个选择通道是否有效,4个通道控制端子SA、SB、SC和SD则在16个选择通道有效的状态下用于选择一个选择通道输出,使该选择通道两端的信号输入端子712与信号输出端子COMMON连通,使该信号输入端子712连接的温度检测器114检测到的模拟温度信号先后经由该选择通道、信号输出端子COMMON输出至第五转接器800。4个通道控制端子SA、SB、SC和SD的信号组合成4位的二进制数的通道控制信号,具有16种不同的通道控制信号,16种不同的通道控制信号分时控制16个选择通道的输出。
如图42所示,第一模拟多路复用开关710还包括解码器711,解码器711在使能控制端子INHIBIT接收到通道选择使能信号时,根据通道控制端子SA、SB、SC和SD接收到的通道控制信号控制多个选择通道分别依次导通,以将每个温度检测器114检测到的模拟温度信号分时输出至第五转接器800。每个选择通道上设有模拟开关元件TG,模拟开关元件TG的控制端与解码器711相连,模拟开关元件TG在解码器711的控制下导通或关断相应的选择通道。
第一模拟多路复用开关710还包括接地端子GND1和电源端子VCC1,通过接地端子GND1和电源端子VCC1给第一模拟多路复用开关710供电。
如图41所示,当多路复用单元700包括仅第一模拟多路复用开关710时,第一线缆130包括与至少一个通道控制端子一一对应相连的至少1根通道控制线、与1个使能控制端子对应相连的1根使能控制线、与1个信号输出端子对应相连的1根通道输出线、与1个电源端子VCC1对应相连的1根直流供电线、与1个接地端子GND1对应相连的1根接地线、与1个接地管脚GND0对应相连的1根接地线以及与每个电极元件112均相连的1根交变电源线AC。如图42所示,当第一模拟多路复用开关710包括4个通道控制端子SA、SB、SC和SD时,第一线缆130可包括4根通道控制线、1根使能控制线、1根通道输出线、1根直流供电线、2根接地线和1根交变电源线,共计10根线,通过这10根线可实现最高达16个温度检测器114的模拟温度信号向第五转接器800的传输。其中,通道输出线还通过第三分压电阻830连接到直流电源VCC(图44示出),第三分压电阻830和温度检测器114如热敏电阻元件形成分压电路,以进行温度检测。
第五转接器800中的第五控制器810控制I/O控制单元840(图43示出)的5个I/O口输出高低电平,I/O控制单元840的5个I/O口包括4个分别与4根通道控制线对应的I/O口和1个与使能控制线对应的I/O口,并通过使能控制线和通道控制线向第一模拟多路复用开关710输出通道选择使能信号和通道控制信号,以驱动第一模拟多路复用开关710分时输出温度检测器114的模拟温度信号,第一模拟多路复用开关710的信号输出端子通过通道输出线与第五转接器800中的第四模 数转换器820相连,以将温度检测器114的模拟温度信号通过通道输出线输出至第四模数转换器820,由第四模数转换器820将温度检测器114的模拟温度信号转换成数字温度信号给第五控制器810。
参考图42所示,具体工作流程如下:
当使能控制线为0(0表示低电平)时,所有选择通道均关断。
当使能控制线为1(1表示高电平)时,若:
4根通道控制线为0000(0表示低电平,1表示高电平,4根通道控制线的高低电平组成四位二进制数),解码器711对二进制数0000解码,以使选择通道1上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道1导通。此时,直流电源VCC、第三分压电阻830、第一模拟多路复用开关710的信号输出端子COMMON、选择通道1上的模拟开关元件TG、温度检测器114-1以及接地管脚GND0形成通路,温度检测器114-1工作以感测相应电极元件112-1的温度,温度检测器114-1感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
以此类推,4根通道控制线为0001,解码器711对二进制数0001解码,以使选择通道2上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道2导通。此时,温度检测器114-2感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0010,解码器711对二进制数0010解码,以使选择通道3上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道3导通。此时,温度检测器114-3感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0011,解码器711对二进制数0011解码,以使选择通道4上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道4导通。此时,温度检测器114-4感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0100,解码器711对二进制数0100解码,以使选择通道5上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道5导通。此时,温度检测器114-5感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0101,解码器711对二进制数0101解码,以使选择通道6上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道6导通。此时,温度检测器114-6感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0110,解码器711对二进制数0110解码,以使选择通道7上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道7导通。此时,温度检测器114-7感测的模拟温度信号通过第一模拟多路复用开关710的信号输 出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为0111,解码器711对二进制数0111解码,以使选择通道8上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道8导通。此时,温度检测器114-8感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1000,解码器711对二进制数1000解码,以使选择通道9上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道9导通。此时,温度检测器114-9感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1001,解码器711对二进制数1001解码,以使选择通道10上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道10导通。此时,温度检测器114-10感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1010,解码器711对二进制数0010解码,以使选择通道11上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道11导通。此时,温度检测器114-11感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1011,解码器711对二进制数1011解码,以使选择通道12上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道12导通。此时,温度检测器114-12感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1100,解码器711对二进制数1100解码,以使选择通道13上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道13导通。此时,温度检测器114-13感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1101,解码器711对二进制数1101解码,以使选择通道14上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道14导通。此时,温度检测器114-14感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1110,解码器711对二进制数1110解码,以使选择通道15上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道15导通。此时,温度检测器114-15感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
4根通道控制线为1111,解码器711对二进制数1111解码,以使选择通道16上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道16导通。此时,温度检测器114-16感测的模拟温度信号通过第一模拟多路复用开关710的信号 输出端子COMMON、通道输出线传输给第五转接器800的第四模数转换器820。
需要说明的是,第一模拟多路复用开关710的信号输入端子712数量大于等于温度检测器114的数量,如图41和图42所示,第一模拟多路复用开关710的信号输入端子712数量为16,电极片100具有9个温度检测器114,第一模拟多路复用开关710的信号输入端子712数量大于等于温度检测器114的数量,从而可以保证所有温度检测器114检测到的模拟温度信号均能够被分时输出,但在该示例中,由于温度检测器114的数量仅有9个,因此位于第五转接器800的第五控制器810控制I/O控制单元840仅循环切换选择通道1~9导通,无需控制选择通道10~16导通。
本实施例中,通过10根线芯的第一线缆130即可实现高达16个温度传感器的模拟温度信号的分时输出,从而能够在不增加电极片100与第五转接器800之间的第一线缆130的线芯数量的情况下,达到更大的温度检测器114覆盖率,且由于在电极片100上仅增加设置一个模拟多路复用开关710,相较于传统电极片第一线缆130增加的线芯的重量,能够有效减少电极片100的重量,使得电极片100保持较好的贴敷效果;同时电极片100输出的是模拟温度信号,避免了在电极片100上设置模数转换器等,进一步避免了电极片100的整体重量增加,提高了电极片100的贴敷效果。可选的,第一模拟多路复用开关710选用小尺寸封装的模拟多路复用开关710,以减少模拟多路复用开关710的重量。
需要说明的是,参考图41所示,在其他实施例中,多个温度检测器114的接地端114A共同连接到接地管脚GND0,可与多路复用单元700的接地端子所连的接地线路GND1级联在一条接地线路上,即接地管脚GND0与第一模拟多路复用开关710的接地端子相连,从而可以省去多路复用单元700的接地端子与第一线缆130相连的1根接地线,可进一步减少第一线缆130的线芯数量,使得第一线缆130更加柔软,从而可进一步降低电极片100的重量,提高电极片100的贴敷效果。同理,多个温度检测器114的接地端114A可以共同连接到多路复用单元700的接地端子所连的接地线路GND1,以此省去第一线缆130的1根接地线。
参考图43所示,第五转接器800包括与至少一对第一连接器180电性连接的主控制板。主控制板包括第五控制器810、连接于第五控制器810与第一连接器180之间的第四模数转换器820、与第五控制器810连接的第六通信收发器850以及分别与相应的一个第一连接器180连接并由第五控制器810控制的I/O控制单元840。如图43所示,当电极片100包括4个时,第一连接器180、I/O控制单元840以及第四模数转换器820的采样端均包括4个,4个I/O控制单元840与4个第一连接器180-X1、180-Y1、180-X2和180-Y2一一对应,4个第一连接器180-X1、180-Y1、180-X2和180-Y2与4个电极片100一一对应,其中,每个I/O控制单元840的输出端通过相应的第一连接器180与多路复用单元700的使能端和通道控制端相连,如与第一模拟多路复用开关710的使能控制端子和通道控制端子相连,每个采样端通过相应的第一连接器180与多路复用单元700的输出端相连,如与第一模拟多路复用开关710的信号输出端子相连。
第五控制器810通过每个I/O控制单元840输出通道控制信号给相应电极片100中的多路复用单元700,以使相应电极片100中的多路复用单元700将对应连接的温度检测器114检测到的模拟温度信号分时输出,并通过第四模数转换器820对模拟温度信号进行AD采样以获得温度采样信号,以及通过第六通信收发器850将温度采样信号传输给电场发生器300。如图41至图43所示,第五 控制器810控制4个I/O控制单元840分别驱动4个电极片100中的第一模拟多路复用开关710,第四模数转换器820分时采集4个电极片100上相应的一个的温度检测器114检测的模拟温度信号,并将模拟温度信号转换成数字温度信号传递给第五控制器810,第五控制器810将数字温度信号换算成温度值通过第六通信收发器850传递给与第五转接器800电性连接的电场发生器300。第四模数转换器820的每个采样端与相应的第一连接器180之间还分压连接一第三分压电阻830,该分压电阻为高精电阻器,其与温度检测器114分压,以便于通过第四模数转换器820将模拟温度信号转换为数字温度信号。
如图41至图43所示,单个电极片100的温度采集模块是由其上设置的9个温度检测器114经过第一线缆130、第一连接器180以及1个第三分压电阻830组成,其中,第三分压电阻830的正端接直流电源VCC,另一端与温度检测器114的信号端114B和第四模数转换器820相连,温度检测器114的接地端114A连接接地管脚GND0。
温度检测器114如热敏电阻元件的阻值与温度呈线性关系,温度的变化会同步造成热敏电阻元件的阻值变化,由于直流电源VCC是固定电压,第三分压电阻830的阻值也不受温度变化的影响,因此第四模数转换器820的采样端的电压值线性变化只与热敏电阻元件的阻值相关,且相当于热敏电阻元件与第三分压电阻830两颗电阻串联分压,电阻与电压的关系式为VRT=VCC×(RT/(RT+RS)),其中,VRT为第四模数转换器820的采样端的电压,RT为在温度T(K)时的热敏电阻元件的阻值,RS为第三分压电阻830的阻值。当热敏电阻元件的阻值变化,采集到的电压值随之变化,该电压值为模拟量,通过第四模数转换器820转换为数字温度信号后通过第五控制器810计算可得到当前温度值。
温度与阻值的关系式为RT=RN×eB(1/T-1/TN),其中,RT为在温度T(K)时的热敏电阻元件的阻值,RN为在额定温度TN(K)时的热敏电阻元件的阻值,T为当前温度值(K),B为热敏电阻元件的热敏系数,e为常数(2.71828)。例如,当直流电源VCC为3.3V、热敏电阻元件的热敏系数B为3380且在25℃时的阻值RN为10K时,在采集到的电压VRT为1.5022V时,计算得到的热敏电阻元件的阻值RT约为8355.88Ω,当前温度值T为29.8℃。该***采用的是12位的模数转换芯片,在3.3V供电电压下,可测得的最小电压约为0.8056mV,对应温度最小分辨率约为0.03℃,可测试的温度值精度高。
以此类推,每个电极片100的9个热敏电阻元件均通过位于其上的第一模拟多路复用开关710分时将热敏电阻元件感测到的模拟温度信号并行发送至第四模数转换器820相应的采样通道,再由第五控制器810控制第六通信收发器850通过串行方式传输至与第五转接器800电性连接的电场发生器300。
参考图40所示,第五转接器800还包括与电场发生器300电性连接的第六线缆870。当电极片100包括4个时,如图43所示,第六线缆870包括8根导电线芯,其中4根导电线芯为分别与4个第一连接器180-X1、180-Y1、180-X2和180-Y2相连的交变电源线a1、a2、a3和a4,2根导电线芯为与第五转接器800的第六通信收发器850电性连接的接收数据线RX和发送数据线TX,剩余2根导电线芯为与每个电极片100的至少一个温度检测器114以及第五转接器800的主控制板提供工作电源的电源线VCC和接地线GND。
参考图40所示,第五转接器800与电场发生器300之间设有第六连接器880,第六连接器880适于将电场发生器300电性连接到第五转接器800。第六连接器880为第六插头,同时电场发生器300上设有第二插座310。第六插头与第二插座310为按压式弹簧接插件,即第六连接器880采用接插件的方式将第五转接器800与电场发生器300进行连接。参考图43所示,每个第一连接器如180-X1、180-Y1、180-X2和180-Y2与第六连接器880之间通过交变电源线如a1、a2、a3和a4相连,第六连接器880与第六通信收发器850之间通过接收数据线RX和发送数据线TX相连,第六连接器880的VCC管脚与第五控制器810的供电端相连,第六连接器880的GND管脚接地,第六连接器880的VCC管脚还各自通过一个第三分压电阻830与第四模数转换器820的相应采样端相连。
第五控制器810控制第六通信收发器850将第四模数转换器820转换获得的数字温度信号经由第六连接器880传递给电场发生器300。即,第五转接器800采集到的模拟温度信号(相应温度检测器114的电压值)经第四模数转换器820转成数字温度信号后,经由第六通信收发器850、与第六通信收发器850相连的发送数据线TX和第六连接器880传递给电场发生器300。
上述实施例中,通过在电极片100的转接板(未标号)上设置多路复用单元700,并与转接板(未标号)上设置的多个温度检测器114相连,以将每个温度检测器114检测到的模拟温度信号分时输出,能够在不增加第一线缆130线芯数量的情况下,达到更大的温度检测器114覆盖率;另外,在电极片100上的温度检测器114的数量较多的情况下,大大减少了第一线缆130的重量,而电极片100只增加了多路复用单元700的重量,可避免了电极片100的负重过大,保持了电极片100的贴敷效果;同时电极片100输出的是模拟温度信号,未在电极片100上设置第四模数转换器820等,进一步避免电极片100的整体重量增加,提高了电极片100的贴敷效果。
参考图44所示,为本公开另一个实施例的电极片100’的结构示意图。本实施例中的电极片100’的转接板120’上具有比前述电极片100更多的电极元件112和温度检测器114,还具有与多个温度检测器114的信号端114B连接的第一模拟多路复用开关710,本实施例中电极片100的电极元件112、温度检测器114和第一模拟多路复用开关710与前述实施例的电极片100的电极元件112、温度检测器114和第一模拟多路复用开关710相同,故沿用之前的标号。与前述实施例的电极片100相比,本实施例的电极片100’的多路复用单元700’还包括第二模拟多路复用开关720和反相器730,第二模拟多路复用开关720的使能控制端子与反相器730的输出端相连,反相器730的输入端与第一模拟多路复用开关710的使能控制端子相连,第二模拟多路复用开关720的每个通道控制端子与第一模拟多路复用开关710的每个通道控制端子对应相连,第二模拟多路复用开关720的信号输出端子与第一模拟多路复用开关710的信号输出端子相连。也就是说,第一模拟多路复用开关710和第二模拟多路复用开关720共用使能控制线、通道控制线和通道输出线,但在共用使能控制线时,中间增加了反相器730,从而不管使能控制线的电平是高还是低,在同一时刻仅有一个模拟多路复用开关有效,此外,第一模拟多路复用开关710和第二模拟多路复用开关720还共用直流供电线、接地线以及交变电源线,从而能够在不增加任何线芯的情况下,实现对更多温度检测器114的模拟温度信号的传输。
如图44所示,电极片100’的转接板120’上设置有20个电极元件112,且每个电极元件112对应设置有一个温度检测器114,若第一模拟多路复用开关710的信号输入端子712的数量为16 个,那么显然温度检测器114的数量超过了第一模拟多路复用开关710的信号输入端子712的数量,此时需要增加第二模拟多路复用开关720,以增加信号输入端子712的数量,也即增加选择通道的数量,以实现20个温度检测器114的模拟温度信号的传输。可选的,第一模拟多路复用开关710和第二模拟多路复用开关720的结构可均为图42所示结构,即均具有4个通道控制端子SA、SB、SC和SD、以及16个信号输入端子712,以通过两个模拟多路复用开关实现超过16个温度检测器114的模拟温度信号的传输。
如图44所示,当使能控制线为1(1表示高电平)时,第一模拟多路复用开关710的使能控制端子INHIBIT有效,若:
通道控制线为0000,第一模拟多路复用开关710的解码器711对二进制数0000解码,以使选择通道1上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道1导通。此时,温度检测器114-1感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0001,第一模拟多路复用开关710的解码器711对二进制数0001解码,以使选择通道2上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道2导通。此时,温度检测器114-2感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0010,第一模拟多路复用开关710的解码器711对二进制数0010解码,以使选择通道3上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道3导通。此时,温度检测器114-3感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0011,第一模拟多路复用开关710的解码器711对二进制数0011解码,以使选择通道4上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道4导通。此时,温度检测器114-4感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0100,第一模拟多路复用开关710的解码器711对二进制数0100解码,以使选择通道5上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道5导通。此时,温度检测器114-5感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0101,第一模拟多路复用开关710的解码器711对二进制数0101解码,以使选择通道6上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道6导通。此时,温度检测器114-6感测的模拟温度信号通过第一模拟多 路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0110,第一模拟多路复用开关710的解码器711对二进制数0110解码,以使选择通道7上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道7导通。此时,温度检测器114-7感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0111,第一模拟多路复用开关710的解码器711对二进制数0111解码,以使选择通道8上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道8导通。此时,温度检测器114-8感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1000,第一模拟多路复用开关710的解码器711对二进制数1000解码,以使选择通道9上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道9导通。此时,温度检测器114-9感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1001,第一模拟多路复用开关710的解码器711对二进制数1001解码,以使选择通道10上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道10导通。此时,温度检测器114-10感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1010,第一模拟多路复用开关710的解码器711对二进制数0010解码,以使选择通道11上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道11导通。此时,温度检测器114-11感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1011,第一模拟多路复用开关710的解码器711对二进制数1011解码,以使选择通道12上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道12导通。此时,温度检测器114-12感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1100,第一模拟多路复用开关710的解码器711对二进制数1100解码,以使选择通道13上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道13导通。此时,温度检测器114-13感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换 器820。
通道控制线为1101,第一模拟多路复用开关710的解码器711对二进制数1101解码,以使选择通道14上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道14导通。此时,温度检测器114-14感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1110,第一模拟多路复用开关710的解码器711对二进制数1110解码,以使选择通道15上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道15导通。此时,温度检测器114-15感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为1111,第一模拟多路复用开关710的解码器711对二进制数1111解码,以使选择通道16上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道16导通。此时,温度检测器114-16感测的模拟温度信号通过第一模拟多路复用开关710的信号输出端子COMMON以及通道输出线传输给第五转接器800的第四模数转换器820。
当使能控制线为0(0表示低电平)时,通过反相器730反相后,使得第二模拟多路复用开关720的使能控制端子有效,若:
通道控制线为0000,第二模拟多路复用开关720的解码器对二进制数0000解码,以使选择通道1上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道1导通。此时,温度检测器114-17感测的模拟温度信号通过第二模拟多路复用开关720的信号输出端子以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0001,第二模拟多路复用开关720的解码器对二进制数0001解码,以使选择通道2上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道2导通。此时,温度检测器114-18感测的模拟温度信号通过第二模拟多路复用开关720的信号输出端子以及通道控输出传输给第五转接器800的第四模数转换器820。
通道控制线为0010,第二模拟多路复用开关720的解码器对二进制数0010解码,以使选择通道3上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道3导通。此时,温度检测器114-19感测的模拟温度信号通过第二模拟多路复用开关720的信号输出端子以及通道输出线传输给第五转接器800的第四模数转换器820。
通道控制线为0011,第二模拟多路复用开关720的解码器对二进制数0011解码,以使选择通道4上的模拟开关元件TG导通,并使其它选择通道上的模拟开关元件TG关断,从而使得16个选择通道中仅有选择通道4导通。此时,温度检测器114-20感测的模拟温度信号通过第二模拟多路复用开关720的信号输出端子以及通道输出线传输给第五转接器800的第四模数转换器820。
需要说明的是,当电场治疗***包括图44所示电极片100时,所对应的第五转接器800和电场发生器300等,与采用图41所示电极片100时所对应的第五转接器800和电场发生器300等均 相同,区别在于位于第五转接器800的第五控制器810控制I/O控制单元840循环切换的选择通道数量不同,如图41所示,I/O控制单元840仅循环切换选择通道1~9导通,无需控制选择通道10~16导通,如图44所示,I/O控制单元840需要循环切换选择通道1~20导通。
上述实施例中,通过在电极片100’的由柔性线路板构成的转接板120’上设置多路复用单元700’,并与转接板120’上设置的多个温度检测器114相连,以将每个温度检测器114检测到的模拟温度信号分时输出,能够在不增加第一线缆130线芯数量的情况下,达到更大的温度检测器114覆盖率。
本公开提供了一种肿瘤治疗设备,包括:前述的电极片100、100’,或者前述的电场治疗***。
根据本公开实施例的肿瘤治疗设备,通过前述的电极片100、100’或者电场治疗***,能够在不增加第一线缆130线芯数量的情况下,达到更大的温度检测器114覆盖率,且由于在电极片100上仅增加设置多路复用单元700、700’,相较于传统电极片第一线缆130增加的线芯的重量,能够有效减少电极片100、100’的重量,避免了电极片100、100’的负重过大,保持了电极片的贴敷效果。
第六些实施例
图45至图52所示为本公开一实施方式的电极片100。电极片100可直接与前述电场发生器300插接实现其与电场发生器之间的电性连接,也可以直接与前述第一转接器200插接,再通过第一转接器200与电场发生器300电性连接,实现其与电场发生器之间的电性连接。电极片100包括至少一个电极单元110、与至少一个电极单元110可拆卸连接的转接板120、与转接板120电性连接的第一线缆130、与电极单元110和转接板120的相应部分粘贴的背衬140、围设在电极单元110相应部分周围并粘贴至背衬140上的支撑件150以及覆盖支撑件150和电极单元110相应部分并与患者肿瘤部位对应的体表皮肤贴合的粘贴件160。电极片100通过背衬140贴合于患者肿瘤部位对应的体表,并通过与转接板120可拆卸连接的至少一个电极单元110向患者肿瘤部位施加交变电场以干扰或阻止患者肿瘤细胞的有丝***,从而实现***的目的。本公开通过至少一个电极单元110与由柔性线路板构成的转接板120可拆卸连接组成电极片100,可以实现可拆卸替换失效的电极单元110,或可拆卸替换失效的转接板120,可在产品出货前减少整片电极片100损耗,减少电极片100的良率损失,可在电极片100使用时,避免造成整片电极片100报废,节约成本;也可通过自由选择插接至转接板120上的电极单元110的数量以根据肿瘤大小适应性地调整通过电极片100施加的交变电场的强度。
参考图47A与图47B,每个电极单元110均包括柔性板基体111、分别设于柔性板基体111两侧的支撑板113与电极元件112以及设于柔性板基体111位于电极元件112同一侧表面的公座115。电极元件112与公座115分别位于柔性板基体111的相对两端,电极元件112与支撑板113位于柔性板基体111的同一端。本实施例中,支撑板113与电极元件112的尺寸均略小于柔性板基体111的尺寸。
电极元件112由高介电常数材料制成,其具有阻碍直流电的导通、允许交流电通过的导电特性, 可在肿瘤电场治疗时保证使用者安全。电极元件112的中心具有一贯穿的开孔1120。电极单元110还包括设于柔性板基体111上并与电极元件112位于同一侧的温度检测器114。温度检测器114收容于电极元件112中心的开孔1120内,用以感测与电极片100相贴敷的患者皮肤的温度。温度检测器114具有一接地端114A和一信号端114B。优选的,温度检测器114为热敏电阻。
参考图48,柔性板基体111内嵌设有三条第一导电迹线1114。三条第一导电迹线1114包括与温度检测器114的接地端114A和公座115均电性连接的第一接地线1114A、与温度检测器114的信号端114B和公座115均电性连接的传递温度信号的第一信号线1114B以及一呈环状设置的并与电极元件112和公座115电性连接的第一AC线1114C。第一接地线1114A与第一信号线1114B均延柔性板基体111的长度方向延伸设置。第一AC线1114C沿柔性板基体111的周缘呈环状设置并在柔性板基体111设置公座115的部位呈首尾电性连接的两段状构造,即公座115通过两段线路与电极元件112电性连接,因此,当其中一段第一AC线1114C因弯折断开时,还可以由另一段第一AC线1114C向电极元件112传输电信号,确保电极单元110的电性可靠性,提高了产品品质、降低产品不良率。第一接地线1114A与第一信号线1114B均位于环形的第一AC线1114C内部,以便于布线,降低布线难度。
具体地,第一AC线1114C沿柔性板基体111的周缘呈封口的环状设置,其包括与电极元件112位于同一端并呈圆弧状设置的第一AC线段1115以及由第一AC线段1115延伸并呈倒“Π”型设置的第二AC线段1116。第一AC线段1115与设于柔性板基体111上的电极元件112电性连接。第二AC线段1116的一端与第一AC线段1115的相对两末端均连接,另一端与设于柔性板基体111上的公座115焊接连接。电极单元110通过电极元件112与柔性板基体111的第一AC线1114C的第一AC线段1115电性连接、柔性板基体111的第一AC线1114C的第一AC线段1115与第二AC线段1116的一端连接、柔性板基体111的第一AC线1114C的第二AC线段1116的另一端与公座115电性连接实现电极元件112与公座115间的电性连接。
第二AC线段1116是由第一AC线段1115的相对两末端分别沿柔性板基体111的长度方向延伸后在远离第一AC线段1115的端部封闭的。第二AC线段1116由第一AC线段1115的一末端先朝远离电极元件112的方向延伸后朝第一AC线段1115的另一末端弯折延伸后再朝向第一AC线段1115的另一末端方向延伸直至与第一AC线段1115的另一末端连接。第二AC线段1116包括由第一AC线段1115一端延伸设置并呈“L”型构造的部分以及由第一AC线段1115另一末端延伸并呈“I”字型构造的部分。第二AC线段1116具有与第一AC线段1115的两相对末端分别连接的两部分,可在其中一部分与第一AC线段1115的一末端因弯折而断开时通过其另一部分与第一AC线段1115的另一末端连接,以确保其与第一AC线段1115间的电性连接,进而实现电极元件112与公座115间具有良好、稳定的电性连接。也即,第一AC线1114C的第二AC线段1116与圆弧状的第一AC线段1115的相对两末端同时连接,即使在第二AC线段1116与第一AC线段1115的一末端因弯折断开时仍然可通过第二AC线段1116与第一AC线段1115的另一末端之间的连接而向电极元件112传输电信号,确保电极单元110的电极元件112与柔性板基体111之间电性连接的可靠性,提高了产品品质、降低产品不良率。第一接地线1114A与第一信号线1114B均位于第一AC线1114C圈设的区域内,以便于布线,降低布线难度。
柔性板基体111的同一侧表面还设有多个呈间隔状设置并与电极元件112焊接的导电盘1111、两个分别与温度检测器114的接地端114A和信号端114B焊接的第一焊盘1112以及多个与公座115焊接的第二焊盘1113。导电盘1111与第一焊盘1112均位于柔性板基体111的同一端,第二焊盘1113位于柔性板基体111的另一端。多个导电盘1111分别与嵌设于柔性板基体111内的第一AC线1114C的第一AC线段1115电性连接,并通过圆弧状的第一AC线段1115串接在一起。柔性板基体111通过第一AC线1114C的第一AC线段1115与导电盘1111电性连接以及导电盘1111与电极元件112焊接实现其与电极元件112之间的电性连接。
两个第一焊盘1112位于多个导电盘1111围设的中间位置处。与温度检测器114的接地端114A焊接的第一焊盘1112为第一焊盘1112A,与温度检测器114的信号端114B焊接的第一焊盘1112为第一焊盘1112B。第一焊盘1112A设于第一接地线1114A位于第一AC线1114C的第一AC线段1115内的末端,第一焊盘1112B设于第一信号线1114B位于第一AC线1114C的第一AC线段1115内的末端。第一焊盘1112A与第一接地线1114A的一末端电性连接,第一焊盘1112B与第一信号线1114B的一末端电性连接。柔性板基体111通过与第一接地线1114A连接的第一焊盘1112A焊接温度检测器114的接地端114A以及与第一信号线1114B连接的第一焊盘1112B焊接温度检测器114的信号端114B实现其与温度检测器114间的电性连接。
第二焊盘1113与第一焊盘1112分别设于柔性板基体111的相对两端。第二焊盘1113设于柔性板基体111远离电极元件112的一端并与公座115焊接,实现其与公座115间的电性连接。第二焊盘1113至少为3个,包括一通过第一接地线1114A与第一焊盘1112A电性连接的第二焊盘1113A、一通过第一信号线1114B与第一焊盘1112B电性连接的第二焊盘1113B以及至少一个通过第一AC线1114C与导电盘1111电性连接第二焊盘1113C。第二焊盘1113A与第一焊盘1112A分别设于第一接地线1114A的相对两末端,并通过第一接地线1114A实现两者之间的电性连接。第二焊盘1113B与第一焊盘1112B分别设于第一信号线1114B的相对两末端,并通过第一信号线1114B实现两者之间的电性连接。第二焊盘1113C与导电盘1111分别设于第一AC线1114C的相对两端,并通过第一AC线1114C实现两者之间的电性连接。第二焊盘1113C设于第一AC线1114C的第二AC线段1116的末端,导电盘1111设于第一AC线1114C的第一AC线段1115上。柔性板基体111通过设于第一AC线1114C的第一AC线段1115上的导电盘1111与电极元件112焊接、设于第一AC线1114C的第二AC线段1116末端的第二焊盘1113C与公座115焊接,实现公座115与电极元件112之间的电性连接。柔性板基体111通过设于第一接地线1114A一末端的第一焊盘1112A与温度检测器114的接地端114A焊接、设于第一信号线1114B一端的第一焊盘1112B与温度检测器114的信号端114B焊接、设于第一接地线1114A另一末端的第二焊盘1113A以及设于第一信号线1114B另一末端的第二焊盘1113B均与公座115焊接实现温度检测器114与公座115间的电性连接。
与公座115焊接的第二焊盘1113至少为三个,可在公座115通过该些第二焊盘1113焊接至柔性板基体111上时使公座115与柔性板基体111的焊接牢固,确保公座115与柔性板基体111之间具有良好的电性连接。且导电盘1111通过设于第一AC线1114C的第二AC线段1116上的至少一个第二焊盘1113C与公座115焊接,可确保导电盘1111与公座115之间具有稳定的电性连接,以便将肿瘤治疗用的电信号经第一AC线1114C传输至导电盘1111,再通过导电盘1111传输至电极元 件112。本实施例中,由四个与公座115焊接的第二焊盘1113C分别连接第一AC线1114C的第二AC线段1116。为实现本申请加固公座115与柔性板基体111的焊接牢固程度的目的,本申请还可以有其他的实施方式。例如,多个第二焊盘1113中的一个连接第一接地线1114A、一个连接第一AC线1114C的第二AC线段1116,剩余的分别与相应的第一信号线1114B一一对应连接。再例如,多个第二焊盘1113中的一个连接第一信号线1114B、一个连接第一AC线1114C、剩余的分别连接第一接地线1114A。即,多个第二焊盘1113中的两个分别连接第一接地线1114A、第一信号线1114B和第一AC线1114C中的两路线路,剩余的第二焊盘1113均连接第一接地线1114A、第一信号线1114B和第一AC线1114C中的剩余的一路线路。
温度检测器114的接地信号通过与接地端114A电性连接的第一接地线1114A传输至与第一接地线1114A电性连接的相应第二焊盘1113A上;温度检测器114检测的温度信号通过与其信号端114B电性连接的第一信号线1114B传输至与第一信号线1114B电性连接的相应第二焊盘1113B;并通过第二焊盘1113与公座115焊接、公座115与转接板120插接、转接板120与第一线缆130电性连接、第一线缆130与电场发生器插接而将温度检测器114检测的温度信号传递至电场发生器,进而达到电场发生器通过检测的温度信号控制传递至电极元件112上的交变电信号,避免温度过高导致患者肿瘤体表低温烫伤的目的。电场发生器生成的AC信号通过相应的至少两个第二焊盘1113C传输至环状设置的第一AC线1114C,再通过与第一AC线1114C焊接的多个导电盘1111传递至电极元件112,以向肿瘤部位施加AC电信号进行肿瘤电场治疗。电极元件112所需的AC信号为交流电信号,由电场发生器输出。电场发生器还输出直流电信号提供给温度检测器114,使温度检测器114接通接地信号并运行工作产生温度信号。
支撑板113通过粘结剂(未图示)粘设于柔性板基体111远离导电盘1111的一侧表面上。支撑板113与电极元件112沿厚度方向一一对应。温度检测器114焊接设于柔性板基体111与两个第一焊盘1112对应的位置处,电极元件112焊接设于柔性板基体111与多个导电盘1111对应的位置处,公座115通过焊接设置于柔性板基体111的第二焊盘1113位置处。温度检测器114、电极元件112以及支撑板113均设于柔性板基体111同一端。在焊接温度检测器114及电极元件112时,支撑板113为柔性板基体111提供强度支撑,为柔性板基体111与温度检测器114、电极元件112之间的焊接操作提供平整的焊接平面,提高产品良率。柔性板基体111位于焊接公座115的一端粘贴设有补强板116,补强板116设于柔性板基体111与公座115相对的一侧表面上,以为柔性板基体111提供强度支撑,以便将公座115焊接至其上,同时,还避免电极单元110的公座115在与转接板120插拔时导致柔性板基体111与公座115焊接处的部位弯折而使柔性板基体111内部嵌设的导电迹线断裂。补强板116与公座115分别设于柔性板基体111的相对两侧。补强板116与公座115位于柔性板基体111的同一端。
转接板120设有至少一个与电极单元110的公座115相对应且电性连接的母座125。多个电极单元110可分别通过相应的公座115与转接板120上相应的母座125插接组合形成具有至少一个电极单元110的电极片100,本公开借由电极单元110与转接板120可拆卸组合,可以实现可拆卸替换失效的电极单元110,或可拆卸替换失效的转接板120,避免整片电极片100报废,减少电极片100的良率损失;避免整片电极片100报废,避免浪费,降低成本;同时还可以自由组合选择插接 至转接板120上的电极单元110数量,以增大或减小电极片100产生的电场强度进而确保电极片100产生患者肿瘤部位所需大小的电场强度。
转接板120呈片状设置,其具有一插接组合至少一个电极单元110的本体128与一电性连接第一线缆130的接线部127。接线部127与本体128一体设置。接线部127位于本体128的一侧末端。与电极单元110的公座115插接的母座125通过焊接设于本体128上。第一线缆130通过与接线部127焊接实现其与转接板120间的电性连接。电极片100的电极单元110通过其公座115与焊接在转接板120上的母座125插接实现其与转接板120间的电性连接,转接板120通过其接线部127与第一线缆130焊接实现其与第一线缆130间的电性连接。电极片100的电极单元110通过转接板120实现与第一线缆130间的电性连接。优选的,转接板120为柔性线路板,多个电极单元110均并行连接于转接板120,即使某一电极单元110与转接板120间的电性连接中断,也不会影响其余的电极单元110与转接板120间的电性连接。
参考图50A与图50B,转接板120具有设于本体128上并与相应的母座125焊接至少一组第三焊盘123以及设于接线部127相对两侧面并与第一线缆130焊接的多个第四焊盘124。每组第三焊盘123的配置与电极单元110的第二焊盘1113的配置相同,每组第三焊盘123具有多个第三焊盘123,多个第三焊盘123中的一个第三焊盘123A连接接地信号、一个第三焊盘123B连接温度信号,剩余的第三焊盘123C均连接AC信号。一组第四焊盘124具有多个第四焊盘124。多个第四焊盘124包括一个传输接地信号的第四焊盘124A、一个传输AC信号的第四焊盘124C以及多个分别传输相应的温度信号的第四焊盘124B。多组第三焊盘123中传输接地信号的第三焊盘123A均并行连接至一个第四焊盘124A,多组第三焊盘123中传输AC信号的多个第三焊盘123C均并行连接至一个第四焊盘124C,多组第三焊盘123中传输温度信号的第三焊盘123B均一一连接对应的第四焊盘124B。
转接板120内部嵌设有多路第二导电迹线126。多组第三焊盘123与第四焊盘124A、124B、124C分别设于多路第二导电迹线126的相对两端,并通过第二导电迹线126实现两者之间的电性连接。多组第三焊盘123呈并行连接状设于多路第二导电迹线126的一端,可在多个电极单元110通过其相应的公座115分别插接至与多组第三焊盘123焊接的母座125上后使多个电极单元110并行连接至转接板120上,进而使各个电极单元110与转接板120之间的信号传输独立、互不影响,即使其中某一个电极单元110损坏也不会影响其余电极单元110与转接板120之间的信号传输,确保其余电极单元110正常工作,无需更换或报废整个电极片100。
多路第二导电迹线126包括一路传输接地信号的第二接地线126A、一路传输AC信号的第二AC线126C和多路分别传输相应的温度信号的第二信号线126B。第二AC线126C传输AC信号,呈树枝状布线设置,并与每组第三焊盘123中连接AC信号的一个第三焊盘123C、第四焊盘124中连接AC信号的一个第四焊盘124C电性连接,可使每个与相应的第三焊盘123对应的母座125组装的电极单元110处于等电势的状态,确保电极片100的AC信号稳定性。每组第三焊盘123中连接AC信号的一个第三焊盘123C均呈并联的方式连接至第二AC线126C,即每个与相应的第三焊盘123对应的母座125组装的电极单元110的AC信号通断互不影响。即使在使用过程中,存在电极单元110损坏也不影响其他电极单元110继续向患者肿瘤部位施加交变电场进行肿瘤电场治疗。第二接地线126A传输接地信号,呈树枝状布线设置,并与每组第三焊盘123中连接接地信号的一个第三焊盘 123A、第四焊盘124中连接接地信号的一个第四焊盘124A电性连接。每组第三焊盘123中连接接地信号的一个第三焊盘123A均呈并联的方式连接至第二接地线126A,即每个与相应的第三焊盘123对应的母座125组装的电极单元110的接地信号通断互不影响。多路第二信号线126B分别传输相应的温度信号,并分别与相应的一组第三焊盘123中连接温度信号的一个第三焊盘123B、该组第四焊盘124中连接温度信号的相应的一个第四焊盘124B一一对应电性连接。借由上述第三焊盘123、第四焊盘124与多路第二导电迹线126的连接关系,至少一组第三焊盘123呈并行连接,以实现至少一个电极单元110并联连接至转接板120,各个电极单元110的AC信号、接地信号及温度信号的通断互不影响。
也即,多个第三焊盘123C呈并行状连接至第二AC线126C。多个第三焊盘123A也呈并行状连接至第二接地线126A。多个第三焊盘123B分别连接至各自对应的一路第二信号线126B,并通过各自对应的一路第二信号线126B连接与其相应的第四焊盘124B。各母座125通过与相应组的第三焊盘123焊接而并行设于转接板120上,可在各电极单元110通过其相应的公座115插接至相应的母座125上后使各电极单元110并行连接至转接板120上,进而使得各电极单元110与转接板120之间的信号通断互不影响,即使其中某一个电极单元110损坏或其与转接板120之间电性连接断开也不会影响其余电极单元110与转接板120之间的电性连接与信号传输。
传输接地信号的多个第三焊盘123A与传输接地信号的一个第四焊盘124A分别设于一路第二接地线126A的相对两端,并通过该路第二接地线126A实现相应的第三焊盘123A与第四焊盘124A之间的电性连接,且多个第三焊盘123A呈并行连接状设于第二接地线126A的一端,可使多个电极单元110插接至转接板120的相应母座125后使各电极单元110的接地信号传输独立、互不影响。传输温度信号的每路第二信号线126B一端均连接有传输温度信号的一个第三焊盘123B,另一端均连接有传输温度信号且与该第三焊盘123B相应的一个第四焊盘124B,以分别传输各电极单元110的温度检测器114采集的温度信号,可在各电极单元110插接至转接板120上后使各个电极单元110之间的温度信号传输独立、互不影响。
传输AC信号的多个第三焊盘123C与传输AC信号的一个第四焊盘124C分别设于一路第二AC线126C的相对两端,并通过该路第二AC线126C实现相应第三焊盘123C与第四焊盘124C之间的电性连接,且多个第三焊盘123C均呈并行连接状设于第二AC线126C的一端。传输AC信号的第二AC线126C呈树枝状布线,其一端与每组第三焊盘123中的一个第三焊盘123C电性连接,另一端与多个第四焊盘124中的一个第四焊盘124C电性连接,可在各个电极单元110通过其相应的公座115插接至转接板120相应的母座125上后使各电极单元110的AC信号传输独立、互不影响。
在本实施例中,第四焊盘124的数量比第二导电迹线126的数量多,其包括与相应的第二导电迹线126电性连接的导通焊盘124A、124B、124C。第四焊盘124还包括一个与第二导电迹线126呈断开状设置的虚拟焊盘124D,可加强柔性转接板120与第一线缆130的焊接牢固度。
在本实施例中,转接板120内部嵌设的多路第二导电迹线126分设于两层布线层,以避免各路第二导电迹线126相互干扰。本实施例中,第二AC线126C分布于一层,第二接地线126A及第二信号线126B均分布于两层布线层中,以避开第二AC线126C。在其他实施例中,转接板120内部嵌设的多路第二导电迹线126分设于三层布线层或三层以上的布线层,可提高多路第二导电迹线 126布线的灵活性。
如图49、图50A和图50B所示,在本实施例中,转接板120具有多个分别与相应组的第三焊盘123焊接的母座125。多个母座125分别间隔地焊接设置于本体128上。转接板120的本体128还具有一个主干121和至少一个枝干122。接线部127位于本体128的主干121的一末端。转接板120的第二导电迹线126嵌设于本体128的主干121与枝干122内。多个母座125分别间隔地焊接设置于一个主干121和至少一个枝干122上,以此通过母座125与电极单元110的公座115的插接配合而将多个电极单元110间隔地组设在转接板120上,同时实现多个电极单元110与转接板120之间电性连接。
本实施例中,转接板120的本体128的主干121设有至少一个贯穿状设置的镂空孔1211。转接板120的本体128的镂空孔1211能够容许相应的电极单元110的电极元件112穿过,使相应的电极单元110的电极元件112能够向转接板120远离母座125的一侧露出,进而使相应的电极单元110的电极元件112能够穿过转接板120配置于人体皮肤表面。
本实施例中,转接板120具有1个主干121和由主干121朝两侧延伸设置的4个枝干122,主干121的两侧分别设置2个枝干122。位于主干121不同侧的枝干122呈两两对齐状设置。位于主干121同一侧的相邻两枝干122之间具有能够容许相应的电极单元110的电极元件112穿过的间隔1221,使相应的电极单元110的电极元件112能够向转接板120远离母座125的一侧露出,进而使相应的电极单元110的电极元件112能够穿过转接板120配置于人体皮肤表面。
在本实施例中,转接板120上设有13个母座125,13个母座125分别布设在本体128的1个主干121和4个枝干122上。主干121上设有3个母座,靠近接线部127的两个枝干122上分别设有2个母座,另外两个枝干122上分别设有3个母座。主干121上贯穿设有两个镂空孔1211以分别收容相应的1个电极单元110的介电元件。位于主干121上的3个母座125、设于主干121上的两个镂空孔1211以及接线部127均呈轴对称状设置,且三者的对称轴所在直线重合。如图49所示,位于主干121上的3个母座125与设于主干121上的两个镂空孔1211呈纵向对齐状设置。位于主干121上的3个母座125中的2个设于远离接线部127的一个镂空孔1211的同一侧,另一个设于主干121位于两个镂空孔1211之间的位置处。
靠近接线部127的枝干122上设置的2个母座125大致呈“L”型布设于相应的枝干122上。远离接线部127的枝干122上设置的3个母座125大致呈一端开口的“Π”型布设于相应的枝干122上,且3个母座125构成的“Π”的开口朝向主干121。设于枝干122上的多个母座125均沿主干121的纵向对称轴呈对称状设置。位于主干121同一侧的两枝干122上的5个母座125中的2个呈纵向对齐状分别设于相应枝干122的端部,剩余3个呈纵向对齐状分别设于相应枝干122靠近主干121的位置处。设于主干121上的3个母座125呈纵向对齐状设置。位于主干121相对两侧且均靠近接线部127的枝干122上的4个母座125两两呈横向对齐状设置,具体地,分别设于靠近接线部127的两枝干122端部的两母座125呈横向对齐状设置,分别设于靠近接线部127的两枝干122上且靠近主干121的两母座125也呈横向对齐状设置。设于远离接线部127的两枝干122上且位于相应枝干122端部的两母座125呈横向对齐状设置,设于远离接线部127的两枝干122上且位于相应枝干122靠近主干121位置处的4个母座125中的2个呈横向对齐状设置,另外2个也呈横 向对齐状设置。
在本实施例中,位于枝干122上的母座125均布设于相应枝干122的边缘,位于主干121上的母座125与位于枝干122上相应的母座125分别呈横向对齐设置,以便于转接板120的第二导电迹线126布线设置,使各母座125通过第二导电迹线126并行连接设置于转接板120上。结合图49和图51B所示,与位于各个枝干122端部的母座125拆卸连接的电极单元110呈横向组设与转接板120上,与位于各个枝干122端部之外的母座125拆卸组合的电极单元110均呈纵向组设与转接板120上。在其他实施例中,由于电极单元110呈并行的连接于转接板120上,各个电极单元110的AC信号、接地信号及温度信号的通断互不影响,转接板120上拆卸组合的电极单元110的数量少于转接板120上母座125的数量。
结合图45A、图49、图50A及图50B,第一线缆130的一端与转接板120的接线部127电性连接,另一端设有第一插头132。优选的,第一线缆130为雷莫母头护套线。第一线缆130具有多个线芯(未图示),每个线芯(未图示)分别焊接至接线部127两侧表面的相应的第四焊盘124。本实施例中,电极片100的电极单元110的数量为13个,第一线缆130的线芯(未图示)的数量为16个。相应地,第一线缆130中存在与第四焊盘124A、124B、124C焊接通电的线芯(未图示)以及与虚拟焊盘124D焊接不通电的线芯(未图示)。第一线缆130与接线部127焊接处***还包覆设置一圈热缩套管131,用于对转接板120与第一线缆130焊接处进行密封、绝缘保护,避免转接板120与第一线缆130焊接处发生断裂,同时还可以防尘防水。
第一线缆130还包括包覆于多个线芯(未图示)***的屏蔽网格线(未图示)。第四焊盘124还包括一位于接线部127的端部的屏蔽焊盘124E,可与第一线缆130的屏蔽网格线(图示)焊接,以屏蔽第一线缆130,避免外界信号干扰第一线缆130的多个线芯(未图示)传输的信号。屏蔽用的屏蔽焊盘124E与传输接地信号的第四焊盘124A均连接至第二导电迹线126的第二接地线126A上。
如图45A、图45B所示,第一线缆130的第一插头132上还可以插接转接线133,可通过转接线133插接至电场发生器而实现其与电场发生器间的电性连接,也可通过转接线133插接至转接器单元上,再通过转接器单元与电场发生器插接实现其与电场发生器间的电性连接。转接线133可拆卸地与第一线缆130连接,不仅可以根据需要增长或缩短第一线缆130至电场发生器或转接器单元间的距离,还可以在电极片100报废需要更换时仅报废与转接板120焊接的第一线缆130,而无需报废转接线133,可降低成本,避免不必要的浪费。转接线133的线芯(未图示)数与第一线缆130的线芯(未图示)数一致,并一一对应。转接线133为雷默双公头护套线。
背衬140呈片状设置,其具有至少一个与电极单元110对应的并呈贯穿状设置的通孔141。背衬140的通孔141可以容许电极单元110相应部分露出其远离转接板120的一侧表面,有利于将电极片100在肿瘤电场治疗时产生的热量散出。本实施例中,电极单元110的支撑板113穿过背衬140的通孔141并露出背衬140远离转接板120的一侧表面。背衬140的通孔141的尺寸略大于支撑板113的尺寸。
支撑件150呈片状设置,其具有多个呈贯穿状设置的穿孔151。支撑件150的多个穿孔151包括多个分布与相应的电极单元110对应的第一穿孔151A和两个长条状设置并位于多个第一穿孔151A之间的第二穿孔151B。每个第一穿孔151A均收容相应的电极单元110的电极元件112。支撑 件150靠近患者体表一侧的表面与电极元件112靠近患者体表一侧的表面齐平,可以平整地将粘贴件160覆盖在支撑件150和电极元件112上,提升电极片100贴敷的舒适性。两个第二穿孔151B分别与转接板120的主干121侧向延伸设置枝干122的部位相对应,可使电极片100的部分热量从转接板120经过背衬140传递至外界环境达到散热的目的。两个第二穿孔151B均为长孔。第一穿孔151A的尺寸均略大于电极单元110焊接电极元件112一端的尺寸。优选的,支撑件150为泡棉。
粘贴件160设有多条。每条粘贴件160大致呈条形片状设置,其具有双面黏性,其一侧与支撑件150、电极元件112的相应部位贴合,另一侧与患者体表贴合。优选的,粘贴件160为导电水凝胶。每条粘贴件160覆盖至少一个电极单元110的电极元件112。本实施例中,粘贴件160设有5条,每条覆盖2个或3个电极单元110的电极元件112。有3条粘贴件160呈横向平行设置,并均覆盖3个电极单元110的电极元件112;有2条粘贴件160呈纵向平行设置,并均覆盖2个电极单元110的电极元件112。纵向平行设置的2条粘贴件160分布位于横向平行设置的3条粘贴件160的两侧。
电极片100还可以包括至少一离型纸170。离型纸170位于粘贴件160背离背衬140的一侧并覆盖粘贴件160与背衬140的相应部位,以保护粘贴件160与背衬140避免粘贴件160与背衬140玷污。本实施例中,电极片100具有两个离型纸170。两个离型纸170共同覆盖粘贴件160与背衬140。
本公开电场治疗***的第一实施方式的电极片100通过多个电极单元110与转接板120可拆卸连接组成,并且多个电极单元110并联连接至转接板120,因此多个电极单元110的AC信号通断互不影响,即使在使用过程中,存在电极单元110损坏也不影响其他电极单元110继续向患者肿瘤部位施加交变电场进行肿瘤电场治疗,提高了肿瘤电场治疗的电信号的稳定性,在一定程度上可以减少患者的治疗成本。
图53至图55为本公开另一实施方式的电极片100。本实施例的电极片100,包括一个电极单元110、与一个电极单元110可拆卸连接的转接板120、与转接板120电性连接的第一线缆130、与一个电极单元110和转接板120的相应部分粘贴的背衬140、围设在一个电极单元110相应部分周围并粘贴至背衬140的支撑件150以及覆盖支撑件150和一个电极单元110相应部分并与患者肿瘤部位对应的体表皮肤贴合的粘贴件160。电极片100通过背衬140贴合于患者肿瘤部位对应的体表,并通过与转接板120可拆卸连接的1个电极单元110向患者肿瘤部位施加交变电场以干扰或阻止患者肿瘤细胞的有丝***,从而实现***的目的。
与图45至图52中所示实施例的电极片100相比,本实施例的电极片100也包括转接板120、可拆卸地组装在转接板120上的一个电极单元110、与转接板120焊接的第一线缆130、与该电极单元110和转接板120的相应部分粘贴的背衬140、围设在该电极单元110相应部分周围并粘贴至背衬140上的支撑件150以及覆盖支撑件150和电极单元110相应部分并与患者肿瘤部位对应的体表皮肤贴合的粘贴件160。本实施例的电极片100的电极单元110与图45至图52中所示实施例的电极片100的电极单元110具有相同的结构,也包括设于柔性板基体111相对两侧的绝缘板13与电极元件112、与电极元件112位于柔性板基体111同一侧且与电极元件112分别设于柔性板基体111的相对两端的公座115。本实施例的电极片100与第一实施例的电极片100的区别在于:电极 片100仅包括一个与转接板120可拆卸插接的电极单元110,转接板120以及背衬140的形状因插接的电极单元110的数量的不同而不同。
具体参图53A至55B所示,转接板120也包括与电极单元110插接的本体128、设于本体128上的母座125以及由本体128侧向延伸设置的接线部127。电极单元110的公座115通过与母座125插接连接以实现电极单元110与转接板120间的电性连接。接线部127与第一线缆130焊接实现转接板120与第一线缆130间的电性连接。本体128仅具有一个主干121,母座125设于主干121上并与接线部127分别位于主干121的相对两端。主干121上仅具有一组与母座125焊接的第三焊盘123。第三焊盘123包括一个用于传输温度信号的第三焊盘123B、一个用于传输接地信号的第三焊盘123A以及多个用于传输交流电信号的第三焊盘123C。多个第三焊盘123C均与一传输AC信号线电连接。本实施例中第三焊盘123为六个,其中传输温度信号的第三焊盘123B为一个、传输接地信号的第三焊盘123A为一个、传输交流信号的第三焊盘123C为四个。母座125仅为一个。接线部127的两侧表面均设有多个与第一线缆130焊接的第四焊盘124。第四焊盘124包括一个传输接地信号的第四焊盘124A、一个传输温度信号的第四焊盘124B、一个传输交流电信号的第四焊盘124C、多个第四焊盘124D以及一个屏蔽用的第四焊盘124E。第四焊盘124D分别设于转接板120的接线部127的相对两侧。本实施例中第四焊盘124D为七个,其中两个设于转接板120的同一侧,另外五个设于转接板120的另一侧。位于同一侧的两个第四焊盘124D分别呈将与其位于同一侧的三个第四焊盘124A、124B、124C两两间隔开状设于接线部127的端部一侧。第四焊盘124D可与第一线缆130相应的线芯焊接,用于使接线部127与第一线缆130间的焊接更加牢固,避免因接线部127与第一线缆130的焊接部位处在第一线缆130受力拉扯时断开而致使转接板120损坏、无法进行信号传输。
转接板120内嵌设有三条第二导电迹线126。第四焊盘124D均未与第二导电迹线126电性连接。该三条第二导电迹线126分别为第二接地线126A、第二信号线126B以及第二AC线126C。第二接地线126A的一端连接第三焊盘123A,另一端连接一个第四焊盘124A,用于传输接地信号。第二信号线126B的一端连接第三焊盘123B,另一端连接第四焊盘124B,用于传输温度信号。第二AC线126C的一端串联连接剩余的4个第三焊盘123C,另一端连接一个第四焊盘124C,用于传输交流电信号。本实施例中的第四焊盘124的数量多于与第二导电迹线126连接的第四焊盘124的数量,位于接线部127每一侧的第四焊盘124均为5个,其中一侧的第四焊盘124包括分别与第二接地线126A、第二信号线126B以及第二AC线126C电性连接的第四焊盘124A、124B、124C以及未与第二接地线126A、第二信号线126B、第二AC线126C电性连接的两个第四焊盘124D。位于接线部127另一侧的5个第四焊盘124均为第四焊盘124D,其均未与第二导电迹线126电性连接。与第二导电迹线126电性连接的第四焊盘124均为导通焊盘124A、124B、124C,未与均第二导电迹线126电性连接的第四焊盘124均为虚拟焊盘124D。3个导通焊盘124A、124B、124C与第三焊盘123A、23B、23C均位于转接板120的同一侧。屏蔽用的第四焊盘124E为屏蔽焊盘,其也与第二接地线126A电性连接。
第一线缆130具有10个线芯(未图示),其中3个线芯(未图示)分别与接线部127的第四焊盘124中的3个导通焊盘124A、124B、124C一一对应焊接,剩余的7个线芯(未图示)分别与7个虚 拟焊盘124D一一对应焊接。第一线缆130在远离接线部127的一端设有一第一插头132。第一插头132还可以连接一转接线133。转接线133的线芯(未图示)数与第一线缆130的线芯(未图示)数一致,并一一对应。第一线缆130与转接板120的接线部127的焊接处***包覆的热缩套管131。
背衬140大致呈方形片状设置,其边缘设有至少两个凸耳142,以便于操作者手持电极片100并将电极片100贴敷于患者肿瘤部位对应体表。电极单元110远离电极元件112的一侧与背衬140相粘贴。背衬140还粘贴转接板120和热缩套管131的相应部分。热缩套管131还可以包覆在公座115与母座125拆卸组装的***处。
支撑件150大致呈方形片状设置,其中间开设有一个呈贯穿状设置的穿孔151。穿孔151同实施例的第一穿孔151A类似,用以收容电极单元110的电极元件112。与第一实施例相同,支撑件150与电极单元110的电极元件112远离背衬140的一侧表面大致齐平。
粘贴件160大致呈方形片状设置,覆盖与支撑件150与电极单元110的电极元件112远离背衬140的一侧表面。粘贴件160的大小大致与支撑件150的大小相同。
本公开的电场治疗***的电极片100通过至少一个电极单元110与转接板120可拆卸连接组成,以实现可拆卸替换电极片100上失效的电极单元110,或可拆卸替换电极片100上失效的转接板120,减少整片电极片100损耗,减少电极片100的良率损失、避免电极单元110与转接板120其中之一损坏时造成整片电极片100的报废、浪费。此外,本申请的电极片100通过转接板120上设置的多个母座125以及可与母座125插接的电极单元110配合,可根据肿瘤部位大小、肿瘤部位的位置自由选择合适数量的电极单元110插接至转接板120上,可确保电极片100的覆盖面积与施加的交变电场的强度达到肿瘤治疗所需的电场强度。
图56为图45至图55中所示的本公开的电极片100的制造方法,其包括以下步骤:
S11、提供一转接板120,所述转接板120具有至少一组第三焊盘123以及一接线部127;
S12、提供至少一个母座125,将母座125分别焊接在转接板120的相应的第三焊盘123上;
S13、提供一第一线缆130,将第一线缆130组设在转接板120的接线部127;
S14、提供一热缩套管131,将热缩套管131包覆在转接板120与第一线缆130的连接处;
S15、提供至少一个与转接板120可拆卸连接的电极单元110,将电极单元110与转接板120上的母座125卡接;
S16、提供一背衬140,将完成上述步骤的转接板120设置母座125的一侧表面相应部分与电极单元110位于同侧的表面粘设在背衬140上。
在上述步骤S11中,转接板120还包括前述第一实施例和第二实施例的本体128。至少一组第三焊盘123分布于本体128上。本体128与接线部127衔接设置。
在上述步骤S13中,第一线缆130还可以插接一前述第一实施例和第二实施例的转接线133。
本公开电极片100的制造方法还包括以下步骤:
S17、提供一支撑件150,将支撑件150以围绕在电极单元110相应部位的周围状粘设在背衬140上;
S18、提供一粘贴件160,将粘贴件160粘附在支撑件150、电极单元110相应部位远离背衬140的一侧表面;
S19、提供一离型纸170,将离型纸170覆盖于背衬140与粘贴件160靠近患者皮肤一侧的表面。
在上述步骤S17中,支撑件150具有至少一贯穿设置的穿孔151以收容相应的电极单元110相应部位。
参图57,本公开电极片100的电极单元110的制造方法,其包括以下步骤:
S21、提供一柔性板基体111,柔性板基体111一端具有多个呈间隔状设置的导电盘1111以及位于多个导电盘1111围设区域内的两个第一焊盘1112,另一端具有多个第二焊盘1113;
S22、提供一个支撑板113,并将支撑板113以与多个导电盘1111一一对应的方式分别组设在柔性板基体111上,所述支撑板113与导电盘1111分别位于柔性板基体111的相对两侧;
S23、提供一温度检测器114,将温度检测器114焊接在两个第一焊盘1112上;
S24、提供一具有开孔1120的电极元件112,将电极元件112以其开孔内收容相应的温度传感器的方式焊接在多个导电盘1111上,所述温度检测器114收容于电极元件112的开孔1120内;
S25、提供一公座115,将公座115焊接在多个第二焊盘1113上。
步骤S21中的导电盘1111、第一焊盘1112以及第二焊盘1113均设于柔性板基体111的同一侧表面。所述导电盘1111与所述第二焊盘1113分别位于柔性板基体111的相对两端。
第七些实施例
参考图58至图60所示,电极片100包括背衬140、由背衬140支撑的电气功能组件190、与电气功能组件190电性连接的第一线缆130、多个围设于电气功能组件190相应部分***的支撑件150及多个粘附于支撑件150远离背衬140一侧表面的粘贴件160。电气功能组件190包括有柔性线路板制成的转接板120、设置在转接板120上的多个电极元件112和多个温度检测器114,每个电极元件112可施加交变电场,每个温度检测器114对应一个电极元件112设置,以检测相应电极元件112处的温度。如图60所示,电气功能组件190包括呈网格状设置的转接板120、多个间隔设于转接板120上并向患者施加交变电场的电极元件112以及多个组设于转接板120上的温度检测器114。每个电极元件112上设有开孔1120,开孔1120适于安装温度检测器114。例如每个电极元件112的中部具有贯穿的开孔1120,每个温度检测器114收容于相应的电极元件112的开孔1120中。本实施例中,电极片100的电极元件112和温度检测器114均为20个。可选的,电极元件112为介电元件,如陶瓷片。电气功能组件190还包括位于转接板120远离电极元件112一侧的支撑板113,为转接板120提供强度支撑。每个支撑件150具有多个穿孔151,电极元件112分别收容于相应的支撑件150的穿孔151内。多个粘贴件160与相应的支撑件150一一对应。电极元件112还可为设于转接板12上的高分子介电层,温度按检测器114为设于转接板120上并可检测对应的电极元件112温度的位置即可,其也可为能检测由高分子介电层形成的电极元件112的温度的其他元件。电极元件112上可不设收容温度检测器114的开孔或空间。
需要说明的是,本公开中,相同名称、相同标号的元件,在肿瘤电场治疗领域,仅表示在电路连接、电气功能上一致,并不表示其形态和结构一致。例如,图2和图4的电极片,都为电极片100,但是图2中的电极片100包括20个电极单元,而图4中的电极片100包括13个电极单元, 两个电极片100的功能都是相同的,但结构是不同的。对于其它情况这里就不再一一说明。
本公开以上仅为本公开的较佳实施方式而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (133)

  1. 一种电极片,其特征在于,包括:
    多个电极元件,被配置成用于施加交变电场;
    多个温度检测器,与多个所述电极元件分别一一对应设置并配置成用于监测与其对应的电极元件处的温度且输出检测信号,每一温度检测器均具有一接地端与一信号端;以及
    多路第二接地线以及多路第二信号线,多路所述第二接地线共同将所有温度检测器的接地端短接接地,多路所述第二信号线共同将所有温度检测器的信号端连接并用于传输所述温度检测器的检测信号;
    其中,每一所述温度检测器以及与其对应的一个电极元件构成一个电极单元,多个所述温度检测器与多个所述电极元件构成多个所述电极单元,多个所述电极单元被分为不同组,每组至少包括一个电极单元,所述第二接地线与所述第二信号线的总路数少于所述温度检测器的个数。
  2. 根据权利要求1所述的电极片,其特征在于,所述电极片还包括:
    转接板,其上间隔设置多个所述电极元件与多个所述温度检测器,其内嵌设有一路第二AC线、多路所述第二接地线以及多路所述第二信号线,所述第二AC线被配置成电性连接设于所述转接板上的所有电极元件并向所有电极元件传输交变电信号。
  3. 根据权利要求1所述的电极片,其特征在于,同组的各所述电极单元的温度检测器的接地端均与同一路第二接地线短接接地,同组的各所述电极单元的温度检测器的信号端分别连接与其对应且各不相同的第二信号线。
  4. 根据权利要求3所述的电极片,其特征在于,不同组且对应的各所述电极单元的温度检测器的接地端分别短接与其对应且各不相同的第二接地线,不同组且对应的各所述电极单元的温度检测器的信号端均并行连接至同一所述第二信号线。
  5. 根据权利要求4所述的电极片,其特征在于,不同组且不对应的各所述电极单元的温度检测器的接地端分别短接与其对应且各不相同的一路第二接地线,不同组且不对应的各所述电极单元的温度检测器的信号端分别连接与其对应且各不相同的一路第二信号线。
  6. 根据权利要求1所述的电极片,其特征在于,所述第二接地线的路数与多个所述电极单元被分的组数相关,所述第二信号线的路数与位于不同组中各组的电极单元的数量相关。
  7. 根据权利要求6所述的电极片,其特征在于,所述第二接地线的路数等于多个所述电极单元被分的组数,所述第二信号线的路数与具有最多电极单元的一组的电极单元的数量相关。
  8. 根据权利要求7所述的电极片,其特征在于,所述第二信号线的路数与具有最多电极单元的一组电极单元中的电极单元的总数相等。
  9. 根据权利要求2所述的电极片,其特征在于,所述第二AC线、多路所述第二接地线和多路所述第二信号线的总数量不大于10路。
  10. 根据权利要求9所述的电极片,其特征在于,所述电极单元的总数不超过20个。
  11. 根据权利要求2所述的电极片,其特征在于,所述电极单元的总数为20个且分为4组, 每一组所述电极单元的数量均为5个,所述转接板内嵌设有一路第二AC线、4路第二接地线和5路第二信号线;或者,所述电极单元的总数为19个且分为4组,其中三组所述电极单元的数量均为5个,剩余一组所述电极单元的数量为4个,所述转接板内嵌设有一路第二AC线、4路第二接地线和5路第二信号线;或者,
    所述电极单元的总数为13个且分为3组,其中两组所述电极单元的数量均为5个,剩余一组所述电极单元的数量为3个,所述转接板内嵌设有一路第二AC线、3路第二接地线和5路第二信号线;或者,
    所述电极单元的总数为13个且分为3组,其中两组所述电极单元的数量均为4个,剩余一组所述电极单元的数量为5个,所述转接板内嵌设有一路第二AC线、3路第二接地线和5路第二信号线;或者,
    所述电极单元的总数为13个且分为4组,其中三组所述电极单元的数量均为3个,剩余一组所述电极单元的数量为4个,所述转接板内嵌设有一路第二AC线、4路第二接地线和4路第二信号线;或者,
    所述电极单元的总数为9个且分为3组,每一组所述电极单元的数量均为3个,所述转接板内嵌设有一路第二AC线、3路第二接地线和3路第二信号线;或者,
    所述电极单元的总数为9个且分为2组,其中一组所述电极单元的数量为5个,另一组所述电极单元的数量为4个,所述转接板内嵌设有一路第二AC线、2路第二接地线和5路第二信号线,或者,
    所述电极单元的总数为20个且分为4组,每一组所述电极单元的数量均为5个,所述转接板内嵌设有一路第二AC线、5路第二接地线和4路第二信号线;或者,
    所述电极单元的总数为13个且分为3组,其中两组所述电极单元的数量均为5个,剩余一组所述电极单元的数量为3个,所述转接板内嵌设有一路第二AC线、3路第二信号线和5路第二接地线;或者,
    所述电极单元的总数为13个且分为4组,其中三组所述电极单元的数量均为4个,剩余一组所述电极单元的数量为1个,所述转接板内嵌设有一路第二AC线、4路第二信号线和4路第二接地线;或者,
    所述电极单元的总数为11个且分为3组,其中两组所述电极单元的数量均为4个,剩余一组所述电极单元的数量为1个,所述转接板内嵌设有一路第二AC线、4路第二接地线和3路第二信号线。
  12. 根据权利要求1-11任一项所述的电极片,其特征在于,多路所述第二接地线在同一时刻只有一路所述第二接地线导通,其余多路所述第二接地线断开。
  13. 根据权利要求12所述的电极片,其特征在于,同组的各所述电极单元的各温度检测器的检测信号在与该组电极单元的各温度检测器的接地端电性连接的一路所述第二接地线导通时被采集传输。
  14. 根据权利要求12所述的电极片,其特征在于,不同组的各所述电极单元的温度检测器的 检测信号在多路所述第二接地线依次导通时被分时采集传输。
  15. 根据权利要求1所述的电极片,其特征在于,每个所述电极单元还包括一与所述温度检测器串联连接的第一二极管。
  16. 根据权利要求2所述的电极片,其特征在于,所述电极片还包括一与所述转接板电性连接的第一线缆,所述第一线缆具有与所述转接板内部嵌设的所述第二AC线、多路所述第二接地线和多路所述第二信号线分别一一对应电性连接的多芯导线。
  17. 根据权利要求2所述的电极片,其特征在于,多个所述电极单元呈二维阵列的形式间隔设置在所述转接板上。
  18. 根据权利要求1所述的电极片,其特征在于,所述电极片还包括握手芯片,所述握手芯片适于与外部装置进行握手通信以判断所述电极片的连接状态。
  19. 根据权利要求18所述的电极片,其特征在于,还包括被配置为将与其对应的一组中的各所述温度检测器的接地端均短接接地的开关单元,多路所述第二接地线分别通过与其一一对应的多个所述开关单元将所有温度检测器的接地端短接接地,其中,在所述握手芯片与所述外部装置完成握手通信后,通过配置相应的所述开关单元的开闭状态以使同组的各所述电极单元的各温度检测器的检测信号在与该组电极单元的各温度检测器的接地端电性连接的一路所述第二接地线导通时被采集传输。
  20. 根据权利要求19所述的电极片,其特征在于,所述握手芯片的接地引脚通过所述开关单元接地,所述握手芯片的通信引脚通过通信线连接到所述外部装置。
  21. 根据权利要求20所述的电极片,其特征在于,所述握手芯片通过外置储能元件在所述通信线传输高电平时存储能量和在所述通信线传输低电平时释放能量。
  22. 根据权利要求21所述的电极片,其特征在于,所述储能元件为电容器。
  23. 根据权利要求19所述的电极片,其特征在于,同组的各所述电极单元的各温度检测器的信号端分别通过与其对应的一第一分压电阻连接到直流电源;位于不同组中且对应的各温度检测器的信号端通过同一第一分压电阻连接到直流电源;位于不同组组且不对应的各温度检测器的信号端通过不同的第一分压电阻连接到直流电源;多个第一分压电阻构成电阻器组。
  24. 根据权利要求23所述的电极片,其特征在于,所述开关单元和所述电阻器组设置在所述电极片外。
  25. 根据权利要求1-24任一项所述的电极片,其特征在于,每一所述温度检测器的检测信号用于表征所述电极片的类型。
  26. 根据权利要求1所述的电极片,其特征在于,多个所述电极元件与多个所述温度检测器均顺序排布,多个所述温度检测器顺延的一相应位置短接一导线。
  27. 根据权利要求1-26任一项所述的电极片,其特征在于,每一所述温度检测器的检测信号用于表征所述电极片是否出现温度检测故障。
  28. 根据权利要求1-26任一项所述的电极片,其特征在于,每一所述温度检测器的检测信号用于表征所述电极片是否出现温度异常。
  29. 根据权利要求1所述的电极片,其特征在于,多个所述电极单元被分为多个行组和多个列 组,每个所述行组中对应温度检测器串联连接后通过串联连接的一第二开关和一第二分压电阻连接到直流电源,每个所述列组中对应温度检测器的接地端连接到一起后通过一第三开关接地。
  30. 根据权利要求29所述的电极片,其特征在于,所述第二开关和所述第三开关的开关时序被组合配置为使所述电极片的所有温度检测器中相应的一个或多个组合的检测信号分别被采样。
  31. 根据权利要求29所述的电极片,其特征在于,所述电极片还包括多个第二二极管,每个所述第二二极管对应一个温度检测器设置,其中,每个所述列组中对应温度检测器的接地端分别与相应第二二极管的阳极相连后并通过相应的各所述第二二极管的阴极连接到一起再连接到相应的一所述第三开关。
  32. 根据权利要求29所述的电极片,其特征在于,所述第二开关、所述第二分压电阻和所述第三开关均设置在所述电极片外。
  33. 根据权利要求29-32任一项所述的电极片,其特征在于,所述电极片的类型通过所述第二开关和所述第三开关的开关组合关系的配置以及基于所述第二开关和所述第三开关的开关组合关系而采样到的所述电极片的全部温度检测器中相应的一个或多个组合的检测信号进行识别。
  34. 根据权利要求29-32任一项所述的电极片,其特征在于,所述电极片中是否存在异常温度检测器是通过所述第二开关和所述第三开关的开关组合关系的配置以及基于所述第二开关和所述第三开关的开关组合关系而采样到的所述电极片的全部温度检测器中相应的一个或多个组合的检测信号判断的。
  35. 根据权利要求29所述的电极片,其特征在于,所述第二开关的数量大于或等于所述行组的数量,所述第三开关的数量大于或等于所述列组的数量。
  36. 根据权利要求29所述的电极片,其特征在于,所述第二开关与所述第三开关的数量总和不超过9个。
  37. 根据权利要求1所述的电极片,其特征在于,还包括与各所述电极单元可拆卸连接的转接板。
  38. 根据权利要求37所述的电极片,其特征在于,所述转接板包括多个母座,各所述电极单元还包括一个与所述转接板的相应的一个母座可拆卸连接的公座,各所述电极单元通过相应的公座与所述转接板可拆卸连接。
  39. 根据权利要求38所述的电极片,其特征在于,各所述电极单元还包括柔性板基体,所述公座与所述电极元件位于所述柔性板基体的同一侧,所述公座与所述电极元件分别位于所述柔性板基体的相对两端。
  40. 根据权利要求39所述的电极片,其特征在于,所述温度检测器设于所述柔性板基体上并与所述电极元件位于同一侧。
  41. 根据权利要求40所述的电极片,其特征在于,所述电极元件具有一呈贯穿状设置的开孔,所述温度检测器收容于所述电极元件的开孔内。
  42. 根据权利要求39所述的电极片,其特征在于,各所述电极单元还包括设于所述柔性板基体远离电极元件一侧的支撑板,所述支撑板与所述电极元件沿厚度方向对齐。
  43. 根据权利要求39所述的电极片,其特征在于,所述柔性板基体背离所述公座一侧的表面 粘贴设有补强板,所述补强板与所述公座位于所述柔性板基体的同一端。
  44. 根据权利要求38所述的电极片,其特征在于,所述转接板具有一可拆卸连接多个所述电极单元的本体以及一接线部。
  45. 根据权利要求44所述的电极片,其特征在于,所述转接板呈片状设置,所述转接板的多个所述母座布设于所述本体上,所述接线部位于所述本体的一端。
  46. 根据权利要求45所述的电极片,其特征在于,所述本体具有一个主干和至少一个枝干,多个所述母座呈间隔状分别设于所述主干及所述枝干上。
  47. 根据权利要求46所述的电极片,其特征在于,所述本体具有一个主干和4个枝干,所述主干的每一侧均有两个枝干,位于所述主干不同侧的所述枝干呈两两对齐状设置,位于主干同一侧的两枝干呈间隔状设置。
  48. 根据权利要求47所述的电极片,其特征在于,所述本体的主干设有至少一个贯穿状设置的镂空孔,所述镂空孔与设于主干上的相应的母座对应设置,所述位于本体的主干同一侧的相邻两所述枝干之间具有一间隔,所述镂空孔与所述间隔均容许相应的所述电极单元的电极元件穿过,所述电极单元的电极元件在所述电极单元插接至所述转接板上时向所述转接板远离所述母座的一侧露出。
  49. 根据权利要求37所述的电极片,其特征在于,所述电极片还包括与多个所述电极单元和所述转接板的相应部分粘贴的背衬、围设在多个所述电极单元相应部分周围并粘贴至所述背衬的支撑件以及覆盖所述支撑件和多个所述电极单元相应部分并与患者体表皮肤贴合的粘贴件。
  50. 根据权利要求49所述的电极片,其特征在于,所述背衬呈片状设置并具有至少一个与所述电极单元对应的并呈贯穿状设置的通孔,所述背衬的通孔容许所述电极单元相应部分露出所述背衬远离所述转接板的一侧表面。
  51. 根据权利要求49所述的电极片,其特征在于,所述支撑件包括至少一个呈贯穿状设置的穿孔。
  52. 根据权利要求51所述的电极片,其特征在于,所述穿孔包括与相应的所述电极单元对应并收容相应的所述电极单元的相应部位的第一穿孔以及位于多个第一穿孔之间并与所述转接板相对的第二穿孔。
  53. 根据权利要求49所述的电极片,其特征在于,所述电极片还包括至少一位于所述粘贴件背离所述背衬的一侧并覆盖所述粘贴件与所述背衬的离型纸。
  54. 根据权利要求39所述的电极片,其特征在于,所述公座通过柔性板基体的两段线路与所述电极元件电性连接。
  55. 根据权利要求54所述的电极片,其特征在于,所述柔性板基体内嵌设有第一AC线,所述两段线路共同构成所述第一AC线,所述公座通过第一AC线的两段线路与所述电极元件电性连接。
  56. 根据权利要求55所述的电极片,其特征在于,所述第一AC线沿所述柔性板基体的周缘呈环状设置并在柔性板基体设置公座的部位呈首尾电性连接的两段状构造。
  57. 根据权利要求55所述的电极片,其特征在于,所述柔性板基体内嵌设有一与温度检测器的接地端和所述公座均电性连接的第一接地线以及一与温度检测器的信号端和所述公座均电性连 接并传递检测信号的第一信号线。
  58. 根据权利要求57所述的电极片,其特征在于,所述第一接地线及所述第一信号线均位于所述第一AC线围设的区域内。
  59. 根据权利要求57所述的电极片,其特征在于,所述柔性板基体还设有多个呈间隔状设置并与所述电极元件焊接的导电盘、两个分别与所述温度检测器的接地端和信号端对应焊接的第一焊盘以及多个与所述公座焊接的第二焊盘。
  60. 根据权利要求59所述的电极片,其特征在于,所述导电盘与所述第一焊盘均位于所述柔性板基体的同一端,所述第二焊盘位于所述柔性板基体的另一端,两个所述第一焊盘位于多个所述导电盘围设的中间位置处。
  61. 根据权利要求59所述的电极片,其特征在于,与所述温度检测器的接地端焊接的所述第一焊盘连接所述第一接地线,与所述温度检测器的信号端焊接的所述第一焊盘连接第一信号线。
  62. 根据权利要求59所述的电极片,其特征在于,所述第二焊盘设有多个,且至少为4个。
  63. 根据权利要求62所述的电极片,其特征在于,多个第二焊盘中的两个分别连接第一接地线、第一信号线和第一AC线中的两路线路,多个第二焊盘中剩余的第二焊盘均共同串联连接第一接地线、第一信号线和第一AC线中的剩余的一路线路。
  64. 根据权利要求63所述的电极片,其特征在于,多个所述第二焊盘中的两个分别连接第一接地线与第一信号线,多个第二焊盘中剩余的第二焊盘均共同串联连接第一AC线。
  65. 根据权利要求38所述的电极片,其特征在于,所述转接板内部嵌设有一路传输交变电信号的第二AC线,多个所述电极单元的相应电极元件均通过相应的公座与所述转接板的母座连接而并行连接至所述第二AC线。
  66. 根据权利要求65所述的电极片,其特征在于,所述转接板内部嵌设有一路向所述温度检测器传输接地信号的第二接地线以及多路并行传输所述温度检测器的检测信号的第二信号线。
  67. 根据权利要求66所述的电极片,其特征在于,多个所述电极单元的相应温度检测器的接地端均通过相应的公座与所述转接板相应的母座连接而并行连接至所述转接板的第二接地线,多个所述电极单元的相应温度检测器的信号端分别通过相应的公座及所述转接板相应的母座电性连接所述转接板的相应的一路第二信号线。
  68. 根据权利要求66所述的电极片,其特征在于,所述第二AC线与第二接地线均呈树枝状布线设置。
  69. 根据权利要求66所述的电极片,其特征在于,所述转接板具有一接线部,所述接线部的两侧表面设有多个第四焊盘,多个所述第四焊盘包括多个与相应的第二AC线、第二接地线及第二信号线电性连接的导通焊盘和均未与第二AC线、第二接地线及第二信号线电性连接的虚拟焊盘。
  70. 一种电场治疗***,其特征在于,包括:
    至少一对根据权利要求1-69任一项所述的电极片;
    电场发生器,配置成向所述电极片的多个电极元件施加交变电信号;和
    转接器单元,连接于所述电极片与所述电场发生器之间,其被配置成将所述电场发生器产生的交变电信号传输至所述电极片,并且还被配置成用于接收所述电极片的多路第二信号线输出的检测 信号。
  71. 根据权利要求70所述的电场治疗***,其特征在于,所述转接器单元包括第一转接器,所述第一转接器包括多组第一开关,每组所述第一开关均包括多个第一开关,多个所述第一开关分别一一电性连接相应的所述电极片的多路所述第二接地线,多个所述第一开关被配置成用于控制相应所述电极片的多路所述第二接地线的导通或断开。
  72. 根据权利要求71所述的电场治疗***,其特征在于,所述第一转接器还包括与多组所述第一开关连接的第一控制器,所述第一控制器依次循环地控制多组所述第一开关中各所述第一开关的开闭状态而依次单独导通相应的所述电极片的多路第二接地线中的每路第二接地线。
  73. 根据权利要求72所述的电场治疗***,其特征在于,所述第一转接器还包括分别与多个所述电极片的多路第二信号线一一电性连接的多组第一模数转换器,每组所述第一模数转换器均被配置成用于接收相应的所述电极片的多路第二信号线传输的检测信号并将所述检测信号由模拟信号转换为数字信号。
  74. 根据权利要求73所述的电场治疗***,其特征在于,每组所述第一模数转换器均包括多个检测通道,每个检测通道与多路所述第二信号线中对应的一路第二信号线连接。
  75. 根据权利要求73所述的电场治疗***,其特征在于,所述第一转接器还包括一第一通信收发器,所述第一通信收发器被配置成获取每组所述第一模数转换器输出的数字信号并将所述数字信号发送至所述电场发生器。
  76. 根据权利要求75所述的电场治疗***,其特征在于,所述电场发生器还配置成根据接收到的所述数字信号调整施加至相应的所述电极片的电极单元的电极元件的交变电信号。
  77. 根据权利要求75所述的电场治疗***,其特征在于,所述第一通信收发器由所述第一控制器控制并串行地传输所述第一模数转换器转化的所述数字信号。
  78. 根据权利要求71所述的电场治疗***,其特征在于,所述第一转接器包括多组第一分压电阻,每组所述第一分压电阻均包括多个第一分压电阻,多个所述第一分压电阻的一端分别一一电性连接相应的所述电极片的多路所述第二信号线,多个所述第一分压电阻的另一端均连接到直流电源。
  79. 根据权利要求71所述的电场治疗***,其特征在于,所述电场治疗***还包括多个第一连接器,每个所述第一连接器均配置成将相应的一个所述电极片连接到所述第一转接器,每个所述第一连接器分别设置于相应的所述电极片的第一线缆远离所述电极片的一端。
  80. 根据权利要求71所述的电场治疗***,其特征在于,所述电场治疗***还包括将所述第一转接器连接到所述电场发生器的第二连接器以及用于连接所述第一转接器和所述第二连接器的第二线缆。
  81. 根据权利要求70所述的电场治疗***,其特征在于,所述转接器单元还被配置成与握手芯片进行握手通信,并在完成握手通信后配置与对应所述电极片连接的开关单元的开闭状态以同时对位于同组的各所述电极单元的各温度检测器的检测信号进行采样。
  82. 根据权利要求81所述的电场治疗***,其特征在于,所述转接器单元包括第三转接器和至少一对第二转接器,所述第二转接器适于连接相应的电极片,所述第三转接器适于将每个所述第 二转接器连接到所述电场发生器。
  83. 根据权利要求82所述的电场治疗***,其特征在于,所述第二转接器包括第二控制器和第二模数转换器,所述第二控制器用于在接收到所述电场发生器发送的握手信号时配置所述开关单元的开闭状态以使所述握手芯片上电工作,并将所述握手信号发送给所述握手芯片,以及根据所述握手芯片的反馈信号判断与所述握手芯片是否完成握手通信,并在完成握手通信后通过配置所述开关单元的开闭状态,以使所述第二模数转换器同时对同组中的各所述电极单元的各温度检测器的检测信号进行采样,获得数字信号。
  84. 根据权利要求83所述的电场治疗***,其特征在于,所述第二转接器还包括第二通信收发器,所述第三转接器包括第三通信收发器和第三控制器,所述第二通信收发器与所述第三通信收发器相连,其中,所述第二控制器还用于将所述握手芯片的反馈信号发送给所述第三控制器,以便所述第三控制器根据所述握手芯片的反馈信号判断所述第二控制器与所述握手芯片是否完成握手通信。
  85. 根据权利要求84所述的电场治疗***,其特征在于,所述第二控制器还用于将所述数字信号发送给所述第三控制器。
  86. 根据权利要求85所述的电场治疗***,其特征在于,所述第三转接器还包括第四通信收发器,所述第四通信收发器分别与所述第三控制器和所述电场发生器相连,其中,所述第三控制器还用于通过所述第三转接器将所述握手芯片的反馈信号发送给所述电场发生器,以便所述电场发生器根据所述握手芯片的反馈信号判断所述第二控制器与所述握手芯片是否完成握手通信。
  87. 根据权利要求86所述的电场治疗***,其特征在于,所述第三控制器还用于通过所述第三转接器将所述数字信号发送给所述电场发生器。
  88. 根据权利要求82所述的电场治疗***,其特征在于,所述***还包括:
    至少一个第三连接器,每个所述第三连接器适于将相应第二转接器连接到所述第三转接器;
    第四连接器,所述第四连接器适于将所述电场发生器连接到所述第三转接器。
  89. 根据权利要求70-88任一项所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于根据所述电极片的多路第二信号线输出的检测信号识别所述电极片的类型。
  90. 根据权利要求70-89任一项所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于根据所述电极片的多路第二信号线输出的检测信号判断所述电极片是否出现温度检测故障。
  91. 根据权利要求70-90任一项所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于根据所述电极片的多路第二信号线输出的检测信号判断所述电极片是否出现温度异常。
  92. 根据权利要求89所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成在所述电极片正常情况下用于根据所述电极片的多路第二信号线输出的检测信号确定所述电极片的测试编码数组并根据所述测试编码数组确定所述电极片的类型。
  93. 根据权利要求90所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器 还被配置成在所述电极片的类型确定情况下用于根据所述电极片的多路第二信号线输出的检测信号确定所述电极片的测试编码数组,并根据所述测试编码数组识别所述电极片中每一所述温度检测器的故障情况。
  94. 根据权利要求93所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于确定所述电极片中存在故障的温度检测器的数量,并根据所述数量判断所述电极片是否需要更换。
  95. 根据权利要求94所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于在所述电极片中存在故障的温度检测器时,发出第一提醒信息,并指示所述电场发生器保持继续工作;在判断所述电极片需要更换时,发出第二提醒信息,并指示所述电场发生器停止工作。
  96. 根据权利要求92或93所述的电场治疗***,其特征在于,所述测试编码数组包括第一编码、第二编码和第三编码中的至少一种,其中,所述第一编码用于指示所述温度检测器处于正常状态,所述第二编码用于指示所述温度检测器处于断路状态或未设置状态,所述第三编码用于指示所述温度检测器处于短路状态。
  97. 根据权利要求96所述的电场治疗***,其特征在于,所述检测信号以电压值进行表征,所述电压值所处的电压区间不同,对应不同的编码。
  98. 根据权利要求70所述的电场治疗***,其特征在于,所述电场发生器或所述转接器单元还被配置成根据所述电极片的多路第二信号线输出的检测信号确定所述电极片的测试编码数组,并将所述测试编码数组发送给上位机,以便所述上位机将所述测试编码数组与同类型的合格电极片的标准编码数组进行比较,判断所述电极片是否合格。
  99. 根据权利要求98所述的电场治疗***,其特征在于,所述标准编码数组包括第一编码和第二编码中的至少第一编码,所述测试编码数组包括第一编码、第二编码和第三编码的至少一种,其中,所述第一编码用于指示所述温度检测器处于正常状态,所述第二编码用于指示所述温度检测器处于断路状态或未设置状态,所述第三编码用于指示所述温度检测器处于短路状态。
  100. 根据权利要求70所述的电场治疗***,其特征在于,所述转接器单元还被配置成用于配置第二开关和第三开关的开关时序以对所述电极片的所有温度检测器中相应的一个或多个组合的检测信号进行采样,获得数字信号,并将所述数字信号传输给所述电场发生器。
  101. 根据权利要求100所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于根据采样到的所述电极片的所有温度检测器中相应的一个或多个组合的检测信号识别所述电极片的类型。
  102. 根据权利要求100所述的电场治疗***,其特征在于,所述转接器单元或所述电场发生器还被配置成用于根据采样到的所述电极片的所有温度检测器中相应的一个或多个组合的检测信号判断所述电极片中是否存在异常温度检测器。
  103. 根据权利要求70所述的电场治疗***,其特征在于,所述转接器单元还被配置成用于对第二开关和第三开关进行组合控制,并获取所有组合中每种组合对应的检测信号,以及根据所述检测信号确定具有温度信号的组合,以便根据所述具有温度信号的组合对所述电极片中每一所述温度 检测器的检测信号进行采样,转换为数字信号,并将所述数字信号传输给所述电场发生器。
  104. 根据权利要求103所述的电场治疗***,其特征在于,所述转接器单元还被配置成用于在所述检测信号处于预设信号范围内时确定所述检测信号为温度信号。
  105. 根据权利要求103所述的电场治疗***,其特征在于,所述转接器单元还被配置成用于在设定所述温度检测器及其电路连接均无异常时根据所述具有温度信号的组合确定多个所述电极单元的个数、行组数和列组数。
  106. 根据权利要求105所述的电场治疗***,其特征在于,所述转接器单元还被配置成用于根据多个所述电极单元的行组数和列组数以及所述温度信号判断所述电极片中是否存在异常温度传感器。
  107. 一种电场治疗***的控制方法,所述电场治疗***为如权利要求70-100任一项所述的电场治疗***,其特征在于,所述方法包括:
    依次单独导通所述电极片的多路第二接地线中的每路第二接地线,并在每路第二接地线处于导通状态下获取转接器单元接收到的已由该第二接地线接地的一组电极单元中的每个电极单元的温度检测器的检测信号。
  108. 根据权利要求107所述的控制方法,其特征在于,所述转接器单元包括第一转接器,所述第一转接器包括多组第一开关,每组所述第一开关均包括多个第一开关,多个所述第一开关分别一一电性连接相应的所述电极片的多路所述第二接地线并被配置成控制多路所述第二接地线的导通或断开,所述依次单独导通所述电极片的多路第二接地线中的每路第二接地线是通过依次单独闭合多个所述第一开关中的每个第一开关实现的。
  109. 根据权利要求108所述的控制方法,其特征在于,所述第一转接器还包括多组第一模数转换器,每组所述第一模数转换器与相应的所述电极片的多路第二信号线连接并被配置成用于接收相应的所述电极片的多路第二信号线传输的检测信号且将所述检测信号由模拟信号转换为数字信号。
  110. 根据权利要求109所述的控制方法,其特征在于,所述控制方法还包括步骤:将所述数字信号串行发送至所述电场发生器。
  111. 根据权利要求108所述的控制方法,其特征在于,所述控制方法还包括如下步骤:比较设定的预设温度阈值与所有数字信号,并根据比较结果调整施加至相应电极片的电极单元的电极元件上的交变电信号。
  112. 根据权利要求107所述的控制方法,其特征在于,所述控制方法还包括如下步骤:
    通过转接器单元与握手芯片进行握手通信,以判断所述电极片的连接状态;
    在每个所述电极片与所述转接器单元连接成功时,通过所述转接器单元对所述开关单元的开闭状态进行配置,以便同时对同组的各所述电极单元的各温度检测器的检测信号进行采样。
  113. 根据权利要求112所述的控制方法,其特征在于,在通过转接器单元与握手芯片进行握手通信之前,所述控制方法还包括如下步骤:通过所述转接器单元对所述开关单元的开闭状态进行配置,以使所述握手芯片上电工作。
  114. 根据权利要求107-113任一项所述的控制方法,其特征在于,所述控制方法还包括如下 步骤:根据每一所述温度检测器的检测信号识别所述电极片的类型。
  115. 根据权利要求107-114任一项所述的控制方法,其特征在于,所述控制方法还包括如下步骤:根据每一所述温度检测器的检测信号判断所述电极片是否出现温度检测故障。
  116. 根据权利要求107-115任一项所述的控制方法,其特征在于,所述控制方法还包括如下步骤:根据每一所述温度检测器的检测信号判断所述电极片是否出现温度异常。
  117. 根据权利要求114所述的控制方法,其特征在于,所述控制方法还包括如下步骤:根据每一所述温度检测器的检测信号确定所述电极片的电极单元数量,根据所述电极单元数量确定所述电极片的类型。
  118. 根据权利要求114所述的控制方法,其特征在于,所述控制方法还包括如下步骤:在所述电极片正常情况下,根据每一所述温度检测器的检测信号确定所述电极片的测试编码数组,并根据所述测试编码数组确定所述电极片的类型。
  119. 根据权利要求115所述的控制方法,其特征在于,所述控制方法还包括如下步骤:在所述电极片的类型确定情况下,根据每一所述温度检测器的检测信号确定所述电极片的测试编码数组,并根据所述测试编码数组识别所述电极片中每一所述温度检测器的故障情况。
  120. 根据权利要求119所述的控制方法,其特征在于,所述控制方法还包括如下步骤:确定所述电极片中存在故障的温度检测器的数量,并根据所述数量判断所述电极片是否需要更换。
  121. 根据权利要求120所述的控制方法,其特征在于,在所述电极片中存在故障的温度检测器时,所述控制方法还包括如下步骤:发出第一提醒信息,并指示所述电场发生器保持继续工作;或在判断所述电极片需要更换时,所述控制方法还包括如下步骤:发出第二提醒信息,并指示所述电场发生器停止工作。
  122. 根据权利要求118或119所述的控制方法,其特征在于,所述测试编码数组包括第一编码、第二编码和第三编码中的至少一种,其中,所述第一编码用于指示所述温度检测器处于正常状态,所述第二编码用于指示所述温度检测器处于断路状态或未设置状态,所述第三编码用于指示所述温度检测器处于短路状态。
  123. 根据权利要求122所述的控制方法,其特征在于,所述检测信号以电压值进行表征,所述控制方法还包括如下步骤:
    确定所述电压值所处的电压区间;
    根据所述电压值所处的电压区间确定相应温度检测器的编码,其中,所述电压值所处的电压区间不同,对应不同的编码;
    根据每个所述温度检测器对应的编码生成相应电极片的测试编码数组。
  124. 根据权利要求107所述的控制方法,其特征在于,所述控制方法还包括如下步骤:根据每一所述温度检测器的检测信号确定所述电极片的测试编码数组,将所述测试编码数组与同类型的合格电极片的标准编码数组进行比较,判断所述电极片是否合格。
  125. 根据权利要求124所述的控制方法,其特征在于,所述标准编码数组包括第一编码和第二编码中的至少第一编码,所述测试编码数组包括第一编码、第二编码和第三编码的至少一种,其中,所述第一编码用于指示所述温度检测器处于正常状态,所述第二编码用于指示所述温度检测器 处于断路状态或未设置状态,所述第三编码用于指示所述温度检测器处于短路状态。
  126. 根据权利要求107所述的控制方法,其特征在于,所述控制方法还包括如下步骤:对第二开关和第三开关的开关时序进行配置,以对所述电极片的所有温度检测器中相应的一个或多个组合的检测信号进行采样。
  127. 根据权利要求126所述的控制方法,其特征在于,在所述电极片为测试合格的条件下,所述控制方法还包括如下步骤:
    确定所述第二开关和所述第三开关的开关组合关系;
    根据所述第二开关和所述第三开关的开关组合关系以及采样到的所述电极片的所有温度检测器中相应的一个或多个组合的检测信号识别所述电极片的类型。
  128. 根据权利要求126所述的控制方法,其特征在于,在确定所述电极片各行组温度检测器数量与各列组温度检测器数量的条件下,所述控制方法还包括如下步骤:
    确定所述第二开关和所述第三开关的开关组合关系;
    根据所述第二开关和所述第三开关的开关组合关系以及采样到的每一所述温度检测器的检测信号判断所述电极片中是否存在异常温度检测器。
  129. 根据权利要求107所述的控制方法,其特征在于,所述控制方法还包括如下步骤:
    对第二开关和第三开关进行组合控制,并获取所有组合中每种组合对应的检测信号;
    根据所述检测信号确定具有温度信号的组合;
    根据所述具有温度信号的组合对所述电极片中每一所述温度检测器的检测信号进行采样。
  130. 根据权利要求129所述的控制方法,其特征在于,所述根据所述检测信号确定具有温度信号的组合,包括:
    在所述检测信号处于预设信号范围内时,确定所述检测信号为温度信号。
  131. 根据权利要求129所述的控制方法,其特征在于,在获得具有温度信号的组合之后,所述控制方法还包括如下步骤:根据所述具有温度信号的组合确定多个所述电极单元的个数、行组数和列组数。
  132. 根据权利要求129所述的控制方法,其特征在于,在获得多个所述电极单元的行组数和列组数之后,并在所述电极片使用一段时间后,所述控制方法还包括如下步骤:根据多个所述电极单元的行组数和列组数以及所述温度信号判断所述电极片中是否存在异常温度传感器。
  133. 根据权利要求107至132中任一项所述的控制方法,其特征在于,在获取所述电极片中每个所述温度检测器的检测信号之后,所述方法还包括:
    根据每个所述温度检测器检测的检测信号确定相应电极元件处的温度;及
    在根据相应的电极元件处的检测信号识别所述电极片存在过温情况时,降低施加至所述所述电极片或超温的所述电极元件上的交流电信号的幅值或停止向所述所述电极片或超温的所述电极元件输出交流电信号。
PCT/CN2023/127360 2022-10-27 2023-10-27 电极片、电场治疗***及控制方法 WO2024088418A1 (zh)

Applications Claiming Priority (38)

Application Number Priority Date Filing Date Title
CN202211324418.9 2022-10-27
CN202211324418.9A CN115671556A (zh) 2022-10-27 2022-10-27 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN202222848795.4 2022-10-27
CN202222848795.4U CN218833404U (zh) 2022-10-27 2022-10-27 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN202211678884.7 2022-12-26
CN202223483419.6 2022-12-26
CN202211678871.X 2022-12-26
CN202223483410.5 2022-12-26
CN202211678713.4A CN115845249B (zh) 2022-12-26 2022-12-26 可拆卸电极单元、电极贴片及肿瘤电场治疗仪
CN202211678871.XA CN115837120B (zh) 2022-12-26 2022-12-26 电极贴片、电极贴片的制造方法及肿瘤电场治疗仪
CN202223483427.0 2022-12-26
CN202223483419.6U CN218833405U (zh) 2022-12-26 2022-12-26 肿瘤电场治疗***
CN202223483410.5U CN219128024U (zh) 2022-12-26 2022-12-26 电极单元、电极贴片及肿瘤电场治疗仪
CN202211678884.7A CN115814263B (zh) 2022-12-26 2022-12-26 电极贴片及肿瘤电场治疗***
CN202211678713.4 2022-12-26
CN202223483427.0U CN218833406U (zh) 2022-12-26 2022-12-26 肿瘤电场治疗仪
CN202223561065.2U CN219128011U (zh) 2022-12-30 2022-12-30 电极片及电场治疗***
CN202211721864.3 2022-12-30
CN202211739919.3 2022-12-30
CN202211721864.3A CN115970166B (zh) 2022-12-30 2022-12-30 肿瘤电场治疗***、肿瘤治疗设备及电极片温度检测方法
CN202211722158.0 2022-12-30
CN202211721902.5A CN116046198B (zh) 2022-12-30 2022-12-30 电极片、电极片温度检测方法及肿瘤电场治疗***
CN202223590656.2U CN219071822U (zh) 2022-12-30 2022-12-30 电场治疗***
CN202211739919.3A CN115869533A (zh) 2022-12-30 2022-12-30 电极片及电场治疗***
CN202223562251.8U CN219128025U (zh) 2022-12-30 2022-12-30 肿瘤电场治疗***及其电极片
CN202211723961.6A CN115920230A (zh) 2022-12-30 2022-12-30 电极片、电场治疗***及控制方法
CN202211722151.9 2022-12-30
CN202211721874.7A CN115980490B (zh) 2022-12-30 2022-12-30 电极片的质量检测***及方法、转接器、电场发生器
CN202211723961.6 2022-12-30
CN202211721874.7 2022-12-30
CN202211722151.9A CN116008702B (zh) 2022-12-30 2022-12-30 肿瘤电场治疗***、肿瘤治疗设备及电极片故障检测方法
CN202211721902.5 2022-12-30
CN202211722169.9A CN116271523B (zh) 2022-12-30 2022-12-30 电极片、电极片识别方法、肿瘤电场治疗***及治疗设备
CN202211722158.0A CN115845260B (zh) 2022-12-30 2022-12-30 肿瘤电场治疗***及其电极片、温度检测方法
CN202223590656.2 2022-12-30
CN202211722169.9 2022-12-30
CN202223562251.8 2022-12-30
CN202223561065.2 2022-12-30

Publications (1)

Publication Number Publication Date
WO2024088418A1 true WO2024088418A1 (zh) 2024-05-02

Family

ID=90830141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127360 WO2024088418A1 (zh) 2022-10-27 2023-10-27 电极片、电场治疗***及控制方法

Country Status (1)

Country Link
WO (1) WO2024088418A1 (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562258A (zh) * 2016-08-18 2019-04-02 诺沃医疗有限公司 用于递送肿瘤治疗电场的阵列中的温度测量
CN114099962A (zh) * 2021-12-22 2022-03-01 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片组件
WO2022069941A1 (en) * 2020-09-30 2022-04-07 Novocure Gmbh Connector for detachable array
CN115671556A (zh) * 2022-10-27 2023-02-03 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN115814263A (zh) * 2022-12-26 2023-03-21 江苏海莱新创医疗科技有限公司 电极贴片及肿瘤电场治疗***
CN115837120A (zh) * 2022-12-26 2023-03-24 江苏海莱新创医疗科技有限公司 电极贴片、电极贴片的制造方法及肿瘤电场治疗仪
CN115845249A (zh) * 2022-12-26 2023-03-28 江苏海莱新创医疗科技有限公司 可拆卸电极单元、电极贴片及肿瘤电场治疗仪
CN115845260A (zh) * 2022-12-30 2023-03-28 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、温度检测方法
CN115869533A (zh) * 2022-12-30 2023-03-31 江苏海莱新创医疗科技有限公司 电极片及电场治疗***
CN115920230A (zh) * 2022-12-30 2023-04-07 江苏海莱新创医疗科技有限公司 电极片、电场治疗***及控制方法
CN218833404U (zh) * 2022-10-27 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN218833406U (zh) * 2022-12-26 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗仪
CN218833405U (zh) * 2022-12-26 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***
CN115980490A (zh) * 2022-12-30 2023-04-18 江苏海莱新创医疗科技有限公司 电极片的质量检测***及方法、转接器、电场发生器
CN115970166A (zh) * 2022-12-30 2023-04-18 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***、肿瘤治疗设备及电极片温度检测方法
CN116008702A (zh) * 2022-12-30 2023-04-25 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***、肿瘤治疗设备及电极片故障检测方法
CN116046198A (zh) * 2022-12-30 2023-05-02 江苏海莱新创医疗科技有限公司 电极片、电极片温度检测方法及肿瘤电场治疗***
CN219071822U (zh) * 2022-12-30 2023-05-26 江苏海莱新创医疗科技有限公司 电场治疗***
CN219128024U (zh) * 2022-12-26 2023-06-06 江苏海莱新创医疗科技有限公司 电极单元、电极贴片及肿瘤电场治疗仪
CN219128011U (zh) * 2022-12-30 2023-06-06 江苏海莱新创医疗科技有限公司 电极片及电场治疗***
CN219128025U (zh) * 2022-12-30 2023-06-06 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片
CN116271523A (zh) * 2022-12-30 2023-06-23 江苏海莱新创医疗科技有限公司 电极片、电极片识别方法、肿瘤电场治疗***及治疗设备

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562258A (zh) * 2016-08-18 2019-04-02 诺沃医疗有限公司 用于递送肿瘤治疗电场的阵列中的温度测量
WO2022069941A1 (en) * 2020-09-30 2022-04-07 Novocure Gmbh Connector for detachable array
CN114099962A (zh) * 2021-12-22 2022-03-01 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片组件
CN115671556A (zh) * 2022-10-27 2023-02-03 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN218833404U (zh) * 2022-10-27 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、肿瘤治疗设备
CN115837120A (zh) * 2022-12-26 2023-03-24 江苏海莱新创医疗科技有限公司 电极贴片、电极贴片的制造方法及肿瘤电场治疗仪
CN219128024U (zh) * 2022-12-26 2023-06-06 江苏海莱新创医疗科技有限公司 电极单元、电极贴片及肿瘤电场治疗仪
CN115845249A (zh) * 2022-12-26 2023-03-28 江苏海莱新创医疗科技有限公司 可拆卸电极单元、电极贴片及肿瘤电场治疗仪
CN218833405U (zh) * 2022-12-26 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***
CN218833406U (zh) * 2022-12-26 2023-04-11 江苏海莱新创医疗科技有限公司 肿瘤电场治疗仪
CN115814263A (zh) * 2022-12-26 2023-03-21 江苏海莱新创医疗科技有限公司 电极贴片及肿瘤电场治疗***
CN115920230A (zh) * 2022-12-30 2023-04-07 江苏海莱新创医疗科技有限公司 电极片、电场治疗***及控制方法
CN115869533A (zh) * 2022-12-30 2023-03-31 江苏海莱新创医疗科技有限公司 电极片及电场治疗***
CN115980490A (zh) * 2022-12-30 2023-04-18 江苏海莱新创医疗科技有限公司 电极片的质量检测***及方法、转接器、电场发生器
CN115970166A (zh) * 2022-12-30 2023-04-18 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***、肿瘤治疗设备及电极片温度检测方法
CN116008702A (zh) * 2022-12-30 2023-04-25 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***、肿瘤治疗设备及电极片故障检测方法
CN116046198A (zh) * 2022-12-30 2023-05-02 江苏海莱新创医疗科技有限公司 电极片、电极片温度检测方法及肿瘤电场治疗***
CN219071822U (zh) * 2022-12-30 2023-05-26 江苏海莱新创医疗科技有限公司 电场治疗***
CN115845260A (zh) * 2022-12-30 2023-03-28 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片、温度检测方法
CN219128011U (zh) * 2022-12-30 2023-06-06 江苏海莱新创医疗科技有限公司 电极片及电场治疗***
CN219128025U (zh) * 2022-12-30 2023-06-06 江苏海莱新创医疗科技有限公司 肿瘤电场治疗***及其电极片
CN116271523A (zh) * 2022-12-30 2023-06-23 江苏海莱新创医疗科技有限公司 电极片、电极片识别方法、肿瘤电场治疗***及治疗设备

Similar Documents

Publication Publication Date Title
TWI512484B (zh) 用於促進一主機裝置與一配件間通信之資料結構
US8406874B2 (en) Defibrillator with a normalized electrode interface and defibrillating electrode
CA2794877C (en) Techniques for configuring contacts of a connector
CN115845260B (zh) 肿瘤电场治疗***及其电极片、温度检测方法
CN108475944A (zh) 具有能量收集的互连传感器平台
CN115970166B (zh) 肿瘤电场治疗***、肿瘤治疗设备及电极片温度检测方法
CN116008702B (zh) 肿瘤电场治疗***、肿瘤治疗设备及电极片故障检测方法
CN219128011U (zh) 电极片及电场治疗***
CN115920230A (zh) 电极片、电场治疗***及控制方法
CN219071822U (zh) 电场治疗***
CN116271523B (zh) 电极片、电极片识别方法、肿瘤电场治疗***及治疗设备
TW201021353A (en) Universal power inlet system for power distribution units
CN115869533A (zh) 电极片及电场治疗***
CN219128024U (zh) 电极单元、电极贴片及肿瘤电场治疗仪
CN115845249B (zh) 可拆卸电极单元、电极贴片及肿瘤电场治疗仪
CN116046198B (zh) 电极片、电极片温度检测方法及肿瘤电场治疗***
WO2024088418A1 (zh) 电极片、电场治疗***及控制方法
CN219128025U (zh) 肿瘤电场治疗***及其电极片
CN203705599U (zh) 一种半导体器件检测装置
JP5351251B2 (ja) 電力出口とデバイスとの効率的な関連付けのためのシステム及び方法
WO2024140855A1 (zh) 电极片、电场治疗***及控制方法
CN105762874A (zh) 一种多usb输出接口的充电器
CN115980490A (zh) 电极片的质量检测***及方法、转接器、电场发生器
WO2024131987A1 (zh) 肿瘤电场治疗***、设备、控制及制造方法、检测方法及计算机可读存储介质
CN105116988B (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881993

Country of ref document: EP

Kind code of ref document: A1